Browse Source

hla: move memory read/write functionality to driver

Due to issues reported when using the jtag mode of the stlink (see Trac #61),
the functionality/checking has been moved to the driver.

This change also fixes unaligned 32bit memory read/write for the stlink.

From testing this change also brings a 3KiB/s speed increase, this is due
to the larger read/write packets.

Change-Id: I8234110e7e49a683f4dadd54c442ecdc3c47b320
Signed-off-by: Spencer Oliver <spen@spen-soft.co.uk>
Reviewed-on: http://openocd.zylin.com/1632
Tested-by: jenkins
Reviewed-by: Andreas Fritiofson <andreas.fritiofson@gmail.com>
tags/v0.8.0-rc1
Spencer Oliver 10 years ago
parent
commit
cfe9ca039f
6 changed files with 219 additions and 90 deletions
  1. +168
    -16
      src/jtag/drivers/stlink_usb.c
  2. +48
    -7
      src/jtag/drivers/ti_icdi_usb.c
  3. +1
    -1
      src/jtag/hla/hla_interface.c
  4. +0
    -2
      src/jtag/hla/hla_interface.h
  5. +0
    -6
      src/jtag/hla/hla_layout.c
  6. +2
    -58
      src/target/hla_target.c

+ 168
- 16
src/jtag/drivers/stlink_usb.c View File

@@ -50,10 +50,14 @@
#define STLINK_TX_EP (2|ENDPOINT_OUT)
#define STLINK_TRACE_EP (3|ENDPOINT_IN)
#define STLINK_SG_SIZE (31)
#define STLINK_DATA_SIZE (4*128)
#define STLINK_DATA_SIZE (4096)
#define STLINK_CMD_SIZE_V2 (16)
#define STLINK_CMD_SIZE_V1 (10)

/* the current implementation of the stlink limits
* 8bit read/writes to max 64 bytes. */
#define STLINK_MAX_RW8 (64)

enum stlink_jtag_api_version {
STLINK_JTAG_API_V1 = 1,
STLINK_JTAG_API_V2,
@@ -86,6 +90,8 @@ struct stlink_usb_handle_s {
/** */
uint8_t databuf[STLINK_DATA_SIZE];
/** */
uint32_t max_mem_packet;
/** */
enum hl_transports transport;
/** */
struct stlink_usb_version version;
@@ -1317,6 +1323,12 @@ static int stlink_usb_read_mem8(void *handle, uint32_t addr, uint16_t len,

assert(handle != NULL);

/* max 8bit read/write is 64bytes */
if (len > STLINK_MAX_RW8) {
LOG_DEBUG("max buffer length exceeded");
return ERROR_FAIL;
}

h = (struct stlink_usb_handle_s *)handle;

stlink_usb_init_buffer(handle, STLINK_RX_EP, read_len);
@@ -1351,6 +1363,12 @@ static int stlink_usb_write_mem8(void *handle, uint32_t addr, uint16_t len,

assert(handle != NULL);

/* max 8bit read/write is 64bytes */
if (len > STLINK_MAX_RW8) {
LOG_DEBUG("max buffer length exceeded");
return ERROR_FAIL;
}

h = (struct stlink_usb_handle_s *)handle;

stlink_usb_init_buffer(handle, STLINK_TX_EP, len);
@@ -1379,9 +1397,13 @@ static int stlink_usb_read_mem32(void *handle, uint32_t addr, uint16_t len,

assert(handle != NULL);

h = (struct stlink_usb_handle_s *)handle;
/* data must be a multiple of 4 and word aligned */
if (len % 4 || addr % 4) {
LOG_DEBUG("Invalid data alignment");
return ERROR_TARGET_UNALIGNED_ACCESS;
}

len *= 4;
h = (struct stlink_usb_handle_s *)handle;

stlink_usb_init_buffer(handle, STLINK_RX_EP, len);

@@ -1411,9 +1433,13 @@ static int stlink_usb_write_mem32(void *handle, uint32_t addr, uint16_t len,

assert(handle != NULL);

h = (struct stlink_usb_handle_s *)handle;
/* data must be a multiple of 4 and word aligned */
if (len % 4 || addr % 4) {
LOG_DEBUG("Invalid data alignment");
return ERROR_TARGET_UNALIGNED_ACCESS;
}

len *= 4;
h = (struct stlink_usb_handle_s *)handle;

stlink_usb_init_buffer(handle, STLINK_TX_EP, len);

@@ -1432,22 +1458,134 @@ static int stlink_usb_write_mem32(void *handle, uint32_t addr, uint16_t len,
return stlink_usb_get_rw_status(handle);
}

static uint32_t stlink_max_block_size(uint32_t tar_autoincr_block, uint32_t address)
{
uint32_t max_tar_block = (tar_autoincr_block - ((tar_autoincr_block - 1) & address));
if (max_tar_block == 0)
max_tar_block = 4;
return max_tar_block;
}

static int stlink_usb_read_mem(void *handle, uint32_t addr, uint32_t size,
uint32_t count, uint8_t *buffer)
{
if (size == 4)
return stlink_usb_read_mem32(handle, addr, count, buffer);
else
return stlink_usb_read_mem8(handle, addr, count, buffer);
int retval = ERROR_OK;
uint32_t bytes_remaining;
struct stlink_usb_handle_s *h = (struct stlink_usb_handle_s *)handle;

/* calculate byte count */
count *= size;

while (count) {

bytes_remaining = (size == 4) ? \
stlink_max_block_size(h->max_mem_packet, addr) : STLINK_MAX_RW8;

if (count < bytes_remaining)
bytes_remaining = count;

/* the stlink only supports 8/32bit memory read/writes
* honour 32bit, all others will be handled as 8bit access */
if (size == 4) {

/* When in jtag mode the stlink uses the auto-increment functinality.
* However it expects us to pass the data correctly, this includes
* alignment and any page boundaries. We already do this as part of the
* adi_v5 implementation, but the stlink is a hla adapter and so this
* needs implementiong manually.
* currently this only affects jtag mode, according to ST they do single
* access in SWD mode - but this may change and so we do it for both modes */

/* we first need to check for any unaligned bytes */
if (addr % 4) {

uint32_t head_bytes = 4 - (addr % 4);
retval = stlink_usb_read_mem8(handle, addr, head_bytes, buffer);
if (retval != ERROR_OK)
return retval;
buffer += head_bytes;
addr += head_bytes;
count -= head_bytes;
bytes_remaining -= head_bytes;
}

if (bytes_remaining % 4)
retval = stlink_usb_read_mem(handle, addr, 1, bytes_remaining, buffer);
else
retval = stlink_usb_read_mem32(handle, addr, bytes_remaining, buffer);
} else
retval = stlink_usb_read_mem8(handle, addr, bytes_remaining, buffer);

if (retval != ERROR_OK)
return retval;

buffer += bytes_remaining;
addr += bytes_remaining;
count -= bytes_remaining;
}

return retval;
}

static int stlink_usb_write_mem(void *handle, uint32_t addr, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
if (size == 4)
return stlink_usb_write_mem32(handle, addr, count, buffer);
else
return stlink_usb_write_mem8(handle, addr, count, buffer);
int retval = ERROR_OK;
uint32_t bytes_remaining;
struct stlink_usb_handle_s *h = (struct stlink_usb_handle_s *)handle;

/* calculate byte count */
count *= size;

while (count) {

bytes_remaining = (size == 4) ? \
stlink_max_block_size(h->max_mem_packet, addr) : STLINK_MAX_RW8;

if (count < bytes_remaining)
bytes_remaining = count;

/* the stlink only supports 8/32bit memory read/writes
* honour 32bit, all others will be handled as 8bit access */
if (size == 4) {

/* When in jtag mode the stlink uses the auto-increment functinality.
* However it expects us to pass the data correctly, this includes
* alignment and any page boundaries. We already do this as part of the
* adi_v5 implementation, but the stlink is a hla adapter and so this
* needs implementiong manually.
* currently this only affects jtag mode, according to ST they do single
* access in SWD mode - but this may change and so we do it for both modes */

/* we first need to check for any unaligned bytes */
if (addr % 4) {

uint32_t head_bytes = 4 - (addr % 4);
retval = stlink_usb_write_mem8(handle, addr, head_bytes, buffer);
if (retval != ERROR_OK)
return retval;
buffer += head_bytes;
addr += head_bytes;
count -= head_bytes;
bytes_remaining -= head_bytes;
}

if (bytes_remaining % 4)
retval = stlink_usb_write_mem(handle, addr, 1, bytes_remaining, buffer);
else
retval = stlink_usb_write_mem32(handle, addr, bytes_remaining, buffer);

} else
retval = stlink_usb_write_mem8(handle, addr, bytes_remaining, buffer);
if (retval != ERROR_OK)
return retval;

buffer += bytes_remaining;
addr += bytes_remaining;
count -= bytes_remaining;
}

return retval;
}

/** */
@@ -1483,9 +1621,6 @@ static int stlink_usb_open(struct hl_interface_param_s *param, void **fd)

h->transport = param->transport;

/* set max read/write buffer size in bytes */
param->max_buffer = 512;

const uint16_t vids[] = { param->vid, 0 };
const uint16_t pids[] = { param->pid, 0 };

@@ -1616,6 +1751,23 @@ static int stlink_usb_open(struct hl_interface_param_s *param, void **fd)
goto error_open;
}

/* get cpuid, so we can determine the max page size
* start with a safe default */
h->max_mem_packet = (1 << 10);

uint8_t buffer[4];
err = stlink_usb_read_mem32(h, CPUID, 4, buffer);
if (err == ERROR_OK) {
uint32_t cpuid = le_to_h_u32(buffer);
int i = (cpuid >> 4) & 0xf;
if (i == 4 || i == 3) {
/* Cortex-M3/M4 has 4096 bytes autoincrement range */
h->max_mem_packet = (1 << 12);
}
}

LOG_DEBUG("Using TAR autoincrement: %" PRIu32, h->max_mem_packet);

*fd = h;

return ERROR_OK;


+ 48
- 7
src/jtag/drivers/ti_icdi_usb.c View File

@@ -53,6 +53,7 @@ struct icdi_usb_handle_s {
char *write_buffer;
int max_packet;
int read_count;
uint32_t max_rw_packet; /* max X packet (read/write memory) transfers */
};

static int icdi_usb_read_mem(void *handle, uint32_t addr, uint32_t size,
@@ -592,17 +593,57 @@ static int icdi_usb_write_mem_int(void *handle, uint32_t addr, uint32_t len, con
static int icdi_usb_read_mem(void *handle, uint32_t addr, uint32_t size,
uint32_t count, uint8_t *buffer)
{
if (size == 4)
count *= size;
return icdi_usb_read_mem_int(handle, addr, count, buffer);
int retval = ERROR_OK;
struct icdi_usb_handle_s *h = (struct icdi_usb_handle_s *)handle;
uint32_t bytes_remaining;

/* calculate byte count */
count *= size;

while (count) {

bytes_remaining = h->max_rw_packet;
if (count < bytes_remaining)
bytes_remaining = count;

retval = icdi_usb_read_mem_int(handle, addr, bytes_remaining, buffer);
if (retval != ERROR_OK)
return retval;

buffer += bytes_remaining;
addr += bytes_remaining;
count -= bytes_remaining;
}

return retval;
}

static int icdi_usb_write_mem(void *handle, uint32_t addr, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
if (size == 4)
count *= size;
return icdi_usb_write_mem_int(handle, addr, count, buffer);
int retval = ERROR_OK;
struct icdi_usb_handle_s *h = (struct icdi_usb_handle_s *)handle;
uint32_t bytes_remaining;

/* calculate byte count */
count *= size;

while (count) {

bytes_remaining = h->max_rw_packet;
if (count < bytes_remaining)
bytes_remaining = count;

retval = icdi_usb_write_mem_int(handle, addr, bytes_remaining, buffer);
if (retval != ERROR_OK)
return retval;

buffer += bytes_remaining;
addr += bytes_remaining;
count -= bytes_remaining;
}

return retval;
}

static int icdi_usb_close(void *handle)
@@ -707,7 +748,7 @@ static int icdi_usb_open(struct hl_interface_param_s *param, void **fd)
* as we are using gdb binary packets to transfer memory we have to
* reserve half the buffer for any possible escape chars plus
* at least 64 bytes for the gdb packet header */
param->max_buffer = (((h->max_packet - 64) / 4) * 4) / 2;
h->max_rw_packet = (((h->max_packet - 64) / 4) * 4) / 2;

return ERROR_OK;



+ 1
- 1
src/jtag/hla/hla_interface.c View File

@@ -37,7 +37,7 @@

#include <target/target.h>

static struct hl_interface_s hl_if = { {0, 0, 0, 0, 0, HL_TRANSPORT_UNKNOWN, 0, false, NULL, 0}, 0, 0 };
static struct hl_interface_s hl_if = { {0, 0, 0, 0, 0, HL_TRANSPORT_UNKNOWN, false, NULL, 0}, 0, 0 };

int hl_interface_open(enum hl_transports tr)
{


+ 0
- 2
src/jtag/hla/hla_interface.h View File

@@ -45,8 +45,6 @@ struct hl_interface_param_s {
/** */
enum hl_transports transport;
/** */
int max_buffer;
/** */
bool connect_under_reset;
/** Output file for trace data (if any) */
FILE *trace_f;


+ 0
- 6
src/jtag/hla/hla_layout.c View File

@@ -50,12 +50,6 @@ static int hl_layout_open(struct hl_interface_s *adapter)
return res;
}

/* make sure adapter has set the buffer size */
if (!adapter->param.max_buffer) {
LOG_ERROR("buffer size not set");
return ERROR_FAIL;
}

return ERROR_OK;
}



+ 2
- 58
src/target/hla_target.c View File

@@ -758,41 +758,13 @@ static int adapter_read_memory(struct target *target, uint32_t address,
uint8_t *buffer)
{
struct hl_interface_s *adapter = target_to_adapter(target);
int res;
uint32_t buffer_threshold = (adapter->param.max_buffer / 4);
uint32_t addr_increment = 4;
uint32_t c;

if (!count || !buffer)
return ERROR_COMMAND_SYNTAX_ERROR;

LOG_DEBUG("%s 0x%08x %d %d", __func__, address, size, count);

/* prepare byte count, buffer threshold
* and address increment for none 32bit access
*/
if (size != 4) {
count *= size;
buffer_threshold = (adapter->param.max_buffer / 4) / 2;
addr_increment = 1;
}

while (count) {
if (count > buffer_threshold)
c = buffer_threshold;
else
c = count;

res = adapter->layout->api->read_mem(adapter->fd, address, size, c, buffer);
if (res != ERROR_OK)
return res;

address += (c * addr_increment);
buffer += (c * addr_increment);
count -= c;
}

return ERROR_OK;
return adapter->layout->api->read_mem(adapter->fd, address, size, count, buffer);
}

static int adapter_write_memory(struct target *target, uint32_t address,
@@ -800,41 +772,13 @@ static int adapter_write_memory(struct target *target, uint32_t address,
const uint8_t *buffer)
{
struct hl_interface_s *adapter = target_to_adapter(target);
int res;
uint32_t buffer_threshold = (adapter->param.max_buffer / 4);
uint32_t addr_increment = 4;
uint32_t c;

if (!count || !buffer)
return ERROR_COMMAND_SYNTAX_ERROR;

LOG_DEBUG("%s 0x%08x %d %d", __func__, address, size, count);

/* prepare byte count, buffer threshold
* and address increment for none 32bit access
*/
if (size != 4) {
count *= size;
buffer_threshold = (adapter->param.max_buffer / 4) / 2;
addr_increment = 1;
}

while (count) {
if (count > buffer_threshold)
c = buffer_threshold;
else
c = count;

res = adapter->layout->api->write_mem(adapter->fd, address, size, c, buffer);
if (res != ERROR_OK)
return res;

address += (c * addr_increment);
buffer += (c * addr_increment);
count -= c;
}

return ERROR_OK;
return adapter->layout->api->write_mem(adapter->fd, address, size, count, buffer);
}

static const struct command_registration adapter_command_handlers[] = {


Loading…
Cancel
Save