Browse Source

flash/nor: add support of STM32WB on top STM32L4 flash driver

Change-Id: I9fb6700085d817d35a691f6484193f67939a4e0f
Signed-off-by: Laurent LEMELE <laurent.lemele@st.com>
Signed-off-by: Tarek BOCHKATI <tarek.bouchkati@gmail.com>
Reviewed-on: http://openocd.zylin.com/4933
Tested-by: jenkins
Reviewed-by: Tomas Vanek <vanekt@fbl.cz>
master
Tarek BOCHKATI 4 years ago
committed by Tomas Vanek
parent
commit
a6a642bf72
3 changed files with 129 additions and 4 deletions
  1. +4
    -2
      doc/openocd.texi
  2. +22
    -2
      src/flash/nor/stm32l4x.c
  3. +103
    -0
      tcl/target/stm32wbx.cfg

+ 4
- 2
doc/openocd.texi View File

@@ -6869,7 +6869,7 @@ The @var{num} parameter is a value shown by @command{flash banks}.
@end deffn

@deffn {Flash Driver} stm32l4x
All members of the STM32L4 microcontroller families from STMicroelectronics
All members of the STM32L4 and STM32WB microcontroller families from STMicroelectronics
include internal flash and use ARM Cortex-M4 cores.
The driver automatically recognizes a number of these chips using
the chip identification register, and autoconfigures itself.
@@ -6911,7 +6911,9 @@ is the register offset of the Option byte to read.
For example to read the FLASH_OPTR register:
@example
stm32l4x option_read 0 0x20
# Option Register: <0x40022020> = 0xffeff8aa
# Option Register (for STM32L4x): <0x40022020> = 0xffeff8aa
# Option Register (for STM32WBx): <0x58004020> = ...
# The correct flash base address will be used automatically
@end example

The above example will read out the FLASH_OPTR register which contains the RDP


+ 22
- 2
src/flash/nor/stm32l4x.c View File

@@ -169,6 +169,10 @@ static const struct stm32l4_rev stm32_470_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
};

static const struct stm32l4_rev stm32_495_revs[] = {
{ 0x2001, "2.1" },
};

static const struct stm32l4_part_info stm32l4_parts[] = {
{
.id = 0x415,
@@ -230,6 +234,16 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x495,
.revs = stm32_495_revs,
.num_revs = ARRAY_SIZE(stm32_495_revs),
.device_str = "STM32WB5x",
.max_flash_size_kb = 1024,
.has_dual_bank = false,
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
},
};

/* flash bank stm32l4x <base> <size> 0 0 <target#> */
@@ -714,7 +728,7 @@ static int stm32l4_probe(struct flash_bank *bank)
}

if (!stm32l4_info->part_info) {
LOG_WARNING("Cannot identify target as an STM32L4 family device.");
LOG_WARNING("Cannot identify target as an STM32 L4 or WB family device.");
return ERROR_FAIL;
}

@@ -804,6 +818,12 @@ static int stm32l4_probe(struct flash_bank *bank)
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
case 0x495:
/* single bank flash */
page_size = 4096;
num_pages = flash_size_in_kb / 4;
stm32l4_info->bank1_sectors = num_pages;
break;
default:
LOG_ERROR("unsupported device");
return ERROR_FAIL;
@@ -881,7 +901,7 @@ static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
part_info->device_str, rev_id);
return ERROR_OK;
} else {
snprintf(buf, buf_size, "Cannot identify target as a STM32L4x device");
snprintf(buf, buf_size, "Cannot identify target as an STM32 L4 or WB device");
return ERROR_FAIL;
}



+ 103
- 0
tcl/target/stm32wbx.cfg View File

@@ -0,0 +1,103 @@
# script for stm32wbx family

#
# stm32wb devices support both JTAG and SWD transports.
#
source [find target/swj-dp.tcl]
source [find mem_helper.tcl]

if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME stm32wbx
}

set _ENDIAN little

# Work-area is a space in RAM used for flash programming
# By default use 64kB
if { [info exists WORKAREASIZE] } {
set _WORKAREASIZE $WORKAREASIZE
} else {
set _WORKAREASIZE 0x10000
}

#jtag scan chain
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
if { [using_jtag] } {
set _CPUTAPID 0x6ba00477
} else {
# SWD IDCODE (single drop, arm)
set _CPUTAPID 0x6ba02477
}
}

swj_newdap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu

if {[using_jtag]} {
jtag newtap $_CHIPNAME bs -irlen 5
}

set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap

$_TARGETNAME configure -work-area-phys 0x20000000 -work-area-size $_WORKAREASIZE -work-area-backup 0

set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME stm32l4x 0 0 0 0 $_TARGETNAME

# Common knowledges tells JTAG speed should be <= F_CPU/6.
# F_CPU after reset is MSI 4MHz, so use F_JTAG = 500 kHz to stay on
# the safe side.
#
# Note that there is a pretty wide band where things are
# more or less stable, see http://openocd.zylin.com/#/c/3366/
adapter_khz 500

adapter_nsrst_delay 100
if {[using_jtag]} {
jtag_ntrst_delay 100
}

reset_config srst_nogate

if {![using_hla]} {
# if srst is not fitted use SYSRESETREQ to
# perform a soft reset
cortex_m reset_config sysresetreq
}

$_TARGETNAME configure -event reset-init {
# CPU comes out of reset with MSI_ON | MSI_RDY | MSI Range 4 MHz.
# Configure system to use MSI 24 MHz clock, compliant with VOS default Range1.
# 2 WS compliant with VOS=Range1 and 24 MHz.
mmw 0x58004000 0x00000102 0 ;# FLASH_ACR |= PRFTBE | 2(Latency)
mmw 0x58000000 0x00000091 0 ;# RCC_CR = MSI_ON | MSI Range 24 MHz
# Boost JTAG frequency
adapter_khz 4000
}

$_TARGETNAME configure -event reset-start {
# Reset clock is MSI (4 MHz)
adapter_khz 500
}

$_TARGETNAME configure -event examine-end {
# Enable debug during low power modes (uses more power)
# DBGMCU_CR |= DBG_STANDBY | DBG_STOP | DBG_SLEEP
mmw 0xE0042004 0x00000007 0

# Stop watchdog counters during halt
# DBGMCU_APB1_FZR1 |= DBG_IWDG_STOP | DBG_WWDG_STOP
mmw 0xE004203C 0x00001800 0
}

$_TARGETNAME configure -event trace-config {
# Set TRACE_IOEN; TRACE_MODE is set to async; when using sync
# change this value accordingly to configure trace pins
# assignment
mmw 0xE0042004 0x00000020 0
}

Loading…
Cancel
Save