You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

641 lines
24 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2007-2010 Øyvind Harboe *
  6. * oyvind.harboe@zylin.com *
  7. * *
  8. * Copyright (C) 2008 by Spencer Oliver *
  9. * spen@spen-soft.co.uk *
  10. * *
  11. * Copyright (C) 2011 by Broadcom Corporation *
  12. * Evan Hunter - ehunter@broadcom.com *
  13. * *
  14. * Copyright (C) ST-Ericsson SA 2011 *
  15. * michel.jaouen@stericsson.com : smp minimum support *
  16. * *
  17. * This program is free software; you can redistribute it and/or modify *
  18. * it under the terms of the GNU General Public License as published by *
  19. * the Free Software Foundation; either version 2 of the License, or *
  20. * (at your option) any later version. *
  21. * *
  22. * This program is distributed in the hope that it will be useful, *
  23. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  24. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  25. * GNU General Public License for more details. *
  26. * *
  27. * You should have received a copy of the GNU General Public License *
  28. * along with this program; if not, write to the *
  29. * Free Software Foundation, Inc., *
  30. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
  31. ***************************************************************************/
  32. #ifndef TARGET_H
  33. #define TARGET_H
  34. struct reg;
  35. struct trace;
  36. struct command_context;
  37. struct breakpoint;
  38. struct watchpoint;
  39. struct mem_param;
  40. struct reg_param;
  41. struct target_list;
  42. struct gdb_fileio_info;
  43. /*
  44. * TARGET_UNKNOWN = 0: we don't know anything about the target yet
  45. * TARGET_RUNNING = 1: the target is executing user code
  46. * TARGET_HALTED = 2: the target is not executing code, and ready to talk to the
  47. * debugger. on an xscale it means that the debug handler is executing
  48. * TARGET_RESET = 3: the target is being held in reset (only a temporary state,
  49. * not sure how this is used with all the recent changes)
  50. * TARGET_DEBUG_RUNNING = 4: the target is running, but it is executing code on
  51. * behalf of the debugger (e.g. algorithm for flashing)
  52. *
  53. * also see: target_state_name();
  54. */
  55. enum target_state {
  56. TARGET_UNKNOWN = 0,
  57. TARGET_RUNNING = 1,
  58. TARGET_HALTED = 2,
  59. TARGET_RESET = 3,
  60. TARGET_DEBUG_RUNNING = 4,
  61. };
  62. enum nvp_assert {
  63. NVP_DEASSERT,
  64. NVP_ASSERT,
  65. };
  66. enum target_reset_mode {
  67. RESET_UNKNOWN = 0,
  68. RESET_RUN = 1, /* reset and let target run */
  69. RESET_HALT = 2, /* reset and halt target out of reset */
  70. RESET_INIT = 3, /* reset and halt target out of reset, then run init script */
  71. };
  72. enum target_debug_reason {
  73. DBG_REASON_DBGRQ = 0,
  74. DBG_REASON_BREAKPOINT = 1,
  75. DBG_REASON_WATCHPOINT = 2,
  76. DBG_REASON_WPTANDBKPT = 3,
  77. DBG_REASON_SINGLESTEP = 4,
  78. DBG_REASON_NOTHALTED = 5,
  79. DBG_REASON_EXIT = 6,
  80. DBG_REASON_UNDEFINED = 7,
  81. };
  82. enum target_endianness {
  83. TARGET_ENDIAN_UNKNOWN = 0,
  84. TARGET_BIG_ENDIAN = 1, TARGET_LITTLE_ENDIAN = 2
  85. };
  86. struct working_area {
  87. uint32_t address;
  88. uint32_t size;
  89. bool free;
  90. uint8_t *backup;
  91. struct working_area **user;
  92. struct working_area *next;
  93. };
  94. struct gdb_service {
  95. struct target *target;
  96. /* field for smp display */
  97. /* element 0 coreid currently displayed ( 1 till n) */
  98. /* element 1 coreid to be displayed at next resume 1 till n 0 means resume
  99. * all cores core displayed */
  100. int32_t core[2];
  101. };
  102. /* target back off timer */
  103. struct backoff_timer {
  104. int times;
  105. int count;
  106. };
  107. /* split target registers into multiple class */
  108. enum target_register_class {
  109. REG_CLASS_ALL,
  110. REG_CLASS_GENERAL,
  111. };
  112. /* target_type.h contains the full definition of struct target_type */
  113. struct target {
  114. struct target_type *type; /* target type definition (name, access functions) */
  115. const char *cmd_name; /* tcl Name of target */
  116. int target_number; /* DO NOT USE! field to be removed in 2010 */
  117. struct jtag_tap *tap; /* where on the jtag chain is this */
  118. int32_t coreid; /* which device on the TAP? */
  119. char *variant; /* what variant of this chip is it? */
  120. /**
  121. * Indicates whether this target has been examined.
  122. *
  123. * Do @b not access this field directly, use target_was_examined()
  124. * or target_set_examined().
  125. */
  126. bool examined;
  127. /**
  128. * true if the target is currently running a downloaded
  129. * "algorithm" instead of arbitrary user code. OpenOCD code
  130. * invoking algorithms is trusted to maintain correctness of
  131. * any cached state (e.g. for flash status), which arbitrary
  132. * code will have no reason to know about.
  133. */
  134. bool running_alg;
  135. struct target_event_action *event_action;
  136. int reset_halt; /* attempt resetting the CPU into the halted mode? */
  137. uint32_t working_area; /* working area (initialised RAM). Evaluated
  138. * upon first allocation from virtual/physical address. */
  139. bool working_area_virt_spec; /* virtual address specified? */
  140. uint32_t working_area_virt; /* virtual address */
  141. bool working_area_phys_spec; /* virtual address specified? */
  142. uint32_t working_area_phys; /* physical address */
  143. uint32_t working_area_size; /* size in bytes */
  144. uint32_t backup_working_area; /* whether the content of the working area has to be preserved */
  145. struct working_area *working_areas;/* list of allocated working areas */
  146. enum target_debug_reason debug_reason;/* reason why the target entered debug state */
  147. enum target_endianness endianness; /* target endianness */
  148. /* also see: target_state_name() */
  149. enum target_state state; /* the current backend-state (running, halted, ...) */
  150. struct reg_cache *reg_cache; /* the first register cache of the target (core regs) */
  151. struct breakpoint *breakpoints; /* list of breakpoints */
  152. struct watchpoint *watchpoints; /* list of watchpoints */
  153. struct trace *trace_info; /* generic trace information */
  154. struct debug_msg_receiver *dbgmsg; /* list of debug message receivers */
  155. uint32_t dbg_msg_enabled; /* debug message status */
  156. void *arch_info; /* architecture specific information */
  157. struct target *next; /* next target in list */
  158. int display; /* display async info in telnet session. Do not display
  159. * lots of halted/resumed info when stepping in debugger. */
  160. bool halt_issued; /* did we transition to halted state? */
  161. long long halt_issued_time; /* Note time when halt was issued */
  162. bool dbgbase_set; /* By default the debug base is not set */
  163. uint32_t dbgbase; /* Really a Cortex-A specific option, but there is no
  164. * system in place to support target specific options
  165. * currently. */
  166. struct rtos *rtos; /* Instance of Real Time Operating System support */
  167. bool rtos_auto_detect; /* A flag that indicates that the RTOS has been specified as "auto"
  168. * and must be detected when symbols are offered */
  169. struct backoff_timer backoff;
  170. int smp; /* add some target attributes for smp support */
  171. struct target_list *head;
  172. /* the gdb service is there in case of smp, we have only one gdb server
  173. * for all smp target
  174. * the target attached to the gdb is changing dynamically by changing
  175. * gdb_service->target pointer */
  176. struct gdb_service *gdb_service;
  177. /* file-I/O information for host to do syscall */
  178. struct gdb_fileio_info *fileio_info;
  179. };
  180. struct target_list {
  181. struct target *target;
  182. struct target_list *next;
  183. };
  184. struct gdb_fileio_info {
  185. char *identifier;
  186. uint32_t param_1;
  187. uint32_t param_2;
  188. uint32_t param_3;
  189. uint32_t param_4;
  190. };
  191. /** Returns the instance-specific name of the specified target. */
  192. static inline const char *target_name(struct target *target)
  193. {
  194. return target->cmd_name;
  195. }
  196. const char *debug_reason_name(struct target *t);
  197. enum target_event {
  198. /* allow GDB to do stuff before others handle the halted event,
  199. * this is in lieu of defining ordering of invocation of events,
  200. * which would be more complicated
  201. *
  202. * Telling GDB to halt does not mean that the target stopped running,
  203. * simply that we're dropping out of GDB's waiting for step or continue.
  204. *
  205. * This can be useful when e.g. detecting power dropout.
  206. */
  207. TARGET_EVENT_GDB_HALT,
  208. TARGET_EVENT_HALTED, /* target entered debug state from normal execution or reset */
  209. TARGET_EVENT_RESUMED, /* target resumed to normal execution */
  210. TARGET_EVENT_RESUME_START,
  211. TARGET_EVENT_RESUME_END,
  212. TARGET_EVENT_GDB_START, /* debugger started execution (step/run) */
  213. TARGET_EVENT_GDB_END, /* debugger stopped execution (step/run) */
  214. TARGET_EVENT_RESET_START,
  215. TARGET_EVENT_RESET_ASSERT_PRE,
  216. TARGET_EVENT_RESET_ASSERT, /* C code uses this instead of SRST */
  217. TARGET_EVENT_RESET_ASSERT_POST,
  218. TARGET_EVENT_RESET_DEASSERT_PRE,
  219. TARGET_EVENT_RESET_DEASSERT_POST,
  220. TARGET_EVENT_RESET_HALT_PRE,
  221. TARGET_EVENT_RESET_HALT_POST,
  222. TARGET_EVENT_RESET_WAIT_PRE,
  223. TARGET_EVENT_RESET_WAIT_POST,
  224. TARGET_EVENT_RESET_INIT,
  225. TARGET_EVENT_RESET_END,
  226. TARGET_EVENT_DEBUG_HALTED, /* target entered debug state, but was executing on behalf of the debugger */
  227. TARGET_EVENT_DEBUG_RESUMED, /* target resumed to execute on behalf of the debugger */
  228. TARGET_EVENT_EXAMINE_START,
  229. TARGET_EVENT_EXAMINE_END,
  230. TARGET_EVENT_GDB_ATTACH,
  231. TARGET_EVENT_GDB_DETACH,
  232. TARGET_EVENT_GDB_FLASH_ERASE_START,
  233. TARGET_EVENT_GDB_FLASH_ERASE_END,
  234. TARGET_EVENT_GDB_FLASH_WRITE_START,
  235. TARGET_EVENT_GDB_FLASH_WRITE_END,
  236. };
  237. struct target_event_action {
  238. enum target_event event;
  239. struct Jim_Interp *interp;
  240. struct Jim_Obj *body;
  241. int has_percent;
  242. struct target_event_action *next;
  243. };
  244. bool target_has_event_action(struct target *target, enum target_event event);
  245. struct target_event_callback {
  246. int (*callback)(struct target *target, enum target_event event, void *priv);
  247. void *priv;
  248. struct target_event_callback *next;
  249. };
  250. struct target_timer_callback {
  251. int (*callback)(void *priv);
  252. int time_ms;
  253. int periodic;
  254. struct timeval when;
  255. void *priv;
  256. struct target_timer_callback *next;
  257. };
  258. int target_register_commands(struct command_context *cmd_ctx);
  259. int target_examine(void);
  260. int target_register_event_callback(
  261. int (*callback)(struct target *target,
  262. enum target_event event, void *priv),
  263. void *priv);
  264. int target_unregister_event_callback(
  265. int (*callback)(struct target *target,
  266. enum target_event event, void *priv),
  267. void *priv);
  268. /* Poll the status of the target, detect any error conditions and report them.
  269. *
  270. * Also note that this fn will clear such error conditions, so a subsequent
  271. * invocation will then succeed.
  272. *
  273. * These error conditions can be "sticky" error conditions. E.g. writing
  274. * to memory could be implemented as an open loop and if memory writes
  275. * fails, then a note is made of it, the error is sticky, but the memory
  276. * write loop still runs to completion. This improves performance in the
  277. * normal case as there is no need to verify that every single write succeed,
  278. * yet it is possible to detect error conditions.
  279. */
  280. int target_poll(struct target *target);
  281. int target_resume(struct target *target, int current, uint32_t address,
  282. int handle_breakpoints, int debug_execution);
  283. int target_halt(struct target *target);
  284. int target_call_event_callbacks(struct target *target, enum target_event event);
  285. /**
  286. * The period is very approximate, the callback can happen much more often
  287. * or much more rarely than specified
  288. */
  289. int target_register_timer_callback(int (*callback)(void *priv),
  290. int time_ms, int periodic, void *priv);
  291. int target_unregister_timer_callback(int (*callback)(void *priv), void *priv);
  292. int target_call_timer_callbacks(void);
  293. /**
  294. * Invoke this to ensure that e.g. polling timer callbacks happen before
  295. * a synchronous command completes.
  296. */
  297. int target_call_timer_callbacks_now(void);
  298. struct target *get_current_target(struct command_context *cmd_ctx);
  299. struct target *get_target(const char *id);
  300. /**
  301. * Get the target type name.
  302. *
  303. * This routine is a wrapper for the target->type->name field.
  304. * Note that this is not an instance-specific name for his target.
  305. */
  306. const char *target_type_name(struct target *target);
  307. /**
  308. * Examine the specified @a target, letting it perform any
  309. * Initialisation that requires JTAG access.
  310. *
  311. * This routine is a wrapper for target->type->examine.
  312. */
  313. int target_examine_one(struct target *target);
  314. /** @returns @c true if target_set_examined() has been called. */
  315. static inline bool target_was_examined(struct target *target)
  316. {
  317. return target->examined;
  318. }
  319. /** Sets the @c examined flag for the given target. */
  320. /** Use in target->type->examine() after one-time setup is done. */
  321. static inline void target_set_examined(struct target *target)
  322. {
  323. target->examined = true;
  324. }
  325. /**
  326. * Add the @a breakpoint for @a target.
  327. *
  328. * This routine is a wrapper for target->type->add_breakpoint.
  329. */
  330. int target_add_breakpoint(struct target *target,
  331. struct breakpoint *breakpoint);
  332. /**
  333. * Add the @a ContextID breakpoint for @a target.
  334. *
  335. * This routine is a wrapper for target->type->add_context_breakpoint.
  336. */
  337. int target_add_context_breakpoint(struct target *target,
  338. struct breakpoint *breakpoint);
  339. /**
  340. * Add the @a ContextID & IVA breakpoint for @a target.
  341. *
  342. * This routine is a wrapper for target->type->add_hybrid_breakpoint.
  343. */
  344. int target_add_hybrid_breakpoint(struct target *target,
  345. struct breakpoint *breakpoint);
  346. /**
  347. * Remove the @a breakpoint for @a target.
  348. *
  349. * This routine is a wrapper for target->type->remove_breakpoint.
  350. */
  351. int target_remove_breakpoint(struct target *target,
  352. struct breakpoint *breakpoint);
  353. /**
  354. * Add the @a watchpoint for @a target.
  355. *
  356. * This routine is a wrapper for target->type->add_watchpoint.
  357. */
  358. int target_add_watchpoint(struct target *target,
  359. struct watchpoint *watchpoint);
  360. /**
  361. * Remove the @a watchpoint for @a target.
  362. *
  363. * This routine is a wrapper for target->type->remove_watchpoint.
  364. */
  365. int target_remove_watchpoint(struct target *target,
  366. struct watchpoint *watchpoint);
  367. /**
  368. * Find out the just hit @a watchpoint for @a target.
  369. *
  370. * This routine is a wrapper for target->type->hit_watchpoint.
  371. */
  372. int target_hit_watchpoint(struct target *target,
  373. struct watchpoint **watchpoint);
  374. /**
  375. * Obtain the registers for GDB.
  376. *
  377. * This routine is a wrapper for target->type->get_gdb_reg_list.
  378. */
  379. int target_get_gdb_reg_list(struct target *target,
  380. struct reg **reg_list[], int *reg_list_size,
  381. enum target_register_class reg_class);
  382. /**
  383. * Step the target.
  384. *
  385. * This routine is a wrapper for target->type->step.
  386. */
  387. int target_step(struct target *target,
  388. int current, uint32_t address, int handle_breakpoints);
  389. /**
  390. * Run an algorithm on the @a target given.
  391. *
  392. * This routine is a wrapper for target->type->run_algorithm.
  393. */
  394. int target_run_algorithm(struct target *target,
  395. int num_mem_params, struct mem_param *mem_params,
  396. int num_reg_params, struct reg_param *reg_param,
  397. uint32_t entry_point, uint32_t exit_point,
  398. int timeout_ms, void *arch_info);
  399. /**
  400. * Starts an algorithm in the background on the @a target given.
  401. *
  402. * This routine is a wrapper for target->type->start_algorithm.
  403. */
  404. int target_start_algorithm(struct target *target,
  405. int num_mem_params, struct mem_param *mem_params,
  406. int num_reg_params, struct reg_param *reg_params,
  407. uint32_t entry_point, uint32_t exit_point,
  408. void *arch_info);
  409. /**
  410. * Wait for an algorithm on the @a target given.
  411. *
  412. * This routine is a wrapper for target->type->wait_algorithm.
  413. */
  414. int target_wait_algorithm(struct target *target,
  415. int num_mem_params, struct mem_param *mem_params,
  416. int num_reg_params, struct reg_param *reg_params,
  417. uint32_t exit_point, int timeout_ms,
  418. void *arch_info);
  419. /**
  420. * This routine is a wrapper for asynchronous algorithms.
  421. *
  422. */
  423. int target_run_flash_async_algorithm(struct target *target,
  424. const uint8_t *buffer, uint32_t count, int block_size,
  425. int num_mem_params, struct mem_param *mem_params,
  426. int num_reg_params, struct reg_param *reg_params,
  427. uint32_t buffer_start, uint32_t buffer_size,
  428. uint32_t entry_point, uint32_t exit_point,
  429. void *arch_info);
  430. /**
  431. * Read @a count items of @a size bytes from the memory of @a target at
  432. * the @a address given.
  433. *
  434. * This routine is a wrapper for target->type->read_memory.
  435. */
  436. int target_read_memory(struct target *target,
  437. uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
  438. int target_read_phys_memory(struct target *target,
  439. uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
  440. /**
  441. * Write @a count items of @a size bytes to the memory of @a target at
  442. * the @a address given. @a address must be aligned to @a size
  443. * in target memory.
  444. *
  445. * The endianness is the same in the host and target memory for this
  446. * function.
  447. *
  448. * \todo TODO:
  449. * Really @a buffer should have been defined as "const void *" and
  450. * @a buffer should have been aligned to @a size in the host memory.
  451. *
  452. * This is not enforced via e.g. assert's today and e.g. the
  453. * target_write_buffer fn breaks this assumption.
  454. *
  455. * This routine is wrapper for target->type->write_memory.
  456. */
  457. int target_write_memory(struct target *target,
  458. uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
  459. int target_write_phys_memory(struct target *target,
  460. uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
  461. /*
  462. * Write to target memory using the virtual address.
  463. *
  464. * Note that this fn is used to implement software breakpoints. Targets
  465. * can implement support for software breakpoints to memory marked as read
  466. * only by making this fn write to ram even if it is read only(MMU or
  467. * MPUs).
  468. *
  469. * It is sufficient to implement for writing a single word(16 or 32 in
  470. * ARM32/16 bit case) to write the breakpoint to ram.
  471. *
  472. * The target should also take care of "other things" to make sure that
  473. * software breakpoints can be written using this function. E.g.
  474. * when there is a separate instruction and data cache, this fn must
  475. * make sure that the instruction cache is synced up to the potential
  476. * code change that can happen as a result of the memory write(typically
  477. * by invalidating the cache).
  478. *
  479. * The high level wrapper fn in target.c will break down this memory write
  480. * request to multiple write requests to the target driver to e.g. guarantee
  481. * that writing 4 bytes to an aligned address happens with a single 32 bit
  482. * write operation, thus making this fn suitable to e.g. write to special
  483. * peripheral registers which do not support byte operations.
  484. */
  485. int target_write_buffer(struct target *target,
  486. uint32_t address, uint32_t size, const uint8_t *buffer);
  487. int target_read_buffer(struct target *target,
  488. uint32_t address, uint32_t size, uint8_t *buffer);
  489. int target_checksum_memory(struct target *target,
  490. uint32_t address, uint32_t size, uint32_t *crc);
  491. int target_blank_check_memory(struct target *target,
  492. uint32_t address, uint32_t size, uint32_t *blank);
  493. int target_wait_state(struct target *target, enum target_state state, int ms);
  494. /**
  495. * Obtain file-I/O information from target for GDB to do syscall.
  496. *
  497. * This routine is a wrapper for target->type->get_gdb_fileio_info.
  498. */
  499. int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info);
  500. /**
  501. * Pass GDB file-I/O response to target after finishing host syscall.
  502. *
  503. * This routine is a wrapper for target->type->gdb_fileio_end.
  504. */
  505. int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c);
  506. /** Return the *name* of this targets current state */
  507. const char *target_state_name(struct target *target);
  508. /* DANGER!!!!!
  509. *
  510. * if "area" passed in to target_alloc_working_area() points to a memory
  511. * location that goes out of scope (e.g. a pointer on the stack), then
  512. * the caller of target_alloc_working_area() is responsible for invoking
  513. * target_free_working_area() before "area" goes out of scope.
  514. *
  515. * target_free_all_working_areas() will NULL out the "area" pointer
  516. * upon resuming or resetting the CPU.
  517. *
  518. */
  519. int target_alloc_working_area(struct target *target,
  520. uint32_t size, struct working_area **area);
  521. /* Same as target_alloc_working_area, except that no error is logged
  522. * when ERROR_TARGET_RESOURCE_NOT_AVAILABLE is returned.
  523. *
  524. * This allows the calling code to *try* to allocate target memory
  525. * and have a fallback to another behaviour(slower?).
  526. */
  527. int target_alloc_working_area_try(struct target *target,
  528. uint32_t size, struct working_area **area);
  529. int target_free_working_area(struct target *target, struct working_area *area);
  530. void target_free_all_working_areas(struct target *target);
  531. uint32_t target_get_working_area_avail(struct target *target);
  532. extern struct target *all_targets;
  533. uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer);
  534. uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer);
  535. uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer);
  536. uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer);
  537. void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value);
  538. void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value);
  539. void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value);
  540. void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value);
  541. void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf);
  542. void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf);
  543. void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf);
  544. void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf);
  545. void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf);
  546. void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf);
  547. int target_read_u64(struct target *target, uint64_t address, uint64_t *value);
  548. int target_read_u32(struct target *target, uint32_t address, uint32_t *value);
  549. int target_read_u16(struct target *target, uint32_t address, uint16_t *value);
  550. int target_read_u8(struct target *target, uint32_t address, uint8_t *value);
  551. int target_write_u64(struct target *target, uint64_t address, uint64_t value);
  552. int target_write_u32(struct target *target, uint32_t address, uint32_t value);
  553. int target_write_u16(struct target *target, uint32_t address, uint16_t value);
  554. int target_write_u8(struct target *target, uint32_t address, uint8_t value);
  555. /* Issues USER() statements with target state information */
  556. int target_arch_state(struct target *target);
  557. void target_handle_event(struct target *t, enum target_event e);
  558. #define ERROR_TARGET_INVALID (-300)
  559. #define ERROR_TARGET_INIT_FAILED (-301)
  560. #define ERROR_TARGET_TIMEOUT (-302)
  561. #define ERROR_TARGET_NOT_HALTED (-304)
  562. #define ERROR_TARGET_FAILURE (-305)
  563. #define ERROR_TARGET_UNALIGNED_ACCESS (-306)
  564. #define ERROR_TARGET_DATA_ABORT (-307)
  565. #define ERROR_TARGET_RESOURCE_NOT_AVAILABLE (-308)
  566. #define ERROR_TARGET_TRANSLATION_FAULT (-309)
  567. #define ERROR_TARGET_NOT_RUNNING (-310)
  568. #define ERROR_TARGET_NOT_EXAMINED (-311)
  569. extern bool get_target_reset_nag(void);
  570. #endif /* TARGET_H */