Browse Source

Renamed mx2/imx27 to mxc.

Renamed all functions, enums, structs and defines from mx2/imx27 to mxc. This is in preparation of adding support for mx35 NFC(v2).

Change-Id: I92ad23f0cfab605215bbf0d5846c5c288423facf
Signed-off-by: Erik Ahlén <erik.ahlen@avalonenterprise.com>
Reviewed-on: http://openocd.zylin.com/267
Tested-by: jenkins
Reviewed-by: Øyvind Harboe <oyvindharboe@gmail.com>
tags/v0.6.0-rc1
Erik Ahlén 10 years ago
committed by Øyvind Harboe
parent
commit
46cc1df722
4 changed files with 245 additions and 244 deletions
  1. +2
    -2
      src/flash/nand/driver.c
  2. +182
    -181
      src/flash/nand/mx2.c
  3. +60
    -60
      src/flash/nand/mx2.h
  4. +1
    -1
      tcl/board/tx27_stk5.cfg

+ 2
- 2
src/flash/nand/driver.c View File

@@ -38,7 +38,7 @@ extern struct nand_flash_controller s3c2412_nand_controller;
extern struct nand_flash_controller s3c2440_nand_controller;
extern struct nand_flash_controller s3c2443_nand_controller;
extern struct nand_flash_controller s3c6400_nand_controller;
extern struct nand_flash_controller imx27_nand_flash_controller;
extern struct nand_flash_controller mxc_nand_flash_controller;
extern struct nand_flash_controller imx31_nand_flash_controller;
extern struct nand_flash_controller at91sam9_nand_controller;
extern struct nand_flash_controller nuc910_nand_controller;
@@ -57,7 +57,7 @@ static struct nand_flash_controller *nand_flash_controllers[] =
&s3c2440_nand_controller,
&s3c2443_nand_controller,
&s3c6400_nand_controller,
&imx27_nand_flash_controller,
&mxc_nand_flash_controller,
&imx31_nand_flash_controller,
&at91sam9_nand_controller,
&nuc910_nand_controller,


+ 182
- 181
src/flash/nand/mx2.c View File

@@ -23,17 +23,17 @@
***************************************************************************/

/*
* Freescale iMX2* OpenOCD NAND Flash controller support.
* based on Freescale iMX3* OpenOCD NAND Flash controller support.
* Freescale iMX OpenOCD NAND Flash controller support.
* based on Freescale iMX2* and iMX3* OpenOCD NAND Flash controller support.
*/

/*
* driver tested with Samsung K9F2G08UXA and Numonyx/ST NAND02G-B2D @imx27
* driver tested with Samsung K9F2G08UXA and Numonyx/ST NAND02G-B2D @mxc
* tested "nand probe #", "nand erase # 0 #", "nand dump # file 0 #",
* "nand write # file 0", "nand verify"
*
* get_next_halfword_from_sram_buffer() not tested
* !! all function only tested with 2k page nand device; imx27_write_page
* !! all function only tested with 2k page nand device; mxc_write_page
* writes the 4 MAIN_BUFFER's and is not compatible with < 2k page
* !! oob must be be used due to NFS bug
*/
@@ -50,11 +50,11 @@
* This is useful when OpenOCD is used with a graphical
* front-end to estimate progression of the global read/write
*/
#undef _MX2_PRINT_STAT
/* #define _MX2_PRINT_STAT */
#undef _MXC_PRINT_STAT
/* #define _MXC_PRINT_STAT */

static const char target_not_halted_err_msg[] =
"target must be halted to use mx2 NAND flash controller";
"target must be halted to use mxc NAND flash controller";
static const char data_block_size_err_msg[] =
"minimal granularity is one half-word, %" PRId32 " is incorrect";
static const char sram_buffer_bounds_err_msg[] =
@@ -70,24 +70,24 @@ static int poll_for_complete_op(struct target *target, const char *text);
static int validate_target_state(struct nand_device *nand);
static int do_data_output(struct nand_device *nand);

static int imx27_command(struct nand_device *nand, uint8_t command);
static int imx27_address(struct nand_device *nand, uint8_t address);
static int mxc_command(struct nand_device *nand, uint8_t command);
static int mxc_address(struct nand_device *nand, uint8_t address);

NAND_DEVICE_COMMAND_HANDLER(imx27_nand_device_command)
NAND_DEVICE_COMMAND_HANDLER(mxc_nand_device_command)
{
struct mx2_nf_controller *mx2_nf_info;
struct mxc_nf_controller *mxc_nf_info;
int hwecc_needed;
int x;

mx2_nf_info = malloc(sizeof(struct mx2_nf_controller));
if (mx2_nf_info == NULL) {
mxc_nf_info = malloc(sizeof(struct mxc_nf_controller));
if (mxc_nf_info == NULL) {
LOG_ERROR("no memory for nand controller");
return ERROR_FAIL;
}
nand->controller_priv = mx2_nf_info;
nand->controller_priv = mxc_nf_info;

if (CMD_ARGC < 3) {
LOG_ERROR("use \"nand device imx27 target noecc|hwecc\"");
LOG_ERROR("use \"nand device mxc target noecc|hwecc\"");
return ERROR_FAIL;
}

@@ -96,13 +96,13 @@ NAND_DEVICE_COMMAND_HANDLER(imx27_nand_device_command)
*/
hwecc_needed = strcmp(CMD_ARGV[2], "hwecc");
if (hwecc_needed == 0)
mx2_nf_info->flags.hw_ecc_enabled = 1;
mxc_nf_info->flags.hw_ecc_enabled = 1;
else
mx2_nf_info->flags.hw_ecc_enabled = 0;
mxc_nf_info->flags.hw_ecc_enabled = 0;

mx2_nf_info->optype = MX2_NF_DATAOUT_PAGE;
mx2_nf_info->fin = MX2_NF_FIN_NONE;
mx2_nf_info->flags.target_little_endian =
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
mxc_nf_info->fin = MXC_NF_FIN_NONE;
mxc_nf_info->flags.target_little_endian =
(nand->target->endianness == TARGET_LITTLE_ENDIAN);

/*
@@ -110,15 +110,15 @@ NAND_DEVICE_COMMAND_HANDLER(imx27_nand_device_command)
*/
x = 1;
if (*(char *) &x == 1)
mx2_nf_info->flags.host_little_endian = 1;
mxc_nf_info->flags.host_little_endian = 1;
else
mx2_nf_info->flags.host_little_endian = 0;
mxc_nf_info->flags.host_little_endian = 0;
return ERROR_OK;
}

static int imx27_init(struct nand_device *nand)
static int mxc_init(struct nand_device *nand)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;

int validate_target_result;
@@ -133,60 +133,60 @@ static int imx27_init(struct nand_device *nand)
if (validate_target_result != ERROR_OK)
return validate_target_result;

target_read_u16(target, MX2_NF_BUFSIZ, &buffsize_register_content);
mx2_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f);
target_read_u16(target, MXC_NF_BUFSIZ, &buffsize_register_content);
mxc_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f);

target_read_u32(target, MX2_FMCR, &pcsr_register_content);
target_read_u32(target, MXC_FMCR, &pcsr_register_content);
if (!nand->bus_width) {
/* bus_width not yet defined. Read it from MX2_FMCR */
/* bus_width not yet defined. Read it from MXC_FMCR */
nand->bus_width =
(pcsr_register_content & MX2_FMCR_NF_16BIT_SEL) ? 16 : 8;
(pcsr_register_content & MXC_FMCR_NF_16BIT_SEL) ? 16 : 8;
} else {
/* bus_width forced in soft. Sync it to MX2_FMCR */
/* bus_width forced in soft. Sync it to MXC_FMCR */
pcsr_register_content |=
((nand->bus_width == 16) ? MX2_FMCR_NF_16BIT_SEL : 0x00000000);
target_write_u32(target, MX2_FMCR, pcsr_register_content);
((nand->bus_width == 16) ? MXC_FMCR_NF_16BIT_SEL : 0x00000000);
target_write_u32(target, MXC_FMCR, pcsr_register_content);
}
if (nand->bus_width == 16)
LOG_DEBUG("MX2_NF : bus is 16-bit width");
LOG_DEBUG("MXC_NF : bus is 16-bit width");
else
LOG_DEBUG("MX2_NF : bus is 8-bit width");
LOG_DEBUG("MXC_NF : bus is 8-bit width");

if (!nand->page_size) {
nand->page_size = (pcsr_register_content & MX2_FMCR_NF_FMS) ? 2048 : 512;
nand->page_size = (pcsr_register_content & MXC_FMCR_NF_FMS) ? 2048 : 512;
} else {
pcsr_register_content |=
((nand->page_size == 2048) ? MX2_FMCR_NF_FMS : 0x00000000);
target_write_u32(target, MX2_FMCR, pcsr_register_content);
((nand->page_size == 2048) ? MXC_FMCR_NF_FMS : 0x00000000);
target_write_u32(target, MXC_FMCR, pcsr_register_content);
}
if (mx2_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) {
if (mxc_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) {
LOG_ERROR("NAND controller have only 1 kb SRAM, so "
"pagesize 2048 is incompatible with it");
} else {
LOG_DEBUG("MX2_NF : NAND controller can handle pagesize of 2048");
LOG_DEBUG("MXC_NF : NAND controller can handle pagesize of 2048");
}

initialize_nf_controller(nand);

retval = ERROR_OK;
retval |= imx27_command(nand, NAND_CMD_STATUS);
retval |= imx27_address(nand, 0x00);
retval |= mxc_command(nand, NAND_CMD_STATUS);
retval |= mxc_address(nand, 0x00);
retval |= do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR(get_status_register_err_msg);
return ERROR_FAIL;
}
target_read_u16(target, MX2_NF_MAIN_BUFFER0, &nand_status_content);
target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content);
if (!(nand_status_content & 0x0080)) {
LOG_INFO("NAND read-only");
mx2_nf_info->flags.nand_readonly = 1;
mxc_nf_info->flags.nand_readonly = 1;
} else {
mx2_nf_info->flags.nand_readonly = 0;
mxc_nf_info->flags.nand_readonly = 0;
}
return ERROR_OK;
}

static int imx27_read_data(struct nand_device *nand, void *data)
static int mxc_read_data(struct nand_device *nand, void *data)
{
struct target *target = nand->target;
int validate_target_result;
@@ -203,7 +203,7 @@ static int imx27_read_data(struct nand_device *nand, void *data)
*/
try_data_output_from_nand_chip = do_data_output(nand);
if (try_data_output_from_nand_chip != ERROR_OK) {
LOG_ERROR("imx27_read_data : read data failed : '%x'",
LOG_ERROR("mxc_read_data : read data failed : '%x'",
try_data_output_from_nand_chip);
return try_data_output_from_nand_chip;
}
@@ -216,13 +216,13 @@ static int imx27_read_data(struct nand_device *nand, void *data)
return ERROR_OK;
}

static int imx27_write_data(struct nand_device *nand, uint16_t data)
static int mxc_write_data(struct nand_device *nand, uint16_t data)
{
LOG_ERROR("write_data() not implemented");
return ERROR_NAND_OPERATION_FAILED;
}

static int imx27_reset(struct nand_device *nand)
static int mxc_reset(struct nand_device *nand)
{
/*
* validate target state
@@ -235,9 +235,9 @@ static int imx27_reset(struct nand_device *nand)
return ERROR_OK;
}

static int imx27_command(struct nand_device *nand, uint8_t command)
static int mxc_command(struct nand_device *nand, uint8_t command)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int validate_target_result;
int poll_result;
@@ -254,25 +254,25 @@ static int imx27_command(struct nand_device *nand, uint8_t command)
/* set read point for data_read() and read_block_data() to
* spare area in SRAM buffer
*/
in_sram_address = MX2_NF_SPARE_BUFFER0;
in_sram_address = MXC_NF_SPARE_BUFFER0;
break;
case NAND_CMD_READ1:
command = NAND_CMD_READ0;
/*
* offset == one half of page size
*/
in_sram_address = MX2_NF_MAIN_BUFFER0 + (nand->page_size >> 1);
in_sram_address = MXC_NF_MAIN_BUFFER0 + (nand->page_size >> 1);
break;
default:
in_sram_address = MX2_NF_MAIN_BUFFER0;
in_sram_address = MXC_NF_MAIN_BUFFER0;
break;
}

target_write_u16(target, MX2_NF_FCMD, command);
target_write_u16(target, MXC_NF_FCMD, command);
/*
* start command input operation (set MX2_NF_BIT_OP_DONE==0)
* start command input operation (set MXC_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FCI);
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FCI);
poll_result = poll_for_complete_op(target, "command");
if (poll_result != ERROR_OK)
return poll_result;
@@ -283,28 +283,28 @@ static int imx27_command(struct nand_device *nand, uint8_t command)
/* Handle special read command and adjust NF_CFG2(FDO) */
switch (command) {
case NAND_CMD_READID:
mx2_nf_info->optype = MX2_NF_DATAOUT_NANDID;
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDID;
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
break;
case NAND_CMD_STATUS:
mx2_nf_info->optype = MX2_NF_DATAOUT_NANDSTATUS;
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
target_write_u16 (target, MX2_NF_BUFADDR, 0);
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS;
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
target_write_u16 (target, MXC_NF_BUFADDR, 0);
in_sram_address = 0;
break;
case NAND_CMD_READ0:
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
mx2_nf_info->optype = MX2_NF_DATAOUT_PAGE;
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
break;
default:
/* Ohter command use the default 'One page data out' FDO */
mx2_nf_info->optype = MX2_NF_DATAOUT_PAGE;
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
break;
}
return ERROR_OK;
}

static int imx27_address(struct nand_device *nand, uint8_t address)
static int mxc_address(struct nand_device *nand, uint8_t address)
{
struct target *target = nand->target;
int validate_target_result;
@@ -316,11 +316,11 @@ static int imx27_address(struct nand_device *nand, uint8_t address)
if (validate_target_result != ERROR_OK)
return validate_target_result;

target_write_u16(target, MX2_NF_FADDR, address);
target_write_u16(target, MXC_NF_FADDR, address);
/*
* start address input operation (set MX2_NF_BIT_OP_DONE==0)
* start address input operation (set MXC_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FAI);
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FAI);
poll_result = poll_for_complete_op(target, "address");
if (poll_result != ERROR_OK)
return poll_result;
@@ -328,7 +328,7 @@ static int imx27_address(struct nand_device *nand, uint8_t address)
return ERROR_OK;
}

static int imx27_nand_ready(struct nand_device *nand, int tout)
static int mxc_nand_ready(struct nand_device *nand, int tout)
{
uint16_t poll_complete_status;
struct target *target = nand->target;
@@ -342,8 +342,8 @@ static int imx27_nand_ready(struct nand_device *nand, int tout)
return validate_target_result;

do {
target_read_u16(target, MX2_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MX2_NF_BIT_OP_DONE)
target_read_u16(target, MXC_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MXC_NF_BIT_OP_DONE)
return tout;

alive_sleep(1);
@@ -352,11 +352,11 @@ static int imx27_nand_ready(struct nand_device *nand, int tout)
return tout;
}

static int imx27_write_page(struct nand_device *nand, uint32_t page,
static int mxc_write_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
uint16_t nand_status_content;
@@ -381,19 +381,19 @@ static int imx27_write_page(struct nand_device *nand, uint32_t page,
if (retval != ERROR_OK)
return retval;

in_sram_address = MX2_NF_MAIN_BUFFER0;
in_sram_address = MXC_NF_MAIN_BUFFER0;
sign_of_sequental_byte_read = 0;
retval = ERROR_OK;
retval |= imx27_command(nand, NAND_CMD_SEQIN);
retval |= imx27_address(nand, 0); /* col */
retval |= imx27_address(nand, 0); /* col */
retval |= imx27_address(nand, page & 0xff); /* page address */
retval |= imx27_address(nand, (page >> 8) & 0xff); /* page address */
retval |= imx27_address(nand, (page >> 16) & 0xff); /* page address */
target_write_buffer(target, MX2_NF_MAIN_BUFFER0, data_size, data);
retval |= mxc_command(nand, NAND_CMD_SEQIN);
retval |= mxc_address(nand, 0); /* col */
retval |= mxc_address(nand, 0); /* col */
retval |= mxc_address(nand, page & 0xff); /* page address */
retval |= mxc_address(nand, (page >> 8) & 0xff); /* page address */
retval |= mxc_address(nand, (page >> 16) & 0xff); /* page address */
target_write_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
if (oob) {
if (mx2_nf_info->flags.hw_ecc_enabled) {
if (mxc_nf_info->flags.hw_ecc_enabled) {
/*
* part of spare block will be overrided by hardware
* ECC generator
@@ -401,48 +401,48 @@ static int imx27_write_page(struct nand_device *nand, uint32_t page,
LOG_DEBUG("part of spare block will be overrided "
"by hardware ECC generator");
}
target_write_buffer(target, MX2_NF_SPARE_BUFFER0, oob_size, oob);
target_write_buffer(target, MXC_NF_SPARE_BUFFER0, oob_size, oob);
}
/* BI-swap - work-around of imx27 NFC for NAND device with page == 2kb */
target_read_u16(target, MX2_NF_MAIN_BUFFER3 + 464, &swap1);
/* BI-swap - work-around of mxc NFC for NAND device with page == 2kb */
target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
if (oob) {
LOG_ERROR("Due to NFC Bug, oob is not correctly implemented in mx2 driver");
LOG_ERROR("Due to NFC Bug, oob is not correctly implemented in mxc driver");
return ERROR_NAND_OPERATION_FAILED;
}
swap2 = 0xffff; /* Spare buffer unused forced to 0xffff */
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
swap2 = (swap1 << 8) | (swap2 & 0xFF);

target_write_u16(target, MX2_NF_MAIN_BUFFER3 + 464, new_swap1);
target_write_u16(target, MX2_NF_SPARE_BUFFER3 + 4, swap2);
target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
target_write_u16(target, MXC_NF_SPARE_BUFFER3 + 4, swap2);
/*
* start data input operation (set MX2_NF_BIT_OP_DONE==0)
* start data input operation (set MXC_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX2_NF_BUFADDR, 0);
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI);
target_write_u16(target, MXC_NF_BUFADDR, 0);
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(target, "data input");
if (poll_result != ERROR_OK)
return poll_result;

target_write_u16(target, MX2_NF_BUFADDR, 1);
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI);
target_write_u16(target, MXC_NF_BUFADDR, 1);
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(target, "data input");
if (poll_result != ERROR_OK)
return poll_result;

target_write_u16(target, MX2_NF_BUFADDR, 2);
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI);
target_write_u16(target, MXC_NF_BUFADDR, 2);
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(target, "data input");
if (poll_result != ERROR_OK)
return poll_result;

target_write_u16(target, MX2_NF_BUFADDR, 3);
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI);
target_write_u16(target, MXC_NF_BUFADDR, 3);
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(target, "data input");
if (poll_result != ERROR_OK)
return poll_result;

retval |= imx27_command(nand, NAND_CMD_PAGEPROG);
retval |= mxc_command(nand, NAND_CMD_PAGEPROG);
if (retval != ERROR_OK)
return retval;

@@ -450,33 +450,33 @@ static int imx27_write_page(struct nand_device *nand, uint32_t page,
* check status register
*/
retval = ERROR_OK;
retval |= imx27_command(nand, NAND_CMD_STATUS);
target_write_u16 (target, MX2_NF_BUFADDR, 0);
mx2_nf_info->optype = MX2_NF_DATAOUT_NANDSTATUS;
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
retval |= mxc_command(nand, NAND_CMD_STATUS);
target_write_u16 (target, MXC_NF_BUFADDR, 0);
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS;
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval |= do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR(get_status_register_err_msg);
return retval;
}
target_read_u16(target, MX2_NF_MAIN_BUFFER0, &nand_status_content);
target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content);
if (nand_status_content & 0x0001) {
/*
* page not correctly written
*/
return ERROR_NAND_OPERATION_FAILED;
}
#ifdef _MX2_PRINT_STAT
#ifdef _MXC_PRINT_STAT
LOG_INFO("%d bytes newly written", data_size);
#endif
return ERROR_OK;
}

static int imx27_read_page(struct nand_device *nand, uint32_t page,
static int mxc_read_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
uint16_t swap1, swap2, new_swap1;
@@ -497,65 +497,65 @@ static int imx27_read_page(struct nand_device *nand, uint32_t page,
if (retval != ERROR_OK) {
return retval;
}
/* Reset address_cycles before imx27_command ?? */
retval = imx27_command(nand, NAND_CMD_READ0);
/* Reset address_cycles before mxc_command ?? */
retval = mxc_command(nand, NAND_CMD_READ0);
if (retval != ERROR_OK) return retval;
retval = imx27_address(nand, 0); /* col */
retval = mxc_address(nand, 0); /* col */
if (retval != ERROR_OK) return retval;
retval = imx27_address(nand, 0); /* col */
retval = mxc_address(nand, 0); /* col */
if (retval != ERROR_OK) return retval;
retval = imx27_address(nand, page & 0xff); /* page address */
retval = mxc_address(nand, page & 0xff); /* page address */
if (retval != ERROR_OK) return retval;
retval = imx27_address(nand, (page >> 8) & 0xff); /* page address */
retval = mxc_address(nand, (page >> 8) & 0xff); /* page address */
if (retval != ERROR_OK) return retval;
retval = imx27_address(nand, (page >> 16) & 0xff); /* page address */
retval = mxc_address(nand, (page >> 16) & 0xff); /* page address */
if (retval != ERROR_OK) return retval;
retval = imx27_command(nand, NAND_CMD_READSTART);
retval = mxc_command(nand, NAND_CMD_READSTART);
if (retval != ERROR_OK) return retval;

target_write_u16(target, MX2_NF_BUFADDR, 0);
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
target_write_u16(target, MXC_NF_BUFADDR, 0);
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MX2_NF : Error reading page 0");
LOG_ERROR("MXC_NF : Error reading page 0");
return retval;
}
/* Test nand page size to know how much MAIN_BUFFER must be written */
target_write_u16(target, MX2_NF_BUFADDR, 1);
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
target_write_u16(target, MXC_NF_BUFADDR, 1);
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MX2_NF : Error reading page 1");
LOG_ERROR("MXC_NF : Error reading page 1");
return retval;
}
target_write_u16(target, MX2_NF_BUFADDR, 2);
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
target_write_u16(target, MXC_NF_BUFADDR, 2);
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MX2_NF : Error reading page 2");
LOG_ERROR("MXC_NF : Error reading page 2");
return retval;
}
target_write_u16(target, MX2_NF_BUFADDR, 3);
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
target_write_u16(target, MXC_NF_BUFADDR, 3);
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MX2_NF : Error reading page 3");
LOG_ERROR("MXC_NF : Error reading page 3");
return retval;
}
/* BI-swap - work-around of imx27 NFC for NAND device with page == 2k */
target_read_u16(target, MX2_NF_MAIN_BUFFER3 + 464, &swap1);
target_read_u16(target, MX2_NF_SPARE_BUFFER3 + 4, &swap2);
/* BI-swap - work-around of mxc NFC for NAND device with page == 2k */
target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
target_read_u16(target, MXC_NF_SPARE_BUFFER3 + 4, &swap2);
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
swap2 = (swap1 << 8) | (swap2 & 0xFF);
target_write_u16(target, MX2_NF_MAIN_BUFFER3 + 464, new_swap1);
target_write_u16(target, MX2_NF_SPARE_BUFFER3 + 4, swap2);
target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
target_write_u16(target, MXC_NF_SPARE_BUFFER3 + 4, swap2);

if (data)
target_read_buffer(target, MX2_NF_MAIN_BUFFER0, data_size, data);
target_read_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
if (oob)
target_read_buffer(target, MX2_NF_SPARE_BUFFER0, oob_size, oob);
target_read_buffer(target, MXC_NF_SPARE_BUFFER0, oob_size, oob);

#ifdef _MX2_PRINT_STAT
#ifdef _MXC_PRINT_STAT
if (data_size > 0) {
/* When Operation Status is read (when page is erased),
* this function is used but data_size is null.
@@ -568,33 +568,33 @@ static int imx27_read_page(struct nand_device *nand, uint32_t page,

static int initialize_nf_controller(struct nand_device *nand)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t work_mode;
uint16_t temp;
/*
* resets NAND flash controller in zero time ? I dont know.
*/
target_write_u16(target, MX2_NF_CFG1, MX2_NF_BIT_RESET_EN);
work_mode = MX2_NF_BIT_INT_DIS; /* disable interrupt */
target_write_u16(target, MXC_NF_CFG1, MXC_NF_BIT_RESET_EN);
work_mode = MXC_NF_BIT_INT_DIS; /* disable interrupt */
if (target->endianness == TARGET_BIG_ENDIAN) {
LOG_DEBUG("MX2_NF : work in Big Endian mode");
work_mode |= MX2_NF_BIT_BE_EN;
LOG_DEBUG("MXC_NF : work in Big Endian mode");
work_mode |= MXC_NF_BIT_BE_EN;
} else {
LOG_DEBUG("MX2_NF : work in Little Endian mode");
LOG_DEBUG("MXC_NF : work in Little Endian mode");
}
if (mx2_nf_info->flags.hw_ecc_enabled) {
LOG_DEBUG("MX2_NF : work with ECC mode");
work_mode |= MX2_NF_BIT_ECC_EN;
if (mxc_nf_info->flags.hw_ecc_enabled) {
LOG_DEBUG("MXC_NF : work with ECC mode");
work_mode |= MXC_NF_BIT_ECC_EN;
} else {
LOG_DEBUG("MX2_NF : work without ECC mode");
LOG_DEBUG("MXC_NF : work without ECC mode");
}
target_write_u16(target, MX2_NF_CFG1, work_mode);
target_write_u16(target, MXC_NF_CFG1, work_mode);
/*
* unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock"
*/
target_write_u16(target, MX2_NF_BUFCFG, 2);
target_read_u16(target, MX2_NF_FWP, &temp);
target_write_u16(target, MXC_NF_BUFCFG, 2);
target_read_u16(target, MXC_NF_FWP, &temp);
if ((temp & 0x0007) == 1) {
LOG_ERROR("NAND flash is tight-locked, reset needed");
return ERROR_FAIL;
@@ -603,17 +603,17 @@ static int initialize_nf_controller(struct nand_device *nand)
/*
* unlock NAND flash for write
*/
target_write_u16(target, MX2_NF_FWP, 4);
target_write_u16(target, MX2_NF_LOCKSTART, 0x0000);
target_write_u16(target, MX2_NF_LOCKEND, 0xFFFF);
target_write_u16(target, MXC_NF_FWP, 4);
target_write_u16(target, MXC_NF_LOCKSTART, 0x0000);
target_write_u16(target, MXC_NF_LOCKEND, 0xFFFF);
/*
* 0x0000 means that first SRAM buffer @0xD800_0000 will be used
*/
target_write_u16(target, MX2_NF_BUFADDR, 0x0000);
target_write_u16(target, MXC_NF_BUFADDR, 0x0000);
/*
* address of SRAM buffer
*/
in_sram_address = MX2_NF_MAIN_BUFFER0;
in_sram_address = MXC_NF_MAIN_BUFFER0;
sign_of_sequental_byte_read = 0;
return ERROR_OK;
}
@@ -628,7 +628,7 @@ static int get_next_byte_from_sram_buffer(struct target *target, uint8_t *value)
if (sign_of_sequental_byte_read == 0)
even_byte = 0;

if (in_sram_address > MX2_NF_LAST_BUFFER_ADDR) {
if (in_sram_address > MXC_NF_LAST_BUFFER_ADDR) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
sign_of_sequental_byte_read = 0;
@@ -651,7 +651,7 @@ static int get_next_byte_from_sram_buffer(struct target *target, uint8_t *value)

static int get_next_halfword_from_sram_buffer(struct target *target, uint16_t *value)
{
if (in_sram_address > MX2_NF_LAST_BUFFER_ADDR) {
if (in_sram_address > MXC_NF_LAST_BUFFER_ADDR) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
return ERROR_NAND_OPERATION_FAILED;
@@ -666,13 +666,13 @@ static int poll_for_complete_op(struct target *target, const char *text)
{
uint16_t poll_complete_status;
for (int poll_cycle_count = 0; poll_cycle_count < 100; poll_cycle_count++) {
target_read_u16(target, MX2_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MX2_NF_BIT_OP_DONE)
target_read_u16(target, MXC_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MXC_NF_BIT_OP_DONE)
break;

usleep(10);
}
if (!(poll_complete_status & MX2_NF_BIT_OP_DONE)) {
if (!(poll_complete_status & MXC_NF_BIT_OP_DONE)) {
LOG_ERROR("%s sending timeout", text);
return ERROR_NAND_OPERATION_FAILED;
}
@@ -681,7 +681,7 @@ static int poll_for_complete_op(struct target *target, const char *text)

static int validate_target_state(struct nand_device *nand)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;

if (target->state != TARGET_HALTED) {
@@ -689,7 +689,7 @@ static int validate_target_state(struct nand_device *nand)
return ERROR_NAND_OPERATION_FAILED;
}

if (mx2_nf_info->flags.target_little_endian !=
if (mxc_nf_info->flags.target_little_endian !=
(target->endianness == TARGET_LITTLE_ENDIAN)) {
/*
* endianness changed after NAND controller probed
@@ -701,26 +701,27 @@ static int validate_target_state(struct nand_device *nand)

static int do_data_output(struct nand_device *nand)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int poll_result;
uint16_t ecc_status;
switch (mx2_nf_info->fin) {
case MX2_NF_FIN_DATAOUT:
switch (mxc_nf_info->fin) {
case MXC_NF_FIN_DATAOUT:
/*
* start data output operation (set MX2_NF_BIT_OP_DONE==0)
* start data output operation (set MXC_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_DATAOUT_TYPE(mx2_nf_info->optype));
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_DATAOUT_TYPE(mxc_nf_info->optype));
poll_result = poll_for_complete_op(target, "data output");
if (poll_result != ERROR_OK)
return poll_result;

mx2_nf_info->fin = MX2_NF_FIN_NONE;
mxc_nf_info->fin = MXC_NF_FIN_NONE;
/*
* ECC stuff
*/
if ((mx2_nf_info->optype == MX2_NF_DATAOUT_PAGE) && mx2_nf_info->flags.hw_ecc_enabled) {
target_read_u16(target, MX2_NF_ECCSTATUS, &ecc_status);
if ((mxc_nf_info->optype == MXC_NF_DATAOUT_PAGE) &&
mxc_nf_info->flags.hw_ecc_enabled) {
target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
switch (ecc_status & 0x000c) {
case 1 << 2:
LOG_INFO("main area readed with 1 (correctable) error");
@@ -741,22 +742,22 @@ static int do_data_output(struct nand_device *nand)
}
}
break;
case MX2_NF_FIN_NONE:
case MXC_NF_FIN_NONE:
break;
}
return ERROR_OK;
}

struct nand_flash_controller imx27_nand_flash_controller = {
.name = "imx27",
.nand_device_command = &imx27_nand_device_command,
.init = &imx27_init,
.reset = &imx27_reset,
.command = &imx27_command,
.address = &imx27_address,
.write_data = &imx27_write_data,
.read_data = &imx27_read_data,
.write_page = &imx27_write_page,
.read_page = &imx27_read_page,
.nand_ready = &imx27_nand_ready,
struct nand_flash_controller mxc_nand_flash_controller = {
.name = "mxc",
.nand_device_command = &mxc_nand_device_command,
.init = &mxc_init,
.reset = &mxc_reset,
.command = &mxc_command,
.address = &mxc_address,
.write_data = &mxc_write_data,
.read_data = &mxc_read_data,
.write_page = &mxc_write_page,
.read_page = &mxc_read_page,
.nand_ready = &mxc_nand_ready,
};

+ 60
- 60
src/flash/nand/mx2.h View File

@@ -21,88 +21,88 @@
***************************************************************************/

/*
* Freescale iMX2* OpenOCD NAND Flash controller support.
* based on Freescale iMX3* OpenOCD NAND Flash controller support.
* Freescale iMX OpenOCD NAND Flash controller support.
* based on Freescale iMX2* and iMX3* OpenOCD NAND Flash controller support.
*
* Many thanks to Ben Dooks for writing s3c24xx driver.
*/

#define MX2_NF_BASE_ADDR 0xd8000000
#define MX2_NF_BUFSIZ (MX2_NF_BASE_ADDR + 0xe00)
#define MX2_NF_BUFADDR (MX2_NF_BASE_ADDR + 0xe04)
#define MX2_NF_FADDR (MX2_NF_BASE_ADDR + 0xe06)
#define MX2_NF_FCMD (MX2_NF_BASE_ADDR + 0xe08)
#define MX2_NF_BUFCFG (MX2_NF_BASE_ADDR + 0xe0a)
#define MX2_NF_ECCSTATUS (MX2_NF_BASE_ADDR + 0xe0c)
#define MX2_NF_ECCMAINPOS (MX2_NF_BASE_ADDR + 0xe0e)
#define MX2_NF_ECCSPAREPOS (MX2_NF_BASE_ADDR + 0xe10)
#define MX2_NF_FWP (MX2_NF_BASE_ADDR + 0xe12)
#define MX2_NF_LOCKSTART (MX2_NF_BASE_ADDR + 0xe14)
#define MX2_NF_LOCKEND (MX2_NF_BASE_ADDR + 0xe16)
#define MX2_NF_FWPSTATUS (MX2_NF_BASE_ADDR + 0xe18)
#define MXC_NF_BASE_ADDR 0xd8000000
#define MXC_NF_BUFSIZ (MXC_NF_BASE_ADDR + 0xe00)
#define MXC_NF_BUFADDR (MXC_NF_BASE_ADDR + 0xe04)
#define MXC_NF_FADDR (MXC_NF_BASE_ADDR + 0xe06)
#define MXC_NF_FCMD (MXC_NF_BASE_ADDR + 0xe08)
#define MXC_NF_BUFCFG (MXC_NF_BASE_ADDR + 0xe0a)
#define MXC_NF_ECCSTATUS (MXC_NF_BASE_ADDR + 0xe0c)
#define MXC_NF_ECCMAINPOS (MXC_NF_BASE_ADDR + 0xe0e)
#define MXC_NF_ECCSPAREPOS (MXC_NF_BASE_ADDR + 0xe10)
#define MXC_NF_FWP (MXC_NF_BASE_ADDR + 0xe12)
#define MXC_NF_LOCKSTART (MXC_NF_BASE_ADDR + 0xe14)
#define MXC_NF_LOCKEND (MXC_NF_BASE_ADDR + 0xe16)
#define MXC_NF_FWPSTATUS (MXC_NF_BASE_ADDR + 0xe18)
/*
* all bits not marked as self-clearing bit
*/
#define MX2_NF_CFG1 (MX2_NF_BASE_ADDR + 0xe1a)
#define MX2_NF_CFG2 (MX2_NF_BASE_ADDR + 0xe1c)
#define MXC_NF_CFG1 (MXC_NF_BASE_ADDR + 0xe1a)
#define MXC_NF_CFG2 (MXC_NF_BASE_ADDR + 0xe1c)

#define MX2_NF_MAIN_BUFFER0 (MX2_NF_BASE_ADDR + 0x0000)
#define MX2_NF_MAIN_BUFFER1 (MX2_NF_BASE_ADDR + 0x0200)
#define MX2_NF_MAIN_BUFFER2 (MX2_NF_BASE_ADDR + 0x0400)
#define MX2_NF_MAIN_BUFFER3 (MX2_NF_BASE_ADDR + 0x0600)
#define MX2_NF_SPARE_BUFFER0 (MX2_NF_BASE_ADDR + 0x0800)
#define MX2_NF_SPARE_BUFFER1 (MX2_NF_BASE_ADDR + 0x0810)
#define MX2_NF_SPARE_BUFFER2 (MX2_NF_BASE_ADDR + 0x0820)
#define MX2_NF_SPARE_BUFFER3 (MX2_NF_BASE_ADDR + 0x0830)
#define MX2_NF_MAIN_BUFFER_LEN 512
#define MX2_NF_SPARE_BUFFER_LEN 16
#define MX2_NF_LAST_BUFFER_ADDR ((MX2_NF_SPARE_BUFFER3) + \
MX2_NF_SPARE_BUFFER_LEN - 2)
#define MXC_NF_MAIN_BUFFER0 (MXC_NF_BASE_ADDR + 0x0000)
#define MXC_NF_MAIN_BUFFER1 (MXC_NF_BASE_ADDR + 0x0200)
#define MXC_NF_MAIN_BUFFER2 (MXC_NF_BASE_ADDR + 0x0400)
#define MXC_NF_MAIN_BUFFER3 (MXC_NF_BASE_ADDR + 0x0600)
#define MXC_NF_SPARE_BUFFER0 (MXC_NF_BASE_ADDR + 0x0800)
#define MXC_NF_SPARE_BUFFER1 (MXC_NF_BASE_ADDR + 0x0810)
#define MXC_NF_SPARE_BUFFER2 (MXC_NF_BASE_ADDR + 0x0820)
#define MXC_NF_SPARE_BUFFER3 (MXC_NF_BASE_ADDR + 0x0830)
#define MXC_NF_MAIN_BUFFER_LEN 512
#define MXC_NF_SPARE_BUFFER_LEN 16
#define MXC_NF_LAST_BUFFER_ADDR ((MXC_NF_SPARE_BUFFER3) + \
MXC_NF_SPARE_BUFFER_LEN - 2)

/* bits in MX2_NF_CFG1 register */
#define MX2_NF_BIT_SPARE_ONLY_EN (1<<2)
#define MX2_NF_BIT_ECC_EN (1<<3)
#define MX2_NF_BIT_INT_DIS (1<<4)
#define MX2_NF_BIT_BE_EN (1<<5)
#define MX2_NF_BIT_RESET_EN (1<<6)
#define MX2_NF_BIT_FORCE_CE (1<<7)
/* bits in MXC_NF_CFG1 register */
#define MXC_NF_BIT_SPARE_ONLY_EN (1<<2)
#define MXC_NF_BIT_ECC_EN (1<<3)
#define MXC_NF_BIT_INT_DIS (1<<4)
#define MXC_NF_BIT_BE_EN (1<<5)
#define MXC_NF_BIT_RESET_EN (1<<6)
#define MXC_NF_BIT_FORCE_CE (1<<7)

/* bits in MX2_NF_CFG2 register */
/* bits in MXC_NF_CFG2 register */

/*Flash Command Input*/
#define MX2_NF_BIT_OP_FCI (1<<0)
#define MXC_NF_BIT_OP_FCI (1<<0)
/*
* Flash Address Input
*/
#define MX2_NF_BIT_OP_FAI (1<<1)
#define MXC_NF_BIT_OP_FAI (1<<1)
/*
* Flash Data Input
*/
#define MX2_NF_BIT_OP_FDI (1<<2)
#define MXC_NF_BIT_OP_FDI (1<<2)

/* see "enum mx_dataout_type" below */
#define MX2_NF_BIT_DATAOUT_TYPE(x) ((x)<<3)
#define MX2_NF_BIT_OP_DONE (1<<15)
#define MXC_NF_BIT_DATAOUT_TYPE(x) ((x)<<3)
#define MXC_NF_BIT_OP_DONE (1<<15)

#define MX2_CCM_CGR2 0x53f80028
#define MX2_GPR 0x43fac008
/*#define MX2_PCSR 0x53f8000c*/
#define MX2_FMCR 0x10027814
#define MX2_FMCR_NF_16BIT_SEL (1<<4)
#define MX2_FMCR_NF_FMS (1<<5)
#define MXC_CCM_CGR2 0x53f80028
#define MXC_GPR 0x43fac008
/*#define MXC_PCSR 0x53f8000c*/
#define MXC_FMCR 0x10027814
#define MXC_FMCR_NF_16BIT_SEL (1<<4)
#define MXC_FMCR_NF_FMS (1<<5)

enum mx_dataout_type {
MX2_NF_DATAOUT_PAGE = 1,
MX2_NF_DATAOUT_NANDID = 2,
MX2_NF_DATAOUT_NANDSTATUS = 4,
enum mxc_dataout_type {
MXC_NF_DATAOUT_PAGE = 1,
MXC_NF_DATAOUT_NANDID = 2,
MXC_NF_DATAOUT_NANDSTATUS = 4,
};

enum mx_nf_finalize_action {
MX2_NF_FIN_NONE,
MX2_NF_FIN_DATAOUT,
enum mxc_nf_finalize_action {
MXC_NF_FIN_NONE,
MXC_NF_FIN_DATAOUT,
};

struct mx2_nf_flags {
struct mxc_nf_flags {
unsigned host_little_endian:1;
unsigned target_little_endian:1;
unsigned nand_readonly:1;
@@ -110,8 +110,8 @@ struct mx2_nf_flags {
unsigned hw_ecc_enabled:1;
};

struct mx2_nf_controller {
enum mx_dataout_type optype;
enum mx_nf_finalize_action fin;
struct mx2_nf_flags flags;
struct mxc_nf_controller {
enum mxc_dataout_type optype;
enum mxc_nf_finalize_action fin;
struct mxc_nf_flags flags;
};

+ 1
- 1
tcl/board/tx27_stk5.cfg View File

@@ -61,4 +61,4 @@ proc tx27_init { } {
nand probe 0
}

nand device tx27.nand imx27 $_TARGETNAME hwecc
nand device tx27.nand mxc $_TARGETNAME hwecc

Loading…
Cancel
Save