You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

400 lines
11 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2004, 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2007,2008 √ėyvind Harboe *
  6. * oyvind.harboe@zylin.com *
  7. * *
  8. * This program is free software; you can redistribute it and/or modify *
  9. * it under the terms of the GNU General Public License as published by *
  10. * the Free Software Foundation; either version 2 of the License, or *
  11. * (at your option) any later version. *
  12. * *
  13. * This program is distributed in the hope that it will be useful, *
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  16. * GNU General Public License for more details. *
  17. * *
  18. * You should have received a copy of the GNU General Public License *
  19. * along with this program; if not, write to the *
  20. * Free Software Foundation, Inc., *
  21. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  22. ***************************************************************************/
  23. #ifdef HAVE_CONFIG_H
  24. #include "config.h"
  25. #endif
  26. #include "log.h"
  27. #include "binarybuffer.h"
  28. static const unsigned char bit_reverse_table256[] = {
  29. 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
  30. 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
  31. 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
  32. 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
  33. 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
  34. 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  35. 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
  36. 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  37. 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  38. 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
  39. 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  40. 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  41. 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
  42. 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  43. 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
  44. 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
  45. };
  46. void *buf_cpy(const void *from, void *_to, unsigned size)
  47. {
  48. if (NULL == from || NULL == _to)
  49. return NULL;
  50. /* copy entire buffer */
  51. memcpy(_to, from, DIV_ROUND_UP(size, 8));
  52. /* mask out bits that don't belong to the buffer */
  53. unsigned trailing_bits = size % 8;
  54. if (trailing_bits) {
  55. uint8_t *to = _to;
  56. to[size / 8] &= (1 << trailing_bits) - 1;
  57. }
  58. return _to;
  59. }
  60. static bool buf_cmp_masked(uint8_t a, uint8_t b, uint8_t m)
  61. {
  62. return (a & m) != (b & m);
  63. }
  64. static bool buf_cmp_trailing(uint8_t a, uint8_t b, uint8_t m, unsigned trailing)
  65. {
  66. uint8_t mask = (1 << trailing) - 1;
  67. return buf_cmp_masked(a, b, mask & m);
  68. }
  69. bool buf_cmp(const void *_buf1, const void *_buf2, unsigned size)
  70. {
  71. if (!_buf1 || !_buf2)
  72. return _buf1 != _buf2;
  73. unsigned last = size / 8;
  74. if (memcmp(_buf1, _buf2, last) != 0)
  75. return false;
  76. unsigned trailing = size % 8;
  77. if (!trailing)
  78. return false;
  79. const uint8_t *buf1 = _buf1, *buf2 = _buf2;
  80. return buf_cmp_trailing(buf1[last], buf2[last], 0xff, trailing);
  81. }
  82. bool buf_cmp_mask(const void *_buf1, const void *_buf2,
  83. const void *_mask, unsigned size)
  84. {
  85. if (!_buf1 || !_buf2)
  86. return _buf1 != _buf2 || _buf1 != _mask;
  87. const uint8_t *buf1 = _buf1, *buf2 = _buf2, *mask = _mask;
  88. unsigned last = size / 8;
  89. for (unsigned i = 0; i < last; i++) {
  90. if (buf_cmp_masked(buf1[i], buf2[i], mask[i]))
  91. return true;
  92. }
  93. unsigned trailing = size % 8;
  94. if (!trailing)
  95. return false;
  96. return buf_cmp_trailing(buf1[last], buf2[last], mask[last], trailing);
  97. }
  98. void *buf_set_ones(void *_buf, unsigned size)
  99. {
  100. uint8_t *buf = _buf;
  101. if (!buf)
  102. return NULL;
  103. memset(buf, 0xff, size / 8);
  104. unsigned trailing_bits = size % 8;
  105. if (trailing_bits)
  106. buf[size / 8] = (1 << trailing_bits) - 1;
  107. return buf;
  108. }
  109. void *buf_set_buf(const void *_src, unsigned src_start,
  110. void *_dst, unsigned dst_start, unsigned len)
  111. {
  112. const uint8_t *src = _src;
  113. uint8_t *dst = _dst;
  114. unsigned i, sb, db, sq, dq, lb, lq;
  115. sb = src_start / 8;
  116. db = dst_start / 8;
  117. sq = src_start % 8;
  118. dq = dst_start % 8;
  119. lb = len / 8;
  120. lq = len % 8;
  121. src += sb;
  122. dst += db;
  123. /* check if both buffers are on byte boundary and
  124. * len is a multiple of 8bit so we can simple copy
  125. * the buffer */
  126. if ((sq == 0) && (dq == 0) && (lq == 0)) {
  127. for (i = 0; i < lb; i++)
  128. *dst++ = *src++;
  129. return (uint8_t *)_dst;
  130. }
  131. /* fallback to slow bit copy */
  132. for (i = 0; i < len; i++) {
  133. if (((*src >> (sq&7)) & 1) == 1)
  134. *dst |= 1 << (dq&7);
  135. else
  136. *dst &= ~(1 << (dq&7));
  137. if (sq++ == 7) {
  138. sq = 0;
  139. src++;
  140. }
  141. if (dq++ == 7) {
  142. dq = 0;
  143. dst++;
  144. }
  145. }
  146. return (uint8_t *)_dst;
  147. }
  148. uint32_t flip_u32(uint32_t value, unsigned int num)
  149. {
  150. uint32_t c = (bit_reverse_table256[value & 0xff] << 24) |
  151. (bit_reverse_table256[(value >> 8) & 0xff] << 16) |
  152. (bit_reverse_table256[(value >> 16) & 0xff] << 8) |
  153. (bit_reverse_table256[(value >> 24) & 0xff]);
  154. if (num < 32)
  155. c = c >> (32 - num);
  156. return c;
  157. }
  158. static int ceil_f_to_u32(float x)
  159. {
  160. if (x < 0) /* return zero for negative numbers */
  161. return 0;
  162. uint32_t y = x; /* cut off fraction */
  163. if ((x - y) > 0.0) /* if there was a fractional part, increase by one */
  164. y++;
  165. return y;
  166. }
  167. char *buf_to_str(const void *_buf, unsigned buf_len, unsigned radix)
  168. {
  169. float factor;
  170. switch (radix) {
  171. case 16:
  172. factor = 2.0; /* log(256) / log(16) = 2.0 */
  173. break;
  174. case 10:
  175. factor = 2.40824; /* log(256) / log(10) = 2.40824 */
  176. break;
  177. case 8:
  178. factor = 2.66667; /* log(256) / log(8) = 2.66667 */
  179. break;
  180. default:
  181. return NULL;
  182. }
  183. unsigned str_len = ceil_f_to_u32(DIV_ROUND_UP(buf_len, 8) * factor);
  184. char *str = calloc(str_len + 1, 1);
  185. const uint8_t *buf = _buf;
  186. int b256_len = DIV_ROUND_UP(buf_len, 8);
  187. for (int i = b256_len - 1; i >= 0; i--) {
  188. uint32_t tmp = buf[i];
  189. if (((unsigned)i == (buf_len / 8)) && (buf_len % 8))
  190. tmp &= (0xff >> (8 - (buf_len % 8)));
  191. /* base-256 digits */
  192. for (unsigned j = str_len; j > 0; j--) {
  193. tmp += (uint32_t)str[j-1] * 256;
  194. str[j-1] = (uint8_t)(tmp % radix);
  195. tmp /= radix;
  196. }
  197. }
  198. const char *DIGITS = "0123456789ABCDEF";
  199. for (unsigned j = 0; j < str_len; j++)
  200. str[j] = DIGITS[(int)str[j]];
  201. return str;
  202. }
  203. /** identify radix, and skip radix-prefix (0, 0x or 0X) */
  204. static void str_radix_guess(const char **_str, unsigned *_str_len,
  205. unsigned *_radix)
  206. {
  207. unsigned radix = *_radix;
  208. if (0 != radix)
  209. return;
  210. const char *str = *_str;
  211. unsigned str_len = *_str_len;
  212. if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) {
  213. radix = 16;
  214. str += 2;
  215. str_len -= 2;
  216. } else if ((str[0] == '0') && (str_len != 1)) {
  217. radix = 8;
  218. str += 1;
  219. str_len -= 1;
  220. } else
  221. radix = 10;
  222. *_str = str;
  223. *_str_len = str_len;
  224. *_radix = radix;
  225. }
  226. int str_to_buf(const char *str, unsigned str_len,
  227. void *_buf, unsigned buf_len, unsigned radix)
  228. {
  229. str_radix_guess(&str, &str_len, &radix);
  230. float factor;
  231. if (radix == 16)
  232. factor = 0.5; /* log(16) / log(256) = 0.5 */
  233. else if (radix == 10)
  234. factor = 0.41524; /* log(10) / log(256) = 0.41524 */
  235. else if (radix == 8)
  236. factor = 0.375; /* log(8) / log(256) = 0.375 */
  237. else
  238. return 0;
  239. /* copy to zero-terminated buffer */
  240. char *charbuf = strndup(str, str_len);
  241. /* number of digits in base-256 notation */
  242. unsigned b256_len = ceil_f_to_u32(str_len * factor);
  243. uint8_t *b256_buf = calloc(b256_len, 1);
  244. /* go through zero terminated buffer
  245. * input digits (ASCII) */
  246. unsigned i;
  247. for (i = 0; charbuf[i]; i++) {
  248. uint32_t tmp = charbuf[i];
  249. if ((tmp >= '0') && (tmp <= '9'))
  250. tmp = (tmp - '0');
  251. else if ((tmp >= 'a') && (tmp <= 'f'))
  252. tmp = (tmp - 'a' + 10);
  253. else if ((tmp >= 'A') && (tmp <= 'F'))
  254. tmp = (tmp - 'A' + 10);
  255. else
  256. continue; /* skip characters other than [0-9,a-f,A-F] */
  257. if (tmp >= radix)
  258. continue; /* skip digits invalid for the current radix */
  259. /* base-256 digits */
  260. for (unsigned j = 0; j < b256_len; j++) {
  261. tmp += (uint32_t)b256_buf[j] * radix;
  262. b256_buf[j] = (uint8_t)(tmp & 0xFF);
  263. tmp >>= 8;
  264. }
  265. }
  266. uint8_t *buf = _buf;
  267. for (unsigned j = 0; j < DIV_ROUND_UP(buf_len, 8); j++) {
  268. if (j < b256_len)
  269. buf[j] = b256_buf[j];
  270. else
  271. buf[j] = 0;
  272. }
  273. /* mask out bits that don't belong to the buffer */
  274. if (buf_len % 8)
  275. buf[(buf_len / 8)] &= 0xff >> (8 - (buf_len % 8));
  276. free(b256_buf);
  277. free(charbuf);
  278. return i;
  279. }
  280. void bit_copy_queue_init(struct bit_copy_queue *q)
  281. {
  282. INIT_LIST_HEAD(&q->list);
  283. }
  284. int bit_copy_queued(struct bit_copy_queue *q, uint8_t *dst, unsigned dst_offset, const uint8_t *src,
  285. unsigned src_offset, unsigned bit_count)
  286. {
  287. struct bit_copy_queue_entry *qe = malloc(sizeof(*qe));
  288. if (!qe)
  289. return ERROR_FAIL;
  290. qe->dst = dst;
  291. qe->dst_offset = dst_offset;
  292. qe->src = src;
  293. qe->src_offset = src_offset;
  294. qe->bit_count = bit_count;
  295. list_add_tail(&qe->list, &q->list);
  296. return ERROR_OK;
  297. }
  298. void bit_copy_execute(struct bit_copy_queue *q)
  299. {
  300. struct bit_copy_queue_entry *qe;
  301. struct bit_copy_queue_entry *tmp;
  302. list_for_each_entry_safe(qe, tmp, &q->list, list) {
  303. bit_copy(qe->dst, qe->dst_offset, qe->src, qe->src_offset, qe->bit_count);
  304. list_del(&qe->list);
  305. free(qe);
  306. }
  307. }
  308. void bit_copy_discard(struct bit_copy_queue *q)
  309. {
  310. struct bit_copy_queue_entry *qe;
  311. struct bit_copy_queue_entry *tmp;
  312. list_for_each_entry_safe(qe, tmp, &q->list, list) {
  313. list_del(&qe->list);
  314. free(qe);
  315. }
  316. }
  317. int unhexify(char *bin, const char *hex, int count)
  318. {
  319. int i, tmp;
  320. for (i = 0; i < count; i++) {
  321. if (sscanf(hex + (2 * i), "%02x", &tmp) != 1)
  322. return i;
  323. bin[i] = tmp;
  324. }
  325. return i;
  326. }
  327. int hexify(char *hex, const char *bin, int count, int out_maxlen)
  328. {
  329. int i, cmd_len = 0;
  330. /* May use a length, or a null-terminated string as input. */
  331. if (count == 0)
  332. count = strlen(bin);
  333. for (i = 0; i < count; i++)
  334. cmd_len += snprintf(hex + cmd_len, out_maxlen - cmd_len, "%02x", bin[i]);
  335. return cmd_len;
  336. }