You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

895 lines
26 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2006 by Magnus Lundin *
  6. * lundin@mlu.mine.nu *
  7. * *
  8. * Copyright (C) 2008 by Spencer Oliver *
  9. * spen@spen-soft.co.uk *
  10. * *
  11. * Copyright (C) 2007,2008 Øyvind Harboe *
  12. * oyvind.harboe@zylin.com *
  13. * *
  14. * This program is free software; you can redistribute it and/or modify *
  15. * it under the terms of the GNU General Public License as published by *
  16. * the Free Software Foundation; either version 2 of the License, or *
  17. * (at your option) any later version. *
  18. * *
  19. * This program is distributed in the hope that it will be useful, *
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  22. * GNU General Public License for more details. *
  23. * *
  24. * You should have received a copy of the GNU General Public License *
  25. * along with this program; if not, write to the *
  26. * Free Software Foundation, Inc., *
  27. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  28. * *
  29. * ARMv7-M Architecture, Application Level Reference Manual *
  30. * ARM DDI 0405C (September 2008) *
  31. * *
  32. ***************************************************************************/
  33. #ifdef HAVE_CONFIG_H
  34. #include "config.h"
  35. #endif
  36. #include "breakpoints.h"
  37. #include "armv7m.h"
  38. #include "algorithm.h"
  39. #include "register.h"
  40. #if 0
  41. #define _DEBUG_INSTRUCTION_EXECUTION_
  42. #endif
  43. /** Maps from enum armv7m_mode (except ARMV7M_MODE_ANY) to name. */
  44. char *armv7m_mode_strings[] =
  45. {
  46. "Thread", "Thread (User)", "Handler",
  47. };
  48. static char *armv7m_exception_strings[] =
  49. {
  50. "", "Reset", "NMI", "HardFault",
  51. "MemManage", "BusFault", "UsageFault", "RESERVED",
  52. "RESERVED", "RESERVED", "RESERVED", "SVCall",
  53. "DebugMonitor", "RESERVED", "PendSV", "SysTick"
  54. };
  55. #ifdef ARMV7_GDB_HACKS
  56. uint8_t armv7m_gdb_dummy_cpsr_value[] = {0, 0, 0, 0};
  57. struct reg armv7m_gdb_dummy_cpsr_reg =
  58. {
  59. .name = "GDB dummy cpsr register",
  60. .value = armv7m_gdb_dummy_cpsr_value,
  61. .dirty = 0,
  62. .valid = 1,
  63. .size = 32,
  64. .arch_info = NULL,
  65. };
  66. #endif
  67. /*
  68. * These registers are not memory-mapped. The ARMv7-M profile includes
  69. * memory mapped registers too, such as for the NVIC (interrupt controller)
  70. * and SysTick (timer) modules; those can mostly be treated as peripherals.
  71. *
  72. * The ARMv6-M profile is almost identical in this respect, except that it
  73. * doesn't include basepri or faultmask registers.
  74. */
  75. static const struct {
  76. unsigned id;
  77. char *name;
  78. unsigned bits;
  79. } armv7m_regs[] = {
  80. { ARMV7M_R0, "r0", 32 },
  81. { ARMV7M_R1, "r1", 32 },
  82. { ARMV7M_R2, "r2", 32 },
  83. { ARMV7M_R3, "r3", 32 },
  84. { ARMV7M_R4, "r4", 32 },
  85. { ARMV7M_R5, "r5", 32 },
  86. { ARMV7M_R6, "r6", 32 },
  87. { ARMV7M_R7, "r7", 32 },
  88. { ARMV7M_R8, "r8", 32 },
  89. { ARMV7M_R9, "r9", 32 },
  90. { ARMV7M_R10, "r10", 32 },
  91. { ARMV7M_R11, "r11", 32 },
  92. { ARMV7M_R12, "r12", 32 },
  93. { ARMV7M_R13, "sp", 32 },
  94. { ARMV7M_R14, "lr", 32 },
  95. { ARMV7M_PC, "pc", 32 },
  96. { ARMV7M_xPSR, "xPSR", 32 },
  97. { ARMV7M_MSP, "msp", 32 },
  98. { ARMV7M_PSP, "psp", 32 },
  99. { ARMV7M_PRIMASK, "primask", 1 },
  100. { ARMV7M_BASEPRI, "basepri", 8 },
  101. { ARMV7M_FAULTMASK, "faultmask", 1 },
  102. { ARMV7M_CONTROL, "control", 2 },
  103. };
  104. #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
  105. /**
  106. * Restores target context using the cache of core registers set up
  107. * by armv7m_build_reg_cache(), calling optional core-specific hooks.
  108. */
  109. int armv7m_restore_context(struct target *target)
  110. {
  111. int i;
  112. struct armv7m_common *armv7m = target_to_armv7m(target);
  113. LOG_DEBUG(" ");
  114. if (armv7m->pre_restore_context)
  115. armv7m->pre_restore_context(target);
  116. for (i = ARMV7M_NUM_REGS - 1; i >= 0; i--)
  117. {
  118. if (armv7m->core_cache->reg_list[i].dirty)
  119. {
  120. armv7m->write_core_reg(target, i);
  121. }
  122. }
  123. if (armv7m->post_restore_context)
  124. armv7m->post_restore_context(target);
  125. return ERROR_OK;
  126. }
  127. /* Core state functions */
  128. /**
  129. * Maps ISR number (from xPSR) to name.
  130. * Note that while names and meanings for the first sixteen are standardized
  131. * (with zero not a true exception), external interrupts are only numbered.
  132. * They are assigned by vendors, which generally assign different numbers to
  133. * peripherals (such as UART0 or a USB peripheral controller).
  134. */
  135. char *armv7m_exception_string(int number)
  136. {
  137. static char enamebuf[32];
  138. if ((number < 0) | (number > 511))
  139. return "Invalid exception";
  140. if (number < 16)
  141. return armv7m_exception_strings[number];
  142. sprintf(enamebuf, "External Interrupt(%i)", number - 16);
  143. return enamebuf;
  144. }
  145. static int armv7m_get_core_reg(struct reg *reg)
  146. {
  147. int retval;
  148. struct armv7m_core_reg *armv7m_reg = reg->arch_info;
  149. struct target *target = armv7m_reg->target;
  150. struct armv7m_common *armv7m = target_to_armv7m(target);
  151. if (target->state != TARGET_HALTED)
  152. {
  153. return ERROR_TARGET_NOT_HALTED;
  154. }
  155. retval = armv7m->read_core_reg(target, armv7m_reg->num);
  156. return retval;
  157. }
  158. static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
  159. {
  160. struct armv7m_core_reg *armv7m_reg = reg->arch_info;
  161. struct target *target = armv7m_reg->target;
  162. uint32_t value = buf_get_u32(buf, 0, 32);
  163. if (target->state != TARGET_HALTED)
  164. {
  165. return ERROR_TARGET_NOT_HALTED;
  166. }
  167. buf_set_u32(reg->value, 0, 32, value);
  168. reg->dirty = 1;
  169. reg->valid = 1;
  170. return ERROR_OK;
  171. }
  172. static int armv7m_read_core_reg(struct target *target, unsigned num)
  173. {
  174. uint32_t reg_value;
  175. int retval;
  176. struct armv7m_core_reg * armv7m_core_reg;
  177. struct armv7m_common *armv7m = target_to_armv7m(target);
  178. if (num >= ARMV7M_NUM_REGS)
  179. return ERROR_INVALID_ARGUMENTS;
  180. armv7m_core_reg = armv7m->core_cache->reg_list[num].arch_info;
  181. retval = armv7m->load_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, &reg_value);
  182. buf_set_u32(armv7m->core_cache->reg_list[num].value, 0, 32, reg_value);
  183. armv7m->core_cache->reg_list[num].valid = 1;
  184. armv7m->core_cache->reg_list[num].dirty = 0;
  185. return retval;
  186. }
  187. static int armv7m_write_core_reg(struct target *target, unsigned num)
  188. {
  189. int retval;
  190. uint32_t reg_value;
  191. struct armv7m_core_reg *armv7m_core_reg;
  192. struct armv7m_common *armv7m = target_to_armv7m(target);
  193. if (num >= ARMV7M_NUM_REGS)
  194. return ERROR_INVALID_ARGUMENTS;
  195. reg_value = buf_get_u32(armv7m->core_cache->reg_list[num].value, 0, 32);
  196. armv7m_core_reg = armv7m->core_cache->reg_list[num].arch_info;
  197. retval = armv7m->store_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, reg_value);
  198. if (retval != ERROR_OK)
  199. {
  200. LOG_ERROR("JTAG failure");
  201. armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
  202. return ERROR_JTAG_DEVICE_ERROR;
  203. }
  204. LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
  205. armv7m->core_cache->reg_list[num].valid = 1;
  206. armv7m->core_cache->reg_list[num].dirty = 0;
  207. return ERROR_OK;
  208. }
  209. /**
  210. * Returns generic ARM userspace registers to GDB.
  211. * GDB doesn't quite understand that most ARMs don't have floating point
  212. * hardware, so this also fakes a set of long-obsolete FPA registers that
  213. * are not used in EABI based software stacks.
  214. */
  215. int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
  216. {
  217. struct armv7m_common *armv7m = target_to_armv7m(target);
  218. int i;
  219. *reg_list_size = 26;
  220. *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
  221. /*
  222. * GDB register packet format for ARM:
  223. * - the first 16 registers are r0..r15
  224. * - (obsolete) 8 FPA registers
  225. * - (obsolete) FPA status
  226. * - CPSR
  227. */
  228. for (i = 0; i < 16; i++)
  229. {
  230. (*reg_list)[i] = &armv7m->core_cache->reg_list[i];
  231. }
  232. for (i = 16; i < 24; i++)
  233. (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
  234. (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
  235. #ifdef ARMV7_GDB_HACKS
  236. /* use dummy cpsr reg otherwise gdb may try and set the thumb bit */
  237. (*reg_list)[25] = &armv7m_gdb_dummy_cpsr_reg;
  238. /* ARMV7M is always in thumb mode, try to make GDB understand this
  239. * if it does not support this arch */
  240. *((char*)armv7m->core_cache->reg_list[15].value) |= 1;
  241. #else
  242. (*reg_list)[25] = &armv7m->core_cache->reg_list[ARMV7M_xPSR];
  243. #endif
  244. return ERROR_OK;
  245. }
  246. /* run to exit point. return error if exit point was not reached. */
  247. static int armv7m_run_and_wait(struct target *target, uint32_t entry_point, int timeout_ms, uint32_t exit_point, struct armv7m_common *armv7m)
  248. {
  249. uint32_t pc;
  250. int retval;
  251. /* This code relies on the target specific resume() and poll()->debug_entry()
  252. * sequence to write register values to the processor and the read them back */
  253. if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK)
  254. {
  255. return retval;
  256. }
  257. retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
  258. /* If the target fails to halt due to the breakpoint, force a halt */
  259. if (retval != ERROR_OK || target->state != TARGET_HALTED)
  260. {
  261. if ((retval = target_halt(target)) != ERROR_OK)
  262. return retval;
  263. if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
  264. {
  265. return retval;
  266. }
  267. return ERROR_TARGET_TIMEOUT;
  268. }
  269. armv7m->load_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 15, &pc);
  270. if (pc != exit_point)
  271. {
  272. LOG_DEBUG("failed algoritm halted at 0x%" PRIx32 " ", pc);
  273. return ERROR_TARGET_TIMEOUT;
  274. }
  275. return ERROR_OK;
  276. }
  277. /** Runs a Thumb algorithm in the target. */
  278. int armv7m_run_algorithm(struct target *target,
  279. int num_mem_params, struct mem_param *mem_params,
  280. int num_reg_params, struct reg_param *reg_params,
  281. uint32_t entry_point, uint32_t exit_point,
  282. int timeout_ms, void *arch_info)
  283. {
  284. struct armv7m_common *armv7m = target_to_armv7m(target);
  285. struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
  286. enum armv7m_mode core_mode = armv7m->core_mode;
  287. int retval = ERROR_OK;
  288. uint32_t context[ARMV7M_NUM_REGS];
  289. if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC)
  290. {
  291. LOG_ERROR("current target isn't an ARMV7M target");
  292. return ERROR_TARGET_INVALID;
  293. }
  294. if (target->state != TARGET_HALTED)
  295. {
  296. LOG_WARNING("target not halted");
  297. return ERROR_TARGET_NOT_HALTED;
  298. }
  299. /* refresh core register cache */
  300. /* Not needed if core register cache is always consistent with target process state */
  301. for (unsigned i = 0; i < ARMV7M_NUM_REGS; i++)
  302. {
  303. if (!armv7m->core_cache->reg_list[i].valid)
  304. armv7m->read_core_reg(target, i);
  305. context[i] = buf_get_u32(armv7m->core_cache->reg_list[i].value, 0, 32);
  306. }
  307. for (int i = 0; i < num_mem_params; i++)
  308. {
  309. if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
  310. return retval;
  311. }
  312. for (int i = 0; i < num_reg_params; i++)
  313. {
  314. struct reg *reg = register_get_by_name(armv7m->core_cache, reg_params[i].reg_name, 0);
  315. // uint32_t regvalue;
  316. if (!reg)
  317. {
  318. LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
  319. return ERROR_INVALID_ARGUMENTS;
  320. }
  321. if (reg->size != reg_params[i].size)
  322. {
  323. LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
  324. return ERROR_INVALID_ARGUMENTS;
  325. }
  326. // regvalue = buf_get_u32(reg_params[i].value, 0, 32);
  327. armv7m_set_core_reg(reg, reg_params[i].value);
  328. }
  329. if (armv7m_algorithm_info->core_mode != ARMV7M_MODE_ANY)
  330. {
  331. LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
  332. buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value,
  333. 0, 1, armv7m_algorithm_info->core_mode);
  334. armv7m->core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
  335. armv7m->core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
  336. }
  337. /* REVISIT speed things up (3% or so in one case) by requiring
  338. * algorithms to include a BKPT instruction at each exit point.
  339. * This eliminates overheads of adding/removing a breakpoint.
  340. */
  341. /* ARMV7M always runs in Thumb state */
  342. if ((retval = breakpoint_add(target, exit_point, 2, BKPT_SOFT)) != ERROR_OK)
  343. {
  344. LOG_ERROR("can't add breakpoint to finish algorithm execution");
  345. return ERROR_TARGET_FAILURE;
  346. }
  347. retval = armv7m_run_and_wait(target, entry_point, timeout_ms, exit_point, armv7m);
  348. breakpoint_remove(target, exit_point);
  349. if (retval != ERROR_OK)
  350. {
  351. return retval;
  352. }
  353. /* Read memory values to mem_params[] */
  354. for (int i = 0; i < num_mem_params; i++)
  355. {
  356. if (mem_params[i].direction != PARAM_OUT)
  357. if ((retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
  358. {
  359. return retval;
  360. }
  361. }
  362. /* Copy core register values to reg_params[] */
  363. for (int i = 0; i < num_reg_params; i++)
  364. {
  365. if (reg_params[i].direction != PARAM_OUT)
  366. {
  367. struct reg *reg = register_get_by_name(armv7m->core_cache, reg_params[i].reg_name, 0);
  368. if (!reg)
  369. {
  370. LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
  371. return ERROR_INVALID_ARGUMENTS;
  372. }
  373. if (reg->size != reg_params[i].size)
  374. {
  375. LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
  376. return ERROR_INVALID_ARGUMENTS;
  377. }
  378. buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
  379. }
  380. }
  381. for (int i = ARMV7M_NUM_REGS - 1; i >= 0; i--)
  382. {
  383. uint32_t regvalue;
  384. regvalue = buf_get_u32(armv7m->core_cache->reg_list[i].value, 0, 32);
  385. if (regvalue != context[i])
  386. {
  387. LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
  388. armv7m->core_cache->reg_list[i].name, context[i]);
  389. buf_set_u32(armv7m->core_cache->reg_list[i].value,
  390. 0, 32, context[i]);
  391. armv7m->core_cache->reg_list[i].valid = 1;
  392. armv7m->core_cache->reg_list[i].dirty = 1;
  393. }
  394. }
  395. armv7m->core_mode = core_mode;
  396. return retval;
  397. }
  398. /** Logs summary of ARMv7-M state for a halted target. */
  399. int armv7m_arch_state(struct target *target)
  400. {
  401. struct armv7m_common *armv7m = target_to_armv7m(target);
  402. uint32_t ctrl, sp;
  403. ctrl = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
  404. sp = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
  405. LOG_USER("target halted due to %s, current mode: %s %s\n"
  406. "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32,
  407. debug_reason_name(target),
  408. armv7m_mode_strings[armv7m->core_mode],
  409. armv7m_exception_string(armv7m->exception_number),
  410. buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32),
  411. buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_PC].value, 0, 32),
  412. (ctrl & 0x02) ? 'p' : 'm',
  413. sp);
  414. return ERROR_OK;
  415. }
  416. static const struct reg_arch_type armv7m_reg_type = {
  417. .get = armv7m_get_core_reg,
  418. .set = armv7m_set_core_reg,
  419. };
  420. /** Builds cache of architecturally defined registers. */
  421. struct reg_cache *armv7m_build_reg_cache(struct target *target)
  422. {
  423. struct armv7m_common *armv7m = target_to_armv7m(target);
  424. int num_regs = ARMV7M_NUM_REGS;
  425. struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
  426. struct reg_cache *cache = malloc(sizeof(struct reg_cache));
  427. struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
  428. struct armv7m_core_reg *arch_info = calloc(num_regs, sizeof(struct armv7m_core_reg));
  429. int i;
  430. #ifdef ARMV7_GDB_HACKS
  431. register_init_dummy(&armv7m_gdb_dummy_cpsr_reg);
  432. #endif
  433. /* Build the process context cache */
  434. cache->name = "arm v7m registers";
  435. cache->next = NULL;
  436. cache->reg_list = reg_list;
  437. cache->num_regs = num_regs;
  438. (*cache_p) = cache;
  439. armv7m->core_cache = cache;
  440. for (i = 0; i < num_regs; i++)
  441. {
  442. arch_info[i].num = armv7m_regs[i].id;
  443. arch_info[i].target = target;
  444. arch_info[i].armv7m_common = armv7m;
  445. reg_list[i].name = armv7m_regs[i].name;
  446. reg_list[i].size = armv7m_regs[i].bits;
  447. reg_list[i].value = calloc(1, 4);
  448. reg_list[i].dirty = 0;
  449. reg_list[i].valid = 0;
  450. reg_list[i].type = &armv7m_reg_type;
  451. reg_list[i].arch_info = &arch_info[i];
  452. }
  453. return cache;
  454. }
  455. /** Sets up target as a generic ARMv7-M core */
  456. int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
  457. {
  458. /* register arch-specific functions */
  459. target->arch_info = armv7m;
  460. armv7m->read_core_reg = armv7m_read_core_reg;
  461. armv7m->write_core_reg = armv7m_write_core_reg;
  462. return ERROR_OK;
  463. }
  464. /** Generates a CRC32 checksum of a memory region. */
  465. int armv7m_checksum_memory(struct target *target,
  466. uint32_t address, uint32_t count, uint32_t* checksum)
  467. {
  468. struct working_area *crc_algorithm;
  469. struct armv7m_algorithm armv7m_info;
  470. struct reg_param reg_params[2];
  471. int retval;
  472. static const uint16_t cortex_m3_crc_code[] = {
  473. 0x4602, /* mov r2, r0 */
  474. 0xF04F, 0x30FF, /* mov r0, #0xffffffff */
  475. 0x460B, /* mov r3, r1 */
  476. 0xF04F, 0x0400, /* mov r4, #0 */
  477. 0xE013, /* b ncomp */
  478. /* nbyte: */
  479. 0x5D11, /* ldrb r1, [r2, r4] */
  480. 0xF8DF, 0x7028, /* ldr r7, CRC32XOR */
  481. 0xEA80, 0x6001, /* eor r0, r0, r1, asl #24 */
  482. 0xF04F, 0x0500, /* mov r5, #0 */
  483. /* loop: */
  484. 0x2800, /* cmp r0, #0 */
  485. 0xEA4F, 0x0640, /* mov r6, r0, asl #1 */
  486. 0xF105, 0x0501, /* add r5, r5, #1 */
  487. 0x4630, /* mov r0, r6 */
  488. 0xBFB8, /* it lt */
  489. 0xEA86, 0x0007, /* eor r0, r6, r7 */
  490. 0x2D08, /* cmp r5, #8 */
  491. 0xD1F4, /* bne loop */
  492. 0xF104, 0x0401, /* add r4, r4, #1 */
  493. /* ncomp: */
  494. 0x429C, /* cmp r4, r3 */
  495. 0xD1E9, /* bne nbyte */
  496. /* end: */
  497. 0xE7FE, /* b end */
  498. 0x1DB7, 0x04C1 /* CRC32XOR: .word 0x04C11DB7 */
  499. };
  500. uint32_t i;
  501. if (target_alloc_working_area(target, sizeof(cortex_m3_crc_code), &crc_algorithm) != ERROR_OK)
  502. {
  503. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  504. }
  505. /* convert flash writing code into a buffer in target endianness */
  506. for (i = 0; i < ARRAY_SIZE(cortex_m3_crc_code); i++)
  507. if ((retval = target_write_u16(target, crc_algorithm->address + i*sizeof(uint16_t), cortex_m3_crc_code[i])) != ERROR_OK)
  508. {
  509. return retval;
  510. }
  511. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  512. armv7m_info.core_mode = ARMV7M_MODE_ANY;
  513. init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
  514. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  515. buf_set_u32(reg_params[0].value, 0, 32, address);
  516. buf_set_u32(reg_params[1].value, 0, 32, count);
  517. if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
  518. crc_algorithm->address, crc_algorithm->address + (sizeof(cortex_m3_crc_code)-6), 20000, &armv7m_info)) != ERROR_OK)
  519. {
  520. LOG_ERROR("error executing cortex_m3 crc algorithm");
  521. destroy_reg_param(&reg_params[0]);
  522. destroy_reg_param(&reg_params[1]);
  523. target_free_working_area(target, crc_algorithm);
  524. return retval;
  525. }
  526. *checksum = buf_get_u32(reg_params[0].value, 0, 32);
  527. destroy_reg_param(&reg_params[0]);
  528. destroy_reg_param(&reg_params[1]);
  529. target_free_working_area(target, crc_algorithm);
  530. return ERROR_OK;
  531. }
  532. /** Checks whether a memory region is zeroed. */
  533. int armv7m_blank_check_memory(struct target *target,
  534. uint32_t address, uint32_t count, uint32_t* blank)
  535. {
  536. struct working_area *erase_check_algorithm;
  537. struct reg_param reg_params[3];
  538. struct armv7m_algorithm armv7m_info;
  539. int retval;
  540. uint32_t i;
  541. static const uint16_t erase_check_code[] =
  542. {
  543. /* loop: */
  544. 0xF810, 0x3B01, /* ldrb r3, [r0], #1 */
  545. 0xEA02, 0x0203, /* and r2, r2, r3 */
  546. 0x3901, /* subs r1, r1, #1 */
  547. 0xD1F9, /* bne loop */
  548. /* end: */
  549. 0xE7FE, /* b end */
  550. };
  551. /* make sure we have a working area */
  552. if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
  553. {
  554. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  555. }
  556. /* convert flash writing code into a buffer in target endianness */
  557. for (i = 0; i < ARRAY_SIZE(erase_check_code); i++)
  558. target_write_u16(target, erase_check_algorithm->address + i*sizeof(uint16_t), erase_check_code[i]);
  559. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  560. armv7m_info.core_mode = ARMV7M_MODE_ANY;
  561. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
  562. buf_set_u32(reg_params[0].value, 0, 32, address);
  563. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  564. buf_set_u32(reg_params[1].value, 0, 32, count);
  565. init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
  566. buf_set_u32(reg_params[2].value, 0, 32, 0xff);
  567. if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
  568. erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code)-2), 10000, &armv7m_info)) != ERROR_OK)
  569. {
  570. destroy_reg_param(&reg_params[0]);
  571. destroy_reg_param(&reg_params[1]);
  572. destroy_reg_param(&reg_params[2]);
  573. target_free_working_area(target, erase_check_algorithm);
  574. return 0;
  575. }
  576. *blank = buf_get_u32(reg_params[2].value, 0, 32);
  577. destroy_reg_param(&reg_params[0]);
  578. destroy_reg_param(&reg_params[1]);
  579. destroy_reg_param(&reg_params[2]);
  580. target_free_working_area(target, erase_check_algorithm);
  581. return ERROR_OK;
  582. }
  583. int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
  584. {
  585. struct armv7m_common *armv7m = target_to_armv7m(target);
  586. struct reg *r = armv7m->core_cache->reg_list + 15;
  587. bool result = false;
  588. /* if we halted last time due to a bkpt instruction
  589. * then we have to manually step over it, otherwise
  590. * the core will break again */
  591. if (target->debug_reason == DBG_REASON_BREAKPOINT)
  592. {
  593. uint16_t op;
  594. uint32_t pc = buf_get_u32(r->value, 0, 32);
  595. pc &= ~1;
  596. if (target_read_u16(target, pc, &op) == ERROR_OK)
  597. {
  598. if ((op & 0xFF00) == 0xBE00)
  599. {
  600. pc = buf_get_u32(r->value, 0, 32) + 2;
  601. buf_set_u32(r->value, 0, 32, pc);
  602. r->dirty = true;
  603. r->valid = true;
  604. result = true;
  605. LOG_DEBUG("Skipping over BKPT instruction");
  606. }
  607. }
  608. }
  609. if (inst_found) {
  610. *inst_found = result;
  611. }
  612. return ERROR_OK;
  613. }
  614. /*--------------------------------------------------------------------------*/
  615. /*
  616. * Only stuff below this line should need to verify that its target
  617. * is an ARMv7-M node.
  618. *
  619. * FIXME yet none of it _does_ verify target types yet!
  620. */
  621. /*
  622. * Return the debug ap baseaddress in hexadecimal;
  623. * no extra output to simplify script processing
  624. */
  625. COMMAND_HANDLER(handle_dap_baseaddr_command)
  626. {
  627. struct target *target = get_current_target(CMD_CTX);
  628. struct armv7m_common *armv7m = target_to_armv7m(target);
  629. struct swjdp_common *swjdp = &armv7m->swjdp_info;
  630. uint32_t apsel, apselsave, baseaddr;
  631. int retval;
  632. apselsave = swjdp->apsel;
  633. switch (CMD_ARGC) {
  634. case 0:
  635. apsel = swjdp->apsel;
  636. break;
  637. case 1:
  638. COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
  639. break;
  640. default:
  641. return ERROR_COMMAND_SYNTAX_ERROR;
  642. }
  643. if (apselsave != apsel)
  644. dap_ap_select(swjdp, apsel);
  645. /* NOTE: assumes we're talking to a MEM-AP, which
  646. * has a base address. There are other kinds of AP,
  647. * though they're not common for now. This should
  648. * use the ID register to verify it's a MEM-AP.
  649. */
  650. dap_ap_read_reg_u32(swjdp, AP_REG_BASE, &baseaddr);
  651. retval = swjdp_transaction_endcheck(swjdp);
  652. command_print(CMD_CTX, "0x%8.8" PRIx32 "", baseaddr);
  653. if (apselsave != apsel)
  654. dap_ap_select(swjdp, apselsave);
  655. return retval;
  656. }
  657. /*
  658. * Return the debug ap id in hexadecimal;
  659. * no extra output to simplify script processing
  660. */
  661. COMMAND_HANDLER(handle_dap_apid_command)
  662. {
  663. struct target *target = get_current_target(CMD_CTX);
  664. struct armv7m_common *armv7m = target_to_armv7m(target);
  665. struct swjdp_common *swjdp = &armv7m->swjdp_info;
  666. return CALL_COMMAND_HANDLER(dap_apid_command, swjdp);
  667. }
  668. COMMAND_HANDLER(handle_dap_apsel_command)
  669. {
  670. struct target *target = get_current_target(CMD_CTX);
  671. struct armv7m_common *armv7m = target_to_armv7m(target);
  672. struct swjdp_common *swjdp = &armv7m->swjdp_info;
  673. return CALL_COMMAND_HANDLER(dap_apsel_command, swjdp);
  674. }
  675. COMMAND_HANDLER(handle_dap_memaccess_command)
  676. {
  677. struct target *target = get_current_target(CMD_CTX);
  678. struct armv7m_common *armv7m = target_to_armv7m(target);
  679. struct swjdp_common *swjdp = &armv7m->swjdp_info;
  680. return CALL_COMMAND_HANDLER(dap_memaccess_command, swjdp);
  681. }
  682. COMMAND_HANDLER(handle_dap_info_command)
  683. {
  684. struct target *target = get_current_target(CMD_CTX);
  685. struct armv7m_common *armv7m = target_to_armv7m(target);
  686. struct swjdp_common *swjdp = &armv7m->swjdp_info;
  687. uint32_t apsel;
  688. switch (CMD_ARGC) {
  689. case 0:
  690. apsel = swjdp->apsel;
  691. break;
  692. case 1:
  693. COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
  694. break;
  695. default:
  696. return ERROR_COMMAND_SYNTAX_ERROR;
  697. }
  698. return dap_info_command(CMD_CTX, swjdp, apsel);
  699. }
  700. /* FIXME this table should be part of generic DAP support, and
  701. * be shared by the ARMv7-A/R and ARMv7-M support ...
  702. */
  703. static const struct command_registration armv7m_exec_command_handlers[] = {
  704. {
  705. .name = "info",
  706. .handler = handle_dap_info_command,
  707. .mode = COMMAND_EXEC,
  708. .help = "display ROM table for MEM-AP "
  709. "(default currently selected AP)",
  710. .usage = "[ap_num]",
  711. },
  712. {
  713. .name = "apsel",
  714. .handler = handle_dap_apsel_command,
  715. .mode = COMMAND_EXEC,
  716. .help = "Set the currently selected AP (default 0) "
  717. "and display the result",
  718. .usage = "[ap_num]",
  719. },
  720. {
  721. .name = "apid",
  722. .handler = handle_dap_apid_command,
  723. .mode = COMMAND_EXEC,
  724. .help = "return ID register from AP "
  725. "(default currently selected AP)",
  726. .usage = "[ap_num]",
  727. },
  728. {
  729. .name = "baseaddr",
  730. .handler = handle_dap_baseaddr_command,
  731. .mode = COMMAND_EXEC,
  732. .help = "return debug base address from MEM-AP "
  733. "(default currently selected AP)",
  734. .usage = "[ap_num]",
  735. },
  736. {
  737. .name = "memaccess",
  738. .handler = handle_dap_memaccess_command,
  739. .mode = COMMAND_EXEC,
  740. .help = "set/get number of extra tck for MEM-AP memory "
  741. "bus access [0-255]",
  742. .usage = "[cycles]",
  743. },
  744. COMMAND_REGISTRATION_DONE
  745. };
  746. const struct command_registration armv7m_command_handlers[] = {
  747. {
  748. .name = "dap",
  749. .mode = COMMAND_EXEC,
  750. .help = "Cortex DAP command group",
  751. .chain = armv7m_exec_command_handlers,
  752. },
  753. COMMAND_REGISTRATION_DONE
  754. };