Browse Source

- ST STM32x cortex support added

- ST STM32x flash support added
- cleaned up armv7m and cortex-m3 support, removed luminary specific code
- cortex-m3 16bit read/write added (required for STM32x flash programming)

git-svn-id: svn://svn.berlios.de/openocd/trunk@177 b42882b7-edfa-0310-969c-e2dbd0fdcd60
tags/v0.1.0
ntfreak 17 years ago
parent
commit
8c290412d2
13 changed files with 1271 additions and 321 deletions
  1. +4
    -2
      src/flash/Makefile.am
  2. +2
    -0
      src/flash/flash.c
  3. +859
    -0
      src/flash/stm32x.c
  4. +84
    -0
      src/flash/stm32x.h
  5. +1
    -1
      src/target/arm_disassembler.c
  6. +23
    -33
      src/target/armv7m.c
  7. +8
    -7
      src/target/armv7m.h
  8. +4
    -2
      src/target/breakpoints.c
  9. +113
    -144
      src/target/cortex_m3.c
  10. +3
    -6
      src/target/cortex_m3.h
  11. +158
    -117
      src/target/cortex_swjdp.c
  12. +10
    -9
      src/target/cortex_swjdp.h
  13. +2
    -0
      src/target/target.c

+ 4
- 2
src/flash/Makefile.am View File

@@ -1,5 +1,7 @@
INCLUDES = -I$(top_srcdir)/src/helper -I$(top_srcdir)/src/jtag -I$(top_srcdir)/src/target $(all_includes)
METASOURCES = AUTO
noinst_LIBRARIES = libflash.a
libflash_a_SOURCES = flash.c lpc2000.c cfi.c non_cfi.c at91sam7.c str7x.c str9x.c nand.c lpc3180_nand_controller.c stellaris.c str9xpec.c
noinst_HEADERS = flash.h lpc2000.h cfi.h non_cfi.h at91sam7.h str7x.h str9x.h nand.h lpc3180_nand_controller.h stellaris.h str9xpec.h
libflash_a_SOURCES = flash.c lpc2000.c cfi.c non_cfi.c at91sam7.c str7x.c str9x.c nand.c lpc3180_nand_controller.c \
stellaris.c str9xpec.c stm32x.c
noinst_HEADERS = flash.h lpc2000.h cfi.h non_cfi.h at91sam7.h str7x.h str9x.h nand.h lpc3180_nand_controller.h \
stellaris.h str9xpec.h stm32x.h

+ 2
- 0
src/flash/flash.c View File

@@ -57,6 +57,7 @@ extern flash_driver_t str7x_flash;
extern flash_driver_t str9x_flash;
extern flash_driver_t stellaris_flash;
extern flash_driver_t str9xpec_flash;
extern flash_driver_t stm32x_flash;

flash_driver_t *flash_drivers[] =
{
@@ -67,6 +68,7 @@ flash_driver_t *flash_drivers[] =
&str9x_flash,
&stellaris_flash,
&str9xpec_flash,
&stm32x_flash,
NULL,
};



+ 859
- 0
src/flash/stm32x.c View File

@@ -0,0 +1,859 @@
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "replacements.h"

#include "stm32x.h"
#include "flash.h"
#include "target.h"
#include "log.h"
#include "armv7m.h"
#include "algorithm.h"
#include "binarybuffer.h"

#include <stdlib.h>
#include <string.h>

int stm32x_register_commands(struct command_context_s *cmd_ctx);
int stm32x_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank);
int stm32x_erase(struct flash_bank_s *bank, int first, int last);
int stm32x_protect(struct flash_bank_s *bank, int set, int first, int last);
int stm32x_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count);
int stm32x_probe(struct flash_bank_s *bank);
int stm32x_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int stm32x_protect_check(struct flash_bank_s *bank);
int stm32x_erase_check(struct flash_bank_s *bank);
int stm32x_info(struct flash_bank_s *bank, char *buf, int buf_size);

int stm32x_handle_lock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int stm32x_handle_unlock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int stm32x_handle_options_read_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int stm32x_handle_options_write_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int stm32x_handle_mass_erase_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);

flash_driver_t stm32x_flash =
{
.name = "stm32x",
.register_commands = stm32x_register_commands,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.probe = stm32x_probe,
.erase_check = stm32x_erase_check,
.protect_check = stm32x_protect_check,
.info = stm32x_info
};

int stm32x_register_commands(struct command_context_s *cmd_ctx)
{
command_t *stm32x_cmd = register_command(cmd_ctx, NULL, "stm32x", NULL, COMMAND_ANY, "stm32x flash specific commands");
register_command(cmd_ctx, stm32x_cmd, "lock", stm32x_handle_lock_command, COMMAND_EXEC,
"lock device");
register_command(cmd_ctx, stm32x_cmd, "unlock", stm32x_handle_unlock_command, COMMAND_EXEC,
"unlock protected device");
register_command(cmd_ctx, stm32x_cmd, "mass_erase", stm32x_handle_mass_erase_command, COMMAND_EXEC,
"mass erase device");
register_command(cmd_ctx, stm32x_cmd, "options_read", stm32x_handle_options_read_command, COMMAND_EXEC,
"read device option bytes");
register_command(cmd_ctx, stm32x_cmd, "options_write", stm32x_handle_options_write_command, COMMAND_EXEC,
"write device option bytes");
return ERROR_OK;
}

int stm32x_build_block_list(struct flash_bank_s *bank)
{
int i;
int num_sectors = 0;
switch (bank->size)
{
case 32 * 1024:
num_sectors = 32;
break;
case 64 * 1024:
num_sectors = 64;
break;
case 128 * 1024:
num_sectors = 128;
break;
default:
ERROR("BUG: unknown bank->size encountered");
exit(-1);
}
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(flash_sector_t) * num_sectors);
for (i = 0; i < num_sectors; i++)
{
bank->sectors[i].offset = i * 1024;
bank->sectors[i].size = 1024;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
return ERROR_OK;
}

/* flash bank stm32x <base> <size> 0 0 <target#>
*/
int stm32x_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank)
{
stm32x_flash_bank_t *stm32x_info;
if (argc < 6)
{
WARNING("incomplete flash_bank stm32x configuration");
return ERROR_FLASH_BANK_INVALID;
}
stm32x_info = malloc(sizeof(stm32x_flash_bank_t));
bank->driver_priv = stm32x_info;
if (bank->base != 0x08000000)
{
WARNING("overriding flash base address for STM32x device with 0x08000000");
bank->base = 0x08000000;
}
stm32x_info->target = get_target_by_num(strtoul(args[5], NULL, 0));
if (!stm32x_info->target)
{
ERROR("no target '%s' configured", args[5]);
exit(-1);
}

stm32x_build_block_list(bank);
stm32x_info->write_algorithm = NULL;
return ERROR_OK;
}

u32 stm32x_get_flash_status(flash_bank_t *bank)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
u32 status;
target_read_u32(target, STM32_FLASH_SR, &status);
return status;
}

u32 stm32x_wait_status_busy(flash_bank_t *bank, int timeout)
{
u32 status;
/* wait for busy to clear */
while (((status = stm32x_get_flash_status(bank)) & FLASH_BSY) && (timeout-- > 0))
{
DEBUG("status: 0x%x", status);
usleep(1000);
}
return status;
}

int stm32x_blank_check(struct flash_bank_s *bank, int first, int last)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
u8 *buffer;
int i;
int nBytes;
if ((first < 0) || (last > bank->num_sectors))
return ERROR_FLASH_SECTOR_INVALID;

if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
buffer = malloc(256);
for (i = first; i <= last; i++)
{
bank->sectors[i].is_erased = 1;

target->type->read_memory(target, bank->base + bank->sectors[i].offset, 4, 256/4, buffer);
for (nBytes = 0; nBytes < 256; nBytes++)
{
if (buffer[nBytes] != 0xFF)
{
bank->sectors[i].is_erased = 0;
break;
}
}
}
free(buffer);

return ERROR_OK;
}

int stm32x_protect_check(struct flash_bank_s *bank)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
u32 protection;
int i, s;

if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}

/* each bit refers to a 4bank protection */
target_read_u32(target, STM32_FLASH_WRPR, &protection);
for (i = 0; i < 32; i++)
{
int set = 1;
if( protection & (1 << i))
set = 0;
for (s = 0; s < 4; s++)
bank->sectors[(i * 4) + s].is_protected = set;
}

return ERROR_OK;
}

int stm32x_erase(struct flash_bank_s *bank, int first, int last)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
int i;
u32 status;
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
for (i = first; i <= last; i++)
{
target_write_u32(target, STM32_FLASH_CR, FLASH_PER);
target_write_u32(target, STM32_FLASH_AR, bank->base + bank->sectors[i].offset);
target_write_u32(target, STM32_FLASH_CR, FLASH_PER|FLASH_STRT);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
bank->sectors[i].is_erased = 1;
}

target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}

int stm32x_protect(struct flash_bank_s *bank, int set, int first, int last)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}

return ERROR_OK;
}

int stm32x_write_block(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
u32 buffer_size = 8192;
working_area_t *source;
u32 address = bank->base + offset;
reg_param_t reg_params[6];
armv7m_algorithm_t armv7m_info;
int retval = ERROR_OK;
u8 stm32x_flash_write_code[] = {
/* write: */
0xDF, 0xF8, 0x24, 0x40, /* ldr r4, STM32_FLASH_CR */
0x09, 0x4D, /* ldr r5, STM32_FLASH_SR */
0x4F, 0xF0, 0x01, 0x03, /* mov r3, #1 */
0x23, 0x60, /* str r3, [r4, #0] */
0x30, 0xF8, 0x02, 0x3B, /* ldrh r3, [r0], #2 */
0x21, 0xF8, 0x02, 0x3B, /* strh r3, [r1], #2 */
/* busy: */
0x2B, 0x68, /* ldr r3, [r5, #0] */
0x13, 0xF0, 0x01, 0x0F, /* tst r3, #0x01 */
0xFB, 0xD0, /* beq busy */
0x13, 0xF0, 0x14, 0x0F, /* tst r3, #0x14 */
0x01, 0xD1, /* bne exit */
0x01, 0x3A, /* subs r2, r2, #1 */
0xED, 0xD1, /* bne write */
/* exit: */
0xFE, 0xE7, /* b exit */
0x10, 0x20, 0x02, 0x40, /* STM32_FLASH_CR: .word 0x40022010 */
0x0C, 0x20, 0x02, 0x40 /* STM32_FLASH_SR: .word 0x4002200C */
};
/* flash write code */
if (!stm32x_info->write_algorithm)
{
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), &stm32x_info->write_algorithm) != ERROR_OK)
{
WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
target_write_buffer(target, stm32x_info->write_algorithm->address, sizeof(stm32x_flash_write_code), stm32x_flash_write_code);
}

/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
if (buffer_size <= 256)
{
/* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
if (stm32x_info->write_algorithm)
target_free_working_area(target, stm32x_info->write_algorithm);
WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;
armv7m_info.core_state = ARMV7M_STATE_THUMB;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_IN);
init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
while (count > 0)
{
u32 thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count;
target_write_buffer(target, source->address, thisrun_count * 2, buffer);
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
if ((retval = target->type->run_algorithm(target, 0, NULL, 6, reg_params, stm32x_info->write_algorithm->address, \
stm32x_info->write_algorithm->address + (sizeof(stm32x_flash_write_code) - 10), 10000, &armv7m_info)) != ERROR_OK)
{
ERROR("error executing str7x flash write algorithm");
break;
}
if (buf_get_u32(reg_params[3].value, 0, 32) & 0x14)
{
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count * 2;
address += thisrun_count * 2;
count -= thisrun_count;
}
target_free_working_area(target, source);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
return retval;
}

int stm32x_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
u32 words_remaining = (count / 2);
u32 bytes_remaining = (count & 0x00000001);
u32 address = bank->base + offset;
u32 bytes_written = 0;
u8 status;
u32 retval;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1)
{
WARNING("offset 0x%x breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* multiple half words (2-byte) to be programmed? */
if (words_remaining > 0)
{
/* try using a block write */
if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK)
{
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{
/* if block write failed (no sufficient working area),
* we use normal (slow) single dword accesses */
WARNING("couldn't use block writes, falling back to single memory accesses");
}
else if (retval == ERROR_FLASH_OPERATION_FAILED)
{
ERROR("flash writing failed with error code: 0x%x", retval);
return ERROR_FLASH_OPERATION_FAILED;
}
}
else
{
buffer += words_remaining * 2;
address += words_remaining * 2;
words_remaining = 0;
}
}

while (words_remaining > 0)
{
target_write_u32(target, STM32_FLASH_CR, FLASH_PG);
target_write_u16(target, address, *(u16*)(buffer + bytes_written));
status = stm32x_wait_status_busy(bank, 5);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;

bytes_written += 2;
words_remaining--;
address += 2;
}
if (bytes_remaining)
{
u8 last_halfword[2] = {0xff, 0xff};
int i = 0;
while(bytes_remaining > 0)
{
last_halfword[i++] = *(buffer + bytes_written);
bytes_remaining--;
bytes_written++;
}
target_write_u32(target, STM32_FLASH_CR, FLASH_PG);
target_write_u16(target, address, *(u16*)last_halfword);
status = stm32x_wait_status_busy(bank, 5);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
}
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}

int stm32x_probe(struct flash_bank_s *bank)
{
return ERROR_OK;
}

int stm32x_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
return ERROR_OK;
}

int stm32x_erase_check(struct flash_bank_s *bank)
{
return stm32x_blank_check(bank, 0, bank->num_sectors - 1);
}

int stm32x_info(struct flash_bank_s *bank, char *buf, int buf_size)
{
snprintf(buf, buf_size, "stm32x flash driver info" );
return ERROR_OK;
}

int stm32x_handle_lock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
flash_bank_t *bank;
u32 status;
target_t *target = NULL;
stm32x_flash_bank_t *stm32x_info = NULL;
if (argc < 1)
{
command_print(cmd_ctx, "stm32x lock <bank>");
return ERROR_OK;
}
bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!bank)
{
command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
stm32x_info = bank->driver_priv;
target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1);
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2);
/* erase option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER|FLASH_OPTWRE);
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER|FLASH_STRT|FLASH_OPTWRE);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
/* program option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTPG|FLASH_OPTWRE);
/* set readout protection */
target_write_u16(target, STM32_OB_ADR, 0);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
command_print(cmd_ctx, "stm32x locked");
return ERROR_OK;
}

int stm32x_handle_unlock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
flash_bank_t *bank;
u32 status;
target_t *target = NULL;
stm32x_flash_bank_t *stm32x_info = NULL;
if (argc < 1)
{
command_print(cmd_ctx, "stm32x unlock <bank>");
return ERROR_OK;
}
bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!bank)
{
command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
stm32x_info = bank->driver_priv;
target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1);
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2);
/* erase option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER|FLASH_OPTWRE);
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER|FLASH_STRT|FLASH_OPTWRE);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
/* program option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTPG|FLASH_OPTWRE);
/* clear readout protection and complementary option bytes */
target_write_u16(target, STM32_OB_ADR, 0x5AA5);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
command_print(cmd_ctx, "stm32x unlocked");
return ERROR_OK;
}

int stm32x_handle_options_read_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
flash_bank_t *bank;
u32 optionbyte;
target_t *target = NULL;
stm32x_flash_bank_t *stm32x_info = NULL;
if (argc < 1)
{
command_print(cmd_ctx, "stm32x options_read <bank>");
return ERROR_OK;
}
bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!bank)
{
command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
stm32x_info = bank->driver_priv;
target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
//target_read_u32(target, STM32_OB_ADR, &optionbyte);
//command_print(cmd_ctx, "Option Byte 0: 0x%x", optionbyte);
//target_read_u32(target, STM32_OB_ADR+4, &optionbyte);
//command_print(cmd_ctx, "Option Byte 1: 0x%x", optionbyte);
//target_read_u32(target, STM32_OB_ADR+8, &optionbyte);
//command_print(cmd_ctx, "Option Byte 2: 0x%x", optionbyte);
//target_read_u32(target, STM32_OB_ADR+12, &optionbyte);
//command_print(cmd_ctx, "Option Byte 3: 0x%x", optionbyte);
target_read_u32(target, STM32_FLASH_OBR, &optionbyte);
command_print(cmd_ctx, "Option Byte: 0x%x", optionbyte);
if (buf_get_u32((u8*)&optionbyte, OPT_ERROR, 1))
command_print(cmd_ctx, "Option Byte Complement Error");
if (buf_get_u32((u8*)&optionbyte, OPT_READOUT, 1))
command_print(cmd_ctx, "Readout Protection On");
else
command_print(cmd_ctx, "Readout Protection Off");
if (buf_get_u32((u8*)&optionbyte, OPT_RDWDGSW, 1))
command_print(cmd_ctx, "Software Watchdog");
else
command_print(cmd_ctx, "Hardware Watchdog");
if (buf_get_u32((u8*)&optionbyte, OPT_RDRSTSTOP, 1))
command_print(cmd_ctx, "Stop: No reset generated");
else
command_print(cmd_ctx, "Stop: Reset generated");
if (buf_get_u32((u8*)&optionbyte, OPT_RDRSTSTDBY, 1))
command_print(cmd_ctx, "Standby: No reset generated");
else
command_print(cmd_ctx, "Standby: Reset generated");
return ERROR_OK;
}

int stm32x_handle_options_write_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
flash_bank_t *bank;
target_t *target = NULL;
stm32x_flash_bank_t *stm32x_info = NULL;
u16 optionbyte = 0xF8;
u32 status;
if (argc < 4)
{
command_print(cmd_ctx, "stm32x options_write <bank> <RSTSTNDBY|NORSTSTNDBY> <RSTSTOP|NORSTSTOP> <SWWDG|HWWDG>");
return ERROR_OK;
}
bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!bank)
{
command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
stm32x_info = bank->driver_priv;
target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
if (strcmp(args[1], "SWWDG") == 0)
{
optionbyte |= (1<<0);
}
else
{
optionbyte &= ~(1<<0);
}
if (strcmp(args[2], "NORSTSTNDBY") == 0)
{
optionbyte |= (1<<1);
}
else
{
optionbyte &= ~(1<<1);
}
if (strcmp(args[3], "NORSTSTOP") == 0)
{
optionbyte |= (1<<2);
}
else
{
optionbyte &= ~(1<<2);
}
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1);
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2);
/* program option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTPG|FLASH_OPTWRE);
/* write option byte */
target_write_u16(target, STM32_OB_ADR + 2, optionbyte);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}

int stm32x_handle_mass_erase_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
flash_bank_t *bank;
u32 status;
target_t *target = NULL;
stm32x_flash_bank_t *stm32x_info = NULL;
if (argc < 1)
{
command_print(cmd_ctx, "stm32x mass_erase <bank>");
return ERROR_OK;
}
bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!bank)
{
command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
stm32x_info = bank->driver_priv;
target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* mass erase flash memory */
target_write_u32(target, STM32_FLASH_CR, FLASH_MER);
target_write_u32(target, STM32_FLASH_CR, FLASH_MER|FLASH_STRT);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}

+ 84
- 0
src/flash/stm32x.h View File

@@ -0,0 +1,84 @@
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef STM32X_H
#define STM32X_H

#include "flash.h"
#include "target.h"

typedef struct stm32x_flash_bank_s
{
struct target_s *target;
working_area_t *write_algorithm;
} stm32x_flash_bank_t;

/* stm32x register locations */

#define STM32_FLASH_ACR 0x40022000
#define STM32_FLASH_KEYR 0x40022004
#define STM32_FLASH_OPTKEYR 0x40022008
#define STM32_FLASH_SR 0x4002200C
#define STM32_FLASH_CR 0x40022010
#define STM32_FLASH_AR 0x40022014
#define STM32_FLASH_OBR 0x4002201C
#define STM32_FLASH_WRPR 0x40022020

/* option byte location */

#define STM32_OB_ADR 0x1FFFF800

/* FLASH_CR register bits */

#define FLASH_PG (1<<0)
#define FLASH_PER (1<<1)
#define FLASH_MER (1<<2)
#define FLASH_OPTPG (1<<4)
#define FLASH_OPTER (1<<5)
#define FLASH_STRT (1<<6)
#define FLASH_LOCK (1<<7)
#define FLASH_OPTWRE (1<<9)

/* FLASH_SR regsiter bits */

#define FLASH_BSY (1<<0)
#define FLASH_PGERR (1<<2)
#define FLASH_WRPRTERR (1<<4)
#define FLASH_EOP (1<<5)

/* STM32_FLASH_OBR bit definitions (reading) */

#define OPT_ERROR 0
#define OPT_READOUT 1
#define OPT_RDWDGSW 2
#define OPT_RDRSTSTOP 3
#define OPT_RDRSTSTDBY 4

/* register unlock keys */

#define KEY1 0x45670123
#define KEY2 0xCDEF89AB

typedef struct stm32x_mem_layout_s {
u32 sector_start;
u32 sector_size;
} stm32x_mem_layout_t;

#endif /* STM32X_H */


+ 1
- 1
src/target/arm_disassembler.c View File

@@ -346,7 +346,7 @@ int evaluate_load_store(u32 opcode, u32 address, arm_instruction_t *instruction)
if (offset_12)
snprintf(offset, 32, ", #%s0x%x", (U) ? "" : "-", offset_12);
else
snprintf(offset, 32, "");
snprintf(offset, 32, "%s", "");
instruction->info.load_store.offset_mode = 0;
instruction->info.load_store.offset.offset = offset_12;


+ 23
- 33
src/target/armv7m.c View File

@@ -129,8 +129,10 @@ enum armv7m_runcontext armv7m_get_context(target_t *target)
/* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info;
if (armv7m->process_context == armv7m->core_cache) return ARMV7M_PROCESS_CONTEXT;
if (armv7m->debug_context == armv7m->core_cache) return ARMV7M_DEBUG_CONTEXT;
if (armv7m->process_context == armv7m->core_cache)
return ARMV7M_PROCESS_CONTEXT;
if (armv7m->debug_context == armv7m->core_cache)
return ARMV7M_DEBUG_CONTEXT;
ERROR("Invalid runcontext");
exit(-1);
@@ -177,9 +179,11 @@ int armv7m_use_context(target_t *target, enum armv7m_runcontext new_ctx)
char enamebuf[32];
char *armv7m_exception_string(int number)
{
if ((number<0)|(number>511)) return "Invalid exception";
if (number<16) return armv7m_exception_strings[number];
sprintf(enamebuf,"External Interrupt(%i)",number-16);
if ((number < 0) | (number > 511))
return "Invalid exception";
if (number < 16)
return armv7m_exception_strings[number];
sprintf(enamebuf, "External Interrupt(%i)", number - 16);
return enamebuf;
}

@@ -252,26 +256,22 @@ int armv7m_write_core_reg(struct target_s *target, int num)
if ((num < 0) || (num >= ARMV7NUMCOREREGS))
return ERROR_INVALID_ARGUMENTS;
reg_value = buf_get_u32(armv7m->core_cache->reg_list[num].value, 0, 32);
armv7m_core_reg = armv7m->core_cache->reg_list[num].arch_info;
retval = armv7m->store_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, reg_value);
if (retval != ERROR_OK)
{
ERROR("JTAG failure");
armv7m->core_cache->reg_list[num].dirty=1;
return ERROR_JTAG_DEVICE_ERROR;
ERROR("JTAG failure");
armv7m->core_cache->reg_list[num].dirty=1;
return ERROR_JTAG_DEVICE_ERROR;
}
DEBUG("write core reg %i value 0x%x",num ,reg_value);
armv7m->core_cache->reg_list[num].valid=1;
armv7m->core_cache->reg_list[num].dirty=0;
return ERROR_OK;
}



int armv7m_invalidate_core_regs(target_t *target)
{
/* get pointers to arch-specific information */
@@ -287,14 +287,12 @@ int armv7m_invalidate_core_regs(target_t *target)
return ERROR_OK;
}


int armv7m_get_gdb_reg_list(target_t *target, reg_t **reg_list[], int *reg_list_size)
{
/* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info;
int i;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
@@ -306,7 +304,7 @@ int armv7m_get_gdb_reg_list(target_t *target, reg_t **reg_list[], int *reg_list_
/* TODOLATER correct list of registers, names ? */
for (i = 0; i < *reg_list_size; i++)
{
if (i<ARMV7NUMCOREREGS)
if (i < ARMV7NUMCOREREGS)
(*reg_list)[i] = &armv7m->process_context->reg_list[i];
//(*reg_list)[i] = &armv7m->core_cache->reg_list[i];
else
@@ -382,7 +380,7 @@ int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem_param_
armv7m_set_core_reg(reg, reg_params[i].value);
}
/* ARMV7M always runs in Tumb state */
/* ARMV7M always runs in Thumb state */
exit_breakpoint_size = 2;
if ((retval = breakpoint_add(target, exit_point, exit_breakpoint_size, BKPT_SOFT)) != ERROR_OK)
{
@@ -415,7 +413,7 @@ int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem_param_
}
}
armv7m->load_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 15, &pc);
DEBUG("failed algoritm halted at 0x%x ",pc);
DEBUG("failed algoritm halted at 0x%x ", pc);
retval = ERROR_TARGET_TIMEOUT;
}
}
@@ -450,7 +448,7 @@ int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem_param_
exit(-1);
}
armv7m_core_reg_t * armv7m_core_reg = reg->arch_info;
armv7m_core_reg_t *armv7m_core_reg = reg->arch_info;
//armv7m->load_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, &regvalue);
//buf_set_u32(reg_params[i].value, 0, 32, regvalue);
buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
@@ -464,11 +462,9 @@ int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem_param_
// armv7m->core_cache->reg_list[i].dirty = 1;
//}

// ????armv7m->core_state = core_state;
// ????armv7m->core_mode = core_mode;


return retval;
}

@@ -478,20 +474,19 @@ int armv7m_arch_state(struct target_s *target, char *buf, int buf_size)
armv7m_common_t *armv7m = target->arch_info;
snprintf(buf, buf_size,
"target halted in %s state due to %s, current mode: %s %s\nxPSR: 0x%8.8x pc: 0x%8.8x",
armv7m_state_strings[armv7m->core_state],
target_debug_reason_strings[target->debug_reason],
armv7m_mode_strings[armv7m->core_mode],
armv7m_exception_string(armv7m->exception_number),
buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32),
buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32));
"target halted in %s state due to %s, current mode: %s %s\nxPSR: 0x%8.8x pc: 0x%8.8x",
armv7m_state_strings[armv7m->core_state],
target_debug_reason_strings[target->debug_reason],
armv7m_mode_strings[armv7m->core_mode],
armv7m_exception_string(armv7m->exception_number),
buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32),
buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32));
return ERROR_OK;
}

reg_cache_t *armv7m_build_reg_cache(target_t *target)
{

/* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info;
arm_jtag_t *jtag_info = &armv7m->jtag_info;
@@ -560,16 +555,13 @@ reg_cache_t *armv7m_build_reg_cache(target_t *target)

int armv7m_init_target(struct command_context_s *cmd_ctx, struct target_s *target)
{
armv7m_build_reg_cache(target);
return ERROR_OK;
}

int armv7m_init_arch_info(target_t *target, armv7m_common_t *armv7m)
{

/* register arch-specific functions */
target->arch_info = armv7m;
@@ -580,11 +572,9 @@ int armv7m_init_arch_info(target_t *target, armv7m_common_t *armv7m)
return ERROR_OK;
}


int armv7m_register_commands(struct command_context_s *cmd_ctx)
{
int retval;
return ERROR_OK;

}

+ 8
- 7
src/target/armv7m.h View File

@@ -26,7 +26,6 @@
#include "target.h"
#include "arm_jtag.h"


enum armv7m_mode
{
ARMV7M_MODE_HANDLER = 0,
@@ -56,17 +55,18 @@ enum armv7m_runcontext
};

extern char* armv7m_state_strings[];
extern char* armv7m_exception_strings[];

//#define ARMV7NUMCOREREGS 23
extern char *armv7m_exception_string(int number);

/* offsets into armv7m core register cache */
enum
{
ARMV7M_PC = 15,
ARMV7M_xPSR = 16,
ARMV7M_MSP ,
ARMV7M_PSP ,
ARMV7M_PRIMASK ,
ARMV7M_MSP,
ARMV7M_PSP,
ARMV7M_PRIMASK,
ARMV7M_BASEPRI,
ARMV7M_FAULTMASK,
ARMV7M_CONTROL,
@@ -163,8 +163,9 @@ extern int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem

extern int armv7m_invalidate_core_regs(target_t *target);



extern enum armv7m_runcontext armv7m_get_context(target_t *target);
extern int armv7m_use_context(target_t *target, enum armv7m_runcontext new_ctx);
extern enum armv7m_runcontext armv7m_get_context(target_t *target);

/* Thumb mode instructions
*/


+ 4
- 2
src/target/breakpoints.c View File

@@ -71,13 +71,15 @@ int breakpoint_add(target_t *target, u32 address, u32 length, enum breakpoint_ty
{
case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
INFO("can't add %s breakpoint, resource not available", breakpoint_type_strings[(*breakpoint_p)->type]);
free (*breakpoint_p);
free((*breakpoint_p)->orig_instr);
free(*breakpoint_p);
*breakpoint_p = NULL;
return retval;
break;
case ERROR_TARGET_NOT_HALTED:
INFO("can't add breakpoint while target is running");
free (*breakpoint_p);
free((*breakpoint_p)->orig_instr);
free(*breakpoint_p);
*breakpoint_p = NULL;
return retval;
break;


+ 113
- 144
src/target/cortex_m3.c View File

@@ -28,6 +28,7 @@
#include "replacements.h"

#include "cortex_m3.h"
#include "armv7m.h"

#include "register.h"
#include "target.h"
@@ -88,7 +89,6 @@ target_type_t cortexm3_target =

int cortex_m3_clear_halt(target_t *target)
{

/* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info;
cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
@@ -110,11 +110,11 @@ int cortex_m3_single_step_core(target_t *target)
cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
swjdp_common_t *swjdp = &cortex_m3->swjdp_info;

if (!(cortex_m3->dcb_dhcsr&C_MASKINTS))
if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN );
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN );
cortex_m3->dcb_dhcsr |= C_MASKINTS;
DEBUG("");
DEBUG(" ");
cortex_m3_clear_halt(target);
return ERROR_OK;
@@ -134,7 +134,7 @@ int cortex_m3_exec_opcode(target_t *target,u32 opcode, int len /* MODE, r0_inval
ahbap_write_system_u32(swjdp, 0x20000000, opcode);
ahbap_write_coreregister_u32(swjdp, 0x20000000, 15);
cortex_m3_single_step_core(target);
armv7m->core_cache->reg_list[15].dirty=1;
armv7m->core_cache->reg_list[15].dirty = 1;
retvalue = ahbap_write_system_atomic_u32(swjdp, 0x20000000, savedram);
}
@@ -162,15 +162,15 @@ int cortex_m3_endreset_event(target_t *target)
cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
swjdp_common_t *swjdp = &cortex_m3->swjdp_info;
cortex_m3_fp_comparator_t *fp_list = cortex_m3->fp_comparator_list;
cortex_m3_dwt_comparator_t * dwt_list = cortex_m3->dwt_comparator_list;
cortex_m3_dwt_comparator_t *dwt_list = cortex_m3->dwt_comparator_list;

DEBUG("");
DEBUG(" ");
/* Enable debug requests */
ahbap_read_system_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
if (!(cortex_m3->dcb_dhcsr&C_DEBUGEN))
ahbap_write_system_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN );
/* Enable trace and dwt */
ahbap_write_system_u32(swjdp, DCB_DEMCR, TRCENA|VC_HARDERR|VC_BUSERR|VC_CORERESET );
ahbap_write_system_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET );
/* Monitor bus faults */
ahbap_write_system_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA );

@@ -178,17 +178,17 @@ int cortex_m3_endreset_event(target_t *target)
target_write_u32(target, FP_CTRL, 3);

/* Restore FPB registers */
for (i=0;i<cortex_m3->fp_num_code+cortex_m3->fp_num_lit;i++)
for ( i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
{
target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
}
/* Restore DWT registers */
for (i=0;i<cortex_m3->dwt_num_comp;i++)
for ( i = 0; i < cortex_m3->dwt_num_comp; i++)
{
target_write_u32(target, dwt_list[i].dwt_comparator_address, dwt_list[i].comp);
target_write_u32(target, dwt_list[i].dwt_comparator_address|0x4, dwt_list[i].mask);
target_write_u32(target, dwt_list[i].dwt_comparator_address|0x8, dwt_list[i].function);
target_write_u32(target, dwt_list[i].dwt_comparator_address | 0x4, dwt_list[i].mask);
target_write_u32(target, dwt_list[i].dwt_comparator_address | 0x8, dwt_list[i].function);
}
/* Make sure working_areas are all free */
@@ -211,7 +211,7 @@ int cortex_m3_examine_debug_reason(target_t *target)
/* only check the debug reason if we don't know it already */
if ((target->debug_reason != DBG_REASON_DBGRQ)
&& (target->debug_reason != DBG_REASON_SINGLESTEP))
&& (target->debug_reason != DBG_REASON_SINGLESTEP))
{

/* INCOPMPLETE */
@@ -231,7 +231,7 @@ int cortex_m3_examine_debug_reason(target_t *target)

int cortex_m3_examine_exception_reason(target_t *target)
{
u32 shcsr,except_sr,cfsr=-1,except_ar=-1;
u32 shcsr, except_sr, cfsr = -1, except_ar = -1;

/* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info;
@@ -245,7 +245,7 @@ int cortex_m3_examine_exception_reason(target_t *target)
break;
case 3: /* Hard Fault */
ahbap_read_system_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
if (except_sr&0x40000000)
if (except_sr & 0x40000000)
{
ahbap_read_system_u32(swjdp, NVIC_CFSR, &cfsr);
}
@@ -262,28 +262,24 @@ int cortex_m3_examine_exception_reason(target_t *target)
ahbap_read_system_u32(swjdp, NVIC_CFSR, &except_sr);
break;
case 11: /* SVCall */
break;
case 12: /* Debug Monitor */
ahbap_read_system_u32(swjdp, NVIC_DFSR, &except_sr);
break;
case 14: /* PendSV */
break;
case 15: /* SysTick */
break;
default:
except_sr = 0;
break;
}
swjdp_transaction_endcheck(swjdp);
DEBUG("%s SHCSR 0x%x, SR 0x%x, CFSR 0x%x, AR 0x%x",armv7m_exception_string(armv7m->exception_number),shcsr,except_sr,cfsr, except_ar);
DEBUG("%s SHCSR 0x%x, SR 0x%x, CFSR 0x%x, AR 0x%x", armv7m_exception_string(armv7m->exception_number), \
shcsr, except_sr, cfsr, except_ar);
return ERROR_OK;
}


int cortex_m3_debug_entry(target_t *target)
{
int i, irq_is_pending;
@@ -295,7 +291,7 @@ int cortex_m3_debug_entry(target_t *target)
cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
swjdp_common_t *swjdp = &cortex_m3->swjdp_info;

DEBUG("");
DEBUG(" ");
if (armv7m->pre_debug_entry)
armv7m->pre_debug_entry(target);

@@ -316,10 +312,10 @@ int cortex_m3_debug_entry(target_t *target)
xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32);
/* For IT instructions xPSR must be reloaded on resume and clear on debug exec*/
if (xPSR&0xf00)
if (xPSR & 0xf00)
{
armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR&~0xff);
cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
}


@@ -333,14 +329,14 @@ int cortex_m3_debug_entry(target_t *target)
#endif

/* Are we in an exception handler */
armv7m->core_mode = (xPSR&0x1FF)?ARMV7M_MODE_HANDLER:ARMV7M_MODE_THREAD;
armv7m->exception_number = xPSR&0x1FF;;
armv7m->core_mode = (xPSR & 0x1FF) ? ARMV7M_MODE_HANDLER : ARMV7M_MODE_THREAD;
armv7m->exception_number = xPSR & 0x1FF;
if (armv7m->exception_number)
{
cortex_m3_examine_exception_reason(target);
}

DEBUG("entered debug state at PC 0x%x ", *(u32*)(armv7m->core_cache->reg_list[15].value), target_state_strings[target->state]);
DEBUG("entered debug state at PC 0x%x, target->state: %s ", *(u32*)(armv7m->core_cache->reg_list[15].value), target_state_strings[target->state]);

if (armv7m->post_debug_entry)
armv7m->post_debug_entry(target);
@@ -356,7 +352,7 @@ int cortex_m3_restore_context(target_t *target)
armv7m_common_t *armv7m = target->arch_info;
cortex_m3_common_t *cortex_m3 = armv7m->arch_info;

DEBUG("");
DEBUG(" ");

if (armv7m->pre_restore_context)
armv7m->pre_restore_context(target);
@@ -379,7 +375,6 @@ int cortex_m3_restore_context(target_t *target)
return ERROR_OK;
}


enum target_state cortex_m3_poll(target_t *target)
{
int retval;
@@ -425,13 +420,12 @@ enum target_state cortex_m3_poll(target_t *target)
}
if (prev_target_state == TARGET_DEBUG_RUNNING)
{
DEBUG("");
DEBUG(" ");
if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
return retval;

target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
}

}
/*
@@ -439,10 +433,9 @@ enum target_state cortex_m3_poll(target_t *target)
target->state = TARGET_SLEEP;
*/

/* Read Debug Fault Status Register, added to figure out the lockup when running flashtest.script */
ahbap_read_system_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
DEBUG("dcb_dhcsr %x, nvic_dfsr %x, target->state: %s", cortex_m3->dcb_dhcsr, cortex_m3->nvic_dfsr, target_state_strings[target->state]);
DEBUG("dcb_dhcsr %x, nvic_dfsr %x, target->state: %s", cortex_m3->dcb_dhcsr, cortex_m3->nvic_dfsr, target_state_strings[target->state]);
return target->state;
}

@@ -469,8 +462,8 @@ int cortex_m3_soft_reset_halt(struct target_s *target)
armv7m_common_t *armv7m = target->arch_info;
cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
swjdp_common_t *swjdp = &cortex_m3->swjdp_info;
u32 dcb_dhcsr=0;
int retval, timeout=0;
u32 dcb_dhcsr = 0;
int retval, timeout = 0;
/* Check that we are using process_context, or change and print warning */
if (armv7m_get_context(target) != ARMV7M_PROCESS_CONTEXT)
@@ -480,7 +473,7 @@ int cortex_m3_soft_reset_halt(struct target_s *target)
}

/* Enter debug state on reset, cf. end_reset_event() */
ahbap_write_system_u32(swjdp, DCB_DEMCR, TRCENA|VC_HARDERR|VC_BUSERR|VC_CORERESET );
ahbap_write_system_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET );
/* Request a reset */
ahbap_write_system_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET );
@@ -495,14 +488,14 @@ int cortex_m3_soft_reset_halt(struct target_s *target)
if (retval == ERROR_OK)
{
ahbap_read_system_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
if ( (dcb_dhcsr&S_HALT)&&(cortex_m3->nvic_dfsr&DFSR_VCATCH) )
if ((dcb_dhcsr&S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
{
DEBUG("system reset-halted, dcb_dhcsr 0x%x, nvic_dfsr 0x%x",dcb_dhcsr,cortex_m3->nvic_dfsr);
DEBUG("system reset-halted, dcb_dhcsr 0x%x, nvic_dfsr 0x%x", dcb_dhcsr, cortex_m3->nvic_dfsr);
cortex_m3_poll(target);
return ERROR_OK;
}
else
DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%x, %i ms",dcb_dhcsr,timeout);
DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%x, %i ms", dcb_dhcsr, timeout);
}
timeout++;
usleep(1000);
@@ -534,14 +527,12 @@ int cortex_m3_resume(struct target_s *target, int current, u32 address, int hand
WARNING("Incorrect context in resume");
armv7m_use_context(target, ARMV7M_PROCESS_CONTEXT);
}


target_free_all_working_areas(target);
cortex_m3_enable_breakpoints(target);
cortex_m3_enable_watchpoints(target);

/* TODOLATER Interrupt handling/disable for debug execution, cache ... ... */

}
dcb_dhcsr = DBGKEY | C_DEBUGEN;
@@ -562,7 +553,7 @@ int cortex_m3_resume(struct target_s *target, int current, u32 address, int hand
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
/* Make sure we are in Thumb mode */
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32)|(1<<24));
buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1<<24));
}

/* current = 1: continue on current pc, otherwise continue at <address> */
@@ -591,7 +582,7 @@ int cortex_m3_resume(struct target_s *target, int current, u32 address, int hand
}

/* Set/Clear C_MASKINTS in a separate operation */
if ((cortex_m3->dcb_dhcsr&C_MASKINTS) != (dcb_dhcsr&C_MASKINTS))
if ((cortex_m3->dcb_dhcsr & C_MASKINTS) != (dcb_dhcsr & C_MASKINTS))
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, dcb_dhcsr | C_HALT );
/* Restart core */
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, dcb_dhcsr );
@@ -612,11 +603,10 @@ int cortex_m3_resume(struct target_s *target, int current, u32 address, int hand
DEBUG("target debug resumed at 0x%x",resume_pc);
}
return ERROR_OK;
}

int irqstepcount=0;
//int irqstepcount=0;
int cortex_m3_step(struct target_s *target, int current, u32 address, int handle_breakpoints)
{
/* get pointers to arch-specific information */
@@ -653,7 +643,7 @@ int cortex_m3_step(struct target_s *target, int current, u32 address, int handle
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
if (cortex_m3->dcb_dhcsr&C_MASKINTS)
if (cortex_m3->dcb_dhcsr & C_MASKINTS)
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN );
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY| C_STEP | C_DEBUGEN);
ahbap_read_system_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
@@ -665,14 +655,13 @@ int cortex_m3_step(struct target_s *target, int current, u32 address, int handle
if (breakpoint)
cortex_m3_set_breakpoint(target, breakpoint);

DEBUG("target stepped dcb_dhcsr=0x%x nvic_icsr=0x%x",cortex_m3->dcb_dhcsr,cortex_m3->nvic_icsr);
DEBUG("target stepped dcb_dhcsr = 0x%x nvic_icsr = 0x%x", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);

cortex_m3_debug_entry(target);
target_call_event_callbacks(target, TARGET_EVENT_HALTED);

DEBUG("target stepped dcb_dhcsr=0x%x nvic_icsr=0x%x",cortex_m3->dcb_dhcsr,cortex_m3->nvic_icsr);
DEBUG("target stepped dcb_dhcsr = 0x%x nvic_icsr = 0x%x", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
return ERROR_OK;

}

int cortex_m3_assert_reset(target_t *target)
@@ -738,7 +727,6 @@ int cortex_m3_assert_reset(target_t *target)
armv7m_invalidate_core_regs(target);

return ERROR_OK;

}

int cortex_m3_deassert_reset(target_t *target)
@@ -749,13 +737,13 @@ int cortex_m3_deassert_reset(target_t *target)
jtag_add_reset(0, 0);
return ERROR_OK;

}

void cortex_m3_unset_all_breakpoints_and_watchpoints(struct target_s *target)
{

}

void cortex_m3_enable_breakpoints(struct target_s *target)
{
breakpoint_t *breakpoint = target->breakpoints;
@@ -788,37 +776,36 @@ int cortex_m3_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)

if (cortex_m3->auto_bp_type)
{
breakpoint->type = (breakpoint->address<0x20000000)?BKPT_HARD:BKPT_SOFT;
breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
}

if (breakpoint->type == BKPT_HARD)
{
while(comparator_list[fp_num].used && (fp_num<cortex_m3->fp_num_code))
while(comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
fp_num++;
if (fp_num>=cortex_m3->fp_num_code)
if (fp_num >= cortex_m3->fp_num_code)
{
DEBUG("ERROR Can not find free FP Comparator");
WARNING("ERROR Can not find free FP Comparator");
exit(-1);
}
breakpoint->set = fp_num+1;
hilo = (breakpoint->address & 0x2)? FPCR_REPLACE_BKPT_HIGH:FPCR_REPLACE_BKPT_LOW;
breakpoint->set = fp_num + 1;
hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
comparator_list[fp_num].used = 1;
comparator_list[fp_num].fpcr_value = breakpoint->address&0x1FFFFFFC | hilo | 1;
comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
DEBUG("fpc_num %i fpcr_value 0x%x", fp_num, comparator_list[fp_num].fpcr_value);
DEBUG("fpc_num %i fpcr_value 0x%x", fp_num, comparator_list[fp_num].fpcr_value);
}
else if (breakpoint->type == BKPT_SOFT)
{
u8 code[4];
buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11));
target->type->read_memory(target, breakpoint->address&0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr);
target->type->write_memory(target, breakpoint->address&0xFFFFFFFE, breakpoint->length, 1, code);
target->type->read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr);
target->type->write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code);
breakpoint->set = 0x11; /* Any nice value but 0 */
}

return ERROR_OK;

}

int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
@@ -836,8 +823,8 @@ int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint
if (breakpoint->type == BKPT_HARD)
{
int fp_num = breakpoint->set-1;
if ((fp_num<0)||(fp_num>=cortex_m3->fp_num_code))
int fp_num = breakpoint->set - 1;
if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
{
DEBUG("Invalid FP Comparator number in breakpoint");
return ERROR_OK;
@@ -851,11 +838,11 @@ int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint
/* restore original instruction (kept in target endianness) */
if (breakpoint->length == 4)
{
target->type->write_memory(target, breakpoint->address&0xFFFFFFFE, 4, 1, breakpoint->orig_instr);
target->type->write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr);
}
else
{
target->type->write_memory(target, breakpoint->address&0xFFFFFFFE, 2, 1, breakpoint->orig_instr);
target->type->write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr);
}
}
breakpoint->set = 0;
@@ -863,7 +850,6 @@ int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint
return ERROR_OK;
}


int cortex_m3_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
{
/* get pointers to arch-specific information */
@@ -872,16 +858,16 @@ int cortex_m3_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
if (cortex_m3->auto_bp_type)
{
breakpoint->type = (breakpoint->address<0x20000000)?BKPT_HARD:BKPT_SOFT;
breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
}

if ((breakpoint->type == BKPT_HARD) && (breakpoint->address>=0x20000000))
if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
{
INFO("flash patch comparator requested outside code memory region");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}

if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address<0x20000000))
if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
{
INFO("soft breakpoint requested in code (flash) memory region");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
@@ -920,7 +906,7 @@ int cortex_m3_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoin
if (cortex_m3->auto_bp_type)
{
breakpoint->type = (breakpoint->address<0x20000000)?BKPT_HARD:BKPT_SOFT;
breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
}

if (breakpoint->set)
@@ -934,19 +920,6 @@ int cortex_m3_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoin
return ERROR_OK;
}

void cortex_m3_enable_watchpoints(struct target_s *target)
{
watchpoint_t *watchpoint = target->watchpoints;
/* set any pending watchpoints */
while (watchpoint)
{
if (watchpoint->set == 0)
cortex_m3_set_watchpoint(target, watchpoint);
watchpoint = watchpoint->next;
}
}

int cortex_m3_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
{
int dwt_num=0;
@@ -965,30 +938,30 @@ int cortex_m3_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)

if (watchpoint->mask == 0xffffffffu)
{
while(comparator_list[dwt_num].used && (dwt_num<cortex_m3->dwt_num_comp))
while(comparator_list[dwt_num].used && (dwt_num < cortex_m3->dwt_num_comp))
dwt_num++;
if (dwt_num>=cortex_m3->dwt_num_comp)
if (dwt_num >= cortex_m3->dwt_num_comp)
{
DEBUG("ERROR Can not find free DWT Comparator");
WARNING("ERROR Can not find free DWT Comparator");
return -1;
}
watchpoint->set = dwt_num+1;
watchpoint->set = dwt_num + 1;
mask = 0;
temp = watchpoint->length;
while (temp>1)
while (temp > 1)
{
temp = temp/2;
temp = temp / 2;
mask++;
}
comparator_list[dwt_num].used = 1;
comparator_list[dwt_num].comp = watchpoint->address;
comparator_list[dwt_num].mask = mask;
comparator_list[dwt_num].function = watchpoint->rw+5;
comparator_list[dwt_num].function = watchpoint->rw + 5;
target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address, comparator_list[dwt_num].comp);
target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address|0x4, comparator_list[dwt_num].mask);
target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address|0x8, comparator_list[dwt_num].function);
DEBUG("dwt_num %i 0x%x 0x%x 0x%x", dwt_num, comparator_list[dwt_num].comp, comparator_list[dwt_num].mask, comparator_list[dwt_num].function);
DEBUG("dwt_num %i 0x%x 0x%x 0x%x", dwt_num, comparator_list[dwt_num].comp, comparator_list[dwt_num].mask, comparator_list[dwt_num].function);
}
else
{
@@ -1014,9 +987,9 @@ int cortex_m3_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint
return ERROR_OK;
}

dwt_num = watchpoint->set-1;
dwt_num = watchpoint->set - 1;

if ((dwt_num<0)||(dwt_num>=cortex_m3->dwt_num_comp))
if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
{
DEBUG("Invalid DWT Comparator number in watchpoint");
return ERROR_OK;
@@ -1030,8 +1003,6 @@ int cortex_m3_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint
return ERROR_OK;
}



int cortex_m3_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
{
/* get pointers to arch-specific information */
@@ -1081,6 +1052,18 @@ int cortex_m3_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoin
return ERROR_OK;
}

void cortex_m3_enable_watchpoints(struct target_s *target)
{
watchpoint_t *watchpoint = target->watchpoints;
/* set any pending watchpoints */
while (watchpoint)
{
if (watchpoint->set == 0)
cortex_m3_set_watchpoint(target, watchpoint);
watchpoint = watchpoint->next;
}
}

int cortex_m3_load_core_reg_u32(struct target_s *target, enum armv7m_regtype type, u32 num, u32 * value)
{
@@ -1116,16 +1099,15 @@ int cortex_m3_load_core_reg_u32(struct target_s *target, enum armv7m_regtype typ
ahbap_write_coreregister_u32(swjdp, 0x20000000, 15);
cortex_m3_single_step_core(target);
ahbap_read_coreregister_u32(swjdp, value, 0);
armv7m->core_cache->reg_list[0].dirty=1;
armv7m->core_cache->reg_list[15].dirty=1;
armv7m->core_cache->reg_list[0].dirty = 1;
armv7m->core_cache->reg_list[15].dirty = 1;
ahbap_write_system_u32(swjdp, 0x20000000, savedram);
swjdp_transaction_endcheck(swjdp);
DEBUG("load from special reg %i value 0x%x",SYSm, *value);
DEBUG("load from special reg %i value 0x%x", SYSm, *value);
}
else return ERROR_INVALID_ARGUMENTS;
return ERROR_OK;
}

int cortex_m3_store_core_reg_u32(struct target_s *target, enum armv7m_regtype type, u32 num, u32 value)
@@ -1142,11 +1124,11 @@ int cortex_m3_store_core_reg_u32(struct target_s *target, enum armv7m_regtype ty
retval = ahbap_write_coreregister_u32(swjdp, value, num);
if (retval != ERROR_OK)
{
ERROR("JTAG failure %i",retval);
armv7m->core_cache->reg_list[num].dirty=1;
ERROR("JTAG failure %i", retval);
armv7m->core_cache->reg_list[num].dirty = 1;
return ERROR_JTAG_DEVICE_ERROR;
}
DEBUG("write core reg %i value 0x%x",num, value);
DEBUG("write core reg %i value 0x%x", num, value);
}
else if (type == ARMV7M_REGISTER_CORE_SP) /* Special purpose core register */
{
@@ -1163,21 +1145,18 @@ int cortex_m3_store_core_reg_u32(struct target_s *target, enum armv7m_regtype ty
ahbap_write_coreregister_u32(swjdp, 0x20000000, 15);
cortex_m3_single_step_core(target);
ahbap_write_coreregister_u32(swjdp, tempr0, 0);
armv7m->core_cache->reg_list[15].dirty=1;
armv7m->core_cache->reg_list[15].dirty = 1;
ahbap_write_system_u32(swjdp, 0x20000000, savedram);
swjdp_transaction_endcheck(swjdp);
DEBUG("write special reg %i value 0x%x ",SYSm, value);
DEBUG("write special reg %i value 0x%x ", SYSm, value);
}
else return ERROR_INVALID_ARGUMENTS;
return ERROR_OK;
return ERROR_OK;
}


int cortex_m3_read_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
{

/* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info;
cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
@@ -1196,12 +1175,12 @@ int cortex_m3_read_memory(struct target_s *target, u32 address, u32 size, u32 co
case 4:
/* TODOLATER Check error return value ! */
{
ahbap_read_buf(swjdp, buffer, 4*count, address);
ahbap_read_buf(swjdp, buffer, 4 * count, address);
}
break;
case 2:
{
ahbap_read_buf(swjdp, buffer, 2*count, address);
ahbap_read_buf_u16(swjdp, buffer, 2 * count, address);
}
break;
case 1:
@@ -1213,14 +1192,12 @@ int cortex_m3_read_memory(struct target_s *target, u32 address, u32 size, u32 co
ERROR("BUG: we shouldn't get here");
exit(-1);
}

return ERROR_OK;
}

int cortex_m3_write_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
{

/* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info;
cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
@@ -1238,12 +1215,12 @@ int cortex_m3_write_memory(struct target_s *target, u32 address, u32 size, u32 c
case 4:
/* TODOLATER Check error return value ! */
{
ahbap_write_buf(swjdp, buffer, 4*count, address);
ahbap_write_buf(swjdp, buffer, 4 * count, address);
}
break;
case 2:
{
ahbap_write_buf(swjdp, buffer, 2*count, address);
ahbap_write_buf_u16(swjdp, buffer, 2 * count, address);
}
break;
case 1:
@@ -1261,14 +1238,11 @@ int cortex_m3_write_memory(struct target_s *target, u32 address, u32 size, u32 c

int cortex_m3_bulk_write_memory(target_t *target, u32 address, u32 count, u8 *buffer)
{

cortex_m3_write_memory(target, address, 4,count,buffer);
cortex_m3_write_memory(target, address, 4, count, buffer);
return ERROR_OK;
}



void cortex_m3_build_reg_cache(target_t *target)
{
armv7m_build_reg_cache(target);
@@ -1287,48 +1261,43 @@ int cortex_m3_init_target(struct command_context_s *cmd_ctx, struct target_s *ta
cortex_m3_build_reg_cache(target);
ahbap_debugport_init(swjdp);

/* Read from Device Identification Registers, IS THIS CORTEX OR Luminary Micro SPECIFIC ?? */
target_read_u32(target, CPUID, &cpuid );
if (cpuid == 0x410fc231)
DEBUG("CORTEX-M3 processor");
DEBUG("cpuid %x",cpuid);
/* Probably only valid for LMI parts, move to flash/stellaris ? */
target_read_u32(target, SYSTEM_CONTROL_BASE|0x04, &did1);
target_read_u32(target,SYSTEM_CONTROL_BASE|0x08,&dc0);
DEBUG("did1 %x",did1);
DEBUG("dc0 %x",dc0);
/* Read from Device Identification Registers */
target_read_u32(target, CPUID, &cpuid);
if (((cpuid >> 4) & 0xc3f) == 0xc23)
DEBUG("CORTEX-M3 processor detected");
DEBUG("cpuid %x", cpuid);
target_read_u32(target,NVIC_ICTR,&ictr);
cortex_m3->intlinesnum = (ictr&0x1F) + 1;
cortex_m3->intsetenable = calloc(cortex_m3->intlinesnum,4);
for (i=0;i<cortex_m3->intlinesnum;i++)
target_read_u32(target, NVIC_ICTR, &ictr);
cortex_m3->intlinesnum = (ictr & 0x1F) + 1;
cortex_m3->intsetenable = calloc(cortex_m3->intlinesnum, 4);
for (i = 0; i < cortex_m3->intlinesnum; i++)
{
target_read_u32(target,NVIC_ISE0+4*i,cortex_m3->intsetenable+i);
DEBUG(" interrupt enable[%i]=0x%x",i,cortex_m3->intsetenable[i]);
target_read_u32(target, NVIC_ISE0 + 4 * i, cortex_m3->intsetenable + i);
DEBUG("interrupt enable[%i] = 0x%x", i, cortex_m3->intsetenable[i]);
}
/* Setup FPB */
target_read_u32(target, FP_CTRL, &fpcr);
cortex_m3->auto_bp_type = 1;
cortex_m3->fp_num_code = (fpcr>>4)&0xF;
cortex_m3->fp_num_lit = (fpcr>>8)&0xF;
cortex_m3->fp_num_code = (fpcr >> 4) & 0xF;
cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
cortex_m3->fp_code_available = cortex_m3->fp_num_code;
cortex_m3->fp_comparator_list=calloc(cortex_m3->fp_num_code+cortex_m3->fp_num_lit, sizeof(cortex_m3_fp_comparator_t));
for (i=0;i<cortex_m3->fp_num_code+cortex_m3->fp_num_lit;i++)
for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
{
cortex_m3->fp_comparator_list[i].type = (i<cortex_m3->fp_num_code)?FPCR_CODE:FPCR_LITERAL;
cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0+4*i;
cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
}
DEBUG("FPB fpcr 0x%x, numcode %i, numlit %i",fpcr,cortex_m3->fp_num_code,cortex_m3->fp_num_lit);
DEBUG("FPB fpcr 0x%x, numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
/* Setup DWT */
target_read_u32(target, DWT_CTRL, &dwtcr);
cortex_m3->dwt_num_comp = (dwtcr>>28)&0xF;
cortex_m3->dwt_num_comp = (dwtcr >> 28) & 0xF;
cortex_m3->dwt_comp_available = cortex_m3->dwt_num_comp;
cortex_m3->dwt_comparator_list=calloc(cortex_m3->dwt_num_comp, sizeof(cortex_m3_dwt_comparator_t));
for (i=0; i<cortex_m3->dwt_num_comp; i++)
for (i = 0; i < cortex_m3->dwt_num_comp; i++)
{
cortex_m3->dwt_comparator_list[i].dwt_comparator_address = DWT_COMP0+0x10*i;
cortex_m3->dwt_comparator_list[i].dwt_comparator_address = DWT_COMP0 + 0x10 * i;
}
return ERROR_OK;
@@ -1345,7 +1314,7 @@ int cortex_m3_init_arch_info(target_t *target, cortex_m3_common_t *cortex_m3, in
armv7m_common_t *armv7m;
armv7m = &cortex_m3->armv7m;

arm_jtag_t * jtag_info = &cortex_m3->jtag_info;
arm_jtag_t *jtag_info = &cortex_m3->jtag_info;

/* prepare JTAG information for the new target */
cortex_m3->jtag_info.chain_pos = chain_pos;


+ 3
- 6
src/target/cortex_m3.h View File

@@ -40,7 +40,6 @@ extern char* cortex_m3_state_strings[];
#define DCB_DCRDR 0xE000EDF8
#define DCB_DEMCR 0xE000EDFC


#define DCRSR_WnR (1<<16)

#define DWT_CTRL 0xE0001000
@@ -107,7 +106,6 @@ extern char* cortex_m3_state_strings[];
#define DFSR_DWTTRAP 4
#define DFSR_VCATCH 8


#define FPCR_CODE 0
#define FPCR_LITERAL 1
#define FPCR_REPLACE_REMAP (0<<30)
@@ -149,16 +147,16 @@ typedef struct cortex_m3_common_s
int fp_num_code;
int fp_code_available;
int auto_bp_type;
cortex_m3_fp_comparator_t * fp_comparator_list;
cortex_m3_fp_comparator_t *fp_comparator_list;