You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3936 lines
139 KiB

  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename openocd.info
  4. @settitle Open On-Chip Debugger (OpenOCD)
  5. @dircategory Development
  6. @direntry
  7. @paragraphindent 0
  8. * OpenOCD: (openocd). Open On-Chip Debugger.
  9. @end direntry
  10. @c %**end of header
  11. @include version.texi
  12. @copying
  13. @itemize @bullet
  14. @item Copyright @copyright{} 2008 The OpenOCD Project
  15. @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
  16. @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
  17. @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
  18. @end itemize
  19. @quotation
  20. Permission is granted to copy, distribute and/or modify this document
  21. under the terms of the GNU Free Documentation License, Version 1.2 or
  22. any later version published by the Free Software Foundation; with no
  23. Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
  24. Texts. A copy of the license is included in the section entitled ``GNU
  25. Free Documentation License''.
  26. @end quotation
  27. @end copying
  28. @titlepage
  29. @title Open On-Chip Debugger (OpenOCD)
  30. @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
  31. @subtitle @value{UPDATED}
  32. @page
  33. @vskip 0pt plus 1filll
  34. @insertcopying
  35. @end titlepage
  36. @summarycontents
  37. @contents
  38. @node Top, About, , (dir)
  39. @top OpenOCD
  40. This manual documents edition @value{EDITION} of the Open On-Chip Debugger
  41. (OpenOCD) version @value{VERSION}, @value{UPDATED}.
  42. @insertcopying
  43. @menu
  44. * About:: About OpenOCD
  45. * Developers:: OpenOCD Developers
  46. * Building:: Building OpenOCD
  47. * JTAG Hardware Dongles:: JTAG Hardware Dongles
  48. * Running:: Running OpenOCD
  49. * Simple Configuration Files:: Simple Configuration Files
  50. * Config File Guidelines:: Config File Guidelines
  51. * About JIM-Tcl:: About JIM-Tcl
  52. * Daemon Configuration:: Daemon Configuration
  53. * Interface - Dongle Configuration:: Interface - Dongle Configuration
  54. * Reset Configuration:: Reset Configuration
  55. * Tap Creation:: Tap Creation
  56. * Target Configuration:: Target Configuration
  57. * Flash Configuration:: Flash Configuration
  58. * General Commands:: General Commands
  59. * JTAG Commands:: JTAG Commands
  60. * Sample Scripts:: Sample Target Scripts
  61. * TFTP:: TFTP
  62. * GDB and OpenOCD:: Using GDB and OpenOCD
  63. * Tcl Scripting API:: Tcl Scripting API
  64. * Upgrading:: Deprecated/Removed Commands
  65. * Target Library:: Target Library
  66. * FAQ:: Frequently Asked Questions
  67. * Tcl Crash Course:: Tcl Crash Course
  68. * License:: GNU Free Documentation License
  69. @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
  70. @comment case issue with ``Index.html'' and ``index.html''
  71. @comment Occurs when creating ``--html --no-split'' output
  72. @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
  73. * OpenOCD Index:: Main Index
  74. @end menu
  75. @node About
  76. @unnumbered About
  77. @cindex about
  78. The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
  79. in-system programming and boundary-scan testing for embedded target
  80. devices.
  81. @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
  82. with the JTAG (IEEE 1149.1) compliant taps on your target board.
  83. @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB
  84. based, parallel port based, and other standalone boxes that run
  85. OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
  86. @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
  87. ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
  88. Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
  89. debugged via the GDB protocol.
  90. @b{Flash Programing:} Flash writing is supported for external CFI
  91. compatible flashes (Intel and AMD/Spansion command set) and several
  92. internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3, and
  93. STM32x). Preliminary support for using the LPC3180's NAND flash
  94. controller is included.
  95. @node Developers
  96. @chapter Developers
  97. @cindex developers
  98. OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
  99. University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
  100. Others interested in improving the state of free and open debug and testing technology
  101. are welcome to participate.
  102. Other developers have contributed support for additional targets and flashes as well
  103. as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
  104. The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}.
  105. @section Coding Style
  106. @cindex Coding Style
  107. The following rules try to describe formatting and naming conventions that should be
  108. followed to make the whole OpenOCD code look more consistent. The ultimate goal of
  109. coding style should be readability, and these rules may be ignored for a particular
  110. (small) piece of code if that makes it more readable.
  111. @subsection Formatting rules:
  112. @itemize @bullet
  113. @item remove any trailing white space
  114. @item use TAB characters for indentation, not spaces
  115. @item displayed TAB width is 4 characters
  116. @item make sure NOT to use DOS '\r\n' line feeds
  117. @item do not add more than 2 empty lines to source files
  118. @item do not add trailing empty lines to source files
  119. @item do not use C++ style comments (//)
  120. @item lines may be reasonably wide - there's no anachronistic 80 characters limit
  121. @end itemize
  122. @subsection Naming rules:
  123. @itemize @bullet
  124. @item identifiers use lower-case letters only
  125. @item identifiers consisting of multiple words use underline characters between consecutive words
  126. @item macros use upper-case letters only
  127. @item structure names shall be appended with '_s'
  128. @item typedefs shall be appended with '_t'
  129. @end itemize
  130. @subsection Function calls:
  131. @itemize @bullet
  132. @item function calls have no space between the functions name and the parameter
  133. list: my_func(param1, param2, ...)
  134. @end itemize
  135. @node Building
  136. @chapter Building
  137. @cindex building OpenOCD
  138. @section Pre-Built Tools
  139. If you are interested in getting actual work done rather than building
  140. OpenOCD, then check if your interface supplier provides binaries for
  141. you. Chances are that that binary is from some SVN version that is more
  142. stable than SVN trunk where bleeding edge development takes place.
  143. @section Packagers Please Read!
  144. You are a @b{PACKAGER} of OpenOCD if you
  145. @enumerate
  146. @item @b{Sell dongles} and include pre-built binaries
  147. @item @b{Supply tools} i.e.: A complete development solution
  148. @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
  149. @item @b{Build packages} i.e.: RPM files, or DEB files for a Linux Distro
  150. @end enumerate
  151. As a @b{PACKAGER} - you are at the top of the food chain. You solve
  152. problems for downstream users. What you fix or solve - solves hundreds
  153. if not thousands of user questions. If something does not work for you
  154. please let us know. That said, would also like you to follow a few
  155. suggestions:
  156. @enumerate
  157. @item @b{Always build with printer ports enabled.}
  158. @item @b{Try to use LIBFTDI + LIBUSB where possible. You cover more bases.}
  159. @end enumerate
  160. @itemize @bullet
  161. @item @b{Why YES to LIBFTDI + LIBUSB?}
  162. @itemize @bullet
  163. @item @b{LESS} work - libusb perhaps already there
  164. @item @b{LESS} work - identical code, multiple platforms
  165. @item @b{MORE} dongles are supported
  166. @item @b{MORE} platforms are supported
  167. @item @b{MORE} complete solution
  168. @end itemize
  169. @item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)?
  170. @itemize @bullet
  171. @item @b{LESS} speed - some say it is slower
  172. @item @b{LESS} complex to distribute (external dependencies)
  173. @end itemize
  174. @end itemize
  175. @section Building From Source
  176. You can download the current SVN version with an SVN client of your choice from the
  177. following repositories:
  178. @uref{svn://svn.berlios.de/openocd/trunk}
  179. or
  180. @uref{http://svn.berlios.de/svnroot/repos/openocd/trunk}
  181. Using the SVN command line client, you can use the following command to fetch the
  182. latest version (make sure there is no (non-svn) directory called "openocd" in the
  183. current directory):
  184. @example
  185. svn checkout svn://svn.berlios.de/openocd/trunk openocd
  186. @end example
  187. Building OpenOCD requires a recent version of the GNU autotools (autoconf >= 2.59 and automake >= 1.9).
  188. For building on Windows,
  189. you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
  190. other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
  191. paths, resulting in obscure dependency errors (This is an observation I've gathered
  192. from the logs of one user - correct me if I'm wrong).
  193. You further need the appropriate driver files, if you want to build support for
  194. a FTDI FT2232 based interface:
  195. @itemize @bullet
  196. @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
  197. @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
  198. @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
  199. homepage (@uref{http://www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
  200. @end itemize
  201. libftdi is supported under Windows. Do not use versions earlier than 0.14.
  202. In general, the D2XX driver provides superior performance (several times as fast),
  203. but has the draw-back of being binary-only - though that isn't that bad, as it isn't
  204. a kernel module, only a user space library.
  205. To build OpenOCD (on both Linux and Cygwin), use the following commands:
  206. @example
  207. ./bootstrap
  208. @end example
  209. Bootstrap generates the configure script, and prepares building on your system.
  210. @example
  211. ./configure [options, see below]
  212. @end example
  213. Configure generates the Makefiles used to build OpenOCD.
  214. @example
  215. make
  216. make install
  217. @end example
  218. Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
  219. The configure script takes several options, specifying which JTAG interfaces
  220. should be included (among other things):
  221. @itemize @bullet
  222. @item
  223. @option{--enable-parport} - Enable building the PC parallel port driver.
  224. @item
  225. @option{--enable-parport_ppdev} - Enable use of ppdev (/dev/parportN) for parport.
  226. @item
  227. @option{--enable-parport_giveio} - Enable use of giveio for parport instead of ioperm.
  228. @item
  229. @option{--enable-amtjtagaccel} - Enable building the Amontec JTAG-Accelerator driver.
  230. @item
  231. @option{--enable-ecosboard} - Enable building support for eCosBoard based JTAG debugger.
  232. @item
  233. @option{--enable-ioutil} - Enable ioutil functions - useful for standalone OpenOCD implementations.
  234. @item
  235. @option{--enable-httpd} - Enable builtin httpd server - useful for standalone OpenOCD implementations.
  236. @item
  237. @option{--enable-ep93xx} - Enable building support for EP93xx based SBCs.
  238. @item
  239. @option{--enable-at91rm9200} - Enable building support for AT91RM9200 based SBCs.
  240. @item
  241. @option{--enable-gw16012} - Enable building support for the Gateworks GW16012 JTAG programmer.
  242. @item
  243. @option{--enable-ft2232_ftd2xx} - Numerous USB type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
  244. @item
  245. @option{--enable-ft2232_libftdi} - An open source (free) alternative to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin).
  246. @item
  247. @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
  248. @item
  249. @option{--with-ftd2xx-linux-tardir=PATH} - Linux only. Equivalent of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
  250. @item
  251. @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static. Specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note: 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. The 'shared' value is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
  252. @item
  253. @option{--enable-presto_libftdi} - Enable building support for ASIX Presto programmer using the libftdi driver.
  254. @item
  255. @option{--enable-presto_ftd2xx} - Enable building support for ASIX Presto programmer using the FTD2XX driver.
  256. @item
  257. @option{--enable-usbprog} - Enable building support for the USBprog JTAG programmer.
  258. @item
  259. @option{--enable-oocd_trace} - Enable building support for the OpenOCD+trace ETM capture device.
  260. @item
  261. @option{--enable-jlink} - Enable building support for the Segger J-Link JTAG programmer.
  262. @item
  263. @option{--enable-vsllink} - Enable building support for the Versaloon-Link JTAG programmer.
  264. @item
  265. @option{--enable-rlink} - Enable building support for the Raisonance RLink JTAG programmer.
  266. @item
  267. @option{--enable-arm-jtag-ew} - Enable building support for the Olimex ARM-JTAG-EW programmer.
  268. @item
  269. @option{--enable-dummy} - Enable building the dummy port driver.
  270. @end itemize
  271. @section Parallel Port Dongles
  272. If you want to access the parallel port using the PPDEV interface you have to specify
  273. both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
  274. the @option{--enable-parport_ppdev} option actually is an option to the parport driver
  275. (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
  276. The same is true for the @option{--enable-parport_giveio} option, you have to
  277. use both the @option{--enable-parport} AND the @option{--enable-parport_giveio} option if you want to use giveio instead of ioperm parallel port access method.
  278. @section FT2232C Based USB Dongles
  279. There are 2 methods of using the FTD2232, either (1) using the
  280. FTDICHIP.COM closed source driver, or (2) the open (and free) driver
  281. libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
  282. The FTDICHIP drivers come as either a (win32) ZIP file, or a (Linux)
  283. TAR.GZ file. You must unpack them ``some where'' convient. As of this
  284. writing (12/26/2008) FTDICHIP does not supply means to install these
  285. files ``in an appropriate place'' As a result, there are two
  286. ``./configure'' options that help.
  287. Below is an example build process:
  288. 1) Check out the latest version of ``openocd'' from SVN.
  289. 2) Download & unpack either the Windows or Linux FTD2xx drivers
  290. (@uref{http://www.ftdichip.com/Drivers/D2XX.htm}).
  291. @example
  292. /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
  293. /home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents.
  294. @end example
  295. 3) Configure with these options:
  296. @example
  297. Cygwin FTDICHIP solution:
  298. ./configure --prefix=/home/duane/mytools \
  299. --enable-ft2232_ftd2xx \
  300. --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
  301. Linux FTDICHIP solution:
  302. ./configure --prefix=/home/duane/mytools \
  303. --enable-ft2232_ftd2xx \
  304. --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
  305. Cygwin/Linux LIBFTDI solution:
  306. Assumes:
  307. 1a) For Windows: The Windows port of LIBUSB is in place.
  308. 1b) For Linux: libusb has been built/installed and is in place.
  309. 2) And libftdi has been built and installed
  310. Note: libftdi - relies upon libusb.
  311. ./configure --prefix=/home/duane/mytools \
  312. --enable-ft2232_libftdi
  313. @end example
  314. 4) Then just type ``make'', and perhaps ``make install''.
  315. @section Miscellaneous Configure Options
  316. @itemize @bullet
  317. @item
  318. @option{--disable-option-checking} - Ignore unrecognized @option{--enable} and @option{--with} options.
  319. @item
  320. @option{--enable-gccwarnings} - Enable extra gcc warnings during build.
  321. Default is enabled.
  322. @item
  323. @option{--enable-release} - Enable building of an OpenOCD release, generally
  324. this is for developers. It simply omits the svn version string when the
  325. openocd @option{-v} is executed.
  326. @end itemize
  327. @node JTAG Hardware Dongles
  328. @chapter JTAG Hardware Dongles
  329. @cindex dongles
  330. @cindex FTDI
  331. @cindex wiggler
  332. @cindex zy1000
  333. @cindex printer port
  334. @cindex USB Adapter
  335. @cindex rtck
  336. Defined: @b{dongle}: A small device that plugins into a computer and serves as
  337. an adapter .... [snip]
  338. In the OpenOCD case, this generally refers to @b{a small adapater} one
  339. attaches to your computer via USB or the Parallel Printer Port. The
  340. execption being the Zylin ZY1000 which is a small box you attach via
  341. an ethernet cable. The Zylin ZY1000 has the advantage that it does not
  342. require any drivers to be installed on the developer PC. It also has
  343. a built in web interface. It supports RTCK/RCLK or adaptive clocking
  344. and has a built in relay to power cycle targets remotely.
  345. @section Choosing a Dongle
  346. There are three things you should keep in mind when choosing a dongle.
  347. @enumerate
  348. @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
  349. @item @b{Connection} Printer Ports - Does your computer have one?
  350. @item @b{Connection} Is that long printer bit-bang cable practical?
  351. @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
  352. @end enumerate
  353. @section Stand alone Systems
  354. @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
  355. dongle, but a standalone box. The ZY1000 has the advantage that it does
  356. not require any drivers installed on the developer PC. It also has
  357. a built in web interface. It supports RTCK/RCLK or adaptive clocking
  358. and has a built in relay to power cycle targets remotely.
  359. @section USB FT2232 Based
  360. There are many USB JTAG dongles on the market, many of them are based
  361. on a chip from ``Future Technology Devices International'' (FTDI)
  362. known as the FTDI FT2232.
  363. See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
  364. As of 28/Nov/2008, the following are supported:
  365. @itemize @bullet
  366. @item @b{usbjtag}
  367. @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
  368. @item @b{jtagkey}
  369. @* See: @url{http://www.amontec.com/jtagkey.shtml}
  370. @item @b{oocdlink}
  371. @* See: @url{http://www.oocdlink.com} By Joern Kaipf
  372. @item @b{signalyzer}
  373. @* See: @url{http://www.signalyzer.com}
  374. @item @b{evb_lm3s811}
  375. @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
  376. @item @b{olimex-jtag}
  377. @* See: @url{http://www.olimex.com}
  378. @item @b{flyswatter}
  379. @* See: @url{http://www.tincantools.com}
  380. @item @b{turtelizer2}
  381. @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
  382. @item @b{comstick}
  383. @* Link: @url{http://www.hitex.com/index.php?id=383}
  384. @item @b{stm32stick}
  385. @* Link @url{http://www.hitex.com/stm32-stick}
  386. @item @b{axm0432_jtag}
  387. @* Axiom AXM-0432 Link @url{http://www.axman.com}
  388. @end itemize
  389. @section USB JLINK based
  390. There are several OEM versions of the Segger @b{JLINK} adapter. It is
  391. an example of a micro controller based JTAG adapter, it uses an
  392. AT91SAM764 internally.
  393. @itemize @bullet
  394. @item @b{ATMEL SAMICE} Only works with ATMEL chips!
  395. @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
  396. @item @b{SEGGER JLINK}
  397. @* Link: @url{http://www.segger.com/jlink.html}
  398. @item @b{IAR J-Link}
  399. @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
  400. @end itemize
  401. @section USB RLINK based
  402. Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
  403. @itemize @bullet
  404. @item @b{Raisonance RLink}
  405. @* Link: @url{http://www.raisonance.com/products/RLink.php}
  406. @item @b{STM32 Primer}
  407. @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
  408. @item @b{STM32 Primer2}
  409. @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
  410. @end itemize
  411. @section USB Other
  412. @itemize @bullet
  413. @item @b{USBprog}
  414. @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
  415. @item @b{USB - Presto}
  416. @* Link: @url{http://tools.asix.net/prg_presto.htm}
  417. @item @b{Versaloon-Link}
  418. @* Link: @url{http://www.simonqian.com/en/Versaloon}
  419. @item @b{ARM-JTAG-EW}
  420. @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html}
  421. @end itemize
  422. @section IBM PC Parallel Printer Port Based
  423. The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
  424. and the MacGraigor Wiggler. There are many clones and variations of
  425. these on the market.
  426. @itemize @bullet
  427. @item @b{Wiggler} - There are many clones of this.
  428. @* Link: @url{http://www.macraigor.com/wiggler.htm}
  429. @item @b{DLC5} - From XILINX - There are many clones of this
  430. @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
  431. produced, PDF schematics are easily found and it is easy to make.
  432. @item @b{Amontec - JTAG Accelerator}
  433. @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
  434. @item @b{GW16402}
  435. @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
  436. @item @b{Wiggler2}
  437. @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
  438. @item @b{Wiggler_ntrst_inverted}
  439. @* Yet another variation - See the source code, src/jtag/parport.c
  440. @item @b{old_amt_wiggler}
  441. @* Unknown - probably not on the market today
  442. @item @b{arm-jtag}
  443. @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
  444. @item @b{chameleon}
  445. @* Link: @url{http://www.amontec.com/chameleon.shtml}
  446. @item @b{Triton}
  447. @* Unknown.
  448. @item @b{Lattice}
  449. @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
  450. @item @b{flashlink}
  451. @* From ST Microsystems, link:
  452. @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
  453. Title: FlashLINK JTAG programing cable for PSD and uPSD
  454. @end itemize
  455. @section Other...
  456. @itemize @bullet
  457. @item @b{ep93xx}
  458. @* An EP93xx based Linux machine using the GPIO pins directly.
  459. @item @b{at91rm9200}
  460. @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
  461. @end itemize
  462. @node Running
  463. @chapter Running
  464. @cindex running OpenOCD
  465. @cindex --configfile
  466. @cindex --debug_level
  467. @cindex --logfile
  468. @cindex --search
  469. The @option{--help} option shows:
  470. @verbatim
  471. bash$ openocd --help
  472. --help | -h display this help
  473. --version | -v display OpenOCD version
  474. --file | -f use configuration file <name>
  475. --search | -s dir to search for config files and scripts
  476. --debug | -d set debug level <0-3>
  477. --log_output | -l redirect log output to file <name>
  478. --command | -c run <command>
  479. --pipe | -p use pipes when talking to gdb
  480. @end verbatim
  481. By default OpenOCD reads the file configuration file ``openocd.cfg''
  482. in the current directory. To specify a different (or multiple)
  483. configuration file, you can use the ``-f'' option. For example:
  484. @example
  485. openocd -f config1.cfg -f config2.cfg -f config3.cfg
  486. @end example
  487. Once started, OpenOCD runs as a daemon, waiting for connections from
  488. clients (Telnet, GDB, Other).
  489. If you are having problems, you can enable internal debug messages via
  490. the ``-d'' option.
  491. Also it is possible to interleave commands w/config scripts using the
  492. @option{-c} command line switch.
  493. To enable debug output (when reporting problems or working on OpenOCD
  494. itself), use the @option{-d} command line switch. This sets the
  495. @option{debug_level} to "3", outputting the most information,
  496. including debug messages. The default setting is "2", outputting only
  497. informational messages, warnings and errors. You can also change this
  498. setting from within a telnet or gdb session using @option{debug_level
  499. <n>} @xref{debug_level}.
  500. You can redirect all output from the daemon to a file using the
  501. @option{-l <logfile>} switch.
  502. Search paths for config/script files can be added to OpenOCD by using
  503. the @option{-s <search>} switch. The current directory and the OpenOCD
  504. target library is in the search path by default.
  505. For details on the @option{-p} option. @xref{Connecting to GDB}.
  506. Note! OpenOCD will launch the GDB & telnet server even if it can not
  507. establish a connection with the target. In general, it is possible for
  508. the JTAG controller to be unresponsive until the target is set up
  509. correctly via e.g. GDB monitor commands in a GDB init script.
  510. @node Simple Configuration Files
  511. @chapter Simple Configuration Files
  512. @cindex configuration
  513. @section Outline
  514. There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
  515. @enumerate
  516. @item A small openocd.cfg file which ``sources'' other configuration files
  517. @item A monolithic openocd.cfg file
  518. @item Many -f filename options on the command line
  519. @item Your Mixed Solution
  520. @end enumerate
  521. @section Small configuration file method
  522. This is the preferred method. It is simple and works well for many
  523. people. The developers of OpenOCD would encourage you to use this
  524. method. If you create a new configuration please email new
  525. configurations to the development list.
  526. Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
  527. @example
  528. source [find interface/signalyzer.cfg]
  529. # Change the default telnet port...
  530. telnet_port 4444
  531. # GDB connects here
  532. gdb_port 3333
  533. # GDB can also flash my flash!
  534. gdb_memory_map enable
  535. gdb_flash_program enable
  536. source [find target/sam7x256.cfg]
  537. @end example
  538. There are many example configuration scripts you can work with. You
  539. should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
  540. should find:
  541. @enumerate
  542. @item @b{board} - eval board level configurations
  543. @item @b{interface} - specific dongle configurations
  544. @item @b{target} - the target chips
  545. @item @b{tcl} - helper scripts
  546. @item @b{xscale} - things specific to the xscale.
  547. @end enumerate
  548. Look first in the ``boards'' area, then the ``targets'' area. Often a board
  549. configuration is a good example to work from.
  550. @section Many -f filename options
  551. Some believe this is a wonderful solution, others find it painful.
  552. You can use a series of ``-f filename'' options on the command line,
  553. OpenOCD will read each filename in sequence, for example:
  554. @example
  555. openocd -f file1.cfg -f file2.cfg -f file2.cfg
  556. @end example
  557. You can also intermix various commands with the ``-c'' command line
  558. option.
  559. @section Monolithic file
  560. The ``Monolithic File'' dispenses with all ``source'' statements and
  561. puts everything in one self contained (monolithic) file. This is not
  562. encouraged.
  563. Please try to ``source'' various files or use the multiple -f
  564. technique.
  565. @section Advice for you
  566. Often, one uses a ``mixed approach''. Where possible, please try to
  567. ``source'' common things, and if needed cut/paste parts of the
  568. standard distribution configuration files as needed.
  569. @b{REMEMBER:} The ``important parts'' of your configuration file are:
  570. @enumerate
  571. @item @b{Interface} - Defines the dongle
  572. @item @b{Taps} - Defines the JTAG Taps
  573. @item @b{GDB Targets} - What GDB talks to
  574. @item @b{Flash Programing} - Very Helpful
  575. @end enumerate
  576. Some key things you should look at and understand are:
  577. @enumerate
  578. @item The reset configuration of your debug environment as a whole
  579. @item Is there a ``work area'' that OpenOCD can use?
  580. @* For ARM - work areas mean up to 10x faster downloads.
  581. @item For MMU/MPU based ARM chips (i.e.: ARM9 and later) will that work area still be available?
  582. @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
  583. @end enumerate
  584. @node Config File Guidelines
  585. @chapter Config File Guidelines
  586. This section/chapter is aimed at developers and integrators of
  587. OpenOCD. These are guidelines for creating new boards and new target
  588. configurations as of 28/Nov/2008.
  589. However, you, the user of OpenOCD, should be somewhat familiar with
  590. this section as it should help explain some of the internals of what
  591. you might be looking at.
  592. The user should find the following directories under @t{$(INSTALLDIR)/lib/openocd} :
  593. @itemize @bullet
  594. @item @b{interface}
  595. @*Think JTAG Dongle. Files that configure the JTAG dongle go here.
  596. @item @b{board}
  597. @* Think Circuit Board, PWA, PCB, they go by many names. Board files
  598. contain initialization items that are specific to a board - for
  599. example: The SDRAM initialization sequence for the board, or the type
  600. of external flash and what address it is found at. Any initialization
  601. sequence to enable that external flash or SDRAM should be found in the
  602. board file. Boards may also contain multiple targets, i.e.: Two CPUs, or
  603. a CPU and an FPGA or CPLD.
  604. @item @b{target}
  605. @* Think chip. The ``target'' directory represents a JTAG tap (or
  606. chip) OpenOCD should control, not a board. Two common types of targets
  607. are ARM chips and FPGA or CPLD chips.
  608. @end itemize
  609. @b{If needed...} The user in their ``openocd.cfg'' file or the board
  610. file might override a specific feature in any of the above files by
  611. setting a variable or two before sourcing the target file. Or adding
  612. various commands specific to their situation.
  613. @section Interface Config Files
  614. The user should be able to source one of these files via a command like this:
  615. @example
  616. source [find interface/FOOBAR.cfg]
  617. Or:
  618. openocd -f interface/FOOBAR.cfg
  619. @end example
  620. A preconfigured interface file should exist for every interface in use
  621. today, that said, perhaps some interfaces have only been used by the
  622. sole developer who created it.
  623. @b{FIXME/NOTE:} We need to add support for a variable like Tcl variable
  624. tcl_platform(platform), it should be called jim_platform (because it
  625. is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
  626. ``cygwin'' or ``mingw''
  627. Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
  628. @section Board Config Files
  629. @b{Note: BOARD directory NEW as of 28/nov/2008}
  630. The user should be able to source one of these files via a command like this:
  631. @example
  632. source [find board/FOOBAR.cfg]
  633. Or:
  634. openocd -f board/FOOBAR.cfg
  635. @end example
  636. The board file should contain one or more @t{source [find
  637. target/FOO.cfg]} statements along with any board specific things.
  638. In summary the board files should contain (if present)
  639. @enumerate
  640. @item External flash configuration (i.e.: the flash on CS0)
  641. @item SDRAM configuration (size, speed, etc.
  642. @item Board specific IO configuration (i.e.: GPIO pins might disable a 2nd flash)
  643. @item Multiple TARGET source statements
  644. @item All things that are not ``inside a chip''
  645. @item Things inside a chip go in a 'target' file
  646. @end enumerate
  647. @section Target Config Files
  648. The user should be able to source one of these files via a command like this:
  649. @example
  650. source [find target/FOOBAR.cfg]
  651. Or:
  652. openocd -f target/FOOBAR.cfg
  653. @end example
  654. In summary the target files should contain
  655. @enumerate
  656. @item Set defaults
  657. @item Create taps
  658. @item Reset configuration
  659. @item Work areas
  660. @item CPU/Chip/CPU-Core specific features
  661. @item On-Chip flash
  662. @end enumerate
  663. @subsection Important variable names
  664. By default, the end user should never need to set these
  665. variables. However, if the user needs to override a setting they only
  666. need to set the variable in a simple way.
  667. @itemize @bullet
  668. @item @b{CHIPNAME}
  669. @* This gives a name to the overall chip, and is used as part of the
  670. tap identifier dotted name.
  671. @item @b{ENDIAN}
  672. @* By default little - unless the chip or board is not normally used that way.
  673. @item @b{CPUTAPID}
  674. @* When OpenOCD examines the JTAG chain, it will attempt to identify
  675. every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
  676. to verify the tap id number verses configuration file and may issue an
  677. error or warning like this. The hope is that this will help to pinpoint
  678. problems in OpenOCD configurations.
  679. @example
  680. Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
  681. Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
  682. Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
  683. Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
  684. @end example
  685. @item @b{_TARGETNAME}
  686. @* By convention, this variable is created by the target configuration
  687. script. The board configuration file may make use of this variable to
  688. configure things like a ``reset init'' script, or other things
  689. specific to that board and that target.
  690. If the chip has 2 targets, use the names @b{_TARGETNAME0},
  691. @b{_TARGETNAME1}, ... etc.
  692. @b{Remember:} The ``board file'' may include multiple targets.
  693. At no time should the name ``target0'' (the default target name if
  694. none was specified) be used. The name ``target0'' is a hard coded name
  695. - the next target on the board will be some other number.
  696. The user (or board file) should reasonably be able to:
  697. @example
  698. source [find target/FOO.cfg]
  699. $_TARGETNAME configure ... FOO specific parameters
  700. source [find target/BAR.cfg]
  701. $_TARGETNAME configure ... BAR specific parameters
  702. @end example
  703. @end itemize
  704. @subsection Tcl Variables Guide Line
  705. The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
  706. Thus the rule we follow in OpenOCD is this: Variables that begin with
  707. a leading underscore are temporary in nature, and can be modified and
  708. used at will within a ?TARGET? configuration file.
  709. @b{EXAMPLE:} The user should be able to do this:
  710. @example
  711. # Board has 3 chips,
  712. # PXA270 #1 network side, big endian
  713. # PXA270 #2 video side, little endian
  714. # Xilinx Glue logic
  715. set CHIPNAME network
  716. set ENDIAN big
  717. source [find target/pxa270.cfg]
  718. # variable: _TARGETNAME = network.cpu
  719. # other commands can refer to the "network.cpu" tap.
  720. $_TARGETNAME configure .... params for this CPU..
  721. set ENDIAN little
  722. set CHIPNAME video
  723. source [find target/pxa270.cfg]
  724. # variable: _TARGETNAME = video.cpu
  725. # other commands can refer to the "video.cpu" tap.
  726. $_TARGETNAME configure .... params for this CPU..
  727. unset ENDIAN
  728. set CHIPNAME xilinx
  729. source [find target/spartan3.cfg]
  730. # Since $_TARGETNAME is temporal..
  731. # these names still work!
  732. network.cpu configure ... params
  733. video.cpu configure ... params
  734. @end example
  735. @subsection Default Value Boiler Plate Code
  736. All target configuration files should start with this (or a modified form)
  737. @example
  738. # SIMPLE example
  739. if @{ [info exists CHIPNAME] @} @{
  740. set _CHIPNAME $CHIPNAME
  741. @} else @{
  742. set _CHIPNAME sam7x256
  743. @}
  744. if @{ [info exists ENDIAN] @} @{
  745. set _ENDIAN $ENDIAN
  746. @} else @{
  747. set _ENDIAN little
  748. @}
  749. if @{ [info exists CPUTAPID ] @} @{
  750. set _CPUTAPID $CPUTAPID
  751. @} else @{
  752. set _CPUTAPID 0x3f0f0f0f
  753. @}
  754. @end example
  755. @subsection Creating Taps
  756. After the ``defaults'' are choosen [see above] the taps are created.
  757. @b{SIMPLE example:} such as an Atmel AT91SAM7X256
  758. @example
  759. # for an ARM7TDMI.
  760. set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
  761. jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
  762. @end example
  763. @b{COMPLEX example:}
  764. This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
  765. @enumerate
  766. @item @b{Unform tap names} - See: Tap Naming Convention
  767. @item @b{_TARGETNAME} is created at the end where used.
  768. @end enumerate
  769. @example
  770. if @{ [info exists FLASHTAPID ] @} @{
  771. set _FLASHTAPID $FLASHTAPID
  772. @} else @{
  773. set _FLASHTAPID 0x25966041
  774. @}
  775. jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
  776. if @{ [info exists CPUTAPID ] @} @{
  777. set _CPUTAPID $CPUTAPID
  778. @} else @{
  779. set _CPUTAPID 0x25966041
  780. @}
  781. jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
  782. if @{ [info exists BSTAPID ] @} @{
  783. set _BSTAPID $BSTAPID
  784. @} else @{
  785. set _BSTAPID 0x1457f041
  786. @}
  787. jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
  788. set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
  789. @end example
  790. @b{Tap Naming Convention}
  791. See the command ``jtag newtap'' for detail, but in brief the names you should use are:
  792. @itemize @bullet
  793. @item @b{tap}
  794. @item @b{cpu}
  795. @item @b{flash}
  796. @item @b{bs}
  797. @item @b{jrc}
  798. @item @b{unknownN} - it happens :-(
  799. @end itemize
  800. @subsection Reset Configuration
  801. Some chips have specific ways the TRST and SRST signals are
  802. managed. If these are @b{CHIP SPECIFIC} they go here, if they are
  803. @b{BOARD SPECIFIC} they go in the board file.
  804. @subsection Work Areas
  805. Work areas are small RAM areas used by OpenOCD to speed up downloads,
  806. and to download small snippets of code to program flash chips.
  807. If the chip includes a form of ``on-chip-ram'' - and many do - define
  808. a reasonable work area and use the ``backup'' option.
  809. @b{PROBLEMS:} On more complex chips, this ``work area'' may become
  810. inaccessible if/when the application code enables or disables the MMU.
  811. @subsection ARM Core Specific Hacks
  812. If the chip has a DCC, enable it. If the chip is an ARM9 with some
  813. special high speed download features - enable it.
  814. If the chip has an ARM ``vector catch'' feature - by default enable
  815. it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
  816. user is really writing a handler for those situations - they can
  817. easily disable it. Experiance has shown the ``vector catch'' is
  818. helpful - for common programing errors.
  819. If present, the MMU, the MPU and the CACHE should be disabled.
  820. @subsection Internal Flash Configuration
  821. This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
  822. @b{Never ever} in the ``target configuration file'' define any type of
  823. flash that is external to the chip. (For example the BOOT flash on
  824. Chip Select 0). The BOOT flash information goes in a board file - not
  825. the TARGET (chip) file.
  826. Examples:
  827. @itemize @bullet
  828. @item at91sam7x256 - has 256K flash YES enable it.
  829. @item str912 - has flash internal YES enable it.
  830. @item imx27 - uses boot flash on CS0 - it goes in the board file.
  831. @item pxa270 - again - CS0 flash - it goes in the board file.
  832. @end itemize
  833. @node About JIM-Tcl
  834. @chapter About JIM-Tcl
  835. @cindex JIM Tcl
  836. @cindex tcl
  837. OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
  838. learn more about JIM here: @url{http://jim.berlios.de}
  839. @itemize @bullet
  840. @item @b{JIM vs. Tcl}
  841. @* JIM-TCL is a stripped down version of the well known Tcl language,
  842. which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
  843. fewer features. JIM-Tcl is a single .C file and a single .H file and
  844. impliments the basic Tcl command set along. In contrast: Tcl 8.6 is a
  845. 4.2 MB .zip file containing 1540 files.
  846. @item @b{Missing Features}
  847. @* Our practice has been: Add/clone the real Tcl feature if/when
  848. needed. We welcome JIM Tcl improvements, not bloat.
  849. @item @b{Scripts}
  850. @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
  851. command interpreter today (28/nov/2008) is a mixture of (newer)
  852. JIM-Tcl commands, and (older) the orginal command interpreter.
  853. @item @b{Commands}
  854. @* At the OpenOCD telnet command line (or via the GDB mon command) one
  855. can type a Tcl for() loop, set variables, etc.
  856. @item @b{Historical Note}
  857. @* JIM-Tcl was introduced to OpenOCD in spring 2008.
  858. @item @b{Need a crash course in Tcl?}
  859. @* See: @xref{Tcl Crash Course}.
  860. @end itemize
  861. @node Daemon Configuration
  862. @chapter Daemon Configuration
  863. The commands here are commonly found in the openocd.cfg file and are
  864. used to specify what TCP/IP ports are used, and how GDB should be
  865. supported.
  866. @section init
  867. @cindex init
  868. This command terminates the configuration stage and
  869. enters the normal command mode. This can be useful to add commands to
  870. the startup scripts and commands such as resetting the target,
  871. programming flash, etc. To reset the CPU upon startup, add "init" and
  872. "reset" at the end of the config script or at the end of the OpenOCD
  873. command line using the @option{-c} command line switch.
  874. If this command does not appear in any startup/configuration file
  875. OpenOCD executes the command for you after processing all
  876. configuration files and/or command line options.
  877. @b{NOTE:} This command normally occurs at or near the end of your
  878. openocd.cfg file to force OpenOCD to ``initialize'' and make the
  879. targets ready. For example: If your openocd.cfg file needs to
  880. read/write memory on your target - the init command must occur before
  881. the memory read/write commands.
  882. @section TCP/IP Ports
  883. @itemize @bullet
  884. @item @b{telnet_port} <@var{number}>
  885. @cindex telnet_port
  886. @*Intended for a human. Port on which to listen for incoming telnet connections.
  887. @item @b{tcl_port} <@var{number}>
  888. @cindex tcl_port
  889. @*Intended as a machine interface. Port on which to listen for
  890. incoming Tcl syntax. This port is intended as a simplified RPC
  891. connection that can be used by clients to issue commands and get the
  892. output from the Tcl engine.
  893. @item @b{gdb_port} <@var{number}>
  894. @cindex gdb_port
  895. @*First port on which to listen for incoming GDB connections. The GDB port for the
  896. first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
  897. @end itemize
  898. @section GDB Items
  899. @itemize @bullet
  900. @item @b{gdb_breakpoint_override} <@var{hard|soft|disable}>
  901. @cindex gdb_breakpoint_override
  902. @anchor{gdb_breakpoint_override}
  903. @*Force breakpoint type for gdb 'break' commands.
  904. The raison d'etre for this option is to support GDB GUI's without
  905. a hard/soft breakpoint concept where the default OpenOCD and
  906. GDB behaviour is not sufficient. Note that GDB will use hardware
  907. breakpoints if the memory map has been set up for flash regions.
  908. This option replaces older arm7_9 target commands that addressed
  909. the same issue.
  910. @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
  911. @cindex gdb_detach
  912. @*Configures what OpenOCD will do when GDB detaches from the daemon.
  913. Default behaviour is <@var{resume}>
  914. @item @b{gdb_memory_map} <@var{enable|disable}>
  915. @cindex gdb_memory_map
  916. @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to GDB when
  917. requested. GDB will then know when to set hardware breakpoints, and program flash
  918. using the GDB load command. @option{gdb_flash_program enable} must also be enabled
  919. for flash programming to work.
  920. Default behaviour is <@var{enable}>
  921. @xref{gdb_flash_program}.
  922. @item @b{gdb_flash_program} <@var{enable|disable}>
  923. @cindex gdb_flash_program
  924. @anchor{gdb_flash_program}
  925. @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
  926. vFlash packet is received.
  927. Default behaviour is <@var{enable}>
  928. @comment END GDB Items
  929. @end itemize
  930. @node Interface - Dongle Configuration
  931. @chapter Interface - Dongle Configuration
  932. Interface commands are normally found in an interface configuration
  933. file which is sourced by your openocd.cfg file. These commands tell
  934. OpenOCD what type of JTAG dongle you have and how to talk to it.
  935. @section Simple Complete Interface Examples
  936. @b{A Turtelizer FT2232 Based JTAG Dongle}
  937. @verbatim
  938. #interface
  939. interface ft2232
  940. ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
  941. ft2232_layout turtelizer2
  942. ft2232_vid_pid 0x0403 0xbdc8
  943. @end verbatim
  944. @b{A SEGGER Jlink}
  945. @verbatim
  946. # jlink interface
  947. interface jlink
  948. @end verbatim
  949. @b{A Raisonance RLink}
  950. @verbatim
  951. # rlink interface
  952. interface rlink
  953. @end verbatim
  954. @b{Parallel Port}
  955. @verbatim
  956. interface parport
  957. parport_port 0xc8b8
  958. parport_cable wiggler
  959. jtag_speed 0
  960. @end verbatim
  961. @b{ARM-JTAG-EW}
  962. @verbatim
  963. interface arm-jtag-ew
  964. @end verbatim
  965. @section Interface Command
  966. The interface command tells OpenOCD what type of JTAG dongle you are
  967. using. Depending on the type of dongle, you may need to have one or
  968. more additional commands.
  969. @itemize @bullet
  970. @item @b{interface} <@var{name}>
  971. @cindex interface
  972. @*Use the interface driver <@var{name}> to connect to the
  973. target. Currently supported interfaces are
  974. @itemize @minus
  975. @item @b{parport}
  976. @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
  977. @item @b{amt_jtagaccel}
  978. @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
  979. mode parallel port
  980. @item @b{ft2232}
  981. @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
  982. FTD2XX driver. The FTD2XX is superior in performance, but not available on every
  983. platform. The libftdi uses libusb, and should be portable to all systems that provide
  984. libusb.
  985. @item @b{ep93xx}
  986. @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
  987. @item @b{presto}
  988. @* ASIX PRESTO USB JTAG programmer.
  989. @item @b{usbprog}
  990. @* usbprog is a freely programmable USB adapter.
  991. @item @b{gw16012}
  992. @* Gateworks GW16012 JTAG programmer.
  993. @item @b{jlink}
  994. @* Segger jlink USB adapter
  995. @item @b{rlink}
  996. @* Raisonance RLink USB adapter
  997. @item @b{vsllink}
  998. @* vsllink is part of Versaloon which is a versatile USB programmer.
  999. @item @b{arm-jtag-ew}
  1000. @* Olimex ARM-JTAG-EW USB adapter
  1001. @comment - End parameters
  1002. @end itemize
  1003. @comment - End Interface
  1004. @end itemize
  1005. @subsection parport options
  1006. @itemize @bullet
  1007. @item @b{parport_port} <@var{number}>
  1008. @cindex parport_port
  1009. @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
  1010. the @file{/dev/parport} device
  1011. When using PPDEV to access the parallel port, use the number of the parallel port:
  1012. @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
  1013. you may encounter a problem.
  1014. @item @b{parport_cable} <@var{name}>
  1015. @cindex parport_cable
  1016. @*The layout of the parallel port cable used to connect to the target.
  1017. Currently supported cables are
  1018. @itemize @minus
  1019. @item @b{wiggler}
  1020. @cindex wiggler
  1021. The original Wiggler layout, also supported by several clones, such
  1022. as the Olimex ARM-JTAG
  1023. @item @b{wiggler2}
  1024. @cindex wiggler2
  1025. Same as original wiggler except an led is fitted on D5.
  1026. @item @b{wiggler_ntrst_inverted}
  1027. @cindex wiggler_ntrst_inverted
  1028. Same as original wiggler except TRST is inverted.
  1029. @item @b{old_amt_wiggler}
  1030. @cindex old_amt_wiggler
  1031. The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
  1032. version available from the website uses the original Wiggler layout ('@var{wiggler}')
  1033. @item @b{chameleon}
  1034. @cindex chameleon
  1035. The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
  1036. program the Chameleon itself, not a connected target.
  1037. @item @b{dlc5}
  1038. @cindex dlc5
  1039. The Xilinx Parallel cable III.
  1040. @item @b{triton}
  1041. @cindex triton
  1042. The parallel port adapter found on the 'Karo Triton 1 Development Board'.
  1043. This is also the layout used by the HollyGates design
  1044. (see @uref{http://www.lartmaker.nl/projects/jtag/}).
  1045. @item @b{flashlink}
  1046. @cindex flashlink
  1047. The ST Parallel cable.
  1048. @item @b{arm-jtag}
  1049. @cindex arm-jtag
  1050. Same as original wiggler except SRST and TRST connections reversed and
  1051. TRST is also inverted.
  1052. @item @b{altium}
  1053. @cindex altium
  1054. Altium Universal JTAG cable.
  1055. @end itemize
  1056. @item @b{parport_write_on_exit} <@var{on}|@var{off}>
  1057. @cindex parport_write_on_exit
  1058. @*This will configure the parallel driver to write a known value to the parallel
  1059. interface on exiting OpenOCD
  1060. @end itemize
  1061. @subsection amt_jtagaccel options
  1062. @itemize @bullet
  1063. @item @b{parport_port} <@var{number}>
  1064. @cindex parport_port
  1065. @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
  1066. @file{/dev/parport} device
  1067. @end itemize
  1068. @subsection ft2232 options
  1069. @itemize @bullet
  1070. @item @b{ft2232_device_desc} <@var{description}>
  1071. @cindex ft2232_device_desc
  1072. @*The USB device description of the FTDI FT2232 device. If not
  1073. specified, the FTDI default value is used. This setting is only valid
  1074. if compiled with FTD2XX support.
  1075. @b{TODO:} Confirm the following: On Windows the name needs to end with
  1076. a ``space A''? Or not? It has to do with the FTD2xx driver. When must
  1077. this be added and when must it not be added? Why can't the code in the
  1078. interface or in OpenOCD automatically add this if needed? -- Duane.
  1079. @item @b{ft2232_serial} <@var{serial-number}>
  1080. @cindex ft2232_serial
  1081. @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
  1082. values are used.
  1083. @item @b{ft2232_layout} <@var{name}>
  1084. @cindex ft2232_layout
  1085. @*The layout of the FT2232 GPIO signals used to control output-enables and reset
  1086. signals. Valid layouts are
  1087. @itemize @minus
  1088. @item @b{usbjtag}
  1089. "USBJTAG-1" layout described in the original OpenOCD diploma thesis
  1090. @item @b{jtagkey}
  1091. Amontec JTAGkey and JTAGkey-Tiny
  1092. @item @b{signalyzer}
  1093. Signalyzer
  1094. @item @b{olimex-jtag}
  1095. Olimex ARM-USB-OCD
  1096. @item @b{m5960}
  1097. American Microsystems M5960
  1098. @item @b{evb_lm3s811}
  1099. Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
  1100. SRST signals on external connector
  1101. @item @b{comstick}
  1102. Hitex STR9 comstick
  1103. @item @b{stm32stick}
  1104. Hitex STM32 Performance Stick
  1105. @item @b{flyswatter}
  1106. Tin Can Tools Flyswatter
  1107. @item @b{turtelizer2}
  1108. egnite Software turtelizer2
  1109. @item @b{oocdlink}
  1110. OOCDLink
  1111. @item @b{axm0432_jtag}
  1112. Axiom AXM-0432
  1113. @end itemize
  1114. @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
  1115. @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
  1116. default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, e.g.
  1117. @example
  1118. ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
  1119. @end example
  1120. @item @b{ft2232_latency} <@var{ms}>
  1121. @*On some systems using FT2232 based JTAG interfaces the FT_Read function call in
  1122. ft2232_read() fails to return the expected number of bytes. This can be caused by
  1123. USB communication delays and has proved hard to reproduce and debug. Setting the
  1124. FT2232 latency timer to a larger value increases delays for short USB packets but it
  1125. also reduces the risk of timeouts before receiving the expected number of bytes.
  1126. The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
  1127. @end itemize
  1128. @subsection ep93xx options
  1129. @cindex ep93xx options
  1130. Currently, there are no options available for the ep93xx interface.
  1131. @section JTAG Speed
  1132. @itemize @bullet
  1133. @item @b{jtag_khz} <@var{reset speed kHz}>
  1134. @cindex jtag_khz
  1135. It is debatable if this command belongs here - or in a board
  1136. configuration file. In fact, in some situations the JTAG speed is
  1137. changed during the target initialisation process (i.e.: (1) slow at
  1138. reset, (2) program the CPU clocks, (3) run fast)
  1139. Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
  1140. Not all interfaces support ``rtck''. If the interface device can not
  1141. support the rate asked for, or can not translate from kHz to
  1142. jtag_speed, then an error is returned.
  1143. Make sure the JTAG clock is no more than @math{1/6th CPU-Clock}. This is
  1144. especially true for synthesized cores (-S). Also see RTCK.
  1145. @b{NOTE: Script writers} If the target chip requires/uses RTCK -
  1146. please use the command: 'jtag_rclk FREQ'. This Tcl proc (in
  1147. startup.tcl) attempts to enable RTCK, if that fails it falls back to
  1148. the specified frequency.
  1149. @example
  1150. # Fall back to 3mhz if RCLK is not supported
  1151. jtag_rclk 3000
  1152. @end example
  1153. @item @b{DEPRECATED} @b{jtag_speed} - please use jtag_khz above.
  1154. @cindex jtag_speed
  1155. @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
  1156. speed. The actual effect of this option depends on the JTAG interface used.
  1157. The speed used during reset can be adjusted using setting jtag_speed during
  1158. pre_reset and post_reset events.
  1159. @itemize @minus
  1160. @item wiggler: maximum speed / @var{number}
  1161. @item ft2232: 6MHz / (@var{number}+1)
  1162. @item amt jtagaccel: 8 / 2**@var{number}
  1163. @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
  1164. @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
  1165. @comment end speed list.
  1166. @end itemize
  1167. @comment END command list
  1168. @end itemize
  1169. @node Reset Configuration
  1170. @chapter Reset Configuration
  1171. @cindex Reset Configuration
  1172. Every system configuration may require a different reset
  1173. configuration. This can also be quite confusing. Please see the
  1174. various board files for example.
  1175. @section jtag_nsrst_delay <@var{ms}>
  1176. @cindex jtag_nsrst_delay
  1177. @*How long (in milliseconds) OpenOCD should wait after deasserting
  1178. nSRST before starting new JTAG operations.
  1179. @section jtag_ntrst_delay <@var{ms}>
  1180. @cindex jtag_ntrst_delay
  1181. @*Same @b{jtag_nsrst_delay}, but for nTRST
  1182. The jtag_n[st]rst_delay options are useful if reset circuitry (like a
  1183. big resistor/capacitor, reset supervisor, or on-chip features). This
  1184. keeps the signal asserted for some time after the external reset got
  1185. deasserted.
  1186. @section reset_config
  1187. @b{Note:} To maintainers and integrators: Where exactly the
  1188. ``reset configuration'' goes is a good question. It touches several
  1189. things at once. In the end, if you have a board file - the board file
  1190. should define it and assume 100% that the DONGLE supports
  1191. anything. However, that does not mean the target should not also make
  1192. not of something the silicon vendor has done inside the
  1193. chip. @i{Grr.... nothing is every pretty.}
  1194. @* @b{Problems:}
  1195. @enumerate
  1196. @item Every JTAG Dongle is slightly different, some dongles implement reset differently.
  1197. @item Every board is also slightly different; some boards tie TRST and SRST together.
  1198. @item Every chip is slightly different; some chips internally tie the two signals together.
  1199. @item Some may not implement all of the signals the same way.
  1200. @item Some signals might be push-pull, others open-drain/collector.
  1201. @end enumerate
  1202. @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
  1203. reset the TAP via TRST and send commands through the JTAG tap to halt
  1204. the CPU at the reset vector before the 1st instruction is executed,
  1205. and finally release the SRST signal.
  1206. @*Depending on your board vendor, chip vendor, etc., these
  1207. signals may have slightly different names.
  1208. OpenOCD defines these signals in these terms:
  1209. @itemize @bullet
  1210. @item @b{TRST} - is Tap Reset - and should reset only the TAP.
  1211. @item @b{SRST} - is System Reset - typically equal to a reset push button.
  1212. @end itemize
  1213. The Command:
  1214. @itemize @bullet
  1215. @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
  1216. @cindex reset_config
  1217. @* The @t{reset_config} command tells OpenOCD the reset configuration
  1218. of your combination of Dongle, Board, and Chips.
  1219. If the JTAG interface provides SRST, but the target doesn't connect
  1220. that signal properly, then OpenOCD can't use it. <@var{signals}> can
  1221. be @option{none}, @option{trst_only}, @option{srst_only} or
  1222. @option{trst_and_srst}.
  1223. [@var{combination}] is an optional value specifying broken reset
  1224. signal implementations. @option{srst_pulls_trst} states that the
  1225. test logic is reset together with the reset of the system (e.g. Philips
  1226. LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
  1227. the system is reset together with the test logic (only hypothetical, I
  1228. haven't seen hardware with such a bug, and can be worked around).
  1229. @option{combined} implies both @option{srst_pulls_trst} and
  1230. @option{trst_pulls_srst}. The default behaviour if no option given is
  1231. @option{separate}.
  1232. The [@var{trst_type}] and [@var{srst_type}] parameters allow the
  1233. driver type of the reset lines to be specified. Possible values are
  1234. @option{trst_push_pull} (default) and @option{trst_open_drain} for the
  1235. test reset signal, and @option{srst_open_drain} (default) and
  1236. @option{srst_push_pull} for the system reset. These values only affect
  1237. JTAG interfaces with support for different drivers, like the Amontec
  1238. JTAGkey and JTAGAccelerator.
  1239. @comment - end command
  1240. @end itemize
  1241. @node Tap Creation
  1242. @chapter Tap Creation
  1243. @cindex tap creation
  1244. @cindex tap configuration
  1245. In order for OpenOCD to control a target, a JTAG tap must be
  1246. defined/created.
  1247. Commands to create taps are normally found in a configuration file and
  1248. are not normally typed by a human.
  1249. When a tap is created a @b{dotted.name} is created for the tap. Other
  1250. commands use that dotted.name to manipulate or refer to the tap.
  1251. Tap Uses:
  1252. @itemize @bullet
  1253. @item @b{Debug Target} A tap can be used by a GDB debug target
  1254. @item @b{Flash Programing} Some chips program the flash via JTAG
  1255. @item @b{Boundry Scan} Some chips support boundary scan.
  1256. @end itemize
  1257. @section jtag newtap
  1258. @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
  1259. @cindex jtag_device
  1260. @cindex jtag newtap
  1261. @cindex tap
  1262. @cindex tap order
  1263. @cindex tap geometry
  1264. @comment START options
  1265. @itemize @bullet
  1266. @item @b{CHIPNAME}
  1267. @* is a symbolic name of the chip.
  1268. @item @b{TAPNAME}
  1269. @* is a symbol name of a tap present on the chip.
  1270. @item @b{Required configparams}
  1271. @* Every tap has 3 required configparams, and several ``optional
  1272. parameters'', the required parameters are:
  1273. @comment START REQUIRED
  1274. @itemize @bullet
  1275. @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
  1276. @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
  1277. @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
  1278. some devices, there are bits in the IR that aren't used. This lets you mask
  1279. them off when doing comparisons. In general, this should just be all ones for
  1280. the size of the IR.
  1281. @comment END REQUIRED
  1282. @end itemize
  1283. An example of a FOOBAR Tap
  1284. @example
  1285. jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
  1286. @end example
  1287. Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
  1288. bits long, during Capture-IR 0x42 is loaded into the IR, and bits
  1289. [6,4,2,0] are checked.
  1290. @item @b{Optional configparams}
  1291. @comment START Optional
  1292. @itemize @bullet
  1293. @item @b{-expected-id NUMBER}
  1294. @* By default it is zero. If non-zero represents the
  1295. expected tap ID used when the JTAG chain is examined. Repeat
  1296. the option as many times as required if multiple id's can be
  1297. expected. See below.
  1298. @item @b{-disable}
  1299. @item @b{-enable}
  1300. @* By default not specified the tap is enabled. Some chips have a
  1301. JTAG route controller (JRC) that is used to enable and/or disable
  1302. specific JTAG taps. You can later enable or disable any JTAG tap via
  1303. the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
  1304. DOTTED.NAME}
  1305. @comment END Optional
  1306. @end itemize
  1307. @comment END OPTIONS
  1308. @end itemize
  1309. @b{Notes:}
  1310. @comment START NOTES
  1311. @itemize @bullet
  1312. @item @b{Technically}
  1313. @* newtap is a sub command of the ``jtag'' command
  1314. @item @b{Big Picture Background}
  1315. @*GDB Talks to OpenOCD using the GDB protocol via
  1316. TCP/IP. OpenOCD then uses the JTAG interface (the dongle) to
  1317. control the JTAG chain on your board. Your board has one or more chips
  1318. in a @i{daisy chain configuration}. Each chip may have one or more
  1319. JTAG taps. GDB ends up talking via OpenOCD to one of the taps.
  1320. @item @b{NAME Rules}
  1321. @*Names follow ``C'' symbol name rules (start with alpha ...)
  1322. @item @b{TAPNAME - Conventions}
  1323. @itemize @bullet
  1324. @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
  1325. @item @b{cpu} - the main CPU of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
  1326. @item @b{flash} - if the chip has a flash tap, example: str912.flash
  1327. @item @b{bs} - for boundary scan if this is a seperate tap.
  1328. @item @b{jrc} - for JTAG route controller (example: OMAP3530 found on Beagleboards)
  1329. @item @b{unknownN} - where N is a number if you have no idea what the tap is for
  1330. @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
  1331. @item @b{When in doubt} - use the chip maker's name in their data sheet.
  1332. @end itemize
  1333. @item @b{DOTTED.NAME}
  1334. @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
  1335. @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
  1336. dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
  1337. @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
  1338. numerous other places to refer to various taps.
  1339. @item @b{ORDER}
  1340. @* The order this command appears via the config files is
  1341. important.
  1342. @item @b{Multi Tap Example}
  1343. @* This example is based on the ST Microsystems STR912. See the ST
  1344. document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
  1345. 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
  1346. @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
  1347. @*@b{checked: 28/nov/2008}
  1348. The diagram shows that the TDO pin connects to the flash tap, flash TDI
  1349. connects to the CPU debug tap, CPU TDI connects to the boundary scan
  1350. tap which then connects to the TDI pin.
  1351. @example
  1352. # The order is...
  1353. # create tap: 'str912.flash'
  1354. jtag newtap str912 flash ... params ...
  1355. # create tap: 'str912.cpu'
  1356. jtag newtap str912 cpu ... params ...
  1357. # create tap: 'str912.bs'
  1358. jtag newtap str912 bs ... params ...
  1359. @end example
  1360. @item @b{Note: Deprecated} - Index Numbers
  1361. @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
  1362. feature is still present, however its use is highly discouraged and
  1363. should not be counted upon.
  1364. @item @b{Multiple chips}
  1365. @* If your board has multiple chips, you should be
  1366. able to @b{source} two configuration files, in the proper order, and
  1367. have the taps created in the proper order.
  1368. @comment END NOTES
  1369. @end itemize
  1370. @comment at command level
  1371. @comment DOCUMENT old command
  1372. @section jtag_device - REMOVED
  1373. @example
  1374. @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
  1375. @end example
  1376. @cindex jtag_device
  1377. @* @b{Removed: 28/nov/2008} This command has been removed and replaced
  1378. by the ``jtag newtap'' command. The documentation remains here so that
  1379. one can easily convert the old syntax to the new syntax. About the old
  1380. syntax: The old syntax is positional, i.e.: The 3rd parameter is the
  1381. ``irmask''. The new syntax requires named prefixes, and supports
  1382. additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
  1383. @b{jtag newtap} command for details.
  1384. @example
  1385. OLD: jtag_device 8 0x01 0xe3 0xfe
  1386. NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
  1387. @end example
  1388. @section Enable/Disable Taps
  1389. @b{Note:} These commands are intended to be used as a machine/script
  1390. interface. Humans might find the ``scan_chain'' command more helpful
  1391. when querying the state of the JTAG taps.
  1392. @b{By default, all taps are enabled}
  1393. @itemize @bullet
  1394. @item @b{jtag tapenable} @var{DOTTED.NAME}
  1395. @item @b{jtag tapdisable} @var{DOTTED.NAME}
  1396. @item @b{jtag tapisenabled} @var{DOTTED.NAME}
  1397. @end itemize
  1398. @cindex tap enable
  1399. @cindex tap disable
  1400. @cindex JRC
  1401. @cindex route controller
  1402. These commands are used when your target has a JTAG route controller
  1403. that effectively adds or removes a tap from the JTAG chain in a
  1404. non-standard way.
  1405. The ``standard way'' to remove a tap would be to place the tap in
  1406. bypass mode. But with the advent of modern chips, this is not always a
  1407. good solution. Some taps operate slowly, others operate fast, and
  1408. there are other JTAG clock synchronisation problems one must face. To
  1409. solve that problem, the JTAG route controller was introduced. Rather
  1410. than ``bypass'' the tap, the tap is completely removed from the
  1411. circuit and skipped.
  1412. From OpenOCD's point of view, a JTAG tap is in one of 3 states:
  1413. @itemize @bullet
  1414. @item @b{Enabled - Not In ByPass} and has a variable bit length
  1415. @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
  1416. @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
  1417. @end itemize
  1418. The IEEE JTAG definition has no concept of a ``disabled'' tap.
  1419. @b{Historical note:} this feature was added 28/nov/2008
  1420. @b{jtag tapisenabled DOTTED.NAME}
  1421. This command returns 1 if the named tap is currently enabled, 0 if not.
  1422. This command exists so that scripts that manipulate a JRC (like the
  1423. OMAP3530 has) can determine if OpenOCD thinks a tap is presently
  1424. enabled or disabled.
  1425. @page
  1426. @node Target Configuration
  1427. @chapter Target Configuration
  1428. This chapter discusses how to create a GDB debug target. Before
  1429. creating a ``target'' a JTAG tap DOTTED.NAME must exist first.
  1430. @section targets [NAME]
  1431. @b{Note:} This command name is PLURAL - not singular.
  1432. With NO parameter, this plural @b{targets} command lists all known
  1433. targets in a human friendly form.
  1434. With a parameter, this plural @b{targets} command sets the current
  1435. target to the given name. (i.e.: If there are multiple debug targets)
  1436. Example:
  1437. @verbatim
  1438. (gdb) mon targets
  1439. CmdName Type Endian ChainPos State
  1440. -- ---------- ---------- ---------- -------- ----------
  1441. 0: target0 arm7tdmi little 0 halted
  1442. @end verbatim
  1443. @section target COMMANDS
  1444. @b{Note:} This command name is SINGULAR - not plural. It is used to
  1445. manipulate specific targets, to create targets and other things.
  1446. Once a target is created, a TARGETNAME (object) command is created;
  1447. see below for details.
  1448. The TARGET command accepts these sub-commands:
  1449. @itemize @bullet
  1450. @item @b{create} .. parameters ..
  1451. @* creates a new target, see below for details.
  1452. @item @b{types}
  1453. @* Lists all supported target types (perhaps some are not yet in this document).
  1454. @item @b{names}
  1455. @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
  1456. @verbatim
  1457. foreach t [target names] {
  1458. puts [format "Target: %s\n" $t]
  1459. }
  1460. @end verbatim
  1461. @item @b{current}
  1462. @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
  1463. By default, commands like: ``mww'' (used to write memory) operate on the current target.
  1464. @item @b{number} @b{NUMBER}
  1465. @* Internally OpenOCD maintains a list of targets - in numerical index
  1466. (0..N-1) this command returns the name of the target at index N.
  1467. Example usage:
  1468. @verbatim
  1469. set thename [target number $x]
  1470. puts [format "Target %d is: %s\n" $x $thename]
  1471. @end verbatim
  1472. @item @b{count}
  1473. @* Returns the number of targets known to OpenOCD (see number above)
  1474. Example:
  1475. @verbatim
  1476. set c [target count]
  1477. for { set x 0 } { $x < $c } { incr x } {
  1478. # Assuming you have created this function
  1479. print_target_details $x
  1480. }
  1481. @end verbatim
  1482. @end itemize
  1483. @section TARGETNAME (object) commands
  1484. @b{Use:} Once a target is created, an ``object name'' that represents the
  1485. target is created. By convention, the target name is identical to the
  1486. tap name. In a multiple target system, one can preceed many common
  1487. commands with a specific target name and effect only that target.
  1488. @example
  1489. str912.cpu mww 0x1234 0x42
  1490. omap3530.cpu mww 0x5555 123
  1491. @end example
  1492. @b{Model:} The Tcl/Tk language has the concept of object commands. A
  1493. good example is a on screen button, once a button is created a button
  1494. has a name (a path in Tk terms) and that name is useable as a 1st
  1495. class command. For example in Tk, one can create a button and later
  1496. configure it like this:
  1497. @example
  1498. # Create
  1499. button .foobar -background red -command @{ foo @}
  1500. # Modify
  1501. .foobar configure -foreground blue
  1502. # Query
  1503. set x [.foobar cget -background]
  1504. # Report
  1505. puts [format "The button is %s" $x]
  1506. @end example
  1507. In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
  1508. button. Commands available as a ``target object'' are:
  1509. @comment START targetobj commands.
  1510. @itemize @bullet
  1511. @item @b{configure} - configure the target; see Target Config/Cget Options below
  1512. @item @b{cget} - query the target configuration; see Target Config/Cget Options below
  1513. @item @b{curstate} - current target state (running, halt, etc.
  1514. @item @b{eventlist}
  1515. @* Intended for a human to see/read the currently configure target events.
  1516. @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
  1517. @comment start memory
  1518. @itemize @bullet
  1519. @item @b{mww} ...
  1520. @item @b{mwh} ...
  1521. @item @b{mwb} ...
  1522. @item @b{mdw} ...
  1523. @item @b{mdh} ...
  1524. @item @b{mdb} ...
  1525. @comment end memory
  1526. @end itemize
  1527. @item @b{Memory To Array, Array To Memory}
  1528. @* These are aimed at a machine interface to memory
  1529. @itemize @bullet
  1530. @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
  1531. @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
  1532. @* Where:
  1533. @* @b{ARRAYNAME} is the name of an array variable
  1534. @* @b{WIDTH} is 8/16/32 - indicating the memory access size
  1535. @* @b{ADDRESS} is the target memory address
  1536. @* @b{COUNT} is the number of elements to process
  1537. @end itemize
  1538. @item @b{Used during ``reset''}
  1539. @* These commands are used internally by the OpenOCD scripts to deal
  1540. with odd reset situations and are not documented here.
  1541. @itemize @bullet
  1542. @item @b{arp_examine}
  1543. @item @b{arp_poll}
  1544. @item @b{arp_reset}
  1545. @item @b{arp_halt}
  1546. @item @b{arp_waitstate}
  1547. @end itemize
  1548. @item @b{invoke-event} @b{EVENT-NAME}
  1549. @* Invokes the specific event manually for the target
  1550. @end itemize
  1551. @section Target Events
  1552. At various times, certain things can happen, or you want them to happen.
  1553. Examples:
  1554. @itemize @bullet
  1555. @item What should happen when GDB connects? Should your target reset?
  1556. @item When GDB tries to flash the target, do you need to enable the flash via a special command?
  1557. @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
  1558. @end itemize
  1559. All of the above items are handled by target events.
  1560. To specify an event action, either during target creation, or later
  1561. via ``$_TARGETNAME configure'' see this example.
  1562. Syntactially, the option is: ``-event NAME BODY'' where NAME is a
  1563. target event name, and BODY is a Tcl procedure or string of commands
  1564. to execute.
  1565. The programmers model is the ``-command'' option used in Tcl/Tk
  1566. buttons and events. Below are two identical examples, the first
  1567. creates and invokes small procedure. The second inlines the procedure.
  1568. @example
  1569. proc my_attach_proc @{ @} @{
  1570. puts "RESET...."
  1571. reset halt
  1572. @}
  1573. mychip.cpu configure -event gdb-attach my_attach_proc
  1574. mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
  1575. @end example
  1576. @section Current Events
  1577. The following events are available:
  1578. @itemize @bullet
  1579. @item @b{debug-halted}
  1580. @* The target has halted for debug reasons (i.e.: breakpoint)
  1581. @item @b{debug-resumed}
  1582. @* The target has resumed (i.e.: gdb said run)
  1583. @item @b{early-halted}
  1584. @* Occurs early in the halt process
  1585. @item @b{examine-end}
  1586. @* Currently not used (goal: when JTAG examine completes)
  1587. @item @b{examine-start}
  1588. @* Currently not used (goal: when JTAG examine starts)
  1589. @item @b{gdb-attach}
  1590. @* When GDB connects
  1591. @item @b{gdb-detach}
  1592. @* When GDB disconnects
  1593. @item @b{gdb-end}
  1594. @* When the taret has halted and GDB is not doing anything (see early halt)
  1595. @item @b{gdb-flash-erase-start}
  1596. @* Before the GDB flash process tries to erase the flash
  1597. @item @b{gdb-flash-erase-end}
  1598. @* After the GDB flash process has finished erasing the flash
  1599. @item @b{gdb-flash-write-start}
  1600. @* Before GDB writes to the flash
  1601. @item @b{gdb-flash-write-end}
  1602. @* After GDB writes to the flash
  1603. @item @b{gdb-start}
  1604. @* Before the taret steps, gdb is trying to start/resume the target
  1605. @item @b{halted}
  1606. @* The target has halted
  1607. @item @b{old-gdb_program_config}
  1608. @* DO NOT USE THIS: Used internally
  1609. @item @b{old-pre_resume}
  1610. @* DO NOT USE THIS: Used internally
  1611. @item @b{reset-assert-pre}
  1612. @* Before reset is asserted on the tap.
  1613. @item @b{reset-assert-post}
  1614. @* Reset is now asserted on the tap.
  1615. @item @b{reset-deassert-pre}
  1616. @* Reset is about to be released on the tap
  1617. @item @b{reset-deassert-post}
  1618. @* Reset has been released on the tap
  1619. @item @b{reset-end}
  1620. @* Currently not used.
  1621. @item @b{reset-halt-post}
  1622. @* Currently not usd
  1623. @item @b{reset-halt-pre}
  1624. @* Currently not used
  1625. @item @b{reset-init}
  1626. @* Currently not used
  1627. @item @b{reset-start}
  1628. @* Currently not used
  1629. @item @b{reset-wait-pos}
  1630. @* Currently not used
  1631. @item @b{reset-wait-pre}
  1632. @* Currently not used
  1633. @item @b{resume-start}
  1634. @* Before any target is resumed
  1635. @item @b{resume-end}
  1636. @* After all targets have resumed
  1637. @item @b{resume-ok}
  1638. @* Success
  1639. @item @b{resumed}
  1640. @* Target has resumed
  1641. @item @b{tap-enable}
  1642. @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
  1643. @example
  1644. jtag configure DOTTED.NAME -event tap-enable @{
  1645. puts "Enabling CPU"
  1646. ...
  1647. @}
  1648. @end example
  1649. @item @b{tap-disable}
  1650. @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
  1651. @example
  1652. jtag configure DOTTED.NAME -event tap-disable @{
  1653. puts "Disabling CPU"
  1654. ...
  1655. @}
  1656. @end example
  1657. @end itemize
  1658. @section target create
  1659. @cindex target
  1660. @cindex target creation
  1661. @example
  1662. @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
  1663. @end example
  1664. @*This command creates a GDB debug target that refers to a specific JTAG tap.
  1665. @comment START params
  1666. @itemize @bullet
  1667. @item @b{NAME}
  1668. @* Is the name of the debug target. By convention it should be the tap
  1669. DOTTED.NAME, this name is also used to create the target object
  1670. command.
  1671. @item @b{TYPE}
  1672. @* Specifies the target type, i.e.: ARM7TDMI, or Cortex-M3. Currently supported targets are:
  1673. @comment START types
  1674. @itemize @minus
  1675. @item @b{arm7tdmi}
  1676. @item @b{arm720t}
  1677. @item @b{arm9tdmi}
  1678. @item @b{arm920t}
  1679. @item @b{arm922t}
  1680. @item @b{arm926ejs}
  1681. @item @b{arm966e}
  1682. @item @b{cortex_m3}
  1683. @item @b{feroceon}
  1684. @item @b{xscale}
  1685. @item @b{arm11}
  1686. @item @b{mips_m4k}
  1687. @comment end TYPES
  1688. @end itemize
  1689. @item @b{PARAMS}
  1690. @*PARAMs are various target configuration parameters. The following ones are mandatory:
  1691. @comment START mandatory
  1692. @itemize @bullet
  1693. @item @b{-endian big|little}
  1694. @item @b{-chain-position DOTTED.NAME}
  1695. @comment end MANDATORY
  1696. @end itemize
  1697. @comment END params
  1698. @end itemize
  1699. @section Target Config/Cget Options
  1700. These options can be specified when the target is created, or later
  1701. via the configure option or to query the target via cget.
  1702. @itemize @bullet
  1703. @item @b{-type} - returns the target type
  1704. @item @b{-event NAME BODY} see Target events
  1705. @item @b{-work-area-virt [ADDRESS]} specify/set the work area
  1706. @item @b{-work-area-phys [ADDRESS]} specify/set the work area
  1707. @item @b{-work-area-size [ADDRESS]} specify/set the work area
  1708. @item @b{-work-area-backup [0|1]} does the work area get backed up
  1709. @item @b{-endian [big|little]}
  1710. @item @b{-variant [NAME]} some chips have variants OpenOCD needs to know about
  1711. @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
  1712. @end itemize
  1713. Example:
  1714. @example
  1715. for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
  1716. set name [target number $x]
  1717. set y [$name cget -endian]
  1718. set z [$name cget -type]
  1719. puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
  1720. @}
  1721. @end example
  1722. @section Target Variants
  1723. @itemize @bullet
  1724. @item @b{arm7tdmi}
  1725. @* Unknown (please write me)
  1726. @item @b{arm720t}
  1727. @* Unknown (please write me) (similar to arm7tdmi)
  1728. @item @b{arm9tdmi}
  1729. @* Variants: @option{arm920t}, @option{arm922t} and @option{arm940t}
  1730. This enables the hardware single-stepping support found on these
  1731. cores.
  1732. @item @b{arm920t}
  1733. @* None.
  1734. @item @b{arm966e}
  1735. @* None (this is also used as the ARM946)
  1736. @item @b{cortex_m3}
  1737. @* use variant <@var{-variant lm3s}> when debugging Luminary lm3s targets. This will cause
  1738. OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
  1739. the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
  1740. be detected and the normal reset behaviour used.
  1741. @item @b{xscale}
  1742. @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
  1743. @item @b{arm11}
  1744. @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
  1745. @item @b{mips_m4k}
  1746. @* Use variant @option{ejtag_srst} when debugging targets that do not
  1747. provide a functional SRST line on the EJTAG connector. This causes
  1748. OpenOCD to instead use an EJTAG software reset command to reset the
  1749. processor. You still need to enable @option{srst} on the reset
  1750. configuration command to enable OpenOCD hardware reset functionality.
  1751. @comment END variants
  1752. @end itemize
  1753. @section working_area - Command Removed
  1754. @cindex working_area
  1755. @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
  1756. @* This documentation remains because there are existing scripts that
  1757. still use this that need to be converted.
  1758. @example
  1759. working_area target# address size backup| [virtualaddress]
  1760. @end example
  1761. @* The target# is a the 0 based target numerical index.
  1762. This command specifies a working area for the debugger to use. This
  1763. may be used to speed-up downloads to target memory and flash
  1764. operations, or to perform otherwise unavailable operations (some
  1765. coprocessor operations on ARM7/9 systems, for example). The last
  1766. parameter decides whether the memory should be preserved
  1767. (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
  1768. possible, use a working_area that doesn't need to be backed up, as
  1769. performing a backup slows down operation.
  1770. @node Flash Configuration
  1771. @chapter Flash programming
  1772. @cindex Flash Configuration
  1773. @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
  1774. flash that a micro may boot from. Perhaps you, the reader, would like to
  1775. contribute support for this.
  1776. Flash Steps:
  1777. @enumerate
  1778. @item Configure via the command @b{flash bank}
  1779. @* Normally this is done in a configuration file.
  1780. @item Operate on the flash via @b{flash SOMECOMMAND}
  1781. @* Often commands to manipulate the flash are typed by a human, or run
  1782. via a script in some automated way. For example: To program the boot
  1783. flash on your board.
  1784. @item GDB Flashing
  1785. @* Flashing via GDB requires the flash be configured via ``flash
  1786. bank'', and the GDB flash features be enabled. See the daemon
  1787. configuration section for more details.
  1788. @end enumerate
  1789. @section Flash commands
  1790. @cindex Flash commands
  1791. @subsection flash banks
  1792. @b{flash banks}
  1793. @cindex flash banks
  1794. @*List configured flash banks
  1795. @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
  1796. @subsection flash info
  1797. @b{flash info} <@var{num}>
  1798. @cindex flash info
  1799. @*Print info about flash bank <@option{num}>
  1800. @subsection flash probe
  1801. @b{flash probe} <@var{num}>
  1802. @cindex flash probe
  1803. @*Identify the flash, or validate the parameters of the configured flash. Operation
  1804. depends on the flash type.
  1805. @subsection flash erase_check
  1806. @b{flash erase_check} <@var{num}>
  1807. @cindex flash erase_check
  1808. @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
  1809. updates the erase state information displayed by @option{flash info}. That means you have
  1810. to issue an @option{erase_check} command after erasing or programming the device to get
  1811. updated information.
  1812. @subsection flash protect_check
  1813. @b{flash protect_check} <@var{num}>
  1814. @cindex flash protect_check
  1815. @*Check protection state of sectors in flash bank <num>.
  1816. @option{flash erase_sector} using the same syntax.
  1817. @subsection flash erase_sector
  1818. @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
  1819. @cindex flash erase_sector
  1820. @anchor{flash erase_sector}
  1821. @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
  1822. <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
  1823. require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
  1824. the CFI driver).
  1825. @subsection flash erase_address
  1826. @b{flash erase_address} <@var{address}> <@var{length}>
  1827. @cindex flash erase_address
  1828. @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
  1829. @subsection flash write_bank
  1830. @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
  1831. @cindex flash write_bank
  1832. @anchor{flash write_bank}
  1833. @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
  1834. <@option{offset}> bytes from the beginning of the bank.
  1835. @subsection flash write_image
  1836. @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
  1837. @cindex flash write_image
  1838. @anchor{flash write_image}
  1839. @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
  1840. [@var{offset}] can be specified and the file [@var{type}] can be specified
  1841. explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
  1842. (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
  1843. if the @option{erase} parameter is given.
  1844. @subsection flash protect
  1845. @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
  1846. @cindex flash protect
  1847. @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
  1848. <@var{last}> of @option{flash bank} <@var{num}>.
  1849. @subsection mFlash commands
  1850. @cindex mFlash commands
  1851. @itemize @bullet
  1852. @item @b{mflash probe}
  1853. @cindex mflash probe
  1854. Probe mflash.
  1855. @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
  1856. @cindex mflash write
  1857. Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
  1858. <@var{offset}> bytes from the beginning of the bank.
  1859. @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
  1860. @cindex mflash dump
  1861. Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
  1862. to a <@var{file}>.
  1863. @end itemize
  1864. @section flash bank command
  1865. The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
  1866. @example
  1867. @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
  1868. <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
  1869. @end example
  1870. @cindex flash bank
  1871. @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
  1872. and <@var{bus_width}> bytes using the selected flash <driver>.
  1873. @subsection External Flash - cfi options
  1874. @cindex cfi options
  1875. CFI flashes are external flash chips - often they are connected to a
  1876. specific chip select on the CPU. By default, at hard reset, most
  1877. CPUs have the ablity to ``boot'' from some flash chip - typically
  1878. attached to the CPU's CS0 pin.
  1879. For other chip selects: OpenOCD does not know how to configure, or
  1880. access a specific chip select. Instead you, the human, might need to
  1881. configure additional chip selects via other commands (like: mww) , or
  1882. perhaps configure a GPIO pin that controls the ``write protect'' pin
  1883. on the flash chip.
  1884. @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
  1885. <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
  1886. @*CFI flashes require the number of the target they're connected to as an additional
  1887. argument. The CFI driver makes use of a working area (specified for the target)
  1888. to significantly speed up operation.
  1889. @var{chip_width} and @var{bus_width} are specified in bytes.
  1890. The @var{jedec_probe} option is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types.
  1891. @var{x16_as_x8} ???
  1892. @subsection Internal Flash (Microcontrollers)
  1893. @subsubsection lpc2000 options
  1894. @cindex lpc2000 options
  1895. @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  1896. <@var{clock}> [@var{calc_checksum}]
  1897. @*LPC flashes don't require the chip and bus width to be specified. Additional
  1898. parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
  1899. or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
  1900. of the target this flash belongs to (first is 0), the frequency at which the core
  1901. is currently running (in kHz - must be an integral number), and the optional keyword
  1902. @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
  1903. vector table.
  1904. @subsubsection at91sam7 options
  1905. @cindex at91sam7 options
  1906. @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
  1907. @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
  1908. reading the chip-id and type.
  1909. @subsubsection str7 options
  1910. @cindex str7 options
  1911. @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  1912. @*variant can be either STR71x, STR73x or STR75x.
  1913. @subsubsection str9 options
  1914. @cindex str9 options
  1915. @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1916. @*The str9 needs the flash controller to be configured prior to Flash programming, e.g.
  1917. @example
  1918. str9x flash_config 0 4 2 0 0x80000
  1919. @end example
  1920. This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
  1921. @subsubsection str9 options (str9xpec driver)
  1922. @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1923. @*Before using the flash commands the turbo mode must be enabled using str9xpec
  1924. @option{enable_turbo} <@var{num>.}
  1925. Only use this driver for locking/unlocking the device or configuring the option bytes.
  1926. Use the standard str9 driver for programming. @xref{STR9 specific commands}.
  1927. @subsubsection Stellaris (LM3Sxxx) options
  1928. @cindex Stellaris (LM3Sxxx) options
  1929. @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1930. @*Stellaris flash plugin only require the @var{target#}.
  1931. @subsubsection stm32x options
  1932. @cindex stm32x options
  1933. @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1934. @*stm32x flash plugin only require the @var{target#}.
  1935. @subsubsection aduc702x options
  1936. @cindex aduc702x options
  1937. @b{flash bank aduc702x} 0 0 0 0 <@var{target#}>
  1938. @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target#} argument (all devices in this family have the same memory layout).
  1939. @subsection mFlash Configuration
  1940. @cindex mFlash Configuration
  1941. @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
  1942. <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
  1943. @cindex mflash bank
  1944. @*Configures a mflash for <@var{soc}> host bank at
  1945. <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
  1946. order. Pin number format is dependent on host GPIO calling convention.
  1947. If WP or DPD pin was not used, write -1. Currently, mflash bank
  1948. support s3c2440 and pxa270.
  1949. (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
  1950. @example
  1951. mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
  1952. @end example
  1953. (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
  1954. @example
  1955. mflash bank pxa270 0x08000000 2 2 43 -1 51 0
  1956. @end example
  1957. @section Microcontroller specific Flash Commands
  1958. @subsection AT91SAM7 specific commands
  1959. @cindex AT91SAM7 specific commands
  1960. The flash configuration is deduced from the chip identification register. The flash
  1961. controller handles erases automatically on a page (128/265 byte) basis, so erase is
  1962. not necessary for flash programming. AT91SAM7 processors with less than 512K flash
  1963. only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
  1964. that can be erased separatly. Only an EraseAll command is supported by the controller
  1965. for each flash plane and this is called with
  1966. @itemize @bullet
  1967. @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
  1968. @*bulk erase flash planes first_plane to last_plane.
  1969. @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
  1970. @cindex at91sam7 gpnvm
  1971. @*set or clear a gpnvm bit for the processor
  1972. @end itemize
  1973. @subsection STR9 specific commands
  1974. @cindex STR9 specific commands
  1975. @anchor{STR9 specific commands}
  1976. These are flash specific commands when using the str9xpec driver.
  1977. @itemize @bullet
  1978. @item @b{str9xpec enable_turbo} <@var{num}>
  1979. @cindex str9xpec enable_turbo
  1980. @*enable turbo mode, will simply remove the str9 from the chain and talk
  1981. directly to the embedded flash controller.
  1982. @item @b{str9xpec disable_turbo} <@var{num}>
  1983. @cindex str9xpec disable_turbo
  1984. @*restore the str9 into JTAG chain.
  1985. @item @b{str9xpec lock} <@var{num}>
  1986. @cindex str9xpec lock
  1987. @*lock str9 device. The str9 will only respond to an unlock command that will
  1988. erase the device.
  1989. @item @b{str9xpec unlock} <@var{num}>
  1990. @cindex str9xpec unlock
  1991. @*unlock str9 device.
  1992. @item @b{str9xpec options_read} <@var{num}>
  1993. @cindex str9xpec options_read
  1994. @*read str9 option bytes.
  1995. @item @b{str9xpec options_write} <@var{num}>
  1996. @cindex str9xpec options_write
  1997. @*write str9 option bytes.
  1998. @end itemize
  1999. Note: Before using the str9xpec driver here is some background info to help
  2000. you better understand how the drivers works. OpenOCD has two flash drivers for
  2001. the str9.
  2002. @enumerate
  2003. @item
  2004. Standard driver @option{str9x} programmed via the str9 core. Normally used for
  2005. flash programming as it is faster than the @option{str9xpec} driver.
  2006. @item
  2007. Direct programming @option{str9xpec} using the flash controller. This is an
  2008. ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
  2009. core does not need to be running to program using this flash driver. Typical use
  2010. for this driver is locking/unlocking the target and programming the option bytes.
  2011. @end enumerate
  2012. Before we run any commands using the @option{str9xpec} driver we must first disable
  2013. the str9 core. This example assumes the @option{str9xpec} driver has been
  2014. configured for flash bank 0.
  2015. @example
  2016. # assert srst, we do not want core running
  2017. # while accessing str9xpec flash driver
  2018. jtag_reset 0 1
  2019. # turn off target polling
  2020. poll off
  2021. # disable str9 core
  2022. str9xpec enable_turbo 0
  2023. # read option bytes
  2024. str9xpec options_read 0
  2025. # re-enable str9 core
  2026. str9xpec disable_turbo 0
  2027. poll on
  2028. reset halt
  2029. @end example
  2030. The above example will read the str9 option bytes.
  2031. When performing a unlock remember that you will not be able to halt the str9 - it
  2032. has been locked. Halting the core is not required for the @option{str9xpec} driver
  2033. as mentioned above, just issue the commands above manually or from a telnet prompt.
  2034. @subsection STR9 configuration
  2035. @cindex STR9 configuration
  2036. @itemize @bullet
  2037. @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
  2038. <@var{BBADR}> <@var{NBBADR}>
  2039. @cindex str9x flash_config
  2040. @*Configure str9 flash controller.
  2041. @example
  2042. e.g. str9x flash_config 0 4 2 0 0x80000
  2043. This will setup
  2044. BBSR - Boot Bank Size register
  2045. NBBSR - Non Boot Bank Size register
  2046. BBADR - Boot Bank Start Address register
  2047. NBBADR - Boot Bank Start Address register
  2048. @end example
  2049. @end itemize
  2050. @subsection STR9 option byte configuration
  2051. @cindex STR9 option byte configuration
  2052. @itemize @bullet
  2053. @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
  2054. @cindex str9xpec options_cmap
  2055. @*configure str9 boot bank.
  2056. @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
  2057. @cindex str9xpec options_lvdthd
  2058. @*configure str9 lvd threshold.
  2059. @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
  2060. @cindex str9xpec options_lvdsel
  2061. @*configure str9 lvd source.
  2062. @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
  2063. @cindex str9xpec options_lvdwarn
  2064. @*configure str9 lvd reset warning source.
  2065. @end itemize
  2066. @subsection STM32x specific commands
  2067. @cindex STM32x specific commands
  2068. These are flash specific commands when using the stm32x driver.
  2069. @itemize @bullet
  2070. @item @b{stm32x lock} <@var{num}>
  2071. @cindex stm32x lock
  2072. @*lock stm32 device.
  2073. @item @b{stm32x unlock} <@var{num}>
  2074. @cindex stm32x unlock
  2075. @*unlock stm32 device.
  2076. @item @b{stm32x options_read} <@var{num}>
  2077. @cindex stm32x options_read
  2078. @*read stm32 option bytes.
  2079. @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
  2080. <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
  2081. @cindex stm32x options_write
  2082. @*write stm32 option bytes.
  2083. @item @b{stm32x mass_erase} <@var{num}>
  2084. @cindex stm32x mass_erase
  2085. @*mass erase flash memory.
  2086. @end itemize
  2087. @subsection Stellaris specific commands
  2088. @cindex Stellaris specific commands
  2089. These are flash specific commands when using the Stellaris driver.
  2090. @itemize @bullet
  2091. @item @b{stellaris mass_erase} <@var{num}>
  2092. @cindex stellaris mass_erase
  2093. @*mass erase flash memory.
  2094. @end itemize
  2095. @node General Commands
  2096. @chapter General Commands
  2097. @cindex commands
  2098. The commands documented in this chapter here are common commands that
  2099. you, as a human, may want to type and see the output of. Configuration type
  2100. commands are documented elsewhere.
  2101. Intent:
  2102. @itemize @bullet
  2103. @item @b{Source Of Commands}
  2104. @* OpenOCD commands can occur in a configuration script (discussed
  2105. elsewhere) or typed manually by a human or supplied programatically,
  2106. or via one of several TCP/IP Ports.
  2107. @item @b{From the human}
  2108. @* A human should interact with the telnet interface (default port: 4444,
  2109. or via GDB, default port 3333)
  2110. To issue commands from within a GDB session, use the @option{monitor}
  2111. command, e.g. use @option{monitor poll} to issue the @option{poll}
  2112. command. All output is relayed through the GDB session.
  2113. @item @b{Machine Interface}
  2114. The Tcl interface's intent is to be a machine interface. The default Tcl
  2115. port is 5555.
  2116. @end itemize
  2117. @section Daemon Commands
  2118. @subsection sleep [@var{msec}]
  2119. @cindex sleep
  2120. @*Wait for n milliseconds before resuming. Useful in connection with script files
  2121. (@var{script} command and @var{target_script} configuration).
  2122. @subsection shutdown
  2123. @cindex shutdown
  2124. @*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other).
  2125. @subsection debug_level [@var{n}]
  2126. @cindex debug_level
  2127. @anchor{debug_level}
  2128. @*Display or adjust debug level to n<0-3>
  2129. @subsection fast [@var{enable|disable}]
  2130. @cindex fast
  2131. @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
  2132. downloads and fast memory access will work if the JTAG interface isn't too fast and
  2133. the core doesn't run at a too low frequency. Note that this option only changes the default
  2134. and that the indvidual options, like DCC memory downloads, can be enabled and disabled
  2135. individually.
  2136. The target specific "dangerous" optimisation tweaking options may come and go
  2137. as more robust and user friendly ways are found to ensure maximum throughput
  2138. and robustness with a minimum of configuration.
  2139. Typically the "fast enable" is specified first on the command line:
  2140. @example
  2141. openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
  2142. @end example
  2143. @subsection log_output <@var{file}>
  2144. @cindex log_output
  2145. @*Redirect logging to <file> (default: stderr)
  2146. @subsection script <@var{file}>
  2147. @cindex script
  2148. @*Execute commands from <file>
  2149. See also: ``source [find FILENAME]''
  2150. @section Target state handling
  2151. @subsection power <@var{on}|@var{off}>
  2152. @cindex reg
  2153. @*Turn power switch to target on/off.
  2154. No arguments: print status.
  2155. Not all interfaces support this.
  2156. @subsection reg [@option{#}|@option{name}] [value]
  2157. @cindex reg
  2158. @*Access a single register by its number[@option{#}] or by its [@option{name}].
  2159. No arguments: list all available registers for the current target.
  2160. Number or name argument: display a register.
  2161. Number or name and value arguments: set register value.
  2162. @subsection poll [@option{on}|@option{off}]
  2163. @cindex poll
  2164. @*Poll the target for its current state. If the target is in debug mode, architecture
  2165. specific information about the current state is printed. An optional parameter
  2166. allows continuous polling to be enabled and disabled.
  2167. @subsection halt [@option{ms}]
  2168. @cindex halt
  2169. @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
  2170. Default [@option{ms}] is 5 seconds if no arg given.
  2171. Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
  2172. will stop OpenOCD from waiting.
  2173. @subsection wait_halt [@option{ms}]
  2174. @cindex wait_halt
  2175. @*Wait for the target to enter debug mode. Optional [@option{ms}] is
  2176. a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
  2177. arg is given.
  2178. @subsection resume [@var{address}]
  2179. @cindex resume
  2180. @*Resume the target at its current code position, or at an optional address.
  2181. OpenOCD will wait 5 seconds for the target to resume.
  2182. @subsection step [@var{address}]
  2183. @cindex step
  2184. @*Single-step the target at its current code position, or at an optional address.
  2185. @subsection reset [@option{run}|@option{halt}|@option{init}]
  2186. @cindex reset
  2187. @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
  2188. With no arguments a "reset run" is executed
  2189. @itemize @minus
  2190. @item @b{run}
  2191. @cindex reset run
  2192. @*Let the target run.
  2193. @item @b{halt}
  2194. @cindex reset halt
  2195. @*Immediately halt the target (works only with certain configurations).
  2196. @item @b{init}
  2197. @cindex reset init
  2198. @*Immediately halt the target, and execute the reset script (works only with certain
  2199. configurations)
  2200. @end itemize
  2201. @subsection soft_reset_halt
  2202. @cindex reset
  2203. @*Requesting target halt and executing a soft reset. This is often used
  2204. when a target cannot be reset and halted. The target, after reset is
  2205. released begins to execute code. OpenOCD attempts to stop the CPU and
  2206. then sets the program counter back to the reset vector. Unfortunately
  2207. the code that was executed may have left the hardware in an unknown
  2208. state.
  2209. @section Memory access commands
  2210. @subsection meminfo
  2211. display available RAM memory.
  2212. @subsection Memory peek/poke type commands
  2213. These commands allow accesses of a specific size to the memory
  2214. system. Often these are used to configure the current target in some
  2215. special way. For example - one may need to write certian values to the
  2216. SDRAM controller to enable SDRAM.
  2217. @enumerate
  2218. @item To change the current target see the ``targets'' (plural) command
  2219. @item In system level scripts these commands are deprecated, please use the TARGET object versions.
  2220. @end enumerate
  2221. @itemize @bullet
  2222. @item @b{mdw} <@var{addr}> [@var{count}]
  2223. @cindex mdw
  2224. @*display memory words (32bit)
  2225. @item @b{mdh} <@var{addr}> [@var{count}]
  2226. @cindex mdh
  2227. @*display memory half-words (16bit)
  2228. @item @b{mdb} <@var{addr}> [@var{count}]
  2229. @cindex mdb
  2230. @*display memory bytes (8bit)
  2231. @item @b{mww} <@var{addr}> <@var{value}>
  2232. @cindex mww
  2233. @*write memory word (32bit)
  2234. @item @b{mwh} <@var{addr}> <@var{value}>
  2235. @cindex mwh
  2236. @*write memory half-word (16bit)
  2237. @item @b{mwb} <@var{addr}> <@var{value}>
  2238. @cindex mwb
  2239. @*write memory byte (8bit)
  2240. @end itemize
  2241. @section Image loading commands
  2242. @subsection load_image
  2243. @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2244. @cindex load_image
  2245. @anchor{load_image}
  2246. @*Load image <@var{file}> to target memory at <@var{address}>
  2247. @subsection fast_load_image
  2248. @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2249. @cindex fast_load_image
  2250. @anchor{fast_load_image}
  2251. @*Normally you should be using @b{load_image} or GDB load. However, for
  2252. testing purposes or when I/O overhead is significant(OpenOCD running on an embedded
  2253. host), storing the image in memory and uploading the image to the target
  2254. can be a way to upload e.g. multiple debug sessions when the binary does not change.
  2255. Arguments are the same as @b{load_image}, but the image is stored in OpenOCD host
  2256. memory, i.e. does not affect target. This approach is also useful when profiling
  2257. target programming performance as I/O and target programming can easily be profiled
  2258. separately.
  2259. @subsection fast_load
  2260. @b{fast_load}
  2261. @cindex fast_image
  2262. @anchor{fast_image}
  2263. @*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image.
  2264. @subsection dump_image
  2265. @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
  2266. @cindex dump_image
  2267. @anchor{dump_image}
  2268. @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
  2269. (binary) <@var{file}>.
  2270. @subsection verify_image
  2271. @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2272. @cindex verify_image
  2273. @*Verify <@var{file}> against target memory starting at <@var{address}>.
  2274. This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
  2275. @section Breakpoint commands
  2276. @cindex Breakpoint commands
  2277. @itemize @bullet
  2278. @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
  2279. @cindex bp
  2280. @*set breakpoint <address> <length> [hw]
  2281. @item @b{rbp} <@var{addr}>
  2282. @cindex rbp
  2283. @*remove breakpoint <adress>
  2284. @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
  2285. @cindex wp
  2286. @*set watchpoint <address> <length> <r/w/a> [value] [mask]
  2287. @item @b{rwp} <@var{addr}>
  2288. @cindex rwp
  2289. @*remove watchpoint <adress>
  2290. @end itemize
  2291. @section Misc Commands
  2292. @cindex Other Target Commands
  2293. @itemize
  2294. @item @b{profile} <@var{seconds}> <@var{gmon.out}>
  2295. Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling.
  2296. @end itemize
  2297. @section Target Specific Commands
  2298. @cindex Target Specific Commands
  2299. @page
  2300. @section Architecture Specific Commands
  2301. @cindex Architecture Specific Commands
  2302. @subsection ARMV4/5 specific commands
  2303. @cindex ARMV4/5 specific commands
  2304. These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
  2305. or Intel XScale (XScale isn't supported yet).
  2306. @itemize @bullet
  2307. @item @b{armv4_5 reg}
  2308. @cindex armv4_5 reg
  2309. @*Display a list of all banked core registers, fetching the current value from every
  2310. core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
  2311. register value.
  2312. @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
  2313. @cindex armv4_5 core_mode
  2314. @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
  2315. The target is resumed in the currently set @option{core_mode}.
  2316. @end itemize
  2317. @subsection ARM7/9 specific commands
  2318. @cindex ARM7/9 specific commands
  2319. These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
  2320. ARM920T or ARM926EJ-S.
  2321. @itemize @bullet
  2322. @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
  2323. @cindex arm7_9 dbgrq
  2324. @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
  2325. safe for all but ARM7TDMI--S cores (like Philips LPC).
  2326. @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
  2327. @cindex arm7_9 fast_memory_access
  2328. @anchor{arm7_9 fast_memory_access}
  2329. @*Allow OpenOCD to read and write memory without checking completion of
  2330. the operation. This provides a huge speed increase, especially with USB JTAG
  2331. cables (FT2232), but might be unsafe if used with targets running at very low
  2332. speeds, like the 32kHz startup clock of an AT91RM9200.
  2333. @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
  2334. @cindex arm7_9 dcc_downloads
  2335. @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
  2336. amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
  2337. unsafe, especially with targets running at very low speeds. This command was introduced
  2338. with OpenOCD rev. 60.
  2339. @end itemize
  2340. @subsection ARM720T specific commands
  2341. @cindex ARM720T specific commands
  2342. @itemize @bullet
  2343. @item @b{arm720t cp15} <@var{num}> [@var{value}]
  2344. @cindex arm720t cp15
  2345. @*display/modify cp15 register <@option{num}> [@option{value}].
  2346. @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
  2347. @cindex arm720t md<bhw>_phys
  2348. @*Display memory at physical address addr.
  2349. @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
  2350. @cindex arm720t mw<bhw>_phys
  2351. @*Write memory at physical address addr.
  2352. @item @b{arm720t virt2phys} <@var{va}>
  2353. @cindex arm720t virt2phys
  2354. @*Translate a virtual address to a physical address.
  2355. @end itemize
  2356. @subsection ARM9TDMI specific commands
  2357. @cindex ARM9TDMI specific commands
  2358. @itemize @bullet
  2359. @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
  2360. @cindex arm9tdmi vector_catch
  2361. @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
  2362. @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
  2363. @option{irq} @option{fiq}.
  2364. Can also be used on other ARM9 based cores such as ARM966, ARM920T and ARM926EJ-S.
  2365. @end itemize
  2366. @subsection ARM966E specific commands
  2367. @cindex ARM966E specific commands
  2368. @itemize @bullet
  2369. @item @b{arm966e cp15} <@var{num}> [@var{value}]
  2370. @cindex arm966e cp15
  2371. @*display/modify cp15 register <@option{num}> [@option{value}].
  2372. @end itemize
  2373. @subsection ARM920T specific commands
  2374. @cindex ARM920T specific commands
  2375. @itemize @bullet
  2376. @item @b{arm920t cp15} <@var{num}> [@var{value}]
  2377. @cindex arm920t cp15
  2378. @*display/modify cp15 register <@option{num}> [@option{value}].
  2379. @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
  2380. @cindex arm920t cp15i
  2381. @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
  2382. @item @b{arm920t cache_info}
  2383. @cindex arm920t cache_info
  2384. @*Print information about the caches found. This allows to see whether your target
  2385. is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
  2386. @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
  2387. @cindex arm920t md<bhw>_phys
  2388. @*Display memory at physical address addr.
  2389. @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
  2390. @cindex arm920t mw<bhw>_phys
  2391. @*Write memory at physical address addr.
  2392. @item @b{arm920t read_cache} <@var{filename}>
  2393. @cindex arm920t read_cache
  2394. @*Dump the content of ICache and DCache to a file.
  2395. @item @b{arm920t read_mmu} <@var{filename}>
  2396. @cindex arm920t read_mmu
  2397. @*Dump the content of the ITLB and DTLB to a file.
  2398. @item @b{arm920t virt2phys} <@var{va}>
  2399. @cindex arm920t virt2phys
  2400. @*Translate a virtual address to a physical address.
  2401. @end itemize
  2402. @subsection ARM926EJ-S specific commands
  2403. @cindex ARM926EJ-S specific commands
  2404. @itemize @bullet
  2405. @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
  2406. @cindex arm926ejs cp15
  2407. @*display/modify cp15 register <@option{num}> [@option{value}].
  2408. @item @b{arm926ejs cache_info}
  2409. @cindex arm926ejs cache_info
  2410. @*Print information about the caches found.
  2411. @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
  2412. @cindex arm926ejs md<bhw>_phys
  2413. @*Display memory at physical address addr.
  2414. @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
  2415. @cindex arm926ejs mw<bhw>_phys
  2416. @*Write memory at physical address addr.
  2417. @item @b{arm926ejs virt2phys} <@var{va}>
  2418. @cindex arm926ejs virt2phys
  2419. @*Translate a virtual address to a physical address.
  2420. @end itemize
  2421. @subsection CORTEX_M3 specific commands
  2422. @cindex CORTEX_M3 specific commands
  2423. @itemize @bullet
  2424. @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
  2425. @cindex cortex_m3 maskisr
  2426. @*Enable masking (disabling) interrupts during target step/resume.
  2427. @end itemize
  2428. @page
  2429. @section Debug commands
  2430. @cindex Debug commands
  2431. The following commands give direct access to the core, and are most likely
  2432. only useful while debugging OpenOCD.
  2433. @itemize @bullet
  2434. @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
  2435. @cindex arm7_9 write_xpsr
  2436. @*Immediately write either the current program status register (CPSR) or the saved
  2437. program status register (SPSR), without changing the register cache (as displayed
  2438. by the @option{reg} and @option{armv4_5 reg} commands).
  2439. @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
  2440. <@var{0=cpsr},@var{1=spsr}>
  2441. @cindex arm7_9 write_xpsr_im8
  2442. @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
  2443. operation (similar to @option{write_xpsr}).
  2444. @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
  2445. @cindex arm7_9 write_core_reg
  2446. @*Write a core register, without changing the register cache (as displayed by the
  2447. @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
  2448. encoding of the [M4:M0] bits of the PSR.
  2449. @end itemize
  2450. @section Target Requests
  2451. @cindex Target Requests
  2452. OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
  2453. See libdcc in the contrib dir for more details.
  2454. @itemize @bullet
  2455. @item @b{target_request debugmsgs} <@var{enable}|@var{disable}|@var{charmsg}>
  2456. @cindex target_request debugmsgs
  2457. @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running. @var{charmsg} receives messages if Linux kernel ``Kernel low-level debugging via EmbeddedICE DCC channel'' option is enabled.
  2458. @end itemize
  2459. @node JTAG Commands
  2460. @chapter JTAG Commands
  2461. @cindex JTAG Commands
  2462. Generally most people will not use the bulk of these commands. They
  2463. are mostly used by the OpenOCD developers or those who need to
  2464. directly manipulate the JTAG taps.
  2465. In general these commands control JTAG taps at a very low level. For
  2466. example if you need to control a JTAG Route Controller (i.e.: the
  2467. OMAP3530 on the Beagle Board has one) you might use these commands in
  2468. a script or an event procedure.
  2469. @section Commands
  2470. @cindex Commands
  2471. @itemize @bullet
  2472. @item @b{scan_chain}
  2473. @cindex scan_chain
  2474. @*Print current scan chain configuration.
  2475. @item @b{jtag_reset} <@var{trst}> <@var{srst}>
  2476. @cindex jtag_reset
  2477. @*Toggle reset lines.
  2478. @item @b{endstate} <@var{tap_state}>
  2479. @cindex endstate
  2480. @*Finish JTAG operations in <@var{tap_state}>.
  2481. @item @b{runtest} <@var{num_cycles}>
  2482. @cindex runtest
  2483. @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
  2484. @item @b{statemove} [@var{tap_state}]
  2485. @cindex statemove
  2486. @*Move to current endstate or [@var{tap_state}]
  2487. @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  2488. @cindex irscan
  2489. @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  2490. @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
  2491. @cindex drscan
  2492. @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
  2493. @item @b{verify_ircapture} <@option{enable}|@option{disable}>
  2494. @cindex verify_ircapture
  2495. @*Verify value captured during Capture-IR. Default is enabled.
  2496. @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  2497. @cindex var
  2498. @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  2499. @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
  2500. @cindex field
  2501. Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
  2502. @end itemize
  2503. @section Tap states
  2504. @cindex Tap states
  2505. Available tap_states are:
  2506. @itemize @bullet
  2507. @item @b{RESET}
  2508. @cindex RESET
  2509. @item @b{IDLE}
  2510. @cindex IDLE
  2511. @item @b{DRSELECT}
  2512. @cindex DRSELECT
  2513. @item @b{DRCAPTURE}
  2514. @cindex DRCAPTURE
  2515. @item @b{DRSHIFT}
  2516. @cindex DRSHIFT
  2517. @item @b{DREXIT1}
  2518. @cindex DREXIT1
  2519. @item @b{DRPAUSE}
  2520. @cindex DRPAUSE
  2521. @item @b{DREXIT2}
  2522. @cindex DREXIT2
  2523. @item @b{DRUPDATE}
  2524. @cindex DRUPDATE
  2525. @item @b{IRSELECT}
  2526. @cindex IRSELECT
  2527. @item @b{IRCAPTURE}
  2528. @cindex IRCAPTURE
  2529. @item @b{IRSHIFT}
  2530. @cindex IRSHIFT
  2531. @item @b{IREXIT1}
  2532. @cindex IREXIT1
  2533. @item @b{IRPAUSE}
  2534. @cindex IRPAUSE
  2535. @item @b{IREXIT2}
  2536. @cindex IREXIT2
  2537. @item @b{IRUPDATE}
  2538. @cindex IRUPDATE
  2539. @end itemize
  2540. @node TFTP
  2541. @chapter TFTP
  2542. @cindex TFTP
  2543. If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can
  2544. be used to access files on PCs (either the developer's PC or some other PC).
  2545. The way this works on the ZY1000 is to prefix a filename by
  2546. "/tftp/ip/" and append the TFTP path on the TFTP
  2547. server (tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
  2548. load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
  2549. if the file was hosted on the embedded host.
  2550. In order to achieve decent performance, you must choose a TFTP server
  2551. that supports a packet size bigger than the default packet size (512 bytes). There
  2552. are numerous TFTP servers out there (free and commercial) and you will have to do
  2553. a bit of googling to find something that fits your requirements.
  2554. @node Sample Scripts
  2555. @chapter Sample Scripts
  2556. @cindex scripts
  2557. This page shows how to use the Target Library.
  2558. The configuration script can be divided into the following sections:
  2559. @itemize @bullet
  2560. @item Daemon configuration
  2561. @item Interface
  2562. @item JTAG scan chain
  2563. @item Target configuration
  2564. @item Flash configuration
  2565. @end itemize
  2566. Detailed information about each section can be found at OpenOCD configuration.
  2567. @section AT91R40008 example
  2568. @cindex AT91R40008 example
  2569. To start OpenOCD with a target script for the AT91R40008 CPU and reset
  2570. the CPU upon startup of the OpenOCD daemon.
  2571. @example
  2572. openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
  2573. @end example
  2574. @node GDB and OpenOCD
  2575. @chapter GDB and OpenOCD
  2576. @cindex GDB and OpenOCD
  2577. OpenOCD complies with the remote gdbserver protocol, and as such can be used
  2578. to debug remote targets.
  2579. @section Connecting to GDB
  2580. @cindex Connecting to GDB
  2581. @anchor{Connecting to GDB}
  2582. Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
  2583. instance GDB 6.3 has a known bug that produces bogus memory access
  2584. errors, which has since been fixed: look up 1836 in
  2585. @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
  2586. @*OpenOCD can communicate with GDB in two ways:
  2587. @enumerate
  2588. @item
  2589. A socket (TCP/IP) connection is typically started as follows:
  2590. @example
  2591. target remote localhost:3333
  2592. @end example
  2593. This would cause GDB to connect to the gdbserver on the local pc using port 3333.
  2594. @item
  2595. A pipe connection is typically started as follows:
  2596. @example
  2597. target remote | openocd --pipe
  2598. @end example
  2599. This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
  2600. Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
  2601. session.
  2602. @end enumerate
  2603. @*To see a list of available OpenOCD commands type @option{monitor help} on the
  2604. GDB command line.
  2605. OpenOCD supports the gdb @option{qSupported} packet, this enables information
  2606. to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes
  2607. packet size and the device's memory map.
  2608. Previous versions of OpenOCD required the following GDB options to increase
  2609. the packet size and speed up GDB communication:
  2610. @example
  2611. set remote memory-write-packet-size 1024
  2612. set remote memory-write-packet-size fixed
  2613. set remote memory-read-packet-size 1024
  2614. set remote memory-read-packet-size fixed
  2615. @end example
  2616. This is now handled in the @option{qSupported} PacketSize and should not be required.
  2617. @section Programming using GDB
  2618. @cindex Programming using GDB
  2619. By default the target memory map is sent to GDB. This can be disabled by
  2620. the following OpenOCD configuration option:
  2621. @example
  2622. gdb_memory_map disable
  2623. @end example
  2624. For this to function correctly a valid flash configuration must also be set
  2625. in OpenOCD. For faster performance you should also configure a valid
  2626. working area.
  2627. Informing GDB of the memory map of the target will enable GDB to protect any
  2628. flash areas of the target and use hardware breakpoints by default. This means
  2629. that the OpenOCD option @option{gdb_breakpoint_override} is not required when
  2630. using a memory map. @xref{gdb_breakpoint_override}.
  2631. To view the configured memory map in GDB, use the GDB command @option{info mem}
  2632. All other unassigned addresses within GDB are treated as RAM.
  2633. GDB 6.8 and higher set any memory area not in the memory map as inaccessible.
  2634. This can be changed to the old behaviour by using the following GDB command
  2635. @example
  2636. set mem inaccessible-by-default off
  2637. @end example
  2638. If @option{gdb_flash_program enable} is also used, GDB will be able to
  2639. program any flash memory using the vFlash interface.
  2640. GDB will look at the target memory map when a load command is given, if any
  2641. areas to be programmed lie within the target flash area the vFlash packets
  2642. will be used.
  2643. If the target needs configuring before GDB programming, an event
  2644. script can be executed:
  2645. @example
  2646. $_TARGETNAME configure -event EVENTNAME BODY
  2647. @end example
  2648. To verify any flash programming the GDB command @option{compare-sections}
  2649. can be used.
  2650. @node Tcl Scripting API
  2651. @chapter Tcl Scripting API
  2652. @cindex Tcl Scripting API
  2653. @cindex Tcl scripts
  2654. @section API rules
  2655. The commands are stateless. E.g. the telnet command line has a concept
  2656. of currently active target, the Tcl API proc's take this sort of state
  2657. information as an argument to each proc.
  2658. There are three main types of return values: single value, name value
  2659. pair list and lists.
  2660. Name value pair. The proc 'foo' below returns a name/value pair
  2661. list.
  2662. @verbatim
  2663. > set foo(me) Duane
  2664. > set foo(you) Oyvind
  2665. > set foo(mouse) Micky
  2666. > set foo(duck) Donald
  2667. If one does this:
  2668. > set foo
  2669. The result is:
  2670. me Duane you Oyvind mouse Micky duck Donald
  2671. Thus, to get the names of the associative array is easy:
  2672. foreach { name value } [set foo] {
  2673. puts "Name: $name, Value: $value"
  2674. }
  2675. @end verbatim
  2676. Lists returned must be relatively small. Otherwise a range
  2677. should be passed in to the proc in question.
  2678. @section Internal low-level Commands
  2679. By low-level, the intent is a human would not directly use these commands.
  2680. Low-level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks
  2681. is the low level API upon which "flash banks" is implemented.
  2682. @itemize @bullet
  2683. @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
  2684. Read memory and return as a Tcl array for script processing
  2685. @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
  2686. Convert a Tcl array to memory locations and write the values
  2687. @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
  2688. Return information about the flash banks
  2689. @end itemize
  2690. OpenOCD commands can consist of two words, e.g. "flash banks". The
  2691. startup.tcl "unknown" proc will translate this into a Tcl proc
  2692. called "flash_banks".
  2693. @section OpenOCD specific Global Variables
  2694. @subsection HostOS
  2695. Real Tcl has ::tcl_platform(), and platform::identify, and many other
  2696. variables. JimTCL, as implemented in OpenOCD creates $HostOS which
  2697. holds one of the following values:
  2698. @itemize @bullet
  2699. @item @b{winxx} Built using Microsoft Visual Studio
  2700. @item @b{linux} Linux is the underlying operating sytem
  2701. @item @b{darwin} Darwin (mac-os) is the underlying operating sytem.
  2702. @item @b{cygwin} Running under Cygwin
  2703. @item @b{mingw32} Running under MingW32
  2704. @item @b{other} Unknown, none of the above.
  2705. @end itemize
  2706. Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
  2707. @node Upgrading
  2708. @chapter Deprecated/Removed Commands
  2709. @cindex Deprecated/Removed Commands
  2710. Certain OpenOCD commands have been deprecated/removed during the various revisions.
  2711. @itemize @bullet
  2712. @item @b{arm7_9 fast_writes}
  2713. @cindex arm7_9 fast_writes
  2714. @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
  2715. @item @b{arm7_9 force_hw_bkpts}
  2716. @cindex arm7_9 force_hw_bkpts
  2717. @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
  2718. for flash if the GDB memory map has been set up(default when flash is declared in
  2719. target configuration). @xref{gdb_breakpoint_override}.
  2720. @item @b{arm7_9 sw_bkpts}
  2721. @cindex arm7_9 sw_bkpts
  2722. @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
  2723. @item @b{daemon_startup}
  2724. @cindex daemon_startup
  2725. @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
  2726. the end of your config script will give the same behaviour as using @option{daemon_startup reset}
  2727. and @option{target cortex_m3 little reset_halt 0}.
  2728. @item @b{dump_binary}
  2729. @cindex dump_binary
  2730. @*use @option{dump_image} command with same args. @xref{dump_image}.
  2731. @item @b{flash erase}
  2732. @cindex flash erase
  2733. @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
  2734. @item @b{flash write}
  2735. @cindex flash write
  2736. @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
  2737. @item @b{flash write_binary}
  2738. @cindex flash write_binary
  2739. @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
  2740. @item @b{flash auto_erase}
  2741. @cindex flash auto_erase
  2742. @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
  2743. @item @b{load_binary}
  2744. @cindex load_binary
  2745. @*use @option{load_image} command with same args. @xref{load_image}.
  2746. @item @b{run_and_halt_time}
  2747. @cindex run_and_halt_time
  2748. @*This command has been removed for simpler reset behaviour, it can be simulated with the
  2749. following commands:
  2750. @smallexample
  2751. reset run
  2752. sleep 100
  2753. halt
  2754. @end smallexample
  2755. @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
  2756. @cindex target
  2757. @*use the create subcommand of @option{target}.
  2758. @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
  2759. @cindex target_script
  2760. @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
  2761. @item @b{working_area}
  2762. @cindex working_area
  2763. @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
  2764. @end itemize
  2765. @node FAQ
  2766. @chapter FAQ
  2767. @cindex faq
  2768. @enumerate
  2769. @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
  2770. @cindex RTCK
  2771. @cindex adaptive clocking
  2772. @*
  2773. In digital circuit design it is often refered to as ``clock
  2774. synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
  2775. operating at some speed, your target is operating at another. The two
  2776. clocks are not synchronised, they are ``asynchronous''
  2777. In order for the two to work together they must be synchronised. Otherwise
  2778. the two systems will get out of sync with each other and nothing will
  2779. work. There are 2 basic options:
  2780. @enumerate
  2781. @item
  2782. Use a special circuit.
  2783. @item
  2784. One clock must be some multiple slower than the other.
  2785. @end enumerate
  2786. @b{Does this really matter?} For some chips and some situations, this
  2787. is a non-issue (i.e.: A 500MHz ARM926) but for others - for example some
  2788. Atmel SAM7 and SAM9 chips start operation from reset at 32kHz -
  2789. program/enable the oscillators and eventually the main clock. It is in
  2790. those critical times you must slow the JTAG clock to sometimes 1 to
  2791. 4kHz.
  2792. Imagine debugging a 500MHz ARM926 hand held battery powered device
  2793. that ``deep sleeps'' at 32kHz between every keystroke. It can be
  2794. painful.
  2795. @b{Solution #1 - A special circuit}
  2796. In order to make use of this, your JTAG dongle must support the RTCK
  2797. feature. Not all dongles support this - keep reading!
  2798. The RTCK signal often found in some ARM chips is used to help with
  2799. this problem. ARM has a good description of the problem described at
  2800. this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
  2801. 28/nov/2008]. Link title: ``How does the JTAG synchronisation logic
  2802. work? / how does adaptive clocking work?''.
  2803. The nice thing about adaptive clocking is that ``battery powered hand
  2804. held device example'' - the adaptiveness works perfectly all the
  2805. time. One can set a break point or halt the system in the deep power
  2806. down code, slow step out until the system speeds up.
  2807. @b{Solution #2 - Always works - but may be slower}
  2808. Often this is a perfectly acceptable solution.
  2809. In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
  2810. the target clock speed. But what that ``magic division'' is varies
  2811. depending on the chips on your board. @b{ARM rule of thumb} Most ARM
  2812. based systems require an 8:1 division. @b{Xilinx rule of thumb} is
  2813. 1/12 the clock speed.
  2814. Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
  2815. You can still debug the 'low power' situations - you just need to
  2816. manually adjust the clock speed at every step. While painful and
  2817. tedious, it is not always practical.
  2818. It is however easy to ``code your way around it'' - i.e.: Cheat a little,
  2819. have a special debug mode in your application that does a ``high power
  2820. sleep''. If you are careful - 98% of your problems can be debugged
  2821. this way.
  2822. To set the JTAG frequency use the command:
  2823. @example
  2824. # Example: 1.234MHz
  2825. jtag_khz 1234
  2826. @end example
  2827. @item @b{Win32 Pathnames} Why don't backslashes work in Windows paths?
  2828. OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
  2829. around Windows filenames.
  2830. @example
  2831. > echo \a
  2832. > echo @{\a@}
  2833. \a
  2834. > echo "\a"
  2835. >
  2836. @end example
  2837. @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
  2838. Make sure you have Cygwin installed, or at least a version of OpenOCD that
  2839. claims to come with all the necessary DLLs. When using Cygwin, try launching
  2840. OpenOCD from the Cygwin shell.
  2841. @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
  2842. Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
  2843. arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
  2844. GDB issues software breakpoints when a normal breakpoint is requested, or to implement
  2845. source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T,
  2846. software breakpoints consume one of the two available hardware breakpoints.
  2847. @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random.
  2848. Make sure the core frequency specified in the @option{flash lpc2000} line matches the
  2849. clock at the time you're programming the flash. If you've specified the crystal's
  2850. frequency, make sure the PLL is disabled. If you've specified the full core speed
  2851. (e.g. 60MHz), make sure the PLL is enabled.
  2852. @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
  2853. I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
  2854. out while waiting for end of scan, rtck was disabled".
  2855. Make sure your PC's parallel port operates in EPP mode. You might have to try several
  2856. settings in your PC BIOS (ECP, EPP, and different versions of those).
  2857. @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
  2858. I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
  2859. memory read caused data abort".
  2860. The errors are non-fatal, and are the result of GDB trying to trace stack frames
  2861. beyond the last valid frame. It might be possible to prevent this by setting up
  2862. a proper "initial" stack frame, if you happen to know what exactly has to
  2863. be done, feel free to add this here.
  2864. @b{Simple:} In your startup code - push 8 registers of zeros onto the
  2865. stack before calling main(). What GDB is doing is ``climbing'' the run
  2866. time stack by reading various values on the stack using the standard
  2867. call frame for the target. GDB keeps going - until one of 2 things
  2868. happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
  2869. stackframes have been processed. By pushing zeros on the stack, GDB
  2870. gracefully stops.
  2871. @b{Debugging Interrupt Service Routines} - In your ISR before you call
  2872. your C code, do the same - artifically push some zeros onto the stack,
  2873. remember to pop them off when the ISR is done.
  2874. @b{Also note:} If you have a multi-threaded operating system, they
  2875. often do not @b{in the intrest of saving memory} waste these few
  2876. bytes. Painful...
  2877. @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
  2878. "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
  2879. This warning doesn't indicate any serious problem, as long as you don't want to
  2880. debug your core right out of reset. Your .cfg file specified @option{jtag_reset
  2881. trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
  2882. your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
  2883. independently. With this setup, it's not possible to halt the core right out of
  2884. reset, everything else should work fine.
  2885. @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
  2886. toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
  2887. unstable. When single-stepping over large blocks of code, GDB and OpenOCD
  2888. quit with an error message. Is there a stability issue with OpenOCD?
  2889. No, this is not a stability issue concerning OpenOCD. Most users have solved
  2890. this issue by simply using a self-powered USB hub, which they connect their
  2891. Amontec JTAGkey to. Apparently, some computers do not provide a USB power
  2892. supply stable enough for the Amontec JTAGkey to be operated.
  2893. @b{Laptops running on battery have this problem too...}
  2894. @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
  2895. following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
  2896. 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
  2897. What does that mean and what might be the reason for this?
  2898. First of all, the reason might be the USB power supply. Try using a self-powered
  2899. hub instead of a direct connection to your computer. Secondly, the error code 4
  2900. corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
  2901. chip ran into some sort of error - this points us to a USB problem.
  2902. @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
  2903. error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
  2904. What does that mean and what might be the reason for this?
  2905. Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
  2906. has closed the connection to OpenOCD. This might be a GDB issue.
  2907. @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
  2908. are described, there is a parameter for specifying the clock frequency
  2909. for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
  2910. 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
  2911. specified in kilohertz. However, I do have a quartz crystal of a
  2912. frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
  2913. i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
  2914. clock frequency?
  2915. No. The clock frequency specified here must be given as an integral number.
  2916. However, this clock frequency is used by the In-Application-Programming (IAP)
  2917. routines of the LPC2000 family only, which seems to be very tolerant concerning
  2918. the given clock frequency, so a slight difference between the specified clock
  2919. frequency and the actual clock frequency will not cause any trouble.
  2920. @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
  2921. Well, yes and no. Commands can be given in arbitrary order, yet the
  2922. devices listed for the JTAG scan chain must be given in the right
  2923. order (jtag newdevice), with the device closest to the TDO-Pin being
  2924. listed first. In general, whenever objects of the same type exist
  2925. which require an index number, then these objects must be given in the
  2926. right order (jtag newtap, targets and flash banks - a target
  2927. references a jtag newtap and a flash bank references a target).
  2928. You can use the ``scan_chain'' command to verify and display the tap order.
  2929. @item @b{JTAG Tap Order} JTAG tap order - command order
  2930. Many newer devices have multiple JTAG taps. For example: ST
  2931. Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
  2932. ``Cortex-M3'' tap. Example: The STM32 reference manual, Document ID:
  2933. RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
  2934. connected to the boundary scan tap, which then connects to the
  2935. Cortex-M3 tap, which then connects to the TDO pin.
  2936. Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then
  2937. (2) The boundary scan tap. If your board includes an additional JTAG
  2938. chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
  2939. place it before or after the STM32 chip in the chain. For example:
  2940. @itemize @bullet
  2941. @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
  2942. @item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input)
  2943. @item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin
  2944. @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
  2945. @item Xilinx TDO Pin -> OpenOCD TDO (input)
  2946. @end itemize
  2947. The ``jtag device'' commands would thus be in the order shown below. Note:
  2948. @itemize @bullet
  2949. @item jtag newtap Xilinx tap -irlen ...
  2950. @item jtag newtap stm32 cpu -irlen ...
  2951. @item jtag newtap stm32 bs -irlen ...
  2952. @item # Create the debug target and say where it is
  2953. @item target create stm32.cpu -chain-position stm32.cpu ...
  2954. @end itemize
  2955. @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
  2956. log file, I can see these error messages: Error: arm7_9_common.c:561
  2957. arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
  2958. TODO.
  2959. @end enumerate
  2960. @node Tcl Crash Course
  2961. @chapter Tcl Crash Course
  2962. @cindex Tcl
  2963. Not everyone knows Tcl - this is not intended to be a replacement for
  2964. learning Tcl, the intent of this chapter is to give you some idea of
  2965. how the Tcl scripts work.
  2966. This chapter is written with two audiences in mind. (1) OpenOCD users
  2967. who need to understand a bit more of how JIM-Tcl works so they can do
  2968. something useful, and (2) those that want to add a new command to
  2969. OpenOCD.
  2970. @section Tcl Rule #1
  2971. There is a famous joke, it goes like this:
  2972. @enumerate
  2973. @item Rule #1: The wife is always correct
  2974. @item Rule #2: If you think otherwise, See Rule #1
  2975. @end enumerate
  2976. The Tcl equal is this:
  2977. @enumerate
  2978. @item Rule #1: Everything is a string
  2979. @item Rule #2: If you think otherwise, See Rule #1
  2980. @end enumerate
  2981. As in the famous joke, the consequences of Rule #1 are profound. Once
  2982. you understand Rule #1, you will understand Tcl.
  2983. @section Tcl Rule #1b
  2984. There is a second pair of rules.
  2985. @enumerate
  2986. @item Rule #1: Control flow does not exist. Only commands
  2987. @* For example: the classic FOR loop or IF statement is not a control
  2988. flow item, they are commands, there is no such thing as control flow
  2989. in Tcl.
  2990. @item Rule #2: If you think otherwise, See Rule #1
  2991. @* Actually what happens is this: There are commands that by
  2992. convention, act like control flow key words in other languages. One of
  2993. those commands is the word ``for'', another command is ``if''.
  2994. @end enumerate
  2995. @section Per Rule #1 - All Results are strings
  2996. Every Tcl command results in a string. The word ``result'' is used
  2997. deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
  2998. Everything is a string}
  2999. @section Tcl Quoting Operators
  3000. In life of a Tcl script, there are two important periods of time, the
  3001. difference is subtle.
  3002. @enumerate
  3003. @item Parse Time
  3004. @item Evaluation Time
  3005. @end enumerate
  3006. The two key items here are how ``quoted things'' work in Tcl. Tcl has
  3007. three primary quoting constructs, the [square-brackets] the
  3008. @{curly-braces@} and ``double-quotes''
  3009. By now you should know $VARIABLES always start with a $DOLLAR
  3010. sign. BTW: To set a variable, you actually use the command ``set'', as
  3011. in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
  3012. = 1'' statement, but without the equal sign.
  3013. @itemize @bullet
  3014. @item @b{[square-brackets]}
  3015. @* @b{[square-brackets]} are command substitutions. It operates much
  3016. like Unix Shell `back-ticks`. The result of a [square-bracket]
  3017. operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
  3018. string}. These two statements are roughly identical:
  3019. @example
  3020. # bash example
  3021. X=`date`
  3022. echo "The Date is: $X"
  3023. # Tcl example
  3024. set X [date]
  3025. puts "The Date is: $X"
  3026. @end example
  3027. @item @b{``double-quoted-things''}
  3028. @* @b{``double-quoted-things''} are just simply quoted
  3029. text. $VARIABLES and [square-brackets] are expanded in place - the
  3030. result however is exactly 1 string. @i{Remember Rule #1 - Everything
  3031. is a string}
  3032. @example
  3033. set x "Dinner"
  3034. puts "It is now \"[date]\", $x is in 1 hour"
  3035. @end example
  3036. @item @b{@{Curly-Braces@}}
  3037. @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
  3038. parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
  3039. 'single-quote' operators in BASH shell scripts, with the added
  3040. feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is
  3041. nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
  3042. 28/nov/2008, Jim/OpenOCD does not have a date command.
  3043. @end itemize
  3044. @section Consequences of Rule 1/2/3/4
  3045. The consequences of Rule 1 are profound.
  3046. @subsection Tokenisation & Execution.
  3047. Of course, whitespace, blank lines and #comment lines are handled in
  3048. the normal way.
  3049. As a script is parsed, each (multi) line in the script file is
  3050. tokenised and according to the quoting rules. After tokenisation, that
  3051. line is immedatly executed.
  3052. Multi line statements end with one or more ``still-open''
  3053. @{curly-braces@} which - eventually - closes a few lines later.
  3054. @subsection Command Execution
  3055. Remember earlier: There are no ``control flow''
  3056. statements in Tcl. Instead there are COMMANDS that simply act like
  3057. control flow operators.
  3058. Commands are executed like this:
  3059. @enumerate
  3060. @item Parse the next line into (argc) and (argv[]).
  3061. @item Look up (argv[0]) in a table and call its function.
  3062. @item Repeat until End Of File.
  3063. @end enumerate
  3064. It sort of works like this:
  3065. @example
  3066. for(;;)@{
  3067. ReadAndParse( &argc, &argv );
  3068. cmdPtr = LookupCommand( argv[0] );
  3069. (*cmdPtr->Execute)( argc, argv );
  3070. @}
  3071. @end example
  3072. When the command ``proc'' is parsed (which creates a procedure
  3073. function) it gets 3 parameters on the command line. @b{1} the name of
  3074. the proc (function), @b{2} the list of parameters, and @b{3} the body
  3075. of the function. Not the choice of words: LIST and BODY. The PROC
  3076. command stores these items in a table somewhere so it can be found by
  3077. ``LookupCommand()''
  3078. @subsection The FOR command
  3079. The most interesting command to look at is the FOR command. In Tcl,
  3080. the FOR command is normally implemented in C. Remember, FOR is a
  3081. command just like any other command.
  3082. When the ascii text containing the FOR command is parsed, the parser
  3083. produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
  3084. are:
  3085. @enumerate 0
  3086. @item The ascii text 'for'
  3087. @item The start text
  3088. @item The test expression
  3089. @item The next text
  3090. @item The body text
  3091. @end enumerate
  3092. Sort of reminds you of ``main( int argc, char **argv )'' does it not?
  3093. Remember @i{Rule #1 - Everything is a string.} The key point is this:
  3094. Often many of those parameters are in @{curly-braces@} - thus the
  3095. variables inside are not expanded or replaced until later.
  3096. Remember that every Tcl command looks like the classic ``main( argc,
  3097. argv )'' function in C. In JimTCL - they actually look like this:
  3098. @example
  3099. int
  3100. MyCommand( Jim_Interp *interp,
  3101. int *argc,
  3102. Jim_Obj * const *argvs );
  3103. @end example
  3104. Real Tcl is nearly identical. Although the newer versions have
  3105. introduced a byte-code parser and intepreter, but at the core, it
  3106. still operates in the same basic way.
  3107. @subsection FOR command implementation
  3108. To understand Tcl it is perhaps most helpful to see the FOR
  3109. command. Remember, it is a COMMAND not a control flow structure.
  3110. In Tcl there are two underlying C helper functions.
  3111. Remember Rule #1 - You are a string.
  3112. The @b{first} helper parses and executes commands found in an ascii
  3113. string. Commands can be seperated by semicolons, or newlines. While
  3114. parsing, variables are expanded via the quoting rules.
  3115. The @b{second} helper evaluates an ascii string as a numerical
  3116. expression and returns a value.
  3117. Here is an example of how the @b{FOR} command could be
  3118. implemented. The pseudo code below does not show error handling.
  3119. @example
  3120. void Execute_AsciiString( void *interp, const char *string );
  3121. int Evaluate_AsciiExpression( void *interp, const char *string );
  3122. int
  3123. MyForCommand( void *interp,
  3124. int argc,
  3125. char **argv )
  3126. @{
  3127. if( argc != 5 )@{
  3128. SetResult( interp, "WRONG number of parameters");
  3129. return ERROR;
  3130. @}
  3131. // argv[0] = the ascii string just like C
  3132. // Execute the start statement.
  3133. Execute_AsciiString( interp, argv[1] );
  3134. // Top of loop test
  3135. for(;;)@{
  3136. i = Evaluate_AsciiExpression(interp, argv[2]);
  3137. if( i == 0 )
  3138. break;
  3139. // Execute the body
  3140. Execute_AsciiString( interp, argv[3] );
  3141. // Execute the LOOP part
  3142. Execute_AsciiString( interp, argv[4] );
  3143. @}
  3144. // Return no error
  3145. SetResult( interp, "" );
  3146. return SUCCESS;
  3147. @}
  3148. @end example
  3149. Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
  3150. in the same basic way.
  3151. @section OpenOCD Tcl Usage
  3152. @subsection source and find commands
  3153. @b{Where:} In many configuration files
  3154. @* Example: @b{ source [find FILENAME] }
  3155. @*Remember the parsing rules
  3156. @enumerate
  3157. @item The FIND command is in square brackets.
  3158. @* The FIND command is executed with the parameter FILENAME. It should
  3159. find the full path to the named file. The RESULT is a string, which is
  3160. substituted on the orginal command line.
  3161. @item The command source is executed with the resulting filename.
  3162. @* SOURCE reads a file and executes as a script.
  3163. @end enumerate
  3164. @subsection format command
  3165. @b{Where:} Generally occurs in numerous places.
  3166. @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like
  3167. @b{sprintf()}.
  3168. @b{Example}
  3169. @example
  3170. set x 6
  3171. set y 7
  3172. puts [format "The answer: %d" [expr $x * $y]]
  3173. @end example
  3174. @enumerate
  3175. @item The SET command creates 2 variables, X and Y.
  3176. @item The double [nested] EXPR command performs math
  3177. @* The EXPR command produces numerical result as a string.
  3178. @* Refer to Rule #1
  3179. @item The format command is executed, producing a single string
  3180. @* Refer to Rule #1.
  3181. @item The PUTS command outputs the text.
  3182. @end enumerate
  3183. @subsection Body or Inlined Text
  3184. @b{Where:} Various TARGET scripts.
  3185. @example
  3186. #1 Good
  3187. proc someproc @{@} @{
  3188. ... multiple lines of stuff ...
  3189. @}
  3190. $_TARGETNAME configure -event FOO someproc
  3191. #2 Good - no variables
  3192. $_TARGETNAME confgure -event foo "this ; that;"
  3193. #3 Good Curly Braces
  3194. $_TARGETNAME configure -event FOO @{
  3195. puts "Time: [date]"
  3196. @}
  3197. #4 DANGER DANGER DANGER
  3198. $_TARGETNAME configure -event foo "puts \"Time: [date]\""
  3199. @end example
  3200. @enumerate
  3201. @item The $_TARGETNAME is an OpenOCD variable convention.
  3202. @*@b{$_TARGETNAME} represents the last target created, the value changes
  3203. each time a new target is created. Remember the parsing rules. When
  3204. the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
  3205. the name of the target which happens to be a TARGET (object)
  3206. command.
  3207. @item The 2nd parameter to the @option{-event} parameter is a TCBODY
  3208. @*There are 4 examples:
  3209. @enumerate
  3210. @item The TCLBODY is a simple string that happens to be a proc name
  3211. @item The TCLBODY is several simple commands seperated by semicolons
  3212. @item The TCLBODY is a multi-line @{curly-brace@} quoted string
  3213. @item The TCLBODY is a string with variables that get expanded.
  3214. @end enumerate
  3215. In the end, when the target event FOO occurs the TCLBODY is
  3216. evaluated. Method @b{#1} and @b{#2} are functionally identical. For
  3217. Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
  3218. Remember the parsing rules. In case #3, @{curly-braces@} mean the
  3219. $VARS and [square-brackets] are expanded later, when the EVENT occurs,
  3220. and the text is evaluated. In case #4, they are replaced before the
  3221. ``Target Object Command'' is executed. This occurs at the same time
  3222. $_TARGETNAME is replaced. In case #4 the date will never
  3223. change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
  3224. Jim/OpenOCD does not have a date command@}
  3225. @end enumerate
  3226. @subsection Global Variables
  3227. @b{Where:} You might discover this when writing your own procs @* In
  3228. simple terms: Inside a PROC, if you need to access a global variable
  3229. you must say so. See also ``upvar''. Example:
  3230. @example
  3231. proc myproc @{ @} @{
  3232. set y 0 #Local variable Y
  3233. global x #Global variable X
  3234. puts [format "X=%d, Y=%d" $x $y]
  3235. @}
  3236. @end example
  3237. @section Other Tcl Hacks
  3238. @b{Dynamic variable creation}
  3239. @example
  3240. # Dynamically create a bunch of variables.
  3241. for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
  3242. # Create var name
  3243. set vn [format "BIT%d" $x]
  3244. # Make it a global
  3245. global $vn
  3246. # Set it.
  3247. set $vn [expr (1 << $x)]
  3248. @}
  3249. @end example
  3250. @b{Dynamic proc/command creation}
  3251. @example
  3252. # One "X" function - 5 uart functions.
  3253. foreach who @{A B C D E@}
  3254. proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
  3255. @}
  3256. @end example
  3257. @node Target Library
  3258. @chapter Target Library
  3259. @cindex Target Library
  3260. OpenOCD comes with a target configuration script library. These scripts can be
  3261. used as-is or serve as a starting point.
  3262. The target library is published together with the OpenOCD executable and
  3263. the path to the target library is in the OpenOCD script search path.
  3264. Similarly there are example scripts for configuring the JTAG interface.
  3265. The command line below uses the example parport configuration script
  3266. that ship with OpenOCD, then configures the str710.cfg target and
  3267. finally issues the init and reset commands. The communication speed
  3268. is set to 10kHz for reset and 8MHz for post reset.
  3269. @example
  3270. openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
  3271. @end example
  3272. To list the target scripts available:
  3273. @example
  3274. $ ls /usr/local/lib/openocd/target
  3275. arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
  3276. at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
  3277. at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
  3278. at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
  3279. @end example
  3280. @include fdl.texi
  3281. @node OpenOCD Index
  3282. @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
  3283. @comment case issue with ``Index.html'' and ``index.html''
  3284. @comment Occurs when creating ``--html --no-split'' output
  3285. @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
  3286. @unnumbered OpenOCD Index
  3287. @printindex cp
  3288. @bye