You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

774 lines
23 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2006 by Magnus Lundin *
  6. * lundin@mlu.mine.nu *
  7. * *
  8. * Copyright (C) 2008 by Spencer Oliver *
  9. * spen@spen-soft.co.uk *
  10. * *
  11. * Copyright (C) 2007,2008 Øyvind Harboe *
  12. * oyvind.harboe@zylin.com *
  13. * *
  14. * This program is free software; you can redistribute it and/or modify *
  15. * it under the terms of the GNU General Public License as published by *
  16. * the Free Software Foundation; either version 2 of the License, or *
  17. * (at your option) any later version. *
  18. * *
  19. * This program is distributed in the hope that it will be useful, *
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  22. * GNU General Public License for more details. *
  23. * *
  24. * You should have received a copy of the GNU General Public License *
  25. * along with this program; if not, write to the *
  26. * Free Software Foundation, Inc., *
  27. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  28. * *
  29. * ARMv7-M Architecture, Application Level Reference Manual *
  30. * ARM DDI 0405C (September 2008) *
  31. * *
  32. ***************************************************************************/
  33. #ifdef HAVE_CONFIG_H
  34. #include "config.h"
  35. #endif
  36. #include "breakpoints.h"
  37. #include "armv7m.h"
  38. #include "algorithm.h"
  39. #include "register.h"
  40. #if 0
  41. #define _DEBUG_INSTRUCTION_EXECUTION_
  42. #endif
  43. /** Maps from enum armv7m_mode (except ARMV7M_MODE_ANY) to name. */
  44. char *armv7m_mode_strings[] =
  45. {
  46. "Thread", "Thread (User)", "Handler",
  47. };
  48. static char *armv7m_exception_strings[] =
  49. {
  50. "", "Reset", "NMI", "HardFault",
  51. "MemManage", "BusFault", "UsageFault", "RESERVED",
  52. "RESERVED", "RESERVED", "RESERVED", "SVCall",
  53. "DebugMonitor", "RESERVED", "PendSV", "SysTick"
  54. };
  55. #ifdef ARMV7_GDB_HACKS
  56. uint8_t armv7m_gdb_dummy_cpsr_value[] = {0, 0, 0, 0};
  57. struct reg armv7m_gdb_dummy_cpsr_reg =
  58. {
  59. .name = "GDB dummy cpsr register",
  60. .value = armv7m_gdb_dummy_cpsr_value,
  61. .dirty = 0,
  62. .valid = 1,
  63. .size = 32,
  64. .arch_info = NULL,
  65. };
  66. #endif
  67. /*
  68. * These registers are not memory-mapped. The ARMv7-M profile includes
  69. * memory mapped registers too, such as for the NVIC (interrupt controller)
  70. * and SysTick (timer) modules; those can mostly be treated as peripherals.
  71. *
  72. * The ARMv6-M profile is almost identical in this respect, except that it
  73. * doesn't include basepri or faultmask registers.
  74. */
  75. static const struct {
  76. unsigned id;
  77. const char *name;
  78. unsigned bits;
  79. } armv7m_regs[] = {
  80. { ARMV7M_R0, "r0", 32 },
  81. { ARMV7M_R1, "r1", 32 },
  82. { ARMV7M_R2, "r2", 32 },
  83. { ARMV7M_R3, "r3", 32 },
  84. { ARMV7M_R4, "r4", 32 },
  85. { ARMV7M_R5, "r5", 32 },
  86. { ARMV7M_R6, "r6", 32 },
  87. { ARMV7M_R7, "r7", 32 },
  88. { ARMV7M_R8, "r8", 32 },
  89. { ARMV7M_R9, "r9", 32 },
  90. { ARMV7M_R10, "r10", 32 },
  91. { ARMV7M_R11, "r11", 32 },
  92. { ARMV7M_R12, "r12", 32 },
  93. { ARMV7M_R13, "sp", 32 },
  94. { ARMV7M_R14, "lr", 32 },
  95. { ARMV7M_PC, "pc", 32 },
  96. { ARMV7M_xPSR, "xPSR", 32 },
  97. { ARMV7M_MSP, "msp", 32 },
  98. { ARMV7M_PSP, "psp", 32 },
  99. { ARMV7M_PRIMASK, "primask", 1 },
  100. { ARMV7M_BASEPRI, "basepri", 8 },
  101. { ARMV7M_FAULTMASK, "faultmask", 1 },
  102. { ARMV7M_CONTROL, "control", 2 },
  103. };
  104. #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
  105. /**
  106. * Restores target context using the cache of core registers set up
  107. * by armv7m_build_reg_cache(), calling optional core-specific hooks.
  108. */
  109. int armv7m_restore_context(struct target *target)
  110. {
  111. int i;
  112. struct armv7m_common *armv7m = target_to_armv7m(target);
  113. LOG_DEBUG(" ");
  114. if (armv7m->pre_restore_context)
  115. armv7m->pre_restore_context(target);
  116. for (i = ARMV7M_NUM_REGS - 1; i >= 0; i--)
  117. {
  118. if (armv7m->core_cache->reg_list[i].dirty)
  119. {
  120. armv7m->write_core_reg(target, i);
  121. }
  122. }
  123. return ERROR_OK;
  124. }
  125. /* Core state functions */
  126. /**
  127. * Maps ISR number (from xPSR) to name.
  128. * Note that while names and meanings for the first sixteen are standardized
  129. * (with zero not a true exception), external interrupts are only numbered.
  130. * They are assigned by vendors, which generally assign different numbers to
  131. * peripherals (such as UART0 or a USB peripheral controller).
  132. */
  133. char *armv7m_exception_string(int number)
  134. {
  135. static char enamebuf[32];
  136. if ((number < 0) | (number > 511))
  137. return "Invalid exception";
  138. if (number < 16)
  139. return armv7m_exception_strings[number];
  140. sprintf(enamebuf, "External Interrupt(%i)", number - 16);
  141. return enamebuf;
  142. }
  143. static int armv7m_get_core_reg(struct reg *reg)
  144. {
  145. int retval;
  146. struct armv7m_core_reg *armv7m_reg = reg->arch_info;
  147. struct target *target = armv7m_reg->target;
  148. struct armv7m_common *armv7m = target_to_armv7m(target);
  149. if (target->state != TARGET_HALTED)
  150. {
  151. return ERROR_TARGET_NOT_HALTED;
  152. }
  153. retval = armv7m->read_core_reg(target, armv7m_reg->num);
  154. return retval;
  155. }
  156. static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
  157. {
  158. struct armv7m_core_reg *armv7m_reg = reg->arch_info;
  159. struct target *target = armv7m_reg->target;
  160. uint32_t value = buf_get_u32(buf, 0, 32);
  161. if (target->state != TARGET_HALTED)
  162. {
  163. return ERROR_TARGET_NOT_HALTED;
  164. }
  165. buf_set_u32(reg->value, 0, 32, value);
  166. reg->dirty = 1;
  167. reg->valid = 1;
  168. return ERROR_OK;
  169. }
  170. static int armv7m_read_core_reg(struct target *target, unsigned num)
  171. {
  172. uint32_t reg_value;
  173. int retval;
  174. struct armv7m_core_reg * armv7m_core_reg;
  175. struct armv7m_common *armv7m = target_to_armv7m(target);
  176. if (num >= ARMV7M_NUM_REGS)
  177. return ERROR_INVALID_ARGUMENTS;
  178. armv7m_core_reg = armv7m->core_cache->reg_list[num].arch_info;
  179. retval = armv7m->load_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, &reg_value);
  180. buf_set_u32(armv7m->core_cache->reg_list[num].value, 0, 32, reg_value);
  181. armv7m->core_cache->reg_list[num].valid = 1;
  182. armv7m->core_cache->reg_list[num].dirty = 0;
  183. return retval;
  184. }
  185. static int armv7m_write_core_reg(struct target *target, unsigned num)
  186. {
  187. int retval;
  188. uint32_t reg_value;
  189. struct armv7m_core_reg *armv7m_core_reg;
  190. struct armv7m_common *armv7m = target_to_armv7m(target);
  191. if (num >= ARMV7M_NUM_REGS)
  192. return ERROR_INVALID_ARGUMENTS;
  193. reg_value = buf_get_u32(armv7m->core_cache->reg_list[num].value, 0, 32);
  194. armv7m_core_reg = armv7m->core_cache->reg_list[num].arch_info;
  195. retval = armv7m->store_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, reg_value);
  196. if (retval != ERROR_OK)
  197. {
  198. LOG_ERROR("JTAG failure");
  199. armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
  200. return ERROR_JTAG_DEVICE_ERROR;
  201. }
  202. LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
  203. armv7m->core_cache->reg_list[num].valid = 1;
  204. armv7m->core_cache->reg_list[num].dirty = 0;
  205. return ERROR_OK;
  206. }
  207. /**
  208. * Returns generic ARM userspace registers to GDB.
  209. * GDB doesn't quite understand that most ARMs don't have floating point
  210. * hardware, so this also fakes a set of long-obsolete FPA registers that
  211. * are not used in EABI based software stacks.
  212. */
  213. int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
  214. {
  215. struct armv7m_common *armv7m = target_to_armv7m(target);
  216. int i;
  217. *reg_list_size = 26;
  218. *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
  219. /*
  220. * GDB register packet format for ARM:
  221. * - the first 16 registers are r0..r15
  222. * - (obsolete) 8 FPA registers
  223. * - (obsolete) FPA status
  224. * - CPSR
  225. */
  226. for (i = 0; i < 16; i++)
  227. {
  228. (*reg_list)[i] = &armv7m->core_cache->reg_list[i];
  229. }
  230. for (i = 16; i < 24; i++)
  231. (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
  232. (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
  233. #ifdef ARMV7_GDB_HACKS
  234. /* use dummy cpsr reg otherwise gdb may try and set the thumb bit */
  235. (*reg_list)[25] = &armv7m_gdb_dummy_cpsr_reg;
  236. /* ARMV7M is always in thumb mode, try to make GDB understand this
  237. * if it does not support this arch */
  238. *((char*)armv7m->arm.pc->value) |= 1;
  239. #else
  240. (*reg_list)[25] = &armv7m->core_cache->reg_list[ARMV7M_xPSR];
  241. #endif
  242. return ERROR_OK;
  243. }
  244. /** Runs a Thumb algorithm in the target. */
  245. int armv7m_run_algorithm(struct target *target,
  246. int num_mem_params, struct mem_param *mem_params,
  247. int num_reg_params, struct reg_param *reg_params,
  248. uint32_t entry_point, uint32_t exit_point,
  249. int timeout_ms, void *arch_info)
  250. {
  251. int retval;
  252. retval = armv7m_start_algorithm(target,
  253. num_mem_params, mem_params,
  254. num_reg_params, reg_params,
  255. entry_point, exit_point,
  256. arch_info);
  257. if (retval == ERROR_OK)
  258. retval = armv7m_wait_algorithm(target,
  259. num_mem_params, mem_params,
  260. num_reg_params, reg_params,
  261. exit_point, timeout_ms,
  262. arch_info);
  263. return retval;
  264. }
  265. /** Starts a Thumb algorithm in the target. */
  266. int armv7m_start_algorithm(struct target *target,
  267. int num_mem_params, struct mem_param *mem_params,
  268. int num_reg_params, struct reg_param *reg_params,
  269. uint32_t entry_point, uint32_t exit_point,
  270. void *arch_info)
  271. {
  272. struct armv7m_common *armv7m = target_to_armv7m(target);
  273. struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
  274. enum armv7m_mode core_mode = armv7m->core_mode;
  275. int retval = ERROR_OK;
  276. /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
  277. * at the exit point */
  278. if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC)
  279. {
  280. LOG_ERROR("current target isn't an ARMV7M target");
  281. return ERROR_TARGET_INVALID;
  282. }
  283. if (target->state != TARGET_HALTED)
  284. {
  285. LOG_WARNING("target not halted");
  286. return ERROR_TARGET_NOT_HALTED;
  287. }
  288. /* refresh core register cache */
  289. /* Not needed if core register cache is always consistent with target process state */
  290. for (unsigned i = 0; i < ARMV7M_NUM_REGS; i++)
  291. {
  292. if (!armv7m->core_cache->reg_list[i].valid)
  293. armv7m->read_core_reg(target, i);
  294. armv7m_algorithm_info->context[i] = buf_get_u32(armv7m->core_cache->reg_list[i].value, 0, 32);
  295. }
  296. for (int i = 0; i < num_mem_params; i++)
  297. {
  298. // TODO: Write only out params
  299. if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
  300. return retval;
  301. }
  302. for (int i = 0; i < num_reg_params; i++)
  303. {
  304. struct reg *reg = register_get_by_name(armv7m->core_cache, reg_params[i].reg_name, 0);
  305. // uint32_t regvalue;
  306. if (!reg)
  307. {
  308. LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
  309. return ERROR_INVALID_ARGUMENTS;
  310. }
  311. if (reg->size != reg_params[i].size)
  312. {
  313. LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
  314. return ERROR_INVALID_ARGUMENTS;
  315. }
  316. // regvalue = buf_get_u32(reg_params[i].value, 0, 32);
  317. armv7m_set_core_reg(reg, reg_params[i].value);
  318. }
  319. if (armv7m_algorithm_info->core_mode != ARMV7M_MODE_ANY)
  320. {
  321. LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
  322. buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value,
  323. 0, 1, armv7m_algorithm_info->core_mode);
  324. armv7m->core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
  325. armv7m->core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
  326. }
  327. armv7m_algorithm_info->core_mode = core_mode;
  328. retval = target_resume(target, 0, entry_point, 1, 1);
  329. return retval;
  330. }
  331. /** Waits for an algorithm in the target. */
  332. int armv7m_wait_algorithm(struct target *target,
  333. int num_mem_params, struct mem_param *mem_params,
  334. int num_reg_params, struct reg_param *reg_params,
  335. uint32_t exit_point, int timeout_ms,
  336. void *arch_info)
  337. {
  338. struct armv7m_common *armv7m = target_to_armv7m(target);
  339. struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
  340. int retval = ERROR_OK;
  341. uint32_t pc;
  342. /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
  343. * at the exit point */
  344. if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC)
  345. {
  346. LOG_ERROR("current target isn't an ARMV7M target");
  347. return ERROR_TARGET_INVALID;
  348. }
  349. retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
  350. /* If the target fails to halt due to the breakpoint, force a halt */
  351. if (retval != ERROR_OK || target->state != TARGET_HALTED)
  352. {
  353. if ((retval = target_halt(target)) != ERROR_OK)
  354. return retval;
  355. if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
  356. {
  357. return retval;
  358. }
  359. return ERROR_TARGET_TIMEOUT;
  360. }
  361. armv7m->load_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 15, &pc);
  362. if (exit_point && (pc != exit_point))
  363. {
  364. LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" PRIx32 , pc, exit_point);
  365. return ERROR_TARGET_TIMEOUT;
  366. }
  367. /* Read memory values to mem_params[] */
  368. for (int i = 0; i < num_mem_params; i++)
  369. {
  370. if (mem_params[i].direction != PARAM_OUT)
  371. if ((retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
  372. {
  373. return retval;
  374. }
  375. }
  376. /* Copy core register values to reg_params[] */
  377. for (int i = 0; i < num_reg_params; i++)
  378. {
  379. if (reg_params[i].direction != PARAM_OUT)
  380. {
  381. struct reg *reg = register_get_by_name(armv7m->core_cache, reg_params[i].reg_name, 0);
  382. if (!reg)
  383. {
  384. LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
  385. return ERROR_INVALID_ARGUMENTS;
  386. }
  387. if (reg->size != reg_params[i].size)
  388. {
  389. LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
  390. return ERROR_INVALID_ARGUMENTS;
  391. }
  392. buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
  393. }
  394. }
  395. for (int i = ARMV7M_NUM_REGS - 1; i >= 0; i--)
  396. {
  397. uint32_t regvalue;
  398. regvalue = buf_get_u32(armv7m->core_cache->reg_list[i].value, 0, 32);
  399. if (regvalue != armv7m_algorithm_info->context[i])
  400. {
  401. LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
  402. armv7m->core_cache->reg_list[i].name, armv7m_algorithm_info->context[i]);
  403. buf_set_u32(armv7m->core_cache->reg_list[i].value,
  404. 0, 32, armv7m_algorithm_info->context[i]);
  405. armv7m->core_cache->reg_list[i].valid = 1;
  406. armv7m->core_cache->reg_list[i].dirty = 1;
  407. }
  408. }
  409. armv7m->core_mode = armv7m_algorithm_info->core_mode;
  410. return retval;
  411. }
  412. /** Logs summary of ARMv7-M state for a halted target. */
  413. int armv7m_arch_state(struct target *target)
  414. {
  415. struct armv7m_common *armv7m = target_to_armv7m(target);
  416. struct arm *arm = &armv7m->arm;
  417. uint32_t ctrl, sp;
  418. ctrl = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
  419. sp = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
  420. LOG_USER("target halted due to %s, current mode: %s %s\n"
  421. "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s",
  422. debug_reason_name(target),
  423. armv7m_mode_strings[armv7m->core_mode],
  424. armv7m_exception_string(armv7m->exception_number),
  425. buf_get_u32(arm->cpsr->value, 0, 32),
  426. buf_get_u32(arm->pc->value, 0, 32),
  427. (ctrl & 0x02) ? 'p' : 'm',
  428. sp,
  429. arm->is_semihosting ? ", semihosting" : "");
  430. return ERROR_OK;
  431. }
  432. static const struct reg_arch_type armv7m_reg_type = {
  433. .get = armv7m_get_core_reg,
  434. .set = armv7m_set_core_reg,
  435. };
  436. /** Builds cache of architecturally defined registers. */
  437. struct reg_cache *armv7m_build_reg_cache(struct target *target)
  438. {
  439. struct armv7m_common *armv7m = target_to_armv7m(target);
  440. struct arm *arm = &armv7m->arm;
  441. int num_regs = ARMV7M_NUM_REGS;
  442. struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
  443. struct reg_cache *cache = malloc(sizeof(struct reg_cache));
  444. struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
  445. struct armv7m_core_reg *arch_info = calloc(num_regs, sizeof(struct armv7m_core_reg));
  446. int i;
  447. #ifdef ARMV7_GDB_HACKS
  448. register_init_dummy(&armv7m_gdb_dummy_cpsr_reg);
  449. #endif
  450. /* Build the process context cache */
  451. cache->name = "arm v7m registers";
  452. cache->next = NULL;
  453. cache->reg_list = reg_list;
  454. cache->num_regs = num_regs;
  455. (*cache_p) = cache;
  456. armv7m->core_cache = cache;
  457. for (i = 0; i < num_regs; i++)
  458. {
  459. arch_info[i].num = armv7m_regs[i].id;
  460. arch_info[i].target = target;
  461. arch_info[i].armv7m_common = armv7m;
  462. reg_list[i].name = armv7m_regs[i].name;
  463. reg_list[i].size = armv7m_regs[i].bits;
  464. reg_list[i].value = calloc(1, 4);
  465. reg_list[i].dirty = 0;
  466. reg_list[i].valid = 0;
  467. reg_list[i].type = &armv7m_reg_type;
  468. reg_list[i].arch_info = &arch_info[i];
  469. }
  470. arm->cpsr = reg_list + ARMV7M_xPSR;
  471. arm->pc = reg_list + ARMV7M_PC;
  472. arm->core_cache = cache;
  473. return cache;
  474. }
  475. static int armv7m_setup_semihosting(struct target *target, int enable)
  476. {
  477. /* nothing todo for armv7m */
  478. return ERROR_OK;
  479. }
  480. /** Sets up target as a generic ARMv7-M core */
  481. int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
  482. {
  483. struct arm *arm = &armv7m->arm;
  484. armv7m->common_magic = ARMV7M_COMMON_MAGIC;
  485. arm->core_type = ARM_MODE_THREAD;
  486. arm->arch_info = armv7m;
  487. arm->setup_semihosting = armv7m_setup_semihosting;
  488. /* FIXME remove v7m-specific r/w core_reg functions;
  489. * use the generic ARM core support..
  490. */
  491. armv7m->read_core_reg = armv7m_read_core_reg;
  492. armv7m->write_core_reg = armv7m_write_core_reg;
  493. return arm_init_arch_info(target, arm);
  494. }
  495. /** Generates a CRC32 checksum of a memory region. */
  496. int armv7m_checksum_memory(struct target *target,
  497. uint32_t address, uint32_t count, uint32_t* checksum)
  498. {
  499. struct working_area *crc_algorithm;
  500. struct armv7m_algorithm armv7m_info;
  501. struct reg_param reg_params[2];
  502. int retval;
  503. /* see contib/loaders/checksum/armv7m_crc.s for src */
  504. static const uint16_t cortex_m3_crc_code[] = {
  505. 0x4602, /* mov r2, r0 */
  506. 0xF04F, 0x30FF, /* mov r0, #0xffffffff */
  507. 0x460B, /* mov r3, r1 */
  508. 0xF04F, 0x0400, /* mov r4, #0 */
  509. 0xE013, /* b ncomp */
  510. /* nbyte: */
  511. 0x5D11, /* ldrb r1, [r2, r4] */
  512. 0xF8DF, 0x7028, /* ldr r7, CRC32XOR */
  513. 0xEA80, 0x6001, /* eor r0, r0, r1, asl #24 */
  514. 0xF04F, 0x0500, /* mov r5, #0 */
  515. /* loop: */
  516. 0x2800, /* cmp r0, #0 */
  517. 0xEA4F, 0x0640, /* mov r6, r0, asl #1 */
  518. 0xF105, 0x0501, /* add r5, r5, #1 */
  519. 0x4630, /* mov r0, r6 */
  520. 0xBFB8, /* it lt */
  521. 0xEA86, 0x0007, /* eor r0, r6, r7 */
  522. 0x2D08, /* cmp r5, #8 */
  523. 0xD1F4, /* bne loop */
  524. 0xF104, 0x0401, /* add r4, r4, #1 */
  525. /* ncomp: */
  526. 0x429C, /* cmp r4, r3 */
  527. 0xD1E9, /* bne nbyte */
  528. 0xBE00, /* bkpt #0 */
  529. 0x1DB7, 0x04C1 /* CRC32XOR: .word 0x04C11DB7 */
  530. };
  531. uint32_t i;
  532. retval = target_alloc_working_area(target, sizeof(cortex_m3_crc_code), &crc_algorithm);
  533. if (retval != ERROR_OK)
  534. return retval;
  535. /* convert flash writing code into a buffer in target endianness */
  536. for (i = 0; i < ARRAY_SIZE(cortex_m3_crc_code); i++) {
  537. retval = target_write_u16(target, crc_algorithm->address + i*sizeof(uint16_t), cortex_m3_crc_code[i]);
  538. if (retval != ERROR_OK)
  539. goto cleanup;
  540. }
  541. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  542. armv7m_info.core_mode = ARMV7M_MODE_ANY;
  543. init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
  544. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  545. buf_set_u32(reg_params[0].value, 0, 32, address);
  546. buf_set_u32(reg_params[1].value, 0, 32, count);
  547. int timeout = 20000 * (1 + (count / (1024 * 1024)));
  548. retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
  549. crc_algorithm->address + (sizeof(cortex_m3_crc_code) - 6),
  550. timeout, &armv7m_info);
  551. if (retval == ERROR_OK)
  552. *checksum = buf_get_u32(reg_params[0].value, 0, 32);
  553. else
  554. LOG_ERROR("error executing cortex_m3 crc algorithm");
  555. destroy_reg_param(&reg_params[0]);
  556. destroy_reg_param(&reg_params[1]);
  557. cleanup:
  558. target_free_working_area(target, crc_algorithm);
  559. return retval;
  560. }
  561. /** Checks whether a memory region is zeroed. */
  562. int armv7m_blank_check_memory(struct target *target,
  563. uint32_t address, uint32_t count, uint32_t* blank)
  564. {
  565. struct working_area *erase_check_algorithm;
  566. struct reg_param reg_params[3];
  567. struct armv7m_algorithm armv7m_info;
  568. int retval;
  569. uint32_t i;
  570. static const uint16_t erase_check_code[] =
  571. {
  572. /* loop: */
  573. 0xF810, 0x3B01, /* ldrb r3, [r0], #1 */
  574. 0xEA02, 0x0203, /* and r2, r2, r3 */
  575. 0x3901, /* subs r1, r1, #1 */
  576. 0xD1F9, /* bne loop */
  577. 0xBE00, /* bkpt #0 */
  578. };
  579. /* make sure we have a working area */
  580. if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
  581. {
  582. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  583. }
  584. /* convert flash writing code into a buffer in target endianness */
  585. for (i = 0; i < ARRAY_SIZE(erase_check_code); i++)
  586. target_write_u16(target, erase_check_algorithm->address + i*sizeof(uint16_t), erase_check_code[i]);
  587. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  588. armv7m_info.core_mode = ARMV7M_MODE_ANY;
  589. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
  590. buf_set_u32(reg_params[0].value, 0, 32, address);
  591. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  592. buf_set_u32(reg_params[1].value, 0, 32, count);
  593. init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
  594. buf_set_u32(reg_params[2].value, 0, 32, 0xff);
  595. retval = target_run_algorithm(target, 0, NULL, 3, reg_params, erase_check_algorithm->address,
  596. erase_check_algorithm->address + (sizeof(erase_check_code) - 2),
  597. 10000, &armv7m_info);
  598. if (retval == ERROR_OK)
  599. *blank = buf_get_u32(reg_params[2].value, 0, 32);
  600. destroy_reg_param(&reg_params[0]);
  601. destroy_reg_param(&reg_params[1]);
  602. destroy_reg_param(&reg_params[2]);
  603. target_free_working_area(target, erase_check_algorithm);
  604. return retval;
  605. }
  606. int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
  607. {
  608. struct armv7m_common *armv7m = target_to_armv7m(target);
  609. struct reg *r = armv7m->arm.pc;
  610. bool result = false;
  611. /* if we halted last time due to a bkpt instruction
  612. * then we have to manually step over it, otherwise
  613. * the core will break again */
  614. if (target->debug_reason == DBG_REASON_BREAKPOINT)
  615. {
  616. uint16_t op;
  617. uint32_t pc = buf_get_u32(r->value, 0, 32);
  618. pc &= ~1;
  619. if (target_read_u16(target, pc, &op) == ERROR_OK)
  620. {
  621. if ((op & 0xFF00) == 0xBE00)
  622. {
  623. pc = buf_get_u32(r->value, 0, 32) + 2;
  624. buf_set_u32(r->value, 0, 32, pc);
  625. r->dirty = true;
  626. r->valid = true;
  627. result = true;
  628. LOG_DEBUG("Skipping over BKPT instruction");
  629. }
  630. }
  631. }
  632. if (inst_found) {
  633. *inst_found = result;
  634. }
  635. return ERROR_OK;
  636. }
  637. const struct command_registration armv7m_command_handlers[] = {
  638. {
  639. .chain = arm_command_handlers,
  640. },
  641. {
  642. .chain = dap_command_handlers,
  643. },
  644. COMMAND_REGISTRATION_DONE
  645. };