Browse Source

flash: EFM32 flash implementation

Limited (no page unprotect, no block writes) implementation of EFM32
flash support. Verified with EFM32 development kit and STLink V2 adapter
using SWD.

Change-Id: I3db2054d9aa628a1fe4814430425db3c9959c71c
Signed-off-by: Roman D <me@iamroman.org>
Reviewed-on: http://openocd.zylin.com/1106
Tested-by: jenkins
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
tags/v0.7.0-rc1
Roman D 11 years ago
committed by Spencer Oliver
parent
commit
7ae9154846
6 changed files with 1147 additions and 3 deletions
  1. +114
    -0
      contrib/loaders/flash/efm32.S
  2. +15
    -3
      doc/openocd.texi
  3. +1
    -0
      src/flash/nor/Makefile.am
  4. +2
    -0
      src/flash/nor/drivers.c
  5. +977
    -0
      src/flash/nor/efm32.c
  6. +38
    -0
      tcl/target/efm32_stlink.cfg

+ 114
- 0
contrib/loaders/flash/efm32.S View File

@@ -0,0 +1,114 @@
/***************************************************************************
* Copyright (C) 2011 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* Copyright (C) 2013 by Roman Dmitrienko *
* me@iamroman.org *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/

.text
.syntax unified
.cpu cortex-m0
.thumb
.thumb_func

/* Params:
* r0 - flash base (in), status (out)
* r1 - count (word-32bit)
* r2 - workarea start
* r3 - workarea end
* r4 - target address
* Clobbered:
* r5 - rp
* r6 - wp, tmp
* r7 - tmp
*/

/* offsets of registers from flash reg base */
#define EFM32_MSC_WRITECTRL_OFFSET 0x008
#define EFM32_MSC_WRITECMD_OFFSET 0x00c
#define EFM32_MSC_ADDRB_OFFSET 0x010
#define EFM32_MSC_WDATA_OFFSET 0x018
#define EFM32_MSC_STATUS_OFFSET 0x01c
#define EFM32_MSC_LOCK_OFFSET 0x03c

/* unlock MSC */
ldr r6, =#0x1b71
str r6, [r0, #EFM32_MSC_LOCK_OFFSET]
/* set WREN to 1 */
movs r6, #1
str r6, [r0, #EFM32_MSC_WRITECTRL_OFFSET]

wait_fifo:
ldr r6, [r2, #0] /* read wp */
cmp r6, #0 /* abort if wp == 0 */
beq exit
ldr r5, [r2, #4] /* read rp */
cmp r5, r6 /* wait until rp != wp */
beq wait_fifo

/* store address in MSC_ADDRB */
str r4, [r0, #EFM32_MSC_ADDRB_OFFSET]
/* set LADDRIM bit */
movs r6, #1
str r6, [r0, #EFM32_MSC_WRITECMD_OFFSET]
/* check status for INVADDR and/or LOCKED */
ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET]
movs r7, #6
tst r6, r7
bne error

/* wait for WDATAREADY */
wait_wdataready:
ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET]
movs r7, #8
tst r6, r7
beq wait_wdataready

/* load data to WDATA */
ldr r6, [r5]
str r6, [r0, #EFM32_MSC_WDATA_OFFSET]
/* set WRITEONCE bit */
movs r6, #8
str r6, [r0, #EFM32_MSC_WRITECMD_OFFSET]

adds r5, #4 /* rp++ */
adds r4, #4 /* target_address++ */

/* wait until BUSY flag is reset */
busy:
ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET]
movs r7, #1
tst r6, r7
bne busy

cmp r5, r3 /* wrap rp at end of buffer */
bcc no_wrap
mov r5, r2
adds r5, #8
no_wrap:
str r5, [r2, #4] /* store rp */
subs r1, r1, #1 /* decrement word count */
cmp r1, #0
beq exit /* loop if not done */
b wait_fifo
error:
movs r0, #0
str r0, [r2, #4] /* set rp = 0 on error */
exit:
mov r0, r6 /* return status in r0 */
bkpt #0

+ 15
- 3
doc/openocd.texi View File

@@ -155,13 +155,13 @@ OpenOCD internally. @xref{Debug Adapter Hardware}.

@b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
Cortex-M3 (Stellaris LM3 and ST STM32) based cores to be
Cortex-M3 (Stellaris LM3, ST STM32 and Energy Micro EFM32) based cores to be
debugged via the GDB protocol.

@b{Flash Programing:} Flash writing is supported for external CFI
compatible NOR flashes (Intel and AMD/Spansion command set) and several
internal flashes (LPC1700, LPC2000, AT91SAM7, AT91SAM3U, STR7x, STR9x, LM3, and
STM32x). Preliminary support for various NAND flash controllers
internal flashes (LPC1700, LPC2000, AT91SAM7, AT91SAM3U, STR7x, STR9x, LM3,
STM32x and EFM32). Preliminary support for various NAND flash controllers
(LPC3180, Orion, S3C24xx, more) controller is included.

@section OpenOCD Web Site
@@ -4980,6 +4980,18 @@ The AVR 8-bit microcontrollers from Atmel integrate flash memory.
@comment - defines mass_erase ... pointless given flash_erase_address
@end deffn

@deffn {Flash Driver} efm32
All members of the EFM32 microcontroller family from Energy Micro include
internal flash and use ARM Cortex M3 cores. The driver automatically recognizes
a number of these chips using the chip identification register, and
autoconfigures itself.
@example
flash bank $_FLASHNAME efm32 0 0 0 0 $_TARGETNAME
@end example
@emph{The current implementation is incomplete. Unprotecting flash pages is not
supported.}
@end deffn

@deffn {Flash Driver} lpc2000
Most members of the LPC1700 and LPC2000 microcontroller families from NXP
include internal flash and use Cortex-M3 (LPC1700) or ARM7TDMI (LPC2000) cores.


+ 1
- 0
src/flash/nor/Makefile.am View File

@@ -14,6 +14,7 @@ NOR_DRIVERS = \
at91sam7.c \
avrf.c \
cfi.c \
efm32.c \
em357.c \
faux.c \
lpc2000.c \


+ 2
- 0
src/flash/nor/drivers.c View File

@@ -49,6 +49,7 @@ extern struct flash_driver em357_flash;
extern struct flash_driver dsp5680xx_flash;
extern struct flash_driver fm3_flash;
extern struct flash_driver kinetis_flash;
extern struct flash_driver efm32_flash;

/**
* The list of built-in flash drivers.
@@ -82,6 +83,7 @@ static struct flash_driver *flash_drivers[] = {
&fm3_flash,
&dsp5680xx_flash,
&kinetis_flash,
&efm32_flash,
NULL,
};



+ 977
- 0
src/flash/nor/efm32.c View File

@@ -0,0 +1,977 @@
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* Copyright (C) 2013 by Roman Dmitrienko *
* me@iamroman.org *
*
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include <target/cortex_m.h>

/* keep family IDs in decimal */
#define EFM_FAMILY_ID_GECKO 71
#define EFM_FAMILY_ID_GIANT_GECKO 72
#define EFM_FAMILY_ID_TINY_GECKO 73
#define EFM_FAMILY_ID_LEOPARD_GECKO 74

#define EFM32_FLASH_ERASE_TMO 100
#define EFM32_FLASH_WDATAREADY_TMO 100
#define EFM32_FLASH_WRITE_TMO 100

/* size in bytes, not words; must fit all Gecko devices */
#define LOCKBITS_PAGE_SZ 512

#define EFM32_MSC_INFO_BASE 0x0fe00000

#define EFM32_MSC_USER_DATA EFM32_MSC_INFO_BASE
#define EFM32_MSC_LOCK_BITS (EFM32_MSC_INFO_BASE+0x4000)
#define EFM32_MSC_DEV_INFO (EFM32_MSC_INFO_BASE+0x8000)

/* PAGE_SIZE is only present in Leopard and Giant Gecko MCUs */
#define EFM32_MSC_DI_PAGE_SIZE (EFM32_MSC_DEV_INFO+0x1e7)
#define EFM32_MSC_DI_FLASH_SZ (EFM32_MSC_DEV_INFO+0x1f8)
#define EFM32_MSC_DI_RAM_SZ (EFM32_MSC_DEV_INFO+0x1fa)
#define EFM32_MSC_DI_PART_NUM (EFM32_MSC_DEV_INFO+0x1fc)
#define EFM32_MSC_DI_PART_FAMILY (EFM32_MSC_DEV_INFO+0x1fe)
#define EFM32_MSC_DI_PROD_REV (EFM32_MSC_DEV_INFO+0x1ff)

#define EFM32_MSC_REGBASE 0x400c0000
#define EFM32_MSC_WRITECTRL (EFM32_MSC_REGBASE+0x008)
#define EFM32_MSC_WRITECTRL_WREN_MASK 0x1
#define EFM32_MSC_WRITECMD (EFM32_MSC_REGBASE+0x00c)
#define EFM32_MSC_WRITECMD_LADDRIM_MASK 0x1
#define EFM32_MSC_WRITECMD_ERASEPAGE_MASK 0x2
#define EFM32_MSC_WRITECMD_WRITEONCE_MASK 0x8
#define EFM32_MSC_ADDRB (EFM32_MSC_REGBASE+0x010)
#define EFM32_MSC_WDATA (EFM32_MSC_REGBASE+0x018)
#define EFM32_MSC_STATUS (EFM32_MSC_REGBASE+0x01c)
#define EFM32_MSC_STATUS_BUSY_MASK 0x1
#define EFM32_MSC_STATUS_LOCKED_MASK 0x2
#define EFM32_MSC_STATUS_INVADDR_MASK 0x4
#define EFM32_MSC_STATUS_WDATAREADY_MASK 0x8
#define EFM32_MSC_STATUS_WORDTIMEOUT_MASK 0x10
#define EFM32_MSC_STATUS_ERASEABORTED_MASK 0x20
#define EFM32_MSC_LOCK (EFM32_MSC_REGBASE+0x03c)
#define EFM32_MSC_LOCK_LOCKKEY 0x1b71

struct efm32x_flash_bank {
int probed;
uint8_t lb_page[LOCKBITS_PAGE_SZ];
};

struct efm32_info {
uint16_t flash_sz_kib;
uint16_t ram_sz_kib;
uint16_t part_num;
uint8_t part_family;
uint8_t prod_rev;
uint16_t page_size;
};

static int efm32x_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count);

static int efm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_sz)
{
return target_read_u16(bank->target, EFM32_MSC_DI_FLASH_SZ, flash_sz);
}

static int efm32x_get_ram_size(struct flash_bank *bank, uint16_t *ram_sz)
{
return target_read_u16(bank->target, EFM32_MSC_DI_RAM_SZ, ram_sz);
}

static int efm32x_get_part_num(struct flash_bank *bank, uint16_t *pnum)
{
return target_read_u16(bank->target, EFM32_MSC_DI_PART_NUM, pnum);
}

static int efm32x_get_part_family(struct flash_bank *bank, uint8_t *pfamily)
{
return target_read_u8(bank->target, EFM32_MSC_DI_PART_FAMILY, pfamily);
}

static int efm32x_get_prod_rev(struct flash_bank *bank, uint8_t *prev)
{
return target_read_u8(bank->target, EFM32_MSC_DI_PROD_REV, prev);
}

static int efm32x_read_info(struct flash_bank *bank,
struct efm32_info *efm32_info)
{
int ret;
uint32_t cpuid = 0;

memset(efm32_info, 0, sizeof(struct efm32_info));

ret = target_read_u32(bank->target, CPUID, &cpuid);
if (ERROR_OK != ret)
return ret;

if (((cpuid >> 4) & 0xfff) == 0xc23) {
/* Cortex M3 device */
} else {
LOG_ERROR("Target is not CortexM3");
return ERROR_FAIL;
}

ret = efm32x_get_flash_size(bank, &(efm32_info->flash_sz_kib));
if (ERROR_OK != ret)
return ret;

ret = efm32x_get_ram_size(bank, &(efm32_info->ram_sz_kib));
if (ERROR_OK != ret)
return ret;

ret = efm32x_get_part_num(bank, &(efm32_info->part_num));
if (ERROR_OK != ret)
return ret;

ret = efm32x_get_part_family(bank, &(efm32_info->part_family));
if (ERROR_OK != ret)
return ret;

ret = efm32x_get_prod_rev(bank, &(efm32_info->prod_rev));
if (ERROR_OK != ret)
return ret;

if (EFM_FAMILY_ID_GECKO == efm32_info->part_family ||
EFM_FAMILY_ID_TINY_GECKO == efm32_info->part_family)
efm32_info->page_size = 512;
else if (EFM_FAMILY_ID_GIANT_GECKO == efm32_info->part_family ||
EFM_FAMILY_ID_LEOPARD_GECKO == efm32_info->part_family) {
uint8_t pg_size = 0;

ret = target_read_u8(bank->target, EFM32_MSC_DI_PAGE_SIZE,
&pg_size);
if (ERROR_OK != ret)
return ret;

efm32_info->page_size = (1 << ((pg_size+10) & 0xff));

if ((2048 != efm32_info->page_size) &&
(4096 != efm32_info->page_size)) {
LOG_ERROR("Invalid page size %u", efm32_info->page_size);
return ERROR_FAIL;
}
} else {
LOG_ERROR("Unknown MCU family %d", efm32_info->part_family);
return ERROR_FAIL;
}

return ERROR_OK;
}

/* flash bank efm32 <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(efm32x_flash_bank_command)
{
struct efm32x_flash_bank *efm32x_info;

if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;

efm32x_info = malloc(sizeof(struct efm32x_flash_bank));

bank->driver_priv = efm32x_info;
efm32x_info->probed = 0;
memset(efm32x_info->lb_page, 0xff, LOCKBITS_PAGE_SZ);

return ERROR_OK;
}

/* set or reset given bits in a register */
static int efm32x_set_reg_bits(struct flash_bank *bank, uint32_t reg,
uint32_t bitmask, int set)
{
int ret = 0;
uint32_t reg_val = 0;

ret = target_read_u32(bank->target, reg, &reg_val);
if (ERROR_OK != ret)
return ret;

if (set)
reg_val |= bitmask;
else
reg_val &= ~bitmask;

return target_write_u32(bank->target, reg, reg_val);
}

static int efm32x_set_wren(struct flash_bank *bank, int write_enable)
{
return efm32x_set_reg_bits(bank, EFM32_MSC_WRITECTRL,
EFM32_MSC_WRITECTRL_WREN_MASK, write_enable);
}

static int efm32x_msc_lock(struct flash_bank *bank, int lock)
{
return target_write_u32(bank->target, EFM32_MSC_LOCK,
(lock ? 0 : EFM32_MSC_LOCK_LOCKKEY));
}

static int efm32x_wait_status(struct flash_bank *bank, int timeout,
uint32_t wait_mask, int wait_for_set)
{
int ret = 0;
uint32_t status = 0;

while (1) {
ret = target_read_u32(bank->target, EFM32_MSC_STATUS, &status);
if (ERROR_OK != ret)
break;

LOG_DEBUG("status: 0x%" PRIx32 "", status);

if (((status & wait_mask) == 0) && (0 == wait_for_set))
break;
else if (((status & wait_mask) != 0) && wait_for_set)
break;

if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for MSC status");
return ERROR_FAIL;
}

alive_sleep(1);
}

if (status & EFM32_MSC_STATUS_ERASEABORTED_MASK)
LOG_WARNING("page erase was aborted");

return ret;
}

static int efm32x_erase_page(struct flash_bank *bank, uint32_t addr)
{
/* this function DOES NOT set WREN; must be set already */
/* 1. write address to ADDRB
2. write LADDRIM
3. check status (INVADDR, LOCKED)
4. write ERASEPAGE
5. wait until !STATUS_BUSY
*/
int ret = 0;
uint32_t status = 0;

LOG_DEBUG("erasing flash page at 0x%08x", addr);

ret = target_write_u32(bank->target, EFM32_MSC_ADDRB, addr);
if (ERROR_OK != ret)
return ret;

ret = efm32x_set_reg_bits(bank, EFM32_MSC_WRITECMD,
EFM32_MSC_WRITECMD_LADDRIM_MASK, 1);
if (ERROR_OK != ret)
return ret;

ret = target_read_u32(bank->target, EFM32_MSC_STATUS, &status);
if (ERROR_OK != ret)
return ret;

LOG_DEBUG("status 0x%x", status);

if (status & EFM32_MSC_STATUS_LOCKED_MASK) {
LOG_ERROR("Page is locked");
return ERROR_FAIL;
} else if (status & EFM32_MSC_STATUS_INVADDR_MASK) {
LOG_ERROR("Invalid address 0x%x", addr);
return ERROR_FAIL;
}

ret = efm32x_set_reg_bits(bank, EFM32_MSC_WRITECMD,
EFM32_MSC_WRITECMD_ERASEPAGE_MASK, 1);
if (ERROR_OK != ret)
return ret;

return efm32x_wait_status(bank, EFM32_FLASH_ERASE_TMO,
EFM32_MSC_STATUS_BUSY_MASK, 0);
}

static int efm32x_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int i = 0;
int ret = 0;

if (TARGET_HALTED != target->state) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}

efm32x_msc_lock(bank, 0);
ret = efm32x_set_wren(bank, 1);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to enable MSC write");
return ret;
}

for (i = first; i <= last; i++) {
ret = efm32x_erase_page(bank, bank->sectors[i].offset);
if (ERROR_OK != ret)
LOG_ERROR("Failed to erase page %d", i);
}

ret = efm32x_set_wren(bank, 0);
efm32x_msc_lock(bank, 1);

return ret;
}

static int efm32x_read_lock_data(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
struct target *target = bank->target;
int i = 0;
int data_size = 0;
uint32_t *ptr = NULL;
int ret = 0;

assert(!(bank->num_sectors & 0x1f));

data_size = bank->num_sectors / 8; /* number of data bytes */
data_size /= 4; /* ...and data dwords */

ptr = (uint32_t *)efm32x_info->lb_page;

for (i = 0; i < data_size; i++, ptr++) {
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+i*4, ptr);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read PLW %d", i);
return ret;
}
}

/* also, read ULW, DLW and MLW */

/* ULW, word 126 */
ptr = ((uint32_t *)efm32x_info->lb_page) + 126;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+126*4, ptr);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read ULW");
return ret;
}

/* DLW, word 127 */
ptr = ((uint32_t *)efm32x_info->lb_page) + 127;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+127*4, ptr);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read DLW");
return ret;
}

/* MLW, word 125, present in GG and LG */
ptr = ((uint32_t *)efm32x_info->lb_page) + 125;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+125*4, ptr);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read MLW");
return ret;
}

return ERROR_OK;
}

static int efm32x_write_lock_data(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
int ret = 0;

ret = efm32x_erase_page(bank, EFM32_MSC_LOCK_BITS);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to erase LB page");
return ret;
}

return efm32x_write(bank, efm32x_info->lb_page, EFM32_MSC_LOCK_BITS,
LOCKBITS_PAGE_SZ);
}

static int efm32x_get_page_lock(struct flash_bank *bank, size_t page)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
uint32_t dw = ((uint32_t *)efm32x_info->lb_page)[page >> 5];
uint32_t mask = 0;

mask = 1 << (page & 0x1f);

return (dw & mask) ? 0 : 1;
}

static int efm32x_set_page_lock(struct flash_bank *bank, size_t page, int set)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
uint32_t *dw = &((uint32_t *)efm32x_info->lb_page)[page >> 5];
uint32_t mask = 0;

mask = 1 << (page & 0x1f);

if (!set)
*dw |= mask;
else
*dw &= ~mask;

return ERROR_OK;
}

static int efm32x_protect(struct flash_bank *bank, int set, int first, int last)
{
struct target *target = bank->target;
int i = 0;
int ret = 0;

if (!set) {
LOG_ERROR("Erase device data to reset page locks");
return ERROR_FAIL;
}

if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}

for (i = first; i <= last; i++) {
ret = efm32x_set_page_lock(bank, i, set);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to set lock on page %d", i);
return ret;
}
}

ret = efm32x_write_lock_data(bank);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to write LB page");
return ret;
}

return ERROR_OK;
}

static int efm32x_write_block(struct flash_bank *bank, uint8_t *buf,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int ret = ERROR_OK;

/* see contrib/loaders/flash/efm32.S for src */
static const uint8_t efm32x_flash_write_code[] = {
/* #define EFM32_MSC_WRITECTRL_OFFSET 0x008 */
/* #define EFM32_MSC_WRITECMD_OFFSET 0x00c */
/* #define EFM32_MSC_ADDRB_OFFSET 0x010 */
/* #define EFM32_MSC_WDATA_OFFSET 0x018 */
/* #define EFM32_MSC_STATUS_OFFSET 0x01c */
/* #define EFM32_MSC_LOCK_OFFSET 0x03c */

0x15, 0x4e, /* ldr r6, =#0x1b71 */
0xc6, 0x63, /* str r6, [r0, #EFM32_MSC_LOCK_OFFSET] */
0x01, 0x26, /* movs r6, #1 */
0x86, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECTRL_OFFSET] */

/* wait_fifo: */
0x16, 0x68, /* ldr r6, [r2, #0] */
0x00, 0x2e, /* cmp r6, #0 */
0x22, 0xd0, /* beq exit */
0x55, 0x68, /* ldr r5, [r2, #4] */
0xb5, 0x42, /* cmp r5, r6 */
0xf9, 0xd0, /* beq wait_fifo */

0x04, 0x61, /* str r4, [r0, #EFM32_MSC_ADDRB_OFFSET] */
0x01, 0x26, /* movs r6, #1 */
0xc6, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECMD_OFFSET] */
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
0x06, 0x27, /* movs r7, #6 */
0x3e, 0x42, /* tst r6, r7 */
0x16, 0xd1, /* bne error */

/* wait_wdataready: */
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
0x08, 0x27, /* movs r7, #8 */
0x3e, 0x42, /* tst r6, r7 */
0xfb, 0xd0, /* beq wait_wdataready */

0x2e, 0x68, /* ldr r6, [r5] */
0x86, 0x61, /* str r6, [r0, #EFM32_MSC_WDATA_OFFSET] */
0x08, 0x26, /* movs r6, #8 */
0xc6, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECMD_OFFSET] */

0x04, 0x35, /* adds r5, #4 */
0x04, 0x34, /* adds r4, #4 */

/* busy: */
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
0x01, 0x27, /* movs r7, #1 */
0x3e, 0x42, /* tst r6, r7 */
0xfb, 0xd1, /* bne busy */

0x9d, 0x42, /* cmp r5, r3 */
0x01, 0xd3, /* bcc no_wrap */
0x15, 0x46, /* mov r5, r2 */
0x08, 0x35, /* adds r5, #8 */

/* no_wrap: */
0x55, 0x60, /* str r5, [r2, #4] */
0x01, 0x39, /* subs r1, r1, #1 */
0x00, 0x29, /* cmp r1, #0 */
0x02, 0xd0, /* beq exit */
0xdb, 0xe7, /* b wait_fifo */

/* error: */
0x00, 0x20, /* movs r0, #0 */
0x50, 0x60, /* str r0, [r2, #4] */

/* exit: */
0x30, 0x46, /* mov r0, r6 */
0x00, 0xbe, /* bkpt #0 */

/* LOCKKEY */
0x71, 0x1b, 0x00, 0x00
};

/* flash write code */
if (target_alloc_working_area(target, sizeof(efm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};

ret = target_write_buffer(target, write_algorithm->address,
sizeof(efm32x_flash_write_code),
(uint8_t *)efm32x_flash_write_code);
if (ret != ERROR_OK)
return ret;

/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
if (buffer_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);

LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};

init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (word-32bit) */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */

buf_set_u32(reg_params[0].value, 0, 32, EFM32_MSC_REGBASE);
buf_set_u32(reg_params[1].value, 0, 32, count);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, address);

armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;

ret = target_run_flash_async_algorithm(target, buf, count, 4,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);

if (ret == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("flash write failed at address 0x%"PRIx32,
buf_get_u32(reg_params[4].value, 0, 32));

if (buf_get_u32(reg_params[0].value, 0, 32) &
EFM32_MSC_STATUS_LOCKED_MASK) {
LOG_ERROR("flash memory write protected");
}

if (buf_get_u32(reg_params[0].value, 0, 32) &
EFM32_MSC_STATUS_INVADDR_MASK) {
LOG_ERROR("invalid flash memory write address");
}
}

target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);

destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);

return ret;
}

static int efm32x_write_word(struct flash_bank *bank, uint32_t addr,
uint32_t val)
{
/* this function DOES NOT set WREN; must be set already */
/* 1. write address to ADDRB
2. write LADDRIM
3. check status (INVADDR, LOCKED)
4. wait for WDATAREADY
5. write data to WDATA
6. write WRITECMD_WRITEONCE to WRITECMD
7. wait until !STATUS_BUSY
*/

/* FIXME: EFM32G ref states (7.3.2) that writes should be
* performed twice per dword */

int ret = 0;
uint32_t status = 0;

/* if not called, GDB errors will be reported during large writes */
keep_alive();

ret = target_write_u32(bank->target, EFM32_MSC_ADDRB, addr);
if (ERROR_OK != ret)
return ret;

ret = efm32x_set_reg_bits(bank, EFM32_MSC_WRITECMD,
EFM32_MSC_WRITECMD_LADDRIM_MASK, 1);
if (ERROR_OK != ret)
return ret;

ret = target_read_u32(bank->target, EFM32_MSC_STATUS, &status);
if (ERROR_OK != ret)
return ret;

LOG_DEBUG("status 0x%x", status);

if (status & EFM32_MSC_STATUS_LOCKED_MASK) {
LOG_ERROR("Page is locked");
return ERROR_FAIL;
} else if (status & EFM32_MSC_STATUS_INVADDR_MASK) {
LOG_ERROR("Invalid address 0x%x", addr);
return ERROR_FAIL;
}

ret = efm32x_wait_status(bank, EFM32_FLASH_WDATAREADY_TMO,
EFM32_MSC_STATUS_WDATAREADY_MASK, 1);
if (ERROR_OK != ret) {
LOG_ERROR("Wait for WDATAREADY failed");
return ret;
}

ret = target_write_u32(bank->target, EFM32_MSC_WDATA, val);
if (ERROR_OK != ret) {
LOG_ERROR("WDATA write failed");
return ret;
}

ret = target_write_u32(bank->target, EFM32_MSC_WRITECMD,
EFM32_MSC_WRITECMD_WRITEONCE_MASK);
if (ERROR_OK != ret) {
LOG_ERROR("WRITECMD write failed");
return ret;
}

ret = efm32x_wait_status(bank, EFM32_FLASH_WRITE_TMO,
EFM32_MSC_STATUS_BUSY_MASK, 0);
if (ERROR_OK != ret) {
LOG_ERROR("Wait for BUSY failed");
return ret;
}

return ERROR_OK;
}

static int efm32x_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint8_t *new_buffer = NULL;

if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}

if (offset & 0x3) {
LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte "
"alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}

if (count & 0x3) {
uint32_t old_count = count;
count = (old_count | 3) + 1;
new_buffer = malloc(count);
if (new_buffer == NULL) {
LOG_ERROR("odd number of bytes to write and no memory "
"for padding buffer");
return ERROR_FAIL;
}
LOG_INFO("odd number of bytes to write (%d), extending to %d "
"and padding with 0xff", old_count, count);
memset(buffer, 0xff, count);
buffer = memcpy(new_buffer, buffer, old_count);
}

uint32_t words_remaining = count / 4;
int retval, retval2;

/* unlock flash registers */
efm32x_msc_lock(bank, 0);
retval = efm32x_set_wren(bank, 1);
if (retval != ERROR_OK)
goto cleanup;

/* try using a block write */
retval = efm32x_write_block(bank, buffer, offset, words_remaining);

if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single word accesses */
LOG_WARNING("couldn't use block writes, falling back to single "
"memory accesses");

while (words_remaining > 0) {
uint32_t value;
memcpy(&value, buffer, sizeof(uint32_t));

retval = efm32x_write_word(bank, offset, value);
if (retval != ERROR_OK)
goto reset_pg_and_lock;

words_remaining--;
buffer += 4;
offset += 4;
}
}

reset_pg_and_lock:
retval2 = efm32x_set_wren(bank, 0);
efm32x_msc_lock(bank, 1);
if (retval == ERROR_OK)
retval = retval2;

cleanup:
if (new_buffer)
free(new_buffer);

return retval;
}

static int efm32x_probe(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
struct efm32_info efm32_mcu_info;
int ret;
int i;
uint32_t base_address = 0x00000000;

efm32x_info->probed = 0;
memset(efm32x_info->lb_page, 0xff, LOCKBITS_PAGE_SZ);

ret = efm32x_read_info(bank, &efm32_mcu_info);
if (ERROR_OK != ret)
return ret;

switch (efm32_mcu_info.part_family) {
case EFM_FAMILY_ID_GECKO:
LOG_INFO("Gecko MCU detected");
break;
case EFM_FAMILY_ID_GIANT_GECKO:
LOG_INFO("Giant Gecko MCU detected");
break;
case EFM_FAMILY_ID_TINY_GECKO:
LOG_INFO("Tiny Gecko MCU detected");
break;
case EFM_FAMILY_ID_LEOPARD_GECKO:
LOG_INFO("Leopard Gecko MCU detected");
break;
default:
LOG_ERROR("Unsupported MCU family %d",
efm32_mcu_info.part_family);
return ERROR_FAIL;
}

LOG_INFO("flash size = %dkbytes", efm32_mcu_info.flash_sz_kib);
LOG_INFO("flash page size = %dbytes", efm32_mcu_info.page_size);

assert(0 != efm32_mcu_info.page_size);

int num_pages = efm32_mcu_info.flash_sz_kib * 1024 /
efm32_mcu_info.page_size;

assert(num_pages > 0);

if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}

bank->base = base_address;
bank->size = (num_pages * efm32_mcu_info.page_size);
bank->num_sectors = num_pages;

ret = efm32x_read_lock_data(bank);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read LB data");
return ret;
}

bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);

for (i = 0; i < num_pages; i++) {
bank->sectors[i].offset = i * efm32_mcu_info.page_size;
bank->sectors[i].size = efm32_mcu_info.page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}

efm32x_info->probed = 1;

return ERROR_OK;
}

static int efm32x_auto_probe(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
if (efm32x_info->probed)
return ERROR_OK;
return efm32x_probe(bank);
}

static int efm32x_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
int ret = 0;
int i = 0;

if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}

ret = efm32x_read_lock_data(bank);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read LB data");
return ret;
}

assert(NULL != bank->sectors);

for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = efm32x_get_page_lock(bank, i);

return ERROR_OK;
}

static int get_efm32x_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct efm32_info info;
int ret = 0;
int printed = 0;

ret = efm32x_read_info(bank, &info);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read EFM32 info");
return ret;
}

printed = snprintf(buf, buf_size, "EFM32 ");
buf += printed;
buf_size -= printed;

if (0 >= buf_size)
return ERROR_BUF_TOO_SMALL;

switch (info.part_family) {
case EFM_FAMILY_ID_GECKO:
printed = snprintf(buf, buf_size, "Gecko");
break;
case EFM_FAMILY_ID_GIANT_GECKO:
printed = snprintf(buf, buf_size, "Giant Gecko");
break;
case EFM_FAMILY_ID_TINY_GECKO:
printed = snprintf(buf, buf_size, "Tiny Gecko");
break;
case EFM_FAMILY_ID_LEOPARD_GECKO:
printed = snprintf(buf, buf_size, "Leopard Gecko");
break;
}

buf += printed;
buf_size -= printed;

if (0 >= buf_size)
return ERROR_BUF_TOO_SMALL;

printed = snprintf(buf, buf_size, " - Rev: %d", info.prod_rev);
buf += printed;
buf_size -= printed;

if (0 >= buf_size)
return ERROR_BUF_TOO_SMALL;

return ERROR_OK;
}

static const struct command_registration efm32x_exec_command_handlers[] = {
COMMAND_REGISTRATION_DONE
};

static const struct command_registration efm32x_command_handlers[] = {
{
.name = "efm32",
.mode = COMMAND_ANY,
.help = "efm32 flash command group",
.usage = "",
.chain = efm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};

struct flash_driver efm32_flash = {
.name = "efm32",
.commands = efm32x_command_handlers,
.flash_bank_command = efm32x_flash_bank_command,
.erase = efm32x_erase,
.protect = efm32x_protect,
.write = efm32x_write,
.read = default_flash_read,
.probe = efm32x_probe,
.auto_probe = efm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = efm32x_protect_check,
.info = get_efm32x_info,
};

+ 38
- 0
tcl/target/efm32_stlink.cfg View File

@@ -0,0 +1,38 @@
#
# efm32 stlink pseudo target
#

if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME efm32
}

# Work-area is a space in RAM used for flash programming
# By default use 16kB
if { [info exists WORKAREASIZE] } {
set _WORKAREASIZE $WORKAREASIZE
} else {
set _WORKAREASIZE 0x4000
}

if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
set _CPUTAPID 0x2ba01477
}

# EFM32 MCUs only support SW interface
set _TRANSPORT hla_swd

transport select $_TRANSPORT

hla newtap $_CHIPNAME cpu -expected-id $_CPUTAPID

set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME hla_target -chain-position $_TARGETNAME

$_TARGETNAME configure -work-area-phys 0x10000000 -work-area-size $_WORKAREASIZE -work-area-backup 0

set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME efm32 0 0 0 0 $_TARGETNAME

Loading…
Cancel
Save