You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

344 lines
8.7 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2004, 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2007,2008 √ėyvind Harboe *
  6. * oyvind.harboe@zylin.com *
  7. * *
  8. * This program is free software; you can redistribute it and/or modify *
  9. * it under the terms of the GNU General Public License as published by *
  10. * the Free Software Foundation; either version 2 of the License, or *
  11. * (at your option) any later version. *
  12. * *
  13. * This program is distributed in the hope that it will be useful, *
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  16. * GNU General Public License for more details. *
  17. * *
  18. * You should have received a copy of the GNU General Public License *
  19. * along with this program; if not, write to the *
  20. * Free Software Foundation, Inc., *
  21. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  22. ***************************************************************************/
  23. #ifdef HAVE_CONFIG_H
  24. #include "config.h"
  25. #endif
  26. #include <stdlib.h>
  27. #include <string.h>
  28. #include "types.h"
  29. #include "log.h"
  30. #include "binarybuffer.h"
  31. const unsigned char bit_reverse_table256[] =
  32. {
  33. 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
  34. 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
  35. 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
  36. 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
  37. 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
  38. 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  39. 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
  40. 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  41. 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  42. 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
  43. 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  44. 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  45. 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
  46. 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  47. 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
  48. 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
  49. };
  50. u8* buf_cpy(u8 *from, u8 *to, int size)
  51. {
  52. int num_bytes = CEIL(size, 8);
  53. unsigned int i;
  54. if (from == NULL)
  55. return NULL;
  56. for (i = 0; i < num_bytes; i++)
  57. to[i] = from[i];
  58. /* mask out bits that don't belong to the buffer */
  59. if (size % 8)
  60. {
  61. to[size / 8] &= (0xff >> (8 - (size % 8)));
  62. }
  63. return to;
  64. }
  65. int buf_cmp(u8 *buf1, u8 *buf2, int size)
  66. {
  67. int num_bytes = CEIL(size, 8);
  68. int i;
  69. if (!buf1 || !buf2)
  70. return 1;
  71. for (i = 0; i < num_bytes; i++)
  72. {
  73. /* last byte */
  74. /* mask out bits that don't really belong to the buffer if size isn't a multiple of 8 bits */
  75. if ((size % 8) && (i == num_bytes -1 ))
  76. {
  77. if ((buf1[i] & ((1 << (size % 8)) - 1)) != (buf2[i] & ((1 << (size % 8)) - 1)))
  78. return 1;
  79. }
  80. else
  81. {
  82. if (buf1[i] != buf2[i])
  83. return 1;
  84. }
  85. }
  86. return 0;
  87. }
  88. int buf_cmp_mask(u8 *buf1, u8 *buf2, u8 *mask, int size)
  89. {
  90. int num_bytes = CEIL(size, 8);
  91. int i;
  92. for (i = 0; i < num_bytes; i++)
  93. {
  94. /* last byte */
  95. /* mask out bits that don't really belong to the buffer if size isn't a multiple of 8 bits */
  96. if ((size % 8) && (i == num_bytes -1 ))
  97. {
  98. if ((buf1[i] & ((1 << (size % 8)) - 1) & mask[i]) !=
  99. (buf2[i] & ((1 << (size % 8)) - 1) & mask[i]))
  100. return 1;
  101. }
  102. else
  103. {
  104. if ((buf1[i] & mask[i]) != (buf2[i] & mask[i]))
  105. return 1;
  106. }
  107. }
  108. return 0;
  109. }
  110. u8* buf_set_ones(u8 *buf, int count)
  111. {
  112. int num_bytes = CEIL(count, 8);
  113. int i;
  114. for (i = 0; i < num_bytes; i++)
  115. {
  116. if (count >= 8)
  117. buf[i] = 0xff;
  118. else
  119. buf[i] = (1 << count) - 1;
  120. count -= 8;
  121. }
  122. return buf;
  123. }
  124. u8* buf_set_buf(u8 *src, int src_start, u8 *dst, int dst_start, int len)
  125. {
  126. int src_idx = src_start, dst_idx = dst_start;
  127. int i;
  128. for (i = 0; i < len; i++)
  129. {
  130. if (((src[src_idx/8] >> (src_idx % 8)) & 1) == 1)
  131. dst[dst_idx/8] |= 1 << (dst_idx%8);
  132. else
  133. dst[dst_idx/8] &= ~(1 << (dst_idx%8));
  134. dst_idx++;
  135. src_idx++;
  136. }
  137. return dst;
  138. }
  139. u32 flip_u32(u32 value, unsigned int num)
  140. {
  141. u32 c;
  142. c = (bit_reverse_table256[value & 0xff] << 24) |
  143. (bit_reverse_table256[(value >> 8) & 0xff] << 16) |
  144. (bit_reverse_table256[(value >> 16) & 0xff] << 8) |
  145. (bit_reverse_table256[(value >> 24) & 0xff]);
  146. if (num < 32)
  147. c = c >> (32 - num);
  148. return c;
  149. }
  150. int ceil_f_to_u32(float x)
  151. {
  152. u32 y;
  153. if (x < 0) /* return zero for negative numbers */
  154. return 0;
  155. y = x; /* cut off fraction */
  156. if ((x - y) > 0.0) /* if there was a fractional part, increase by one */
  157. y++;
  158. return y;
  159. }
  160. char* buf_to_str(const u8 *buf, int buf_len, int radix)
  161. {
  162. const char *DIGITS = "0123456789ABCDEF";
  163. float factor;
  164. char *str;
  165. int str_len;
  166. int b256_len = CEIL(buf_len, 8);
  167. u32 tmp;
  168. int j; /* base-256 digits */
  169. int i; /* output digits (radix) */
  170. if (radix == 16)
  171. {
  172. factor = 2.0; /* log(256) / log(16) = 2.0 */
  173. }
  174. else if (radix == 10)
  175. {
  176. factor = 2.40824; /* log(256) / log(10) = 2.40824 */
  177. }
  178. else if (radix == 8)
  179. {
  180. factor = 2.66667; /* log(256) / log(8) = 2.66667 */
  181. }
  182. else
  183. return NULL;
  184. str_len = ceil_f_to_u32(CEIL(buf_len, 8) * factor);
  185. str = calloc(str_len + 1, 1);
  186. for (i = b256_len - 1; i >= 0; i--)
  187. {
  188. tmp = buf[i];
  189. if ((i == (buf_len / 8)) && (buf_len % 8))
  190. tmp &= (0xff >> (8 - (buf_len % 8)));
  191. for (j = str_len; j > 0; j--)
  192. {
  193. tmp += (u32)str[j-1] * 256;
  194. str[j-1] = (u8)(tmp % radix);
  195. tmp /= radix;
  196. }
  197. }
  198. for (j = 0; j < str_len; j++)
  199. str[j] = DIGITS[(int)str[j]];
  200. return str;
  201. }
  202. int str_to_buf(const char *str, int str_len, u8 *buf, int buf_len, int radix)
  203. {
  204. char *charbuf;
  205. u32 tmp;
  206. float factor;
  207. u8 *b256_buf;
  208. int b256_len;
  209. int j; /* base-256 digits */
  210. int i; /* input digits (ASCII) */
  211. if (radix == 0)
  212. {
  213. /* identify radix, and skip radix-prefix (0, 0x or 0X) */
  214. if ((str[0] == '0') && (str[1] && ((str[1] == 'x') || (str[1] == 'X'))))
  215. {
  216. radix = 16;
  217. str += 2;
  218. str_len -= 2;
  219. }
  220. else if ((str[0] == '0') && (str_len != 1))
  221. {
  222. radix = 8;
  223. str += 1;
  224. str_len -= 1;
  225. }
  226. else
  227. {
  228. radix = 10;
  229. }
  230. }
  231. if (radix == 16)
  232. factor = 0.5; /* log(16) / log(256) = 0.5 */
  233. else if (radix == 10)
  234. factor = 0.41524; /* log(10) / log(256) = 0.41524 */
  235. else if (radix == 8)
  236. factor = 0.375; /* log(8) / log(256) = 0.375 */
  237. else
  238. return 0;
  239. /* copy to zero-terminated buffer */
  240. charbuf = malloc(str_len + 1);
  241. memcpy(charbuf, str, str_len);
  242. charbuf[str_len] = '\0';
  243. /* number of digits in base-256 notation */
  244. b256_len = ceil_f_to_u32(str_len * factor);
  245. b256_buf = calloc(b256_len, 1);
  246. /* go through zero terminated buffer */
  247. for (i = 0; charbuf[i]; i++)
  248. {
  249. tmp = charbuf[i];
  250. if ((tmp >= '0') && (tmp <= '9'))
  251. tmp = (tmp - '0');
  252. else if ((tmp >= 'a') && (tmp <= 'f'))
  253. tmp = (tmp - 'a' + 10);
  254. else if ((tmp >= 'A') && (tmp <= 'F'))
  255. tmp = (tmp - 'A' + 10);
  256. else continue; /* skip characters other than [0-9,a-f,A-F] */
  257. if (tmp >= radix)
  258. continue; /* skip digits invalid for the current radix */
  259. for (j = 0; j < b256_len; j++)
  260. {
  261. tmp += (u32)b256_buf[j] * radix;
  262. b256_buf[j] = (u8)(tmp & 0xFF);
  263. tmp >>= 8;
  264. }
  265. }
  266. for (j = 0; j < CEIL(buf_len, 8); j++)
  267. {
  268. if (j < b256_len)
  269. buf[j] = b256_buf[j];
  270. else
  271. buf[j] = 0;
  272. }
  273. /* mask out bits that don't belong to the buffer */
  274. if (buf_len % 8)
  275. buf[(buf_len / 8)] &= 0xff >> (8 - (buf_len % 8));
  276. free(b256_buf);
  277. free(charbuf);
  278. return i;
  279. }
  280. int buf_to_u32_handler(u8 *in_buf, void *priv, struct scan_field_s *field)
  281. {
  282. u32 *dest = priv;
  283. *dest = buf_get_u32(in_buf, 0, 32);
  284. return ERROR_OK;
  285. }