You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

349 lines
9.5 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2004, 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2007,2008 √ėyvind Harboe *
  6. * oyvind.harboe@zylin.com *
  7. * *
  8. * This program is free software; you can redistribute it and/or modify *
  9. * it under the terms of the GNU General Public License as published by *
  10. * the Free Software Foundation; either version 2 of the License, or *
  11. * (at your option) any later version. *
  12. * *
  13. * This program is distributed in the hope that it will be useful, *
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  16. * GNU General Public License for more details. *
  17. * *
  18. * You should have received a copy of the GNU General Public License *
  19. * along with this program; if not, write to the *
  20. * Free Software Foundation, Inc., *
  21. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  22. ***************************************************************************/
  23. #ifdef HAVE_CONFIG_H
  24. #include "config.h"
  25. #endif
  26. #include "log.h"
  27. #include "binarybuffer.h"
  28. static const unsigned char bit_reverse_table256[] =
  29. {
  30. 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
  31. 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
  32. 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
  33. 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
  34. 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
  35. 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  36. 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
  37. 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  38. 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  39. 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
  40. 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  41. 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  42. 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
  43. 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  44. 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
  45. 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
  46. };
  47. void* buf_cpy(const void *from, void *_to, unsigned size)
  48. {
  49. if (NULL == from || NULL == _to)
  50. return NULL;
  51. // copy entire buffer
  52. memcpy(_to, from, DIV_ROUND_UP(size, 8));
  53. /* mask out bits that don't belong to the buffer */
  54. unsigned trailing_bits = size % 8;
  55. if (trailing_bits)
  56. {
  57. uint8_t *to = _to;
  58. to[size / 8] &= (1 << trailing_bits) - 1;
  59. }
  60. return _to;
  61. }
  62. static bool buf_cmp_masked(uint8_t a, uint8_t b, uint8_t m)
  63. {
  64. return (a & m) != (b & m);
  65. }
  66. static bool buf_cmp_trailing(uint8_t a, uint8_t b, uint8_t m, unsigned trailing)
  67. {
  68. uint8_t mask = (1 << trailing) - 1;
  69. return buf_cmp_masked(a, b, mask & m);
  70. }
  71. bool buf_cmp(const void *_buf1, const void *_buf2, unsigned size)
  72. {
  73. if (!_buf1 || !_buf2)
  74. return _buf1 != _buf2;
  75. unsigned last = size / 8;
  76. if (memcmp(_buf1, _buf2, last) != 0)
  77. return false;
  78. unsigned trailing = size % 8;
  79. if (!trailing)
  80. return false;
  81. const uint8_t *buf1 = _buf1, *buf2 = _buf2;
  82. return buf_cmp_trailing(buf1[last], buf2[last], 0xff, trailing);
  83. }
  84. bool buf_cmp_mask(const void *_buf1, const void *_buf2,
  85. const void *_mask, unsigned size)
  86. {
  87. if (!_buf1 || !_buf2)
  88. return _buf1 != _buf2 || _buf1 != _mask;
  89. const uint8_t *buf1 = _buf1, *buf2 = _buf2, *mask = _mask;
  90. unsigned last = size / 8;
  91. for (unsigned i = 0; i < last; i++)
  92. {
  93. if (buf_cmp_masked(buf1[i], buf2[i], mask[i]))
  94. return true;
  95. }
  96. unsigned trailing = size % 8;
  97. if (!trailing)
  98. return false;
  99. return buf_cmp_trailing(buf1[last], buf2[last], mask[last], trailing);
  100. }
  101. void* buf_set_ones(void *_buf, unsigned size)
  102. {
  103. uint8_t *buf = _buf;
  104. if (!buf)
  105. return NULL;
  106. memset(buf, 0xff, size / 8);
  107. unsigned trailing_bits = size % 8;
  108. if (trailing_bits)
  109. buf[size / 8] = (1 << trailing_bits) - 1;
  110. return buf;
  111. }
  112. void* buf_set_buf(const void *_src, unsigned src_start,
  113. void *_dst, unsigned dst_start, unsigned len)
  114. {
  115. const uint8_t *src = _src;
  116. uint8_t *dst = _dst;
  117. unsigned i,sb,db,sq,dq, lb,lq;
  118. sb = src_start / 8;
  119. db = dst_start / 8;
  120. sq = src_start % 8;
  121. dq = dst_start % 8;
  122. lb = len / 8;
  123. lq = len % 8;
  124. src += sb;
  125. dst += db;
  126. /* check if both buffers are on byte boundary and
  127. * len is a multiple of 8bit so we can simple copy
  128. * the buffer */
  129. if ( (sq == 0) && (dq == 0) && (lq == 0) )
  130. {
  131. for (i = 0; i < lb; i++)
  132. *dst++ = *src++;
  133. return (uint8_t*)_dst;
  134. }
  135. /* fallback to slow bit copy */
  136. for (i = 0; i < len; i++)
  137. {
  138. if (((*src >> (sq&7)) & 1) == 1)
  139. *dst |= 1 << (dq&7);
  140. else
  141. *dst &= ~(1 << (dq&7));
  142. if ( sq++ == 7 )
  143. {
  144. sq = 0;
  145. src++;
  146. }
  147. if ( dq++ == 7 )
  148. {
  149. dq = 0;
  150. dst++;
  151. }
  152. }
  153. return (uint8_t*)_dst;
  154. }
  155. uint32_t flip_u32(uint32_t value, unsigned int num)
  156. {
  157. uint32_t c = (bit_reverse_table256[value & 0xff] << 24) |
  158. (bit_reverse_table256[(value >> 8) & 0xff] << 16) |
  159. (bit_reverse_table256[(value >> 16) & 0xff] << 8) |
  160. (bit_reverse_table256[(value >> 24) & 0xff]);
  161. if (num < 32)
  162. c = c >> (32 - num);
  163. return c;
  164. }
  165. static int ceil_f_to_u32(float x)
  166. {
  167. if (x < 0) /* return zero for negative numbers */
  168. return 0;
  169. uint32_t y = x; /* cut off fraction */
  170. if ((x - y) > 0.0) /* if there was a fractional part, increase by one */
  171. y++;
  172. return y;
  173. }
  174. char* buf_to_str(const void *_buf, unsigned buf_len, unsigned radix)
  175. {
  176. float factor;
  177. switch (radix) {
  178. case 16:
  179. factor = 2.0; /* log(256) / log(16) = 2.0 */
  180. break;
  181. case 10:
  182. factor = 2.40824; /* log(256) / log(10) = 2.40824 */
  183. break;
  184. case 8:
  185. factor = 2.66667; /* log(256) / log(8) = 2.66667 */
  186. break;
  187. default:
  188. return NULL;
  189. }
  190. unsigned str_len = ceil_f_to_u32(DIV_ROUND_UP(buf_len, 8) * factor);
  191. char *str = calloc(str_len + 1, 1);
  192. const uint8_t *buf = _buf;
  193. int b256_len = DIV_ROUND_UP(buf_len, 8);
  194. for (int i = b256_len - 1; i >= 0; i--)
  195. {
  196. uint32_t tmp = buf[i];
  197. if (((unsigned)i == (buf_len / 8)) && (buf_len % 8))
  198. tmp &= (0xff >> (8 - (buf_len % 8)));
  199. /* base-256 digits */
  200. for (unsigned j = str_len; j > 0; j--)
  201. {
  202. tmp += (uint32_t)str[j-1] * 256;
  203. str[j-1] = (uint8_t)(tmp % radix);
  204. tmp /= radix;
  205. }
  206. }
  207. const char *DIGITS = "0123456789ABCDEF";
  208. for (unsigned j = 0; j < str_len; j++)
  209. str[j] = DIGITS[(int)str[j]];
  210. return str;
  211. }
  212. /// identify radix, and skip radix-prefix (0, 0x or 0X)
  213. static void str_radix_guess(const char **_str, unsigned *_str_len,
  214. unsigned *_radix)
  215. {
  216. unsigned radix = *_radix;
  217. if (0 != radix)
  218. return;
  219. const char *str = *_str;
  220. unsigned str_len = *_str_len;
  221. if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
  222. {
  223. radix = 16;
  224. str += 2;
  225. str_len -= 2;
  226. }
  227. else if ((str[0] == '0') && (str_len != 1))
  228. {
  229. radix = 8;
  230. str += 1;
  231. str_len -= 1;
  232. }
  233. else
  234. {
  235. radix = 10;
  236. }
  237. *_str = str;
  238. *_str_len = str_len;
  239. *_radix = radix;
  240. }
  241. int str_to_buf(const char *str, unsigned str_len,
  242. void *_buf, unsigned buf_len, unsigned radix)
  243. {
  244. str_radix_guess(&str, &str_len, &radix);
  245. float factor;
  246. if (radix == 16)
  247. factor = 0.5; /* log(16) / log(256) = 0.5 */
  248. else if (radix == 10)
  249. factor = 0.41524; /* log(10) / log(256) = 0.41524 */
  250. else if (radix == 8)
  251. factor = 0.375; /* log(8) / log(256) = 0.375 */
  252. else
  253. return 0;
  254. /* copy to zero-terminated buffer */
  255. char *charbuf = malloc(str_len + 1);
  256. memcpy(charbuf, str, str_len);
  257. charbuf[str_len] = '\0';
  258. /* number of digits in base-256 notation */
  259. unsigned b256_len = ceil_f_to_u32(str_len * factor);
  260. uint8_t *b256_buf = calloc(b256_len, 1);
  261. /* go through zero terminated buffer */
  262. /* input digits (ASCII) */
  263. unsigned i;
  264. for (i = 0; charbuf[i]; i++)
  265. {
  266. uint32_t tmp = charbuf[i];
  267. if ((tmp >= '0') && (tmp <= '9'))
  268. tmp = (tmp - '0');
  269. else if ((tmp >= 'a') && (tmp <= 'f'))
  270. tmp = (tmp - 'a' + 10);
  271. else if ((tmp >= 'A') && (tmp <= 'F'))
  272. tmp = (tmp - 'A' + 10);
  273. else continue; /* skip characters other than [0-9,a-f,A-F] */
  274. if (tmp >= radix)
  275. continue; /* skip digits invalid for the current radix */
  276. /* base-256 digits */
  277. for (unsigned j = 0; j < b256_len; j++)
  278. {
  279. tmp += (uint32_t)b256_buf[j] * radix;
  280. b256_buf[j] = (uint8_t)(tmp & 0xFF);
  281. tmp >>= 8;
  282. }
  283. }
  284. uint8_t *buf = _buf;
  285. for (unsigned j = 0; j < DIV_ROUND_UP(buf_len, 8); j++)
  286. {
  287. if (j < b256_len)
  288. buf[j] = b256_buf[j];
  289. else
  290. buf[j] = 0;
  291. }
  292. /* mask out bits that don't belong to the buffer */
  293. if (buf_len % 8)
  294. buf[(buf_len / 8)] &= 0xff >> (8 - (buf_len % 8));
  295. free(b256_buf);
  296. free(charbuf);
  297. return i;
  298. }