You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2270 lines
73 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005, 2007 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 2 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, write to the *
  17. * Free Software Foundation, Inc., *
  18. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  19. ***************************************************************************/
  20. #ifdef HAVE_CONFIG_H
  21. #include "config.h"
  22. #endif
  23. #include "replacements.h"
  24. #include "cfi.h"
  25. #include "non_cfi.h"
  26. #include "flash.h"
  27. #include "target.h"
  28. #include "log.h"
  29. #include "armv4_5.h"
  30. #include "algorithm.h"
  31. #include "binarybuffer.h"
  32. #include "types.h"
  33. #include <stdlib.h>
  34. #include <string.h>
  35. #include <unistd.h>
  36. int cfi_register_commands(struct command_context_s *cmd_ctx);
  37. int cfi_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank);
  38. int cfi_erase(struct flash_bank_s *bank, int first, int last);
  39. int cfi_protect(struct flash_bank_s *bank, int set, int first, int last);
  40. int cfi_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count);
  41. int cfi_probe(struct flash_bank_s *bank);
  42. int cfi_auto_probe(struct flash_bank_s *bank);
  43. int cfi_protect_check(struct flash_bank_s *bank);
  44. int cfi_info(struct flash_bank_s *bank, char *buf, int buf_size);
  45. int cfi_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  46. #define CFI_MAX_BUS_WIDTH 4
  47. #define CFI_MAX_CHIP_WIDTH 4
  48. /* defines internal maximum size for code fragment in cfi_intel_write_block() */
  49. #define CFI_MAX_INTEL_CODESIZE 256
  50. flash_driver_t cfi_flash =
  51. {
  52. .name = "cfi",
  53. .register_commands = cfi_register_commands,
  54. .flash_bank_command = cfi_flash_bank_command,
  55. .erase = cfi_erase,
  56. .protect = cfi_protect,
  57. .write = cfi_write,
  58. .probe = cfi_probe,
  59. .auto_probe = cfi_auto_probe,
  60. .erase_check = default_flash_blank_check,
  61. .protect_check = cfi_protect_check,
  62. .info = cfi_info
  63. };
  64. cfi_unlock_addresses_t cfi_unlock_addresses[] =
  65. {
  66. [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
  67. [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
  68. };
  69. /* CFI fixups foward declarations */
  70. void cfi_fixup_0002_erase_regions(flash_bank_t *flash, void *param);
  71. void cfi_fixup_0002_unlock_addresses(flash_bank_t *flash, void *param);
  72. void cfi_fixup_atmel_reversed_erase_regions(flash_bank_t *flash, void *param);
  73. /* fixup after identifying JEDEC manufactuer and ID */
  74. cfi_fixup_t cfi_jedec_fixups[] = {
  75. {CFI_MFR_SST, 0x00D4, cfi_fixup_non_cfi, NULL},
  76. {CFI_MFR_SST, 0x00D5, cfi_fixup_non_cfi, NULL},
  77. {CFI_MFR_SST, 0x00D6, cfi_fixup_non_cfi, NULL},
  78. {CFI_MFR_SST, 0x00D7, cfi_fixup_non_cfi, NULL},
  79. {CFI_MFR_SST, 0x2780, cfi_fixup_non_cfi, NULL},
  80. {CFI_MFR_ST, 0x00D5, cfi_fixup_non_cfi, NULL},
  81. {CFI_MFR_ST, 0x00D6, cfi_fixup_non_cfi, NULL},
  82. {CFI_MFR_AMD, 0x2223, cfi_fixup_non_cfi, NULL},
  83. {CFI_MFR_AMD, 0x22ab, cfi_fixup_non_cfi, NULL},
  84. {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_non_cfi, NULL},
  85. {0, 0, NULL, NULL}
  86. };
  87. /* fixup after reading cmdset 0002 primary query table */
  88. cfi_fixup_t cfi_0002_fixups[] = {
  89. {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  90. {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  91. {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  92. {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  93. {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  94. {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_atmel_reversed_erase_regions, NULL},
  95. {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  96. {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
  97. {0, 0, NULL, NULL}
  98. };
  99. /* fixup after reading cmdset 0001 primary query table */
  100. cfi_fixup_t cfi_0001_fixups[] = {
  101. {0, 0, NULL, NULL}
  102. };
  103. void cfi_fixup(flash_bank_t *bank, cfi_fixup_t *fixups)
  104. {
  105. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  106. cfi_fixup_t *f;
  107. for (f = fixups; f->fixup; f++)
  108. {
  109. if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
  110. ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
  111. {
  112. f->fixup(bank, f->param);
  113. }
  114. }
  115. }
  116. /* inline u32 flash_address(flash_bank_t *bank, int sector, u32 offset) */
  117. __inline__ u32 flash_address(flash_bank_t *bank, int sector, u32 offset)
  118. {
  119. /* while the sector list isn't built, only accesses to sector 0 work */
  120. if (sector == 0)
  121. return bank->base + offset * bank->bus_width;
  122. else
  123. {
  124. if (!bank->sectors)
  125. {
  126. LOG_ERROR("BUG: sector list not yet built");
  127. exit(-1);
  128. }
  129. return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
  130. }
  131. }
  132. void cfi_command(flash_bank_t *bank, u8 cmd, u8 *cmd_buf)
  133. {
  134. int i;
  135. /* clear whole buffer, to ensure bits that exceed the bus_width
  136. * are set to zero
  137. */
  138. for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
  139. cmd_buf[i] = 0;
  140. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  141. {
  142. for (i = bank->bus_width; i > 0; i--)
  143. {
  144. *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
  145. }
  146. }
  147. else
  148. {
  149. for (i = 1; i <= bank->bus_width; i++)
  150. {
  151. *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
  152. }
  153. }
  154. }
  155. /* read unsigned 8-bit value from the bank
  156. * flash banks are expected to be made of similar chips
  157. * the query result should be the same for all
  158. */
  159. u8 cfi_query_u8(flash_bank_t *bank, int sector, u32 offset)
  160. {
  161. target_t *target = bank->target;
  162. u8 data[CFI_MAX_BUS_WIDTH];
  163. target->type->read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
  164. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  165. return data[0];
  166. else
  167. return data[bank->bus_width - 1];
  168. }
  169. /* read unsigned 8-bit value from the bank
  170. * in case of a bank made of multiple chips,
  171. * the individual values are ORed
  172. */
  173. u8 cfi_get_u8(flash_bank_t *bank, int sector, u32 offset)
  174. {
  175. target_t *target = bank->target;
  176. u8 data[CFI_MAX_BUS_WIDTH];
  177. int i;
  178. target->type->read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
  179. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  180. {
  181. for (i = 0; i < bank->bus_width / bank->chip_width; i++)
  182. data[0] |= data[i];
  183. return data[0];
  184. }
  185. else
  186. {
  187. u8 value = 0;
  188. for (i = 0; i < bank->bus_width / bank->chip_width; i++)
  189. value |= data[bank->bus_width - 1 - i];
  190. return value;
  191. }
  192. }
  193. u16 cfi_query_u16(flash_bank_t *bank, int sector, u32 offset)
  194. {
  195. target_t *target = bank->target;
  196. u8 data[CFI_MAX_BUS_WIDTH * 2];
  197. target->type->read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data);
  198. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  199. return data[0] | data[bank->bus_width] << 8;
  200. else
  201. return data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
  202. }
  203. u32 cfi_query_u32(flash_bank_t *bank, int sector, u32 offset)
  204. {
  205. target_t *target = bank->target;
  206. u8 data[CFI_MAX_BUS_WIDTH * 4];
  207. target->type->read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data);
  208. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  209. return data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
  210. else
  211. return data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
  212. data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
  213. }
  214. void cfi_intel_clear_status_register(flash_bank_t *bank)
  215. {
  216. target_t *target = bank->target;
  217. u8 command[8];
  218. if (target->state != TARGET_HALTED)
  219. {
  220. LOG_ERROR("BUG: attempted to clear status register while target wasn't halted");
  221. exit(-1);
  222. }
  223. cfi_command(bank, 0x50, command);
  224. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  225. }
  226. u8 cfi_intel_wait_status_busy(flash_bank_t *bank, int timeout)
  227. {
  228. u8 status;
  229. while ((!((status = cfi_get_u8(bank, 0, 0x0)) & 0x80)) && (timeout-- > 0))
  230. {
  231. LOG_DEBUG("status: 0x%x", status);
  232. usleep(1000);
  233. }
  234. /* mask out bit 0 (reserved) */
  235. status = status & 0xfe;
  236. LOG_DEBUG("status: 0x%x", status);
  237. if ((status & 0x80) != 0x80)
  238. {
  239. LOG_ERROR("timeout while waiting for WSM to become ready");
  240. }
  241. else if (status != 0x80)
  242. {
  243. LOG_ERROR("status register: 0x%x", status);
  244. if (status & 0x2)
  245. LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
  246. if (status & 0x4)
  247. LOG_ERROR("Program suspended");
  248. if (status & 0x8)
  249. LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
  250. if (status & 0x10)
  251. LOG_ERROR("Program Error / Error in Setting Lock-Bit");
  252. if (status & 0x20)
  253. LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
  254. if (status & 0x40)
  255. LOG_ERROR("Block Erase Suspended");
  256. cfi_intel_clear_status_register(bank);
  257. }
  258. return status;
  259. }
  260. int cfi_spansion_wait_status_busy(flash_bank_t *bank, int timeout)
  261. {
  262. u8 status, oldstatus;
  263. oldstatus = cfi_get_u8(bank, 0, 0x0);
  264. do {
  265. status = cfi_get_u8(bank, 0, 0x0);
  266. if ((status ^ oldstatus) & 0x40) {
  267. if (status & 0x20) {
  268. oldstatus = cfi_get_u8(bank, 0, 0x0);
  269. status = cfi_get_u8(bank, 0, 0x0);
  270. if ((status ^ oldstatus) & 0x40) {
  271. LOG_ERROR("dq5 timeout, status: 0x%x", status);
  272. return(ERROR_FLASH_OPERATION_FAILED);
  273. } else {
  274. LOG_DEBUG("status: 0x%x", status);
  275. return(ERROR_OK);
  276. }
  277. }
  278. } else {
  279. LOG_DEBUG("status: 0x%x", status);
  280. return(ERROR_OK);
  281. }
  282. oldstatus = status;
  283. usleep(1000);
  284. } while (timeout-- > 0);
  285. LOG_ERROR("timeout, status: 0x%x", status);
  286. return(ERROR_FLASH_BUSY);
  287. }
  288. int cfi_read_intel_pri_ext(flash_bank_t *bank)
  289. {
  290. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  291. cfi_intel_pri_ext_t *pri_ext = malloc(sizeof(cfi_intel_pri_ext_t));
  292. target_t *target = bank->target;
  293. u8 command[8];
  294. cfi_info->pri_ext = pri_ext;
  295. pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
  296. pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
  297. pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
  298. if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
  299. {
  300. cfi_command(bank, 0xf0, command);
  301. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  302. cfi_command(bank, 0xff, command);
  303. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  304. LOG_ERROR("Could not read bank flash bank information");
  305. return ERROR_FLASH_BANK_INVALID;
  306. }
  307. pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
  308. pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
  309. LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
  310. pri_ext->feature_support = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5);
  311. pri_ext->suspend_cmd_support = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
  312. pri_ext->blk_status_reg_mask = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa);
  313. LOG_DEBUG("feature_support: 0x%x, suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
  314. pri_ext->vcc_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc);
  315. pri_ext->vpp_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd);
  316. LOG_DEBUG("Vcc opt: %1.1x.%1.1x, Vpp opt: %1.1x.%1.1x",
  317. (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
  318. (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
  319. pri_ext->num_protection_fields = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe);
  320. if (pri_ext->num_protection_fields != 1)
  321. {
  322. LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields);
  323. }
  324. pri_ext->prot_reg_addr = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf);
  325. pri_ext->fact_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11);
  326. pri_ext->user_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12);
  327. LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
  328. return ERROR_OK;
  329. }
  330. int cfi_read_spansion_pri_ext(flash_bank_t *bank)
  331. {
  332. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  333. cfi_spansion_pri_ext_t *pri_ext = malloc(sizeof(cfi_spansion_pri_ext_t));
  334. target_t *target = bank->target;
  335. u8 command[8];
  336. cfi_info->pri_ext = pri_ext;
  337. pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
  338. pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
  339. pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
  340. if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
  341. {
  342. cfi_command(bank, 0xf0, command);
  343. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  344. LOG_ERROR("Could not read spansion bank information");
  345. return ERROR_FLASH_BANK_INVALID;
  346. }
  347. pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
  348. pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
  349. LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
  350. pri_ext->SiliconRevision = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
  351. pri_ext->EraseSuspend = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
  352. pri_ext->BlkProt = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
  353. pri_ext->TmpBlkUnprotect = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
  354. pri_ext->BlkProtUnprot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
  355. pri_ext->SimultaneousOps = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10);
  356. pri_ext->BurstMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11);
  357. pri_ext->PageMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12);
  358. pri_ext->VppMin = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13);
  359. pri_ext->VppMax = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14);
  360. pri_ext->TopBottom = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15);
  361. LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision,
  362. pri_ext->EraseSuspend, pri_ext->BlkProt);
  363. LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
  364. pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
  365. LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
  366. LOG_DEBUG("Vpp min: %2.2d.%1.1d, Vpp max: %2.2d.%1.1x",
  367. (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
  368. (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
  369. LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
  370. /* default values for implementation specific workarounds */
  371. pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
  372. pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
  373. pri_ext->_reversed_geometry = 0;
  374. return ERROR_OK;
  375. }
  376. int cfi_read_atmel_pri_ext(flash_bank_t *bank)
  377. {
  378. cfi_atmel_pri_ext_t atmel_pri_ext;
  379. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  380. cfi_spansion_pri_ext_t *pri_ext = malloc(sizeof(cfi_spansion_pri_ext_t));
  381. target_t *target = bank->target;
  382. u8 command[8];
  383. /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
  384. * but a different primary extended query table.
  385. * We read the atmel table, and prepare a valid AMD/Spansion query table.
  386. */
  387. memset(pri_ext, 0, sizeof(cfi_spansion_pri_ext_t));
  388. cfi_info->pri_ext = pri_ext;
  389. atmel_pri_ext.pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
  390. atmel_pri_ext.pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
  391. atmel_pri_ext.pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
  392. if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I'))
  393. {
  394. cfi_command(bank, 0xf0, command);
  395. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  396. LOG_ERROR("Could not read atmel bank information");
  397. return ERROR_FLASH_BANK_INVALID;
  398. }
  399. pri_ext->pri[0] = atmel_pri_ext.pri[0];
  400. pri_ext->pri[1] = atmel_pri_ext.pri[1];
  401. pri_ext->pri[2] = atmel_pri_ext.pri[2];
  402. atmel_pri_ext.major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
  403. atmel_pri_ext.minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
  404. LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
  405. pri_ext->major_version = atmel_pri_ext.major_version;
  406. pri_ext->minor_version = atmel_pri_ext.minor_version;
  407. atmel_pri_ext.features = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
  408. atmel_pri_ext.bottom_boot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
  409. atmel_pri_ext.burst_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
  410. atmel_pri_ext.page_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
  411. LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
  412. atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
  413. if (atmel_pri_ext.features & 0x02)
  414. pri_ext->EraseSuspend = 2;
  415. if (atmel_pri_ext.bottom_boot)
  416. pri_ext->TopBottom = 2;
  417. else
  418. pri_ext->TopBottom = 3;
  419. pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
  420. pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
  421. return ERROR_OK;
  422. }
  423. int cfi_read_0002_pri_ext(flash_bank_t *bank)
  424. {
  425. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  426. if (cfi_info->manufacturer == CFI_MFR_ATMEL)
  427. {
  428. return cfi_read_atmel_pri_ext(bank);
  429. }
  430. else
  431. {
  432. return cfi_read_spansion_pri_ext(bank);
  433. }
  434. }
  435. int cfi_spansion_info(struct flash_bank_s *bank, char *buf, int buf_size)
  436. {
  437. int printed;
  438. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  439. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  440. printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
  441. buf += printed;
  442. buf_size -= printed;
  443. printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
  444. pri_ext->pri[1], pri_ext->pri[2],
  445. pri_ext->major_version, pri_ext->minor_version);
  446. buf += printed;
  447. buf_size -= printed;
  448. printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
  449. (pri_ext->SiliconRevision) >> 2,
  450. (pri_ext->SiliconRevision) & 0x03);
  451. buf += printed;
  452. buf_size -= printed;
  453. printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
  454. pri_ext->EraseSuspend,
  455. pri_ext->BlkProt);
  456. buf += printed;
  457. buf_size -= printed;
  458. printed = snprintf(buf, buf_size, "VppMin: %2.2d.%1.1x, VppMax: %2.2d.%1.1x\n",
  459. (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
  460. (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
  461. return ERROR_OK;
  462. }
  463. int cfi_intel_info(struct flash_bank_s *bank, char *buf, int buf_size)
  464. {
  465. int printed;
  466. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  467. cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext;
  468. printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
  469. buf += printed;
  470. buf_size -= printed;
  471. printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
  472. buf += printed;
  473. buf_size -= printed;
  474. printed = snprintf(buf, buf_size, "feature_support: 0x%x, suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
  475. buf += printed;
  476. buf_size -= printed;
  477. printed = snprintf(buf, buf_size, "Vcc opt: %1.1x.%1.1x, Vpp opt: %1.1x.%1.1x\n",
  478. (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
  479. (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
  480. buf += printed;
  481. buf_size -= printed;
  482. printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
  483. return ERROR_OK;
  484. }
  485. int cfi_register_commands(struct command_context_s *cmd_ctx)
  486. {
  487. /*command_t *cfi_cmd = */
  488. register_command(cmd_ctx, NULL, "cfi", NULL, COMMAND_ANY, "flash bank cfi <base> <size> <chip_width> <bus_width> <targetNum> [jedec_probe/x16_as_x8]");
  489. /*
  490. register_command(cmd_ctx, cfi_cmd, "part_id", cfi_handle_part_id_command, COMMAND_EXEC,
  491. "print part id of cfi flash bank <num>");
  492. */
  493. return ERROR_OK;
  494. }
  495. /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
  496. */
  497. int cfi_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank)
  498. {
  499. cfi_flash_bank_t *cfi_info;
  500. int i;
  501. if (argc < 6)
  502. {
  503. LOG_WARNING("incomplete flash_bank cfi configuration");
  504. return ERROR_FLASH_BANK_INVALID;
  505. }
  506. if ((strtoul(args[4], NULL, 0) > CFI_MAX_CHIP_WIDTH)
  507. || (strtoul(args[3], NULL, 0) > CFI_MAX_BUS_WIDTH))
  508. {
  509. LOG_ERROR("chip and bus width have to specified in bytes");
  510. return ERROR_FLASH_BANK_INVALID;
  511. }
  512. cfi_info = malloc(sizeof(cfi_flash_bank_t));
  513. cfi_info->probed = 0;
  514. bank->driver_priv = cfi_info;
  515. cfi_info->write_algorithm = NULL;
  516. cfi_info->x16_as_x8 = 0;
  517. cfi_info->jedec_probe = 0;
  518. cfi_info->not_cfi = 0;
  519. for (i = 6; i < argc; i++)
  520. {
  521. if (strcmp(args[i], "x16_as_x8") == 0)
  522. {
  523. cfi_info->x16_as_x8 = 1;
  524. }
  525. else if (strcmp(args[i], "jedec_probe") == 0)
  526. {
  527. cfi_info->jedec_probe = 1;
  528. }
  529. }
  530. cfi_info->write_algorithm = NULL;
  531. /* bank wasn't probed yet */
  532. cfi_info->qry[0] = -1;
  533. return ERROR_OK;
  534. }
  535. int cfi_intel_erase(struct flash_bank_s *bank, int first, int last)
  536. {
  537. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  538. target_t *target = bank->target;
  539. u8 command[8];
  540. int i;
  541. cfi_intel_clear_status_register(bank);
  542. for (i = first; i <= last; i++)
  543. {
  544. cfi_command(bank, 0x20, command);
  545. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  546. cfi_command(bank, 0xd0, command);
  547. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  548. if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == 0x80)
  549. bank->sectors[i].is_erased = 1;
  550. else
  551. {
  552. cfi_command(bank, 0xff, command);
  553. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  554. LOG_ERROR("couldn't erase block %i of flash bank at base 0x%x", i, bank->base);
  555. return ERROR_FLASH_OPERATION_FAILED;
  556. }
  557. }
  558. cfi_command(bank, 0xff, command);
  559. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  560. return ERROR_OK;
  561. }
  562. int cfi_spansion_erase(struct flash_bank_s *bank, int first, int last)
  563. {
  564. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  565. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  566. target_t *target = bank->target;
  567. u8 command[8];
  568. int i;
  569. for (i = first; i <= last; i++)
  570. {
  571. cfi_command(bank, 0xaa, command);
  572. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  573. cfi_command(bank, 0x55, command);
  574. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command);
  575. cfi_command(bank, 0x80, command);
  576. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  577. cfi_command(bank, 0xaa, command);
  578. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  579. cfi_command(bank, 0x55, command);
  580. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command);
  581. cfi_command(bank, 0x30, command);
  582. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  583. if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK)
  584. bank->sectors[i].is_erased = 1;
  585. else
  586. {
  587. cfi_command(bank, 0xf0, command);
  588. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  589. LOG_ERROR("couldn't erase block %i of flash bank at base 0x%x", i, bank->base);
  590. return ERROR_FLASH_OPERATION_FAILED;
  591. }
  592. }
  593. cfi_command(bank, 0xf0, command);
  594. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  595. return ERROR_OK;
  596. }
  597. int cfi_erase(struct flash_bank_s *bank, int first, int last)
  598. {
  599. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  600. if (bank->target->state != TARGET_HALTED)
  601. {
  602. return ERROR_TARGET_NOT_HALTED;
  603. }
  604. if ((first < 0) || (last < first) || (last >= bank->num_sectors))
  605. {
  606. return ERROR_FLASH_SECTOR_INVALID;
  607. }
  608. if (cfi_info->qry[0] != 'Q')
  609. return ERROR_FLASH_BANK_NOT_PROBED;
  610. switch(cfi_info->pri_id)
  611. {
  612. case 1:
  613. case 3:
  614. return cfi_intel_erase(bank, first, last);
  615. break;
  616. case 2:
  617. return cfi_spansion_erase(bank, first, last);
  618. break;
  619. default:
  620. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  621. break;
  622. }
  623. return ERROR_OK;
  624. }
  625. int cfi_intel_protect(struct flash_bank_s *bank, int set, int first, int last)
  626. {
  627. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  628. cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext;
  629. target_t *target = bank->target;
  630. u8 command[8];
  631. int retry = 0;
  632. int i;
  633. /* if the device supports neither legacy lock/unlock (bit 3) nor
  634. * instant individual block locking (bit 5).
  635. */
  636. if (!(pri_ext->feature_support & 0x28))
  637. return ERROR_FLASH_OPERATION_FAILED;
  638. cfi_intel_clear_status_register(bank);
  639. for (i = first; i <= last; i++)
  640. {
  641. cfi_command(bank, 0x60, command);
  642. LOG_DEBUG("address: 0x%4.4x, command: 0x%4.4x", flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
  643. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  644. if (set)
  645. {
  646. cfi_command(bank, 0x01, command);
  647. LOG_DEBUG("address: 0x%4.4x, command: 0x%4.4x", flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
  648. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  649. bank->sectors[i].is_protected = 1;
  650. }
  651. else
  652. {
  653. cfi_command(bank, 0xd0, command);
  654. LOG_DEBUG("address: 0x%4.4x, command: 0x%4.4x", flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
  655. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  656. bank->sectors[i].is_protected = 0;
  657. }
  658. /* instant individual block locking doesn't require reading of the status register */
  659. if (!(pri_ext->feature_support & 0x20))
  660. {
  661. /* Clear lock bits operation may take up to 1.4s */
  662. cfi_intel_wait_status_busy(bank, 1400);
  663. }
  664. else
  665. {
  666. u8 block_status;
  667. /* read block lock bit, to verify status */
  668. cfi_command(bank, 0x90, command);
  669. target->type->write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command);
  670. block_status = cfi_get_u8(bank, i, 0x2);
  671. if ((block_status & 0x1) != set)
  672. {
  673. LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status);
  674. cfi_command(bank, 0x70, command);
  675. target->type->write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command);
  676. cfi_intel_wait_status_busy(bank, 10);
  677. if (retry > 10)
  678. return ERROR_FLASH_OPERATION_FAILED;
  679. else
  680. {
  681. i--;
  682. retry++;
  683. }
  684. }
  685. }
  686. }
  687. /* if the device doesn't support individual block lock bits set/clear,
  688. * all blocks have been unlocked in parallel, so we set those that should be protected
  689. */
  690. if ((!set) && (!(pri_ext->feature_support & 0x20)))
  691. {
  692. for (i = 0; i < bank->num_sectors; i++)
  693. {
  694. if (bank->sectors[i].is_protected == 1)
  695. {
  696. cfi_intel_clear_status_register(bank);
  697. cfi_command(bank, 0x60, command);
  698. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  699. cfi_command(bank, 0x01, command);
  700. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  701. cfi_intel_wait_status_busy(bank, 100);
  702. }
  703. }
  704. }
  705. cfi_command(bank, 0xff, command);
  706. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  707. return ERROR_OK;
  708. }
  709. int cfi_protect(struct flash_bank_s *bank, int set, int first, int last)
  710. {
  711. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  712. if (bank->target->state != TARGET_HALTED)
  713. {
  714. return ERROR_TARGET_NOT_HALTED;
  715. }
  716. if ((first < 0) || (last < first) || (last >= bank->num_sectors))
  717. {
  718. return ERROR_FLASH_SECTOR_INVALID;
  719. }
  720. if (cfi_info->qry[0] != 'Q')
  721. return ERROR_FLASH_BANK_NOT_PROBED;
  722. switch(cfi_info->pri_id)
  723. {
  724. case 1:
  725. case 3:
  726. cfi_intel_protect(bank, set, first, last);
  727. break;
  728. default:
  729. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  730. break;
  731. }
  732. return ERROR_OK;
  733. }
  734. /* FIXME Replace this by a simple memcpy() - still unsure about sideeffects */
  735. static void cfi_add_byte(struct flash_bank_s *bank, u8 *word, u8 byte)
  736. {
  737. /* target_t *target = bank->target; */
  738. int i;
  739. /* NOTE:
  740. * The data to flash must not be changed in endian! We write a bytestrem in
  741. * target byte order already. Only the control and status byte lane of the flash
  742. * WSM is interpreted by the CPU in different ways, when read a u16 or u32
  743. * word (data seems to be in the upper or lower byte lane for u16 accesses).
  744. */
  745. #if 0
  746. if (target->endianness == TARGET_LITTLE_ENDIAN)
  747. {
  748. #endif
  749. /* shift bytes */
  750. for (i = 0; i < bank->bus_width - 1; i++)
  751. word[i] = word[i + 1];
  752. word[bank->bus_width - 1] = byte;
  753. #if 0
  754. }
  755. else
  756. {
  757. /* shift bytes */
  758. for (i = bank->bus_width - 1; i > 0; i--)
  759. word[i] = word[i - 1];
  760. word[0] = byte;
  761. }
  762. #endif
  763. }
  764. /* Convert code image to target endian */
  765. /* FIXME create general block conversion fcts in target.c?) */
  766. static void cfi_fix_code_endian(target_t *target, u8 *dest, const u32 *src, u32 count)
  767. {
  768. u32 i;
  769. for (i=0; i< count; i++)
  770. {
  771. target_buffer_set_u32(target, dest, *src);
  772. dest+=4;
  773. src++;
  774. }
  775. }
  776. u32 cfi_command_val(flash_bank_t *bank, u8 cmd)
  777. {
  778. target_t *target = bank->target;
  779. u8 buf[CFI_MAX_BUS_WIDTH];
  780. cfi_command(bank, cmd, buf);
  781. switch (bank->bus_width)
  782. {
  783. case 1 :
  784. return buf[0];
  785. break;
  786. case 2 :
  787. return target_buffer_get_u16(target, buf);
  788. break;
  789. case 4 :
  790. return target_buffer_get_u32(target, buf);
  791. break;
  792. default :
  793. LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
  794. return 0;
  795. }
  796. }
  797. int cfi_intel_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u32 count)
  798. {
  799. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  800. target_t *target = bank->target;
  801. reg_param_t reg_params[7];
  802. armv4_5_algorithm_t armv4_5_info;
  803. working_area_t *source;
  804. u32 buffer_size = 32768;
  805. u32 write_command_val, busy_pattern_val, error_pattern_val;
  806. /* algorithm register usage:
  807. * r0: source address (in RAM)
  808. * r1: target address (in Flash)
  809. * r2: count
  810. * r3: flash write command
  811. * r4: status byte (returned to host)
  812. * r5: busy test pattern
  813. * r6: error test pattern
  814. */
  815. static const u32 word_32_code[] = {
  816. 0xe4904004, /* loop: ldr r4, [r0], #4 */
  817. 0xe5813000, /* str r3, [r1] */
  818. 0xe5814000, /* str r4, [r1] */
  819. 0xe5914000, /* busy: ldr r4, [r1] */
  820. 0xe0047005, /* and r7, r4, r5 */
  821. 0xe1570005, /* cmp r7, r5 */
  822. 0x1afffffb, /* bne busy */
  823. 0xe1140006, /* tst r4, r6 */
  824. 0x1a000003, /* bne done */
  825. 0xe2522001, /* subs r2, r2, #1 */
  826. 0x0a000001, /* beq done */
  827. 0xe2811004, /* add r1, r1 #4 */
  828. 0xeafffff2, /* b loop */
  829. 0xeafffffe /* done: b -2 */
  830. };
  831. static const u32 word_16_code[] = {
  832. 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
  833. 0xe1c130b0, /* strh r3, [r1] */
  834. 0xe1c140b0, /* strh r4, [r1] */
  835. 0xe1d140b0, /* busy ldrh r4, [r1] */
  836. 0xe0047005, /* and r7, r4, r5 */
  837. 0xe1570005, /* cmp r7, r5 */
  838. 0x1afffffb, /* bne busy */
  839. 0xe1140006, /* tst r4, r6 */
  840. 0x1a000003, /* bne done */
  841. 0xe2522001, /* subs r2, r2, #1 */
  842. 0x0a000001, /* beq done */
  843. 0xe2811002, /* add r1, r1 #2 */
  844. 0xeafffff2, /* b loop */
  845. 0xeafffffe /* done: b -2 */
  846. };
  847. static const u32 word_8_code[] = {
  848. 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
  849. 0xe5c13000, /* strb r3, [r1] */
  850. 0xe5c14000, /* strb r4, [r1] */
  851. 0xe5d14000, /* busy ldrb r4, [r1] */
  852. 0xe0047005, /* and r7, r4, r5 */
  853. 0xe1570005, /* cmp r7, r5 */
  854. 0x1afffffb, /* bne busy */
  855. 0xe1140006, /* tst r4, r6 */
  856. 0x1a000003, /* bne done */
  857. 0xe2522001, /* subs r2, r2, #1 */
  858. 0x0a000001, /* beq done */
  859. 0xe2811001, /* add r1, r1 #1 */
  860. 0xeafffff2, /* b loop */
  861. 0xeafffffe /* done: b -2 */
  862. };
  863. u8 target_code[4*CFI_MAX_INTEL_CODESIZE];
  864. const u32 *target_code_src;
  865. int target_code_size;
  866. int retval = ERROR_OK;
  867. cfi_intel_clear_status_register(bank);
  868. armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
  869. armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
  870. armv4_5_info.core_state = ARMV4_5_STATE_ARM;
  871. /* If we are setting up the write_algorith, we need target_code_src */
  872. /* if not we only need target_code_size. */
  873. /* */
  874. /* However, we don't want to create multiple code paths, so we */
  875. /* do the unecessary evaluation of target_code_src, which the */
  876. /* compiler will probably nicely optimize away if not needed */
  877. /* prepare algorithm code for target endian */
  878. switch (bank->bus_width)
  879. {
  880. case 1 :
  881. target_code_src = word_8_code;
  882. target_code_size = sizeof(word_8_code);
  883. break;
  884. case 2 :
  885. target_code_src = word_16_code;
  886. target_code_size = sizeof(word_16_code);
  887. break;
  888. case 4 :
  889. target_code_src = word_32_code;
  890. target_code_size = sizeof(word_32_code);
  891. break;
  892. default:
  893. LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
  894. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  895. }
  896. /* flash write code */
  897. if (!cfi_info->write_algorithm)
  898. {
  899. if ( target_code_size > sizeof(target_code) )
  900. {
  901. LOG_WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile.");
  902. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  903. }
  904. cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
  905. /* Get memory for block write handler */
  906. retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
  907. if (retval != ERROR_OK)
  908. {
  909. LOG_WARNING("No working area available, can't do block memory writes");
  910. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  911. };
  912. /* write algorithm code to working area */
  913. retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code);
  914. if (retval != ERROR_OK)
  915. {
  916. LOG_ERROR("Unable to write block write code to target");
  917. goto cleanup;
  918. }
  919. }
  920. /* Get a workspace buffer for the data to flash starting with 32k size.
  921. Half size until buffer would be smaller 256 Bytem then fail back */
  922. /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
  923. while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
  924. {
  925. buffer_size /= 2;
  926. if (buffer_size <= 256)
  927. {
  928. LOG_WARNING("no large enough working area available, can't do block memory writes");
  929. retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  930. goto cleanup;
  931. }
  932. };
  933. /* setup algo registers */
  934. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
  935. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  936. init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
  937. init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
  938. init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
  939. init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
  940. init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
  941. /* prepare command and status register patterns */
  942. write_command_val = cfi_command_val(bank, 0x40);
  943. busy_pattern_val = cfi_command_val(bank, 0x80);
  944. error_pattern_val = cfi_command_val(bank, 0x7e);
  945. LOG_INFO("Using target buffer at 0x%08x and of size 0x%04x", source->address, buffer_size );
  946. /* Programming main loop */
  947. while (count > 0)
  948. {
  949. u32 thisrun_count = (count > buffer_size) ? buffer_size : count;
  950. u32 wsm_error;
  951. target_write_buffer(target, source->address, thisrun_count, buffer);
  952. buf_set_u32(reg_params[0].value, 0, 32, source->address);
  953. buf_set_u32(reg_params[1].value, 0, 32, address);
  954. buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
  955. buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
  956. buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
  957. buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
  958. LOG_INFO("Write 0x%04x bytes to flash at 0x%08x", thisrun_count, address );
  959. /* Execute algorithm, assume breakpoint for last instruction */
  960. retval = target->type->run_algorithm(target, 0, NULL, 7, reg_params,
  961. cfi_info->write_algorithm->address,
  962. cfi_info->write_algorithm->address + target_code_size - sizeof(u32),
  963. 10000, /* 10s should be enough for max. 32k of data */
  964. &armv4_5_info);
  965. /* On failure try a fall back to direct word writes */
  966. if (retval != ERROR_OK)
  967. {
  968. cfi_intel_clear_status_register(bank);
  969. LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
  970. retval = ERROR_FLASH_OPERATION_FAILED;
  971. /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
  972. /* FIXME To allow fall back or recovery, we must save the actual status
  973. somewhere, so that a higher level code can start recovery. */
  974. goto cleanup;
  975. }
  976. /* Check return value from algo code */
  977. wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
  978. if (wsm_error)
  979. {
  980. /* read status register (outputs debug inforation) */
  981. cfi_intel_wait_status_busy(bank, 100);
  982. cfi_intel_clear_status_register(bank);
  983. retval = ERROR_FLASH_OPERATION_FAILED;
  984. goto cleanup;
  985. }
  986. buffer += thisrun_count;
  987. address += thisrun_count;
  988. count -= thisrun_count;
  989. }
  990. /* free up resources */
  991. cleanup:
  992. if (source)
  993. target_free_working_area(target, source);
  994. if (cfi_info->write_algorithm)
  995. {
  996. target_free_working_area(target, cfi_info->write_algorithm);
  997. cfi_info->write_algorithm = NULL;
  998. }
  999. destroy_reg_param(&reg_params[0]);
  1000. destroy_reg_param(&reg_params[1]);
  1001. destroy_reg_param(&reg_params[2]);
  1002. destroy_reg_param(&reg_params[3]);
  1003. destroy_reg_param(&reg_params[4]);
  1004. destroy_reg_param(&reg_params[5]);
  1005. destroy_reg_param(&reg_params[6]);
  1006. return retval;
  1007. }
  1008. int cfi_spansion_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u32 count)
  1009. {
  1010. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1011. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1012. target_t *target = bank->target;
  1013. reg_param_t reg_params[10];
  1014. armv4_5_algorithm_t armv4_5_info;
  1015. working_area_t *source;
  1016. u32 buffer_size = 32768;
  1017. u32 status;
  1018. int retval;
  1019. int exit_code = ERROR_OK;
  1020. /* input parameters - */
  1021. /* R0 = source address */
  1022. /* R1 = destination address */
  1023. /* R2 = number of writes */
  1024. /* R3 = flash write command */
  1025. /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
  1026. /* output parameters - */
  1027. /* R5 = 0x80 ok 0x00 bad */
  1028. /* temp registers - */
  1029. /* R6 = value read from flash to test status */
  1030. /* R7 = holding register */
  1031. /* unlock registers - */
  1032. /* R8 = unlock1_addr */
  1033. /* R9 = unlock1_cmd */
  1034. /* R10 = unlock2_addr */
  1035. /* R11 = unlock2_cmd */
  1036. static const u32 word_32_code[] = {
  1037. /* 00008100 <sp_32_code>: */
  1038. 0xe4905004, /* ldr r5, [r0], #4 */
  1039. 0xe5889000, /* str r9, [r8] */
  1040. 0xe58ab000, /* str r11, [r10] */
  1041. 0xe5883000, /* str r3, [r8] */
  1042. 0xe5815000, /* str r5, [r1] */
  1043. 0xe1a00000, /* nop */
  1044. /* */
  1045. /* 00008110 <sp_32_busy>: */
  1046. 0xe5916000, /* ldr r6, [r1] */
  1047. 0xe0257006, /* eor r7, r5, r6 */
  1048. 0xe0147007, /* ands r7, r4, r7 */
  1049. 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
  1050. 0xe0166124, /* ands r6, r6, r4, lsr #2 */
  1051. 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
  1052. 0xe5916000, /* ldr r6, [r1] */
  1053. 0xe0257006, /* eor r7, r5, r6 */
  1054. 0xe0147007, /* ands r7, r4, r7 */
  1055. 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
  1056. 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
  1057. 0x1a000004, /* bne 8154 <sp_32_done> */
  1058. /* */
  1059. /* 00008140 <sp_32_cont>: */
  1060. 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
  1061. 0x03a05080, /* moveq r5, #128 ; 0x80 */
  1062. 0x0a000001, /* beq 8154 <sp_32_done> */
  1063. 0xe2811004, /* add r1, r1, #4 ; 0x4 */
  1064. 0xeaffffe8, /* b 8100 <sp_32_code> */
  1065. /* */
  1066. /* 00008154 <sp_32_done>: */
  1067. 0xeafffffe /* b 8154 <sp_32_done> */
  1068. };
  1069. static const u32 word_16_code[] = {
  1070. /* 00008158 <sp_16_code>: */
  1071. 0xe0d050b2, /* ldrh r5, [r0], #2 */
  1072. 0xe1c890b0, /* strh r9, [r8] */
  1073. 0xe1cab0b0, /* strh r11, [r10] */
  1074. 0xe1c830b0, /* strh r3, [r8] */
  1075. 0xe1c150b0, /* strh r5, [r1] */
  1076. 0xe1a00000, /* nop (mov r0,r0) */
  1077. /* */
  1078. /* 00008168 <sp_16_busy>: */
  1079. 0xe1d160b0, /* ldrh r6, [r1] */
  1080. 0xe0257006, /* eor r7, r5, r6 */
  1081. 0xe0147007, /* ands r7, r4, r7 */
  1082. 0x0a000007, /* beq 8198 <sp_16_cont> */
  1083. 0xe0166124, /* ands r6, r6, r4, lsr #2 */
  1084. 0x0afffff9, /* beq 8168 <sp_16_busy> */
  1085. 0xe1d160b0, /* ldrh r6, [r1] */
  1086. 0xe0257006, /* eor r7, r5, r6 */
  1087. 0xe0147007, /* ands r7, r4, r7 */
  1088. 0x0a000001, /* beq 8198 <sp_16_cont> */
  1089. 0xe3a05000, /* mov r5, #0 ; 0x0 */
  1090. 0x1a000004, /* bne 81ac <sp_16_done> */
  1091. /* */
  1092. /* 00008198 <sp_16_cont>: */
  1093. 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
  1094. 0x03a05080, /* moveq r5, #128 ; 0x80 */
  1095. 0x0a000001, /* beq 81ac <sp_16_done> */
  1096. 0xe2811002, /* add r1, r1, #2 ; 0x2 */
  1097. 0xeaffffe8, /* b 8158 <sp_16_code> */
  1098. /* */
  1099. /* 000081ac <sp_16_done>: */
  1100. 0xeafffffe /* b 81ac <sp_16_done> */
  1101. };
  1102. static const u32 word_8_code[] = {
  1103. /* 000081b0 <sp_16_code_end>: */
  1104. 0xe4d05001, /* ldrb r5, [r0], #1 */
  1105. 0xe5c89000, /* strb r9, [r8] */
  1106. 0xe5cab000, /* strb r11, [r10] */
  1107. 0xe5c83000, /* strb r3, [r8] */
  1108. 0xe5c15000, /* strb r5, [r1] */
  1109. 0xe1a00000, /* nop (mov r0,r0) */
  1110. /* */
  1111. /* 000081c0 <sp_8_busy>: */
  1112. 0xe5d16000, /* ldrb r6, [r1] */
  1113. 0xe0257006, /* eor r7, r5, r6 */
  1114. 0xe0147007, /* ands r7, r4, r7 */
  1115. 0x0a000007, /* beq 81f0 <sp_8_cont> */
  1116. 0xe0166124, /* ands r6, r6, r4, lsr #2 */
  1117. 0x0afffff9, /* beq 81c0 <sp_8_busy> */
  1118. 0xe5d16000, /* ldrb r6, [r1] */
  1119. 0xe0257006, /* eor r7, r5, r6 */
  1120. 0xe0147007, /* ands r7, r4, r7 */
  1121. 0x0a000001, /* beq 81f0 <sp_8_cont> */
  1122. 0xe3a05000, /* mov r5, #0 ; 0x0 */
  1123. 0x1a000004, /* bne 8204 <sp_8_done> */
  1124. /* */
  1125. /* 000081f0 <sp_8_cont>: */
  1126. 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
  1127. 0x03a05080, /* moveq r5, #128 ; 0x80 */
  1128. 0x0a000001, /* beq 8204 <sp_8_done> */
  1129. 0xe2811001, /* add r1, r1, #1 ; 0x1 */
  1130. 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
  1131. /* */
  1132. /* 00008204 <sp_8_done>: */
  1133. 0xeafffffe /* b 8204 <sp_8_done> */
  1134. };
  1135. armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
  1136. armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
  1137. armv4_5_info.core_state = ARMV4_5_STATE_ARM;
  1138. /* flash write code */
  1139. if (!cfi_info->write_algorithm)
  1140. {
  1141. u8 *target_code;
  1142. int target_code_size;
  1143. const u32 *src;
  1144. /* convert bus-width dependent algorithm code to correct endiannes */
  1145. switch (bank->bus_width)
  1146. {
  1147. case 1:
  1148. src = word_8_code;
  1149. target_code_size = sizeof(word_8_code);
  1150. break;
  1151. case 2:
  1152. src = word_16_code;
  1153. target_code_size = sizeof(word_16_code);
  1154. break;
  1155. case 4:
  1156. src = word_32_code;
  1157. target_code_size = sizeof(word_32_code);
  1158. break;
  1159. default:
  1160. LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
  1161. return ERROR_FLASH_OPERATION_FAILED;
  1162. }
  1163. target_code = malloc(target_code_size);
  1164. cfi_fix_code_endian(target, target_code, src, target_code_size / 4);
  1165. /* allocate working area */
  1166. retval=target_alloc_working_area(target, target_code_size,
  1167. &cfi_info->write_algorithm);
  1168. if (retval != ERROR_OK)
  1169. return retval;
  1170. /* write algorithm code to working area */
  1171. target_write_buffer(target, cfi_info->write_algorithm->address,
  1172. target_code_size, target_code);
  1173. free(target_code);
  1174. }
  1175. /* the following code still assumes target code is fixed 24*4 bytes */
  1176. while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
  1177. {
  1178. buffer_size /= 2;
  1179. if (buffer_size <= 256)
  1180. {
  1181. /* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
  1182. if (cfi_info->write_algorithm)
  1183. target_free_working_area(target, cfi_info->write_algorithm);
  1184. LOG_WARNING("not enough working area available, can't do block memory writes");
  1185. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1186. }
  1187. };
  1188. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
  1189. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  1190. init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
  1191. init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
  1192. init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
  1193. init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
  1194. init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
  1195. init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
  1196. init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
  1197. init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
  1198. while (count > 0)
  1199. {
  1200. u32 thisrun_count = (count > buffer_size) ? buffer_size : count;
  1201. target_write_buffer(target, source->address, thisrun_count, buffer);
  1202. buf_set_u32(reg_params[0].value, 0, 32, source->address);
  1203. buf_set_u32(reg_params[1].value, 0, 32, address);
  1204. buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
  1205. buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
  1206. buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
  1207. buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
  1208. buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
  1209. buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
  1210. buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
  1211. retval = target->type->run_algorithm(target, 0, NULL, 10, reg_params,
  1212. cfi_info->write_algorithm->address,
  1213. cfi_info->write_algorithm->address + ((24 * 4) - 4),
  1214. 10000, &armv4_5_info);
  1215. status = buf_get_u32(reg_params[5].value, 0, 32);
  1216. if ((retval != ERROR_OK) || status != 0x80)
  1217. {
  1218. LOG_DEBUG("status: 0x%x", status);
  1219. exit_code = ERROR_FLASH_OPERATION_FAILED;
  1220. break;
  1221. }
  1222. buffer += thisrun_count;
  1223. address += thisrun_count;
  1224. count -= thisrun_count;
  1225. }
  1226. target_free_working_area(target, source);
  1227. destroy_reg_param(&reg_params[0]);
  1228. destroy_reg_param(&reg_params[1]);
  1229. destroy_reg_param(&reg_params[2]);
  1230. destroy_reg_param(&reg_params[3]);
  1231. destroy_reg_param(&reg_params[4]);
  1232. destroy_reg_param(&reg_params[5]);
  1233. destroy_reg_param(&reg_params[6]);
  1234. destroy_reg_param(&reg_params[7]);
  1235. destroy_reg_param(&reg_params[8]);
  1236. destroy_reg_param(&reg_params[9]);
  1237. return exit_code;
  1238. }
  1239. int cfi_intel_write_word(struct flash_bank_s *bank, u8 *word, u32 address)
  1240. {
  1241. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1242. target_t *target = bank->target;
  1243. u8 command[8];
  1244. cfi_intel_clear_status_register(bank);
  1245. cfi_command(bank, 0x40, command);
  1246. target->type->write_memory(target, address, bank->bus_width, 1, command);
  1247. target->type->write_memory(target, address, bank->bus_width, 1, word);
  1248. if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != 0x80)
  1249. {
  1250. cfi_command(bank, 0xff, command);
  1251. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1252. LOG_ERROR("couldn't write word at base 0x%x, address %x", bank->base, address);
  1253. return ERROR_FLASH_OPERATION_FAILED;
  1254. }
  1255. return ERROR_OK;
  1256. }
  1257. int cfi_intel_write_words(struct flash_bank_s *bank, u8 *word, u32 wordcount, u32 address)
  1258. {
  1259. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1260. target_t *target = bank->target;
  1261. u8 command[8];
  1262. /* Calculate buffer size and boundary mask */
  1263. u32 buffersize = 1UL << cfi_info->max_buf_write_size;
  1264. u32 buffermask = buffersize-1;
  1265. u32 bufferwsize;
  1266. /* Check for valid range */
  1267. if (address & buffermask)
  1268. {
  1269. LOG_ERROR("Write address at base 0x%x, address %x not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size);
  1270. return ERROR_FLASH_OPERATION_FAILED;
  1271. }
  1272. switch(bank->chip_width)
  1273. {
  1274. case 4 : bufferwsize = buffersize / 4; break;
  1275. case 2 : bufferwsize = buffersize / 2; break;
  1276. case 1 : bufferwsize = buffersize; break;
  1277. default:
  1278. LOG_ERROR("Unsupported chip width %d", bank->chip_width);
  1279. return ERROR_FLASH_OPERATION_FAILED;
  1280. }
  1281. /* Check for valid size */
  1282. if (wordcount > bufferwsize)
  1283. {
  1284. LOG_ERROR("Number of data words %d exceeds available buffersize %d", wordcount, buffersize);
  1285. return ERROR_FLASH_OPERATION_FAILED;
  1286. }
  1287. /* Write to flash buffer */
  1288. cfi_intel_clear_status_register(bank);
  1289. /* Initiate buffer operation _*/
  1290. cfi_command(bank, 0xE8, command);
  1291. target->type->write_memory(target, address, bank->bus_width, 1, command);
  1292. if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
  1293. {
  1294. cfi_command(bank, 0xff, command);
  1295. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1296. LOG_ERROR("couldn't start buffer write operation at base 0x%x, address %x", bank->base, address);
  1297. return ERROR_FLASH_OPERATION_FAILED;
  1298. }
  1299. /* Write buffer wordcount-1 and data words */
  1300. cfi_command(bank, bufferwsize-1, command);
  1301. target->type->write_memory(target, address, bank->bus_width, 1, command);
  1302. target->type->write_memory(target, address, bank->bus_width, bufferwsize, word);
  1303. /* Commit write operation */
  1304. cfi_command(bank, 0xd0, command);
  1305. target->type->write_memory(target, address, bank->bus_width, 1, command);
  1306. if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
  1307. {
  1308. cfi_command(bank, 0xff, command);
  1309. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1310. LOG_ERROR("Buffer write at base 0x%x, address %x failed.", bank->base, address);
  1311. return ERROR_FLASH_OPERATION_FAILED;
  1312. }
  1313. return ERROR_OK;
  1314. }
  1315. int cfi_spansion_write_word(struct flash_bank_s *bank, u8 *word, u32 address)
  1316. {
  1317. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1318. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1319. target_t *target = bank->target;
  1320. u8 command[8];
  1321. cfi_command(bank, 0xaa, command);
  1322. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  1323. cfi_command(bank, 0x55, command);
  1324. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command);
  1325. cfi_command(bank, 0xa0, command);
  1326. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  1327. target->type->write_memory(target, address, bank->bus_width, 1, word);
  1328. if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
  1329. {
  1330. cfi_command(bank, 0xf0, command);
  1331. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1332. LOG_ERROR("couldn't write word at base 0x%x, address %x", bank->base, address);
  1333. return ERROR_FLASH_OPERATION_FAILED;
  1334. }
  1335. return ERROR_OK;
  1336. }
  1337. int cfi_write_word(struct flash_bank_s *bank, u8 *word, u32 address)
  1338. {
  1339. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1340. switch(cfi_info->pri_id)
  1341. {
  1342. case 1:
  1343. case 3:
  1344. return cfi_intel_write_word(bank, word, address);
  1345. break;
  1346. case 2:
  1347. return cfi_spansion_write_word(bank, word, address);
  1348. break;
  1349. default:
  1350. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1351. break;
  1352. }
  1353. return ERROR_FLASH_OPERATION_FAILED;
  1354. }
  1355. int cfi_write_words(struct flash_bank_s *bank, u8 *word, u32 wordcount, u32 address)
  1356. {
  1357. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1358. switch(cfi_info->pri_id)
  1359. {
  1360. case 1:
  1361. case 3:
  1362. return cfi_intel_write_words(bank, word, wordcount, address);
  1363. break;
  1364. case 2:
  1365. /* return cfi_spansion_write_words(bank, word, address); */
  1366. LOG_ERROR("cfi primary command set %i unimplemented - FIXME", cfi_info->pri_id);
  1367. break;
  1368. default:
  1369. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1370. break;
  1371. }
  1372. return ERROR_FLASH_OPERATION_FAILED;
  1373. }
  1374. int cfi_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count)
  1375. {
  1376. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1377. target_t *target = bank->target;
  1378. u32 address = bank->base + offset; /* address of first byte to be programmed */
  1379. u32 write_p, copy_p;
  1380. int align; /* number of unaligned bytes */
  1381. int blk_count; /* number of bus_width bytes for block copy */
  1382. u8 current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
  1383. int i;
  1384. int retval;
  1385. if (bank->target->state != TARGET_HALTED)
  1386. return ERROR_TARGET_NOT_HALTED;
  1387. if (offset + count > bank->size)
  1388. return ERROR_FLASH_DST_OUT_OF_BANK;
  1389. if (cfi_info->qry[0] != 'Q')
  1390. return ERROR_FLASH_BANK_NOT_PROBED;
  1391. /* start at the first byte of the first word (bus_width size) */
  1392. write_p = address & ~(bank->bus_width - 1);
  1393. if ((align = address - write_p) != 0)
  1394. {
  1395. LOG_INFO("Fixup %d unaligned head bytes", align );
  1396. for (i = 0; i < bank->bus_width; i++)
  1397. current_word[i] = 0;
  1398. copy_p = write_p;
  1399. /* copy bytes before the first write address */
  1400. for (i = 0; i < align; ++i, ++copy_p)
  1401. {
  1402. u8 byte;
  1403. target->type->read_memory(target, copy_p, 1, 1, &byte);
  1404. cfi_add_byte(bank, current_word, byte);
  1405. }
  1406. /* add bytes from the buffer */
  1407. for (; (i < bank->bus_width) && (count > 0); i++)
  1408. {
  1409. cfi_add_byte(bank, current_word, *buffer++);
  1410. count--;
  1411. copy_p++;
  1412. }
  1413. /* if the buffer is already finished, copy bytes after the last write address */
  1414. for (; (count == 0) && (i < bank->bus_width); ++i, ++copy_p)
  1415. {
  1416. u8 byte;
  1417. target->type->read_memory(target, copy_p, 1, 1, &byte);
  1418. cfi_add_byte(bank, current_word, byte);
  1419. }
  1420. retval = cfi_write_word(bank, current_word, write_p);
  1421. if (retval != ERROR_OK)
  1422. return retval;
  1423. write_p = copy_p;
  1424. }
  1425. /* handle blocks of bus_size aligned bytes */
  1426. blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
  1427. switch(cfi_info->pri_id)
  1428. {
  1429. /* try block writes (fails without working area) */
  1430. case 1:
  1431. case 3:
  1432. retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
  1433. break;
  1434. case 2:
  1435. retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
  1436. break;
  1437. default:
  1438. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1439. retval = ERROR_FLASH_OPERATION_FAILED;
  1440. break;
  1441. }
  1442. if (retval == ERROR_OK)
  1443. {
  1444. /* Increment pointers and decrease count on succesful block write */
  1445. buffer += blk_count;
  1446. write_p += blk_count;
  1447. count -= blk_count;
  1448. }
  1449. else
  1450. {
  1451. if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
  1452. {
  1453. u32 buffersize = 1UL << cfi_info->max_buf_write_size;
  1454. u32 buffermask = buffersize-1;
  1455. u32 bufferwsize;
  1456. switch(bank->chip_width)
  1457. {
  1458. case 4 : bufferwsize = buffersize / 4; break;
  1459. case 2 : bufferwsize = buffersize / 2; break;
  1460. case 1 : bufferwsize = buffersize; break;
  1461. default:
  1462. LOG_ERROR("Unsupported chip width %d", bank->chip_width);
  1463. return ERROR_FLASH_OPERATION_FAILED;
  1464. }
  1465. /* fall back to memory writes */
  1466. while (count >= bank->bus_width)
  1467. {
  1468. if ((write_p & 0xff) == 0)
  1469. {
  1470. LOG_INFO("Programming at %08x, count %08x bytes remaining", write_p, count);
  1471. }
  1472. if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
  1473. {
  1474. retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
  1475. if (retval != ERROR_OK)
  1476. return retval;
  1477. buffer += buffersize;
  1478. write_p += buffersize;
  1479. count -= buffersize;
  1480. }
  1481. else
  1482. {
  1483. for (i = 0; i < bank->bus_width; i++)
  1484. current_word[i] = 0;
  1485. for (i = 0; i < bank->bus_width; i++)
  1486. {
  1487. cfi_add_byte(bank, current_word, *buffer++);
  1488. }
  1489. retval = cfi_write_word(bank, current_word, write_p);
  1490. if (retval != ERROR_OK)
  1491. return retval;
  1492. write_p += bank->bus_width;
  1493. count -= bank->bus_width;
  1494. }
  1495. }
  1496. }
  1497. else
  1498. return retval;
  1499. }
  1500. /* return to read array mode, so we can read from flash again for padding */
  1501. cfi_command(bank, 0xf0, current_word);
  1502. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
  1503. cfi_command(bank, 0xff, current_word);
  1504. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
  1505. /* handle unaligned tail bytes */
  1506. if (count > 0)
  1507. {
  1508. LOG_INFO("Fixup %d unaligned tail bytes", count );
  1509. copy_p = write_p;
  1510. for (i = 0; i < bank->bus_width; i++)
  1511. current_word[i] = 0;
  1512. for (i = 0; (i < bank->bus_width) && (count > 0); ++i, ++copy_p)
  1513. {
  1514. cfi_add_byte(bank, current_word, *buffer++);
  1515. count--;
  1516. }
  1517. for (; i < bank->bus_width; ++i, ++copy_p)
  1518. {
  1519. u8 byte;
  1520. target->type->read_memory(target, copy_p, 1, 1, &byte);
  1521. cfi_add_byte(bank, current_word, byte);
  1522. }
  1523. retval = cfi_write_word(bank, current_word, write_p);
  1524. if (retval != ERROR_OK)
  1525. return retval;
  1526. }
  1527. /* return to read array mode */
  1528. cfi_command(bank, 0xf0, current_word);
  1529. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
  1530. cfi_command(bank, 0xff, current_word);
  1531. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
  1532. return ERROR_OK;
  1533. }
  1534. void cfi_fixup_atmel_reversed_erase_regions(flash_bank_t *bank, void *param)
  1535. {
  1536. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1537. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1538. pri_ext->_reversed_geometry = 1;
  1539. }
  1540. void cfi_fixup_0002_erase_regions(flash_bank_t *bank, void *param)
  1541. {
  1542. int i;
  1543. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1544. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1545. if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
  1546. {
  1547. LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
  1548. for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
  1549. {
  1550. int j = (cfi_info->num_erase_regions - 1) - i;
  1551. u32 swap;
  1552. swap = cfi_info->erase_region_info[i];
  1553. cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
  1554. cfi_info->erase_region_info[j] = swap;
  1555. }
  1556. }
  1557. }
  1558. void cfi_fixup_0002_unlock_addresses(flash_bank_t *bank, void *param)
  1559. {
  1560. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1561. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1562. cfi_unlock_addresses_t *unlock_addresses = param;
  1563. pri_ext->_unlock1 = unlock_addresses->unlock1;
  1564. pri_ext->_unlock2 = unlock_addresses->unlock2;
  1565. }
  1566. int cfi_probe(struct flash_bank_s *bank)
  1567. {
  1568. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1569. target_t *target = bank->target;
  1570. u8 command[8];
  1571. int num_sectors = 0;
  1572. int i;
  1573. int sector = 0;
  1574. u32 offset = 0;
  1575. u32 unlock1 = 0x555;
  1576. u32 unlock2 = 0x2aa;
  1577. if (bank->target->state != TARGET_HALTED)
  1578. {
  1579. return ERROR_TARGET_NOT_HALTED;
  1580. }
  1581. cfi_info->probed = 0;
  1582. /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
  1583. * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
  1584. */
  1585. if (cfi_info->jedec_probe)
  1586. {
  1587. unlock1 = 0x5555;
  1588. unlock2 = 0x2aaa;
  1589. }
  1590. /* switch to read identifier codes mode ("AUTOSELECT") */
  1591. cfi_command(bank, 0xaa, command);
  1592. target->type->write_memory(target, flash_address(bank, 0, unlock1), bank->bus_width, 1, command);
  1593. cfi_command(bank, 0x55, command);
  1594. target->type->write_memory(target, flash_address(bank, 0, unlock2), bank->bus_width, 1, command);
  1595. cfi_command(bank, 0x90, command);
  1596. target->type->write_memory(target, flash_address(bank, 0, unlock1), bank->bus_width, 1, command);
  1597. if (bank->chip_width == 1)
  1598. {
  1599. u8 manufacturer, device_id;
  1600. target_read_u8(target, bank->base + 0x0, &manufacturer);
  1601. target_read_u8(target, bank->base + 0x1, &device_id);
  1602. cfi_info->manufacturer = manufacturer;
  1603. cfi_info->device_id = device_id;
  1604. }
  1605. else if (bank->chip_width == 2)
  1606. {
  1607. target_read_u16(target, bank->base + 0x0, &cfi_info->manufacturer);
  1608. target_read_u16(target, bank->base + 0x2, &cfi_info->device_id);
  1609. }
  1610. /* switch back to read array mode */
  1611. cfi_command(bank, 0xf0, command);
  1612. target->type->write_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, command);
  1613. cfi_command(bank, 0xff, command);
  1614. target->type->write_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, command);
  1615. cfi_fixup(bank, cfi_jedec_fixups);
  1616. /* query only if this is a CFI compatible flash,
  1617. * otherwise the relevant info has already been filled in
  1618. */
  1619. if (cfi_info->not_cfi == 0)
  1620. {
  1621. /* enter CFI query mode
  1622. * according to JEDEC Standard No. 68.01,
  1623. * a single bus sequence with address = 0x55, data = 0x98 should put
  1624. * the device into CFI query mode.
  1625. *
  1626. * SST flashes clearly violate this, and we will consider them incompatbile for now
  1627. */
  1628. cfi_command(bank, 0x98, command);
  1629. target->type->write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command);
  1630. cfi_info->qry[0] = cfi_query_u8(bank, 0, 0x10);
  1631. cfi_info->qry[1] = cfi_query_u8(bank, 0, 0x11);
  1632. cfi_info->qry[2] = cfi_query_u8(bank, 0, 0x12);
  1633. LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
  1634. if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
  1635. {
  1636. cfi_command(bank, 0xf0, command);
  1637. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1638. cfi_command(bank, 0xff, command);
  1639. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1640. LOG_ERROR("Could not probe bank");
  1641. return ERROR_FLASH_BANK_INVALID;
  1642. }
  1643. cfi_info->pri_id = cfi_query_u16(bank, 0, 0x13);
  1644. cfi_info->pri_addr = cfi_query_u16(bank, 0, 0x15);
  1645. cfi_info->alt_id = cfi_query_u16(bank, 0, 0x17);
  1646. cfi_info->alt_addr = cfi_query_u16(bank, 0, 0x19);
  1647. LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
  1648. cfi_info->vcc_min = cfi_query_u8(bank, 0, 0x1b);
  1649. cfi_info->vcc_max = cfi_query_u8(bank, 0, 0x1c);
  1650. cfi_info->vpp_min = cfi_query_u8(bank, 0, 0x1d);
  1651. cfi_info->vpp_max = cfi_query_u8(bank, 0, 0x1e);
  1652. cfi_info->word_write_timeout_typ = cfi_query_u8(bank, 0, 0x1f);
  1653. cfi_info->buf_write_timeout_typ = cfi_query_u8(bank, 0, 0x20);
  1654. cfi_info->block_erase_timeout_typ = cfi_query_u8(bank, 0, 0x21);
  1655. cfi_info->chip_erase_timeout_typ = cfi_query_u8(bank, 0, 0x22);
  1656. cfi_info->word_write_timeout_max = cfi_query_u8(bank, 0, 0x23);
  1657. cfi_info->buf_write_timeout_max = cfi_query_u8(bank, 0, 0x24);
  1658. cfi_info->block_erase_timeout_max = cfi_query_u8(bank, 0, 0x25);
  1659. cfi_info->chip_erase_timeout_max = cfi_query_u8(bank, 0, 0x26);
  1660. LOG_DEBUG("Vcc min: %1.1x.%1.1x, Vcc max: %1.1x.%1.1x, Vpp min: %1.1x.%1.1x, Vpp max: %1.1x.%1.1x",
  1661. (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
  1662. (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
  1663. (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
  1664. (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
  1665. LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
  1666. 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
  1667. LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
  1668. (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
  1669. (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
  1670. (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
  1671. cfi_info->dev_size = cfi_query_u8(bank, 0, 0x27);
  1672. cfi_info->interface_desc = cfi_query_u16(bank, 0, 0x28);
  1673. cfi_info->max_buf_write_size = cfi_query_u16(bank, 0, 0x2a);
  1674. cfi_info->num_erase_regions = cfi_query_u8(bank, 0, 0x2c);
  1675. LOG_DEBUG("size: 0x%x, interface desc: %i, max buffer write size: %x", 1 << cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
  1676. if (((1 << cfi_info->dev_size) * bank->bus_width / bank->chip_width) != bank->size)
  1677. {
  1678. LOG_WARNING("configuration specifies 0x%x size, but a 0x%x size flash was found", bank->size, 1 << cfi_info->dev_size);
  1679. }
  1680. if (cfi_info->num_erase_regions)
  1681. {
  1682. cfi_info->erase_region_info = malloc(4 * cfi_info->num_erase_regions);
  1683. for (i = 0; i < cfi_info->num_erase_regions; i++)
  1684. {
  1685. cfi_info->erase_region_info[i] = cfi_query_u32(bank, 0, 0x2d + (4 * i));
  1686. LOG_DEBUG("erase region[%i]: %i blocks of size 0x%x", i, (cfi_info->erase_region_info[i] & 0xffff) + 1, (cfi_info->erase_region_info[i] >> 16) * 256);
  1687. }
  1688. }
  1689. else
  1690. {
  1691. cfi_info->erase_region_info = NULL;
  1692. }
  1693. /* We need to read the primary algorithm extended query table before calculating
  1694. * the sector layout to be able to apply fixups
  1695. */
  1696. switch(cfi_info->pri_id)
  1697. {
  1698. /* Intel command set (standard and extended) */
  1699. case 0x0001:
  1700. case 0x0003:
  1701. cfi_read_intel_pri_ext(bank);
  1702. break;
  1703. /* AMD/Spansion, Atmel, ... command set */
  1704. case 0x0002:
  1705. cfi_read_0002_pri_ext(bank);
  1706. break;
  1707. default:
  1708. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1709. break;
  1710. }
  1711. /* return to read array mode
  1712. * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
  1713. */
  1714. cfi_command(bank, 0xf0, command);
  1715. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1716. cfi_command(bank, 0xff, command);
  1717. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1718. }
  1719. /* apply fixups depending on the primary command set */
  1720. switch(cfi_info->pri_id)
  1721. {
  1722. /* Intel command set (standard and extended) */
  1723. case 0x0001:
  1724. case 0x0003:
  1725. cfi_fixup(bank, cfi_0001_fixups);
  1726. break;
  1727. /* AMD/Spansion, Atmel, ... command set */
  1728. case 0x0002:
  1729. cfi_fixup(bank, cfi_0002_fixups);
  1730. break;
  1731. default:
  1732. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1733. break;
  1734. }
  1735. if (cfi_info->num_erase_regions == 0)
  1736. {
  1737. /* a device might have only one erase block, spanning the whole device */
  1738. bank->num_sectors = 1;
  1739. bank->sectors = malloc(sizeof(flash_sector_t));
  1740. bank->sectors[sector].offset = 0x0;
  1741. bank->sectors[sector].size = bank->size;
  1742. bank->sectors[sector].is_erased = -1;
  1743. bank->sectors[sector].is_protected = -1;
  1744. }
  1745. else
  1746. {
  1747. for (i = 0; i < cfi_info->num_erase_regions; i++)
  1748. {
  1749. num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
  1750. }
  1751. bank->num_sectors = num_sectors;
  1752. bank->sectors = malloc(sizeof(flash_sector_t) * num_sectors);
  1753. for (i = 0; i < cfi_info->num_erase_regions; i++)
  1754. {
  1755. int j;
  1756. for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
  1757. {
  1758. bank->sectors[sector].offset = offset;
  1759. bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width;
  1760. offset += bank->sectors[sector].size;
  1761. bank->sectors[sector].is_erased = -1;
  1762. bank->sectors[sector].is_protected = -1;
  1763. sector++;
  1764. }
  1765. }
  1766. }
  1767. cfi_info->probed = 1;
  1768. return ERROR_OK;
  1769. }
  1770. int cfi_auto_probe(struct flash_bank_s *bank)
  1771. {
  1772. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1773. if (cfi_info->probed)
  1774. return ERROR_OK;
  1775. return cfi_probe(bank);
  1776. }
  1777. int cfi_intel_protect_check(struct flash_bank_s *bank)
  1778. {
  1779. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1780. cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1781. target_t *target = bank->target;
  1782. u8 command[CFI_MAX_BUS_WIDTH];
  1783. int i;
  1784. /* check if block lock bits are supported on this device */
  1785. if (!(pri_ext->blk_status_reg_mask & 0x1))
  1786. return ERROR_FLASH_OPERATION_FAILED;
  1787. cfi_command(bank, 0x90, command);
  1788. target->type->write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command);
  1789. for (i = 0; i < bank->num_sectors; i++)
  1790. {
  1791. u8 block_status = cfi_get_u8(bank, i, 0x2);
  1792. if (block_status & 1)
  1793. bank->sectors[i].is_protected = 1;
  1794. else
  1795. bank->sectors[i].is_protected = 0;
  1796. }
  1797. cfi_command(bank, 0xff, command);
  1798. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1799. return ERROR_OK;
  1800. }
  1801. int cfi_spansion_protect_check(struct flash_bank_s *bank)
  1802. {
  1803. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1804. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1805. target_t *target = bank->target;
  1806. u8 command[8];
  1807. int i;
  1808. cfi_command(bank, 0xaa, command);
  1809. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  1810. cfi_command(bank, 0x55, command);
  1811. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command);
  1812. cfi_command(bank, 0x90, command);
  1813. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  1814. for (i = 0; i < bank->num_sectors; i++)
  1815. {
  1816. u8 block_status = cfi_get_u8(bank, i, 0x2);
  1817. if (block_status & 1)
  1818. bank->sectors[i].is_protected = 1;
  1819. else
  1820. bank->sectors[i].is_protected = 0;
  1821. }
  1822. cfi_command(bank, 0xf0, command);
  1823. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1824. return ERROR_OK;
  1825. }
  1826. int cfi_protect_check(struct flash_bank_s *bank)
  1827. {
  1828. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1829. if (bank->target->state != TARGET_HALTED)
  1830. {
  1831. return ERROR_TARGET_NOT_HALTED;
  1832. }
  1833. if (cfi_info->qry[0] != 'Q')
  1834. return ERROR_FLASH_BANK_NOT_PROBED;
  1835. switch(cfi_info->pri_id)
  1836. {
  1837. case 1:
  1838. case 3:
  1839. return cfi_intel_protect_check(bank);
  1840. break;
  1841. case 2:
  1842. return cfi_spansion_protect_check(bank);
  1843. break;
  1844. default:
  1845. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1846. break;
  1847. }
  1848. return ERROR_OK;
  1849. }
  1850. int cfi_info(struct flash_bank_s *bank, char *buf, int buf_size)
  1851. {
  1852. int printed;
  1853. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1854. if (cfi_info->qry[0] == (char)-1)
  1855. {
  1856. printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
  1857. return ERROR_OK;
  1858. }
  1859. if (cfi_info->not_cfi == 0)
  1860. printed = snprintf(buf, buf_size, "\ncfi information:\n");
  1861. else
  1862. printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n");
  1863. buf += printed;
  1864. buf_size -= printed;
  1865. printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n",
  1866. cfi_info->manufacturer, cfi_info->device_id);
  1867. buf += printed;
  1868. buf_size -= printed;
  1869. if (cfi_info->not_cfi == 0)
  1870. {
  1871. printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
  1872. buf += printed;
  1873. buf_size -= printed;
  1874. printed = snprintf(buf, buf_size, "Vcc min: %1.1x.%1.1x, Vcc max: %1.1x.%1.1x, Vpp min: %1.1x.%1.1x, Vpp max: %1.1x.%1.1x\n",
  1875. (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
  1876. (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
  1877. (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
  1878. (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
  1879. buf += printed;
  1880. buf_size -= printed;
  1881. printed = snprintf(buf, buf_size, "typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n",
  1882. 1 << cfi_info->word_write_timeout_typ,
  1883. 1 << cfi_info->buf_write_timeout_typ,
  1884. 1 << cfi_info->block_erase_timeout_typ,
  1885. 1 << cfi_info->chip_erase_timeout_typ);
  1886. buf += printed;
  1887. buf_size -= printed;
  1888. printed = snprintf(buf, buf_size, "max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n",
  1889. (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
  1890. (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
  1891. (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
  1892. (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
  1893. buf += printed;
  1894. buf_size -= printed;
  1895. printed = snprintf(buf, buf_size, "size: 0x%x, interface desc: %i, max buffer write size: %x\n",
  1896. 1 << cfi_info->dev_size,
  1897. cfi_info->interface_desc,
  1898. cfi_info->max_buf_write_size);
  1899. buf += printed;
  1900. buf_size -= printed;
  1901. switch(cfi_info->pri_id)
  1902. {
  1903. case 1:
  1904. case 3:
  1905. cfi_intel_info(bank, buf, buf_size);
  1906. break;
  1907. case 2:
  1908. cfi_spansion_info(bank, buf, buf_size);
  1909. break;
  1910. default:
  1911. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1912. break;
  1913. }
  1914. }
  1915. return ERROR_OK;
  1916. }