Browse Source

mips32: Sync Caches to Make Instr Writes Effective

Pprogram that loads another program into memory is actually writing the
D- side cache.
The instructions it has loaded can't be executed until they reach the
I-cache.

After the instructions have been written, the loader should arrange to
write back any containing D-cache line and invalidate any locations
already in the I-cache.

For the MIPS Architecture Release2 cores, we can use synci command
that does this job.
For Release1 we must use "cache" instruction.
tags/v0.6.0-rc1
Drasko DRASKOVIC 12 years ago
committed by Øyvind Harboe
parent
commit
c18e02387b
2 changed files with 322 additions and 29 deletions
  1. +88
    -24
      src/target/mips32.h
  2. +234
    -5
      src/target/mips32_pracc.c

+ 88
- 24
src/target/mips32.h View File

@@ -31,6 +31,38 @@

#define MIPS32_COMMON_MAGIC 0xB320B320

/**
* Memory segments (32bit kernel mode addresses)
* These are the traditional names used in the 32-bit universe.
*/
#define KUSEG 0x00000000
#define KSEG0 0x80000000
#define KSEG1 0xa0000000
#define KSEG2 0xc0000000
#define KSEG3 0xe0000000

/** Returns the kernel segment base of a given address */
#define KSEGX(a) ((a) & 0xe0000000)

/** CP0 CONFIG regites fields */
#define MIPS32_CONFIG0_KU_SHIFT 25
#define MIPS32_CONFIG0_KU_MASK (0x7 << MIPS32_CONFIG0_KU_SHIFT)

#define MIPS32_CONFIG0_K0_SHIFT 0
#define MIPS32_CONFIG0_K0_MASK (0x7 << MIPS32_CONFIG0_K0_SHIFT)

#define MIPS32_CONFIG0_K23_SHIFT 28
#define MIPS32_CONFIG0_K23_MASK (0x7 << MIPS32_CONFIG0_K23_SHIFT)

#define MIPS32_CONFIG0_AR_SHIFT 10
#define MIPS32_CONFIG0_AR_MASK (0x7 << MIPS32_CONFIG0_AR_SHIFT)

#define MIPS32_CONFIG1_DL_SHIFT 10
#define MIPS32_CONFIG1_DL_MASK (0x7 << MIPS32_CONFIG1_DL_SHIFT)

#define MIPS32_ARCH_REL1 0x0
#define MIPS32_ARCH_REL2 0x1

/* offsets into mips32 core register cache */
enum
{
@@ -95,10 +127,14 @@ struct mips32_algorithm
enum mips32_isa_mode isa_mode;
};

#define MIPS32_OP_ADDIU 0x21
#define MIPS32_OP_ANDI 0x0C
#define MIPS32_OP_BEQ 0x04
#define MIPS32_OP_BGTZ 0x07
#define MIPS32_OP_BNE 0x05
#define MIPS32_OP_ADDI 0x08
#define MIPS32_OP_AND 0x24
#define MIPS32_OP_CACHE 0x2F
#define MIPS32_OP_COP0 0x10
#define MIPS32_OP_JR 0x08
#define MIPS32_OP_LUI 0x0F
@@ -109,12 +145,21 @@ struct mips32_algorithm
#define MIPS32_OP_MTHI 0x11
#define MIPS32_OP_MFLO 0x12
#define MIPS32_OP_MTLO 0x13
#define MIPS32_OP_RDHWR 0x3B
#define MIPS32_OP_SB 0x28
#define MIPS32_OP_SH 0x29
#define MIPS32_OP_SW 0x2B
#define MIPS32_OP_ORI 0x0D
#define MIPS32_OP_XOR 0x26
#define MIPS32_OP_SLTU 0x2B
#define MIPS32_OP_SRL 0x03
#define MIPS32_OP_SYNCI 0x1F

#define MIPS32_OP_REGIMM 0x01
#define MIPS32_OP_SDBBP 0x3F
#define MIPS32_OP_SPECIAL 0x00
#define MIPS32_OP_SPECIAL2 0x07
#define MIPS32_OP_SPECIAL3 0x1F

#define MIPS32_COP0_MF 0x00
#define MIPS32_COP0_MT 0x04
@@ -123,33 +168,52 @@ struct mips32_algorithm
#define MIPS32_I_INST(opcode, rs, rt, immd) (((opcode) << 26) |((rs) << 21) | ((rt) << 16) | (immd))
#define MIPS32_J_INST(opcode, addr) (((opcode) << 26) |(addr))

#define MIPS32_NOP 0
#define MIPS32_ADDI(tar, src, val) MIPS32_I_INST(MIPS32_OP_ADDI, src, tar, val)
#define MIPS32_AND(reg, off, val) MIPS32_R_INST(0, off, val, reg, 0, MIPS32_OP_AND)
#define MIPS32_B(off) MIPS32_BEQ(0, 0, off)
#define MIPS32_BEQ(src,tar,off) MIPS32_I_INST(MIPS32_OP_BEQ, src, tar, off)
#define MIPS32_BNE(src,tar,off) MIPS32_I_INST(MIPS32_OP_BNE, src, tar, off)
#define MIPS32_JR(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_JR)
#define MIPS32_MFC0(gpr, cpr, sel) MIPS32_R_INST(MIPS32_OP_COP0, MIPS32_COP0_MF, gpr, cpr, 0, sel)
#define MIPS32_MTC0(gpr,cpr, sel) MIPS32_R_INST(MIPS32_OP_COP0, MIPS32_COP0_MT, gpr, cpr, 0, sel)
#define MIPS32_LBU(reg, off, base) MIPS32_I_INST(MIPS32_OP_LBU, base, reg, off)
#define MIPS32_LHU(reg, off, base) MIPS32_I_INST(MIPS32_OP_LHU, base, reg, off)
#define MIPS32_LUI(reg, val) MIPS32_I_INST(MIPS32_OP_LUI, 0, reg, val)
#define MIPS32_LW(reg, off, base) MIPS32_I_INST(MIPS32_OP_LW, base, reg, off)
#define MIPS32_MFLO(reg) MIPS32_R_INST(0, 0, 0, reg, 0, MIPS32_OP_MFLO)
#define MIPS32_MFHI(reg) MIPS32_R_INST(0, 0, 0, reg, 0, MIPS32_OP_MFHI)
#define MIPS32_MTLO(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_MTLO)
#define MIPS32_MTHI(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_MTHI)
#define MIPS32_ORI(tar, src, val) MIPS32_I_INST(MIPS32_OP_ORI, src, tar, val)
#define MIPS32_SB(reg, off, base) MIPS32_I_INST(MIPS32_OP_SB, base, reg, off)
#define MIPS32_SH(reg, off, base) MIPS32_I_INST(MIPS32_OP_SH, base, reg, off)
#define MIPS32_SW(reg, off, base) MIPS32_I_INST(MIPS32_OP_SW, base, reg, off)
#define MIPS32_XOR(reg, val1, val2) MIPS32_R_INST(0, val1, val2, reg, 0, MIPS32_OP_XOR)
#define MIPS32_SRL(reg, src, off) MIPS32_R_INST(0, 0, src, reg, off, MIPS32_OP_SRL)
#define MIPS32_NOP 0
#define MIPS32_ADDI(tar, src, val) MIPS32_I_INST(MIPS32_OP_ADDI, src, tar, val)
#define MIPS32_ADDU(dst, src, tar) MIPS32_R_INST(MIPS32_OP_SPECIAL, src, tar, dst, 0, MIPS32_OP_ADDIU)
#define MIPS32_AND(reg, off, val) MIPS32_R_INST(0, off, val, reg, 0, MIPS32_OP_AND)
#define MIPS32_ANDI(tar, src, val) MIPS32_I_INST(MIPS32_OP_ANDI, src, tar, val)
#define MIPS32_B(off) MIPS32_BEQ(0, 0, off)
#define MIPS32_BEQ(src, tar, off) MIPS32_I_INST(MIPS32_OP_BEQ, src, tar, off)
#define MIPS32_BGTZ(reg, off) MIPS32_I_INST(MIPS32_OP_BGTZ, reg, 0, off)
#define MIPS32_BNE(src,tar,off) MIPS32_I_INST(MIPS32_OP_BNE, src, tar, off)
#define MIPS32_CACHE(op, off, base) MIPS32_I_INST(MIPS32_OP_CACHE, base, op, off)
#define MIPS32_JR(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_JR)
#define MIPS32_MFC0(gpr, cpr, sel) MIPS32_R_INST(MIPS32_OP_COP0, MIPS32_COP0_MF, gpr, cpr, 0, sel)
#define MIPS32_MTC0(gpr, cpr, sel) MIPS32_R_INST(MIPS32_OP_COP0, MIPS32_COP0_MT, gpr, cpr, 0, sel)
#define MIPS32_LBU(reg, off, base) MIPS32_I_INST(MIPS32_OP_LBU, base, reg, off)
#define MIPS32_LHU(reg, off, base) MIPS32_I_INST(MIPS32_OP_LHU, base, reg, off)
#define MIPS32_LUI(reg, val) MIPS32_I_INST(MIPS32_OP_LUI, 0, reg, val)
#define MIPS32_LW(reg, off, base) MIPS32_I_INST(MIPS32_OP_LW, base, reg, off)
#define MIPS32_MFLO(reg) MIPS32_R_INST(0, 0, 0, reg, 0, MIPS32_OP_MFLO)
#define MIPS32_MFHI(reg) MIPS32_R_INST(0, 0, 0, reg, 0, MIPS32_OP_MFHI)
#define MIPS32_MTLO(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_MTLO)
#define MIPS32_MTHI(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_MTHI)
#define MIPS32_ORI(tar, src, val) MIPS32_I_INST(MIPS32_OP_ORI, src, tar, val)
#define MIPS32_RDHWR(tar, dst) MIPS32_R_INST(MIPS32_OP_SPECIAL3, 0, tar, dst, 0, MIPS32_OP_RDHWR)
#define MIPS32_SB(reg, off, base) MIPS32_I_INST(MIPS32_OP_SB, base, reg, off)
#define MIPS32_SH(reg, off, base) MIPS32_I_INST(MIPS32_OP_SH, base, reg, off)
#define MIPS32_SW(reg, off, base) MIPS32_I_INST(MIPS32_OP_SW, base, reg, off)
#define MIPS32_XOR(reg, val1, val2) MIPS32_R_INST(0, val1, val2, reg, 0, MIPS32_OP_XOR)
#define MIPS32_SRL(reg, src, off) MIPS32_R_INST(0, 0, src, reg, off, MIPS32_OP_SRL)
#define MIPS32_SLTU(dst, src, tar) MIPS32_R_INST(MIPS32_OP_SPECIAL, src, tar, dst, 0, MIPS32_OP_SLTU)
#define MIPS32_SYNCI(off, base) MIPS32_I_INST(MIPS32_OP_REGIMM, base, MIPS32_OP_SYNCI, off)

#define MIPS32_SYNC 0xF
#define MIPS32_SYNCI_STEP 0x1 /* reg num od address step size to be used with synci instruction */

/**
* Cache operations definietions
* Operation field is 5 bits long :
* 1) bits 1..0 hold cache type
* 2) bits 4..2 hold operation code
*/
#define MIPS32_CACHE_D_HIT_WRITEBACK ((0x1 << 0) | (0x6 << 2))
#define MIPS32_CACHE_I_HIT_INVALIDATE ((0x0 << 0) | (0x4 << 2))

/* ejtag specific instructions */
#define MIPS32_DRET 0x4200001F
#define MIPS32_SDBBP 0x7000003F
#define MIPS32_SDBBP 0x7000003F /* MIPS32_J_INST(MIPS32_OP_SPECIAL2, MIPS32_OP_SDBBP) */
#define MIPS16_SDBBP 0xE801

extern const struct command_registration mips32_command_handlers[];


+ 234
- 5
src/target/mips32_pracc.c View File

@@ -113,6 +113,11 @@ static int mips32_pracc_write_mem32(struct mips_ejtag *ejtag_info,
static int mips32_pracc_write_u32(struct mips_ejtag *ejtag_info,
uint32_t addr, uint32_t *buf);

static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
uint32_t start_addr, uint32_t end_addr);
static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
uint32_t start_addr, uint32_t end_addr);

static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
{
uint32_t ejtag_ctrl;
@@ -663,22 +668,246 @@ int mips32_cp0_write(struct mips_ejtag *ejtag_info,
return retval;
}

/**
* \b mips32_pracc_sync_cache
*
* Synchronize Caches to Make Instruction Writes Effective
* (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
* Document Number: MD00086, Revision 2.00, June 9, 2003)
*
* When the instruction stream is written, the SYNCI instruction should be used
* in conjunction with other instructions to make the newly-written instructions effective.
*
* Explanation :
* A program that loads another program into memory is actually writing the D- side cache.
* The instructions it has loaded can't be executed until they reach the I-cache.
*
* After the instructions have been written, the loader should arrange
* to write back any containing D-cache line and invalidate any locations
* already in the I-cache.
*
* You can do that with cache instructions, but those instructions are only available in kernel mode,
* and a loader writing instructions for the use of its own process need not be privileged software.
*
* In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
* which does the whole job for a cache-line-sized chunk of the memory you just loaded:
* That is, it arranges a D-cache write-back and an I-cache invalidate.
*
* To employ synci at user level, you need to know the size of a cache line,
* and that can be obtained with a rdhwr SYNCI_Step
* from one of the standard “hardware registers”.
*/
static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
uint32_t start_addr, uint32_t end_addr)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15,31,0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15,UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15,15,LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8,0,15), /* sw $8,($15) */
MIPS32_SW(9,0,15), /* sw $9,($15) */
MIPS32_SW(10,0,15), /* sw $10,($15) */
MIPS32_SW(11,0,15), /* sw $11,($15) */

MIPS32_LUI(8,UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(8,8,LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(9,0,8), /* Load write start_addr to $9 */
MIPS32_LW(10,4,8), /* Load write end_addr to $10 */

MIPS32_RDHWR(11, MIPS32_SYNCI_STEP), /* $11 = MIPS32_SYNCI_STEP */
MIPS32_BEQ(11,0,6), /* beq $11, $0, end */
MIPS32_NOP,
/* synci_loop : */
MIPS32_SYNCI(0,9), /* synci 0($9) */
MIPS32_SLTU(8,10,9), /* sltu $8, $10, $9 # $8 = $10 < $9 ? 1 : 0 */
MIPS32_BNE(8,0,NEG16(3)), /* bne $8, $0, synci_loop */
MIPS32_ADDU(9, 9, 11), /* $9 += MIPS32_SYNCI_STEP */
MIPS32_SYNC,
/* end: */
MIPS32_LW(11,0,15), /* lw $11,($15) */
MIPS32_LW(10,0,15), /* lw $10,($15) */
MIPS32_LW(9,0,15), /* lw $9,($15) */
MIPS32_LW(8,0,15), /* lw $8,($15) */
MIPS32_B(NEG16(24)), /* b start */
MIPS32_MFC0(15,31,0), /* move COP0 DeSave to $15 */
};

/* TODO remove array */
uint32_t *param_in = malloc(2 * sizeof(uint32_t));
int retval;
param_in[0] = start_addr;
param_in[1] = end_addr;

retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);

free(param_in);

return retval;
}

/**
* \b mips32_pracc_clean_invalidate_cache
*
* Writeback D$ and Invalidate I$
* so that the instructions written can be visible to CPU
*/
static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
uint32_t start_addr, uint32_t end_addr)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15,31,0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15,UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15,15,LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8,0,15), /* sw $8,($15) */
MIPS32_SW(9,0,15), /* sw $9,($15) */
MIPS32_SW(10,0,15), /* sw $10,($15) */
MIPS32_SW(11,0,15), /* sw $11,($15) */

MIPS32_LUI(8,UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(8,8,LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(9,0,8), /* Load write start_addr to $9 */
MIPS32_LW(10,4,8), /* Load write end_addr to $10 */
MIPS32_LW(11,8,8), /* Load write clsiz to $11 */

/* cache_loop: */
MIPS32_SLTU(8,10,9), /* sltu $8, $10, $9 : $8 <- $10 < $9 ? */
MIPS32_BGTZ(8,6), /* bgtz $8, end */
MIPS32_NOP,

MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK,0,9), /* cache Hit_Writeback_D, 0($9) */
MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE,0,9), /* cache Hit_Invalidate_I, 0($9) */

MIPS32_ADDU(9,9,11), /* $9 += $11 */

MIPS32_B(NEG16(7)), /* b cache_loop */
MIPS32_NOP,
/* end: */
MIPS32_LW(11,0,15), /* lw $11,($15) */
MIPS32_LW(10,0,15), /* lw $10,($15) */
MIPS32_LW(9,0,15), /* lw $9,($15) */
MIPS32_LW(8,0,15), /* lw $8,($15) */
MIPS32_B(NEG16(25)), /* b start */
MIPS32_MFC0(15,31,0), /* move COP0 DeSave to $15 */
};

/**
* Find cache line size in bytes
*/
uint32_t conf;
uint32_t dl, clsiz;

mips32_cp0_read(ejtag_info, &conf, 16, 1);
dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;

/* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
clsiz = 0x2 << dl;

/* TODO remove array */
uint32_t *param_in = malloc(3 * sizeof(uint32_t));
int retval;
param_in[0] = start_addr;
param_in[1] = end_addr;
param_in[2] = clsiz;

retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);

free(param_in);

return retval;
}


int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
{
int retval;

switch (size)
{
case 1:
return mips32_pracc_write_mem8(ejtag_info, addr, count, (uint8_t*)buf);
retval = mips32_pracc_write_mem8(ejtag_info, addr, count, (uint8_t*)buf);
break;
case 2:
return mips32_pracc_write_mem16(ejtag_info, addr, count,(uint16_t*)buf);
retval = mips32_pracc_write_mem16(ejtag_info, addr, count,(uint16_t*)buf);
break;
case 4:
if (count == 1)
return mips32_pracc_write_u32(ejtag_info, addr, (uint32_t*)buf);
{
retval = mips32_pracc_write_u32(ejtag_info, addr, (uint32_t*)buf);
}
else
return mips32_pracc_write_mem32(ejtag_info, addr, count, (uint32_t*)buf);
{
retval = mips32_pracc_write_mem32(ejtag_info, addr, count, (uint32_t*)buf);
}
break;
default:
retval = ERROR_FAIL;
}

return ERROR_OK;
/**
* If we are in the cachable regoion and cache is activated,
* we must clean D$ + invalidate I$ after we did the write,
* so that changes do not continue to live only in D$, but to be
* replicated in I$ also (maybe we wrote the istructions)
*/
uint32_t conf = 0;
int cached = 0;

mips32_cp0_read(ejtag_info, &conf, 16, 0);

switch (KSEGX(addr))
{
case KUSEG:
cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
break;
case KSEG0 :
cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
break;
case KSEG1:
/* uncachable segment - nothing to do */
break;
case KSEG2:
case KSEG3:
cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
break;
default:
/* what ? */
break;
}

/**
* Check cachablitiy bits coherency algorithm -
* is the region cacheable or uncached.
* If cacheable we have to synchronize the cache
*/
if (cached == 0x3)
{
uint32_t start_addr, end_addr;
uint32_t rel;

start_addr = addr;
end_addr = addr + count * size;

/** select cache synchronisation mechanism based on Architecture Release */
rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
switch (rel)
{
case MIPS32_ARCH_REL1 :
/* MIPS32/64 Release 1 - we must use cache instruction */
mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
break;
case MIPS32_ARCH_REL2 :
/* MIPS32/64 Release 2 - we can use synci instruction */
mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
break;
default :
/* what ? */
break;
}
}

return retval;
}

static int mips32_pracc_write_mem32(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint32_t *buf)


Loading…
Cancel
Save