You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2465 lines
70 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 2 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, write to the *
  17. * Free Software Foundation, Inc., *
  18. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  19. ***************************************************************************/
  20. #ifdef HAVE_CONFIG_H
  21. #include "config.h"
  22. #endif
  23. #include "replacements.h"
  24. #include "embeddedice.h"
  25. #include "target.h"
  26. #include "armv4_5.h"
  27. #include "arm_jtag.h"
  28. #include "jtag.h"
  29. #include "log.h"
  30. #include "arm7_9_common.h"
  31. #include "breakpoints.h"
  32. #include <stdlib.h>
  33. #include <string.h>
  34. #include <unistd.h>
  35. #include <sys/types.h>
  36. #include <sys/stat.h>
  37. #include <sys/time.h>
  38. #include <errno.h>
  39. int arm7_9_debug_entry(target_t *target);
  40. int arm7_9_enable_sw_bkpts(struct target_s *target);
  41. /* command handler forward declarations */
  42. int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  43. int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  44. int handle_arm7_9_read_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  45. int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  46. int handle_arm7_9_sw_bkpts_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  47. int handle_arm7_9_force_hw_bkpts_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  48. int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  49. int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  50. int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  51. int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  52. int arm7_9_reinit_embeddedice(target_t *target)
  53. {
  54. armv4_5_common_t *armv4_5 = target->arch_info;
  55. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  56. breakpoint_t *breakpoint = target->breakpoints;
  57. arm7_9->wp_available = 2;
  58. arm7_9->wp0_used = 0;
  59. arm7_9->wp1_used = 0;
  60. /* mark all hardware breakpoints as unset */
  61. while (breakpoint)
  62. {
  63. if (breakpoint->type == BKPT_HARD)
  64. {
  65. breakpoint->set = 0;
  66. }
  67. breakpoint = breakpoint->next;
  68. }
  69. if (arm7_9->sw_bkpts_enabled && arm7_9->sw_bkpts_use_wp)
  70. {
  71. arm7_9->sw_bkpts_enabled = 0;
  72. arm7_9_enable_sw_bkpts(target);
  73. }
  74. arm7_9->reinit_embeddedice = 0;
  75. return ERROR_OK;
  76. }
  77. int arm7_9_jtag_callback(enum jtag_event event, void *priv)
  78. {
  79. target_t *target = priv;
  80. armv4_5_common_t *armv4_5 = target->arch_info;
  81. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  82. /* a test-logic reset occured
  83. * the EmbeddedICE registers have been reset
  84. * hardware breakpoints have been cleared
  85. */
  86. if (event == JTAG_TRST_ASSERTED)
  87. {
  88. arm7_9->reinit_embeddedice = 1;
  89. }
  90. return ERROR_OK;
  91. }
  92. int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p)
  93. {
  94. armv4_5_common_t *armv4_5 = target->arch_info;
  95. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  96. if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
  97. {
  98. return -1;
  99. }
  100. if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC)
  101. {
  102. return -1;
  103. }
  104. *armv4_5_p = armv4_5;
  105. *arm7_9_p = arm7_9;
  106. return ERROR_OK;
  107. }
  108. int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
  109. {
  110. armv4_5_common_t *armv4_5 = target->arch_info;
  111. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  112. if (target->state != TARGET_HALTED)
  113. {
  114. WARNING("target not halted");
  115. return ERROR_TARGET_NOT_HALTED;
  116. }
  117. if (arm7_9->force_hw_bkpts)
  118. breakpoint->type = BKPT_HARD;
  119. if (breakpoint->set)
  120. {
  121. WARNING("breakpoint already set");
  122. return ERROR_OK;
  123. }
  124. if (breakpoint->type == BKPT_HARD)
  125. {
  126. /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
  127. u32 mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
  128. if (!arm7_9->wp0_used)
  129. {
  130. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
  131. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
  132. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
  133. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
  134. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
  135. jtag_execute_queue();
  136. arm7_9->wp0_used = 1;
  137. breakpoint->set = 1;
  138. }
  139. else if (!arm7_9->wp1_used)
  140. {
  141. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
  142. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
  143. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
  144. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
  145. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
  146. jtag_execute_queue();
  147. arm7_9->wp1_used = 1;
  148. breakpoint->set = 2;
  149. }
  150. else
  151. {
  152. ERROR("BUG: no hardware comparator available");
  153. return ERROR_OK;
  154. }
  155. }
  156. else if (breakpoint->type == BKPT_SOFT)
  157. {
  158. if (breakpoint->length == 4)
  159. {
  160. /* keep the original instruction in target endianness */
  161. target->type->read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
  162. /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
  163. target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt);
  164. }
  165. else
  166. {
  167. /* keep the original instruction in target endianness */
  168. target->type->read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
  169. /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
  170. target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt);
  171. }
  172. breakpoint->set = 1;
  173. }
  174. return ERROR_OK;
  175. }
  176. int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
  177. {
  178. armv4_5_common_t *armv4_5 = target->arch_info;
  179. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  180. if (target->state != TARGET_HALTED)
  181. {
  182. WARNING("target not halted");
  183. return ERROR_TARGET_NOT_HALTED;
  184. }
  185. if (!breakpoint->set)
  186. {
  187. WARNING("breakpoint not set");
  188. return ERROR_OK;
  189. }
  190. if (breakpoint->type == BKPT_HARD)
  191. {
  192. if (breakpoint->set == 1)
  193. {
  194. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
  195. jtag_execute_queue();
  196. arm7_9->wp0_used = 0;
  197. }
  198. else if (breakpoint->set == 2)
  199. {
  200. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
  201. jtag_execute_queue();
  202. arm7_9->wp1_used = 0;
  203. }
  204. breakpoint->set = 0;
  205. }
  206. else
  207. {
  208. /* restore original instruction (kept in target endianness) */
  209. if (breakpoint->length == 4)
  210. {
  211. target->type->write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
  212. }
  213. else
  214. {
  215. target->type->write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
  216. }
  217. breakpoint->set = 0;
  218. }
  219. return ERROR_OK;
  220. }
  221. int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
  222. {
  223. armv4_5_common_t *armv4_5 = target->arch_info;
  224. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  225. if (target->state != TARGET_HALTED)
  226. {
  227. WARNING("target not halted");
  228. return ERROR_TARGET_NOT_HALTED;
  229. }
  230. if (arm7_9->force_hw_bkpts)
  231. {
  232. DEBUG("forcing use of hardware breakpoint at address 0x%8.8x", breakpoint->address);
  233. breakpoint->type = BKPT_HARD;
  234. }
  235. if ((breakpoint->type == BKPT_SOFT) && (arm7_9->sw_bkpts_enabled == 0))
  236. {
  237. INFO("sw breakpoint requested, but software breakpoints not enabled");
  238. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  239. }
  240. if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
  241. {
  242. INFO("no watchpoint unit available for hardware breakpoint");
  243. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  244. }
  245. if ((breakpoint->length != 2) && (breakpoint->length != 4))
  246. {
  247. INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
  248. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  249. }
  250. if (breakpoint->type == BKPT_HARD)
  251. arm7_9->wp_available--;
  252. return ERROR_OK;
  253. }
  254. int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
  255. {
  256. armv4_5_common_t *armv4_5 = target->arch_info;
  257. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  258. if (target->state != TARGET_HALTED)
  259. {
  260. WARNING("target not halted");
  261. return ERROR_TARGET_NOT_HALTED;
  262. }
  263. if (breakpoint->set)
  264. {
  265. arm7_9_unset_breakpoint(target, breakpoint);
  266. }
  267. if (breakpoint->type == BKPT_HARD)
  268. arm7_9->wp_available++;
  269. return ERROR_OK;
  270. }
  271. int arm7_9_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
  272. {
  273. armv4_5_common_t *armv4_5 = target->arch_info;
  274. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  275. int rw_mask = 1;
  276. u32 mask;
  277. mask = watchpoint->length - 1;
  278. if (target->state != TARGET_HALTED)
  279. {
  280. WARNING("target not halted");
  281. return ERROR_TARGET_NOT_HALTED;
  282. }
  283. if (watchpoint->rw == WPT_ACCESS)
  284. rw_mask = 0;
  285. else
  286. rw_mask = 1;
  287. if (!arm7_9->wp0_used)
  288. {
  289. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
  290. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
  291. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
  292. if( watchpoint->mask != 0xffffffffu )
  293. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
  294. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
  295. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
  296. jtag_execute_queue();
  297. watchpoint->set = 1;
  298. arm7_9->wp0_used = 2;
  299. }
  300. else if (!arm7_9->wp1_used)
  301. {
  302. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
  303. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
  304. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
  305. if( watchpoint->mask != 0xffffffffu )
  306. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
  307. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
  308. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
  309. jtag_execute_queue();
  310. watchpoint->set = 2;
  311. arm7_9->wp1_used = 2;
  312. }
  313. else
  314. {
  315. ERROR("BUG: no hardware comparator available");
  316. return ERROR_OK;
  317. }
  318. return ERROR_OK;
  319. }
  320. int arm7_9_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
  321. {
  322. armv4_5_common_t *armv4_5 = target->arch_info;
  323. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  324. if (target->state != TARGET_HALTED)
  325. {
  326. WARNING("target not halted");
  327. return ERROR_TARGET_NOT_HALTED;
  328. }
  329. if (!watchpoint->set)
  330. {
  331. WARNING("breakpoint not set");
  332. return ERROR_OK;
  333. }
  334. if (watchpoint->set == 1)
  335. {
  336. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
  337. jtag_execute_queue();
  338. arm7_9->wp0_used = 0;
  339. }
  340. else if (watchpoint->set == 2)
  341. {
  342. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
  343. jtag_execute_queue();
  344. arm7_9->wp1_used = 0;
  345. }
  346. watchpoint->set = 0;
  347. return ERROR_OK;
  348. }
  349. int arm7_9_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
  350. {
  351. armv4_5_common_t *armv4_5 = target->arch_info;
  352. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  353. if (target->state != TARGET_HALTED)
  354. {
  355. WARNING("target not halted");
  356. return ERROR_TARGET_NOT_HALTED;
  357. }
  358. if (arm7_9->wp_available < 1)
  359. {
  360. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  361. }
  362. if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
  363. {
  364. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  365. }
  366. arm7_9->wp_available--;
  367. return ERROR_OK;
  368. }
  369. int arm7_9_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
  370. {
  371. armv4_5_common_t *armv4_5 = target->arch_info;
  372. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  373. if (target->state != TARGET_HALTED)
  374. {
  375. WARNING("target not halted");
  376. return ERROR_TARGET_NOT_HALTED;
  377. }
  378. if (watchpoint->set)
  379. {
  380. arm7_9_unset_watchpoint(target, watchpoint);
  381. }
  382. arm7_9->wp_available++;
  383. return ERROR_OK;
  384. }
  385. int arm7_9_enable_sw_bkpts(struct target_s *target)
  386. {
  387. armv4_5_common_t *armv4_5 = target->arch_info;
  388. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  389. int retval;
  390. if (arm7_9->sw_bkpts_enabled)
  391. return ERROR_OK;
  392. if (arm7_9->wp_available < 1)
  393. {
  394. WARNING("can't enable sw breakpoints with no watchpoint unit available");
  395. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  396. }
  397. arm7_9->wp_available--;
  398. if (!arm7_9->wp0_used)
  399. {
  400. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
  401. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
  402. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
  403. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
  404. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
  405. arm7_9->sw_bkpts_enabled = 1;
  406. arm7_9->wp0_used = 3;
  407. }
  408. else if (!arm7_9->wp1_used)
  409. {
  410. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
  411. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
  412. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
  413. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
  414. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
  415. arm7_9->sw_bkpts_enabled = 2;
  416. arm7_9->wp1_used = 3;
  417. }
  418. else
  419. {
  420. ERROR("BUG: both watchpoints used, but wp_available >= 1");
  421. exit(-1);
  422. }
  423. if ((retval = jtag_execute_queue()) != ERROR_OK)
  424. {
  425. ERROR("error writing EmbeddedICE registers to enable sw breakpoints");
  426. exit(-1);
  427. };
  428. return ERROR_OK;
  429. }
  430. int arm7_9_disable_sw_bkpts(struct target_s *target)
  431. {
  432. armv4_5_common_t *armv4_5 = target->arch_info;
  433. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  434. if (!arm7_9->sw_bkpts_enabled)
  435. return ERROR_OK;
  436. if (arm7_9->sw_bkpts_enabled == 1)
  437. {
  438. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
  439. arm7_9->sw_bkpts_enabled = 0;
  440. arm7_9->wp0_used = 0;
  441. arm7_9->wp_available++;
  442. }
  443. else if (arm7_9->sw_bkpts_enabled == 2)
  444. {
  445. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
  446. arm7_9->sw_bkpts_enabled = 0;
  447. arm7_9->wp1_used = 0;
  448. arm7_9->wp_available++;
  449. }
  450. return ERROR_OK;
  451. }
  452. int arm7_9_execute_sys_speed(struct target_s *target)
  453. {
  454. int timeout;
  455. int retval;
  456. armv4_5_common_t *armv4_5 = target->arch_info;
  457. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  458. arm_jtag_t *jtag_info = &arm7_9->jtag_info;
  459. reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
  460. /* set RESTART instruction */
  461. jtag_add_end_state(TAP_RTI);
  462. arm_jtag_set_instr(jtag_info, 0x4, NULL);
  463. for (timeout=0; timeout<50; timeout++)
  464. {
  465. /* read debug status register */
  466. embeddedice_read_reg(dbg_stat);
  467. if ((retval = jtag_execute_queue()) != ERROR_OK)
  468. return retval;
  469. if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
  470. && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
  471. break;
  472. usleep(100000);
  473. }
  474. if (timeout == 50)
  475. {
  476. ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %x", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
  477. return ERROR_TARGET_TIMEOUT;
  478. }
  479. return ERROR_OK;
  480. }
  481. int arm7_9_execute_fast_sys_speed(struct target_s *target)
  482. {
  483. u8 check_value[4], check_mask[4];
  484. armv4_5_common_t *armv4_5 = target->arch_info;
  485. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  486. arm_jtag_t *jtag_info = &arm7_9->jtag_info;
  487. reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
  488. /* set RESTART instruction */
  489. jtag_add_end_state(TAP_RTI);
  490. arm_jtag_set_instr(jtag_info, 0x4, NULL);
  491. /* check for DBGACK and SYSCOMP set (others don't care) */
  492. buf_set_u32(check_value, 0, 32, 0x9);
  493. buf_set_u32(check_mask, 0, 32, 0x9);
  494. /* read debug status register */
  495. embeddedice_read_reg_w_check(dbg_stat, check_value, check_value);
  496. return ERROR_OK;
  497. }
  498. enum target_state arm7_9_poll(target_t *target)
  499. {
  500. int retval;
  501. armv4_5_common_t *armv4_5 = target->arch_info;
  502. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  503. reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
  504. if (arm7_9->reinit_embeddedice)
  505. {
  506. arm7_9_reinit_embeddedice(target);
  507. }
  508. /* read debug status register */
  509. embeddedice_read_reg(dbg_stat);
  510. if ((retval = jtag_execute_queue()) != ERROR_OK)
  511. {
  512. switch (retval)
  513. {
  514. case ERROR_JTAG_QUEUE_FAILED:
  515. ERROR("JTAG queue failed while reading EmbeddedICE status register");
  516. exit(-1);
  517. break;
  518. default:
  519. break;
  520. }
  521. }
  522. if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
  523. {
  524. DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));
  525. if ((target->state == TARGET_UNKNOWN))
  526. {
  527. WARNING("DBGACK set while target was in unknown state. Reset or initialize target before resuming");
  528. target->state = TARGET_RUNNING;
  529. }
  530. if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
  531. {
  532. target->state = TARGET_HALTED;
  533. if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
  534. return retval;
  535. target_call_event_callbacks(target, TARGET_EVENT_HALTED);
  536. }
  537. if (target->state == TARGET_DEBUG_RUNNING)
  538. {
  539. target->state = TARGET_HALTED;
  540. if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
  541. return retval;
  542. target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
  543. }
  544. }
  545. else
  546. {
  547. if (target->state != TARGET_DEBUG_RUNNING)
  548. target->state = TARGET_RUNNING;
  549. }
  550. return target->state;
  551. }
  552. int arm7_9_assert_reset(target_t *target)
  553. {
  554. int retval;
  555. DEBUG("target->state: %s", target_state_strings[target->state]);
  556. if (target->state == TARGET_HALTED || target->state == TARGET_UNKNOWN)
  557. {
  558. /* if the target wasn't running, there might be working areas allocated */
  559. target_free_all_working_areas(target);
  560. /* assert SRST and TRST */
  561. /* system would get ouf sync if we didn't reset test-logic, too */
  562. if ((retval = jtag_add_reset(1, 1)) != ERROR_OK)
  563. {
  564. if (retval == ERROR_JTAG_RESET_CANT_SRST)
  565. {
  566. WARNING("can't assert srst");
  567. return retval;
  568. }
  569. else
  570. {
  571. ERROR("unknown error");
  572. exit(-1);
  573. }
  574. }
  575. jtag_add_sleep(5000);
  576. if ((retval = jtag_add_reset(0, 1)) != ERROR_OK)
  577. {
  578. if (retval == ERROR_JTAG_RESET_WOULD_ASSERT_TRST)
  579. {
  580. WARNING("srst resets test logic, too");
  581. retval = jtag_add_reset(1, 1);
  582. }
  583. }
  584. }
  585. else
  586. {
  587. if ((retval = jtag_add_reset(0, 1)) != ERROR_OK)
  588. {
  589. if (retval == ERROR_JTAG_RESET_WOULD_ASSERT_TRST)
  590. {
  591. WARNING("srst resets test logic, too");
  592. retval = jtag_add_reset(1, 1);
  593. }
  594. if (retval == ERROR_JTAG_RESET_CANT_SRST)
  595. {
  596. WARNING("can't assert srst");
  597. return retval;
  598. }
  599. else if (retval != ERROR_OK)
  600. {
  601. ERROR("unknown error");
  602. exit(-1);
  603. }
  604. }
  605. }
  606. target->state = TARGET_RESET;
  607. jtag_add_sleep(50000);
  608. armv4_5_invalidate_core_regs(target);
  609. return ERROR_OK;
  610. }
  611. int arm7_9_deassert_reset(target_t *target)
  612. {
  613. DEBUG("target->state: %s", target_state_strings[target->state]);
  614. /* deassert reset lines */
  615. jtag_add_reset(0, 0);
  616. return ERROR_OK;
  617. }
  618. int arm7_9_clear_halt(target_t *target)
  619. {
  620. armv4_5_common_t *armv4_5 = target->arch_info;
  621. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  622. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  623. /* we used DBGRQ only if we didn't come out of reset */
  624. if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
  625. {
  626. /* program EmbeddedICE Debug Control Register to deassert DBGRQ
  627. */
  628. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
  629. embeddedice_store_reg(dbg_ctrl);
  630. }
  631. else
  632. {
  633. if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
  634. {
  635. /* if we came out of reset, and vector catch is supported, we used
  636. * vector catch to enter debug state
  637. * restore the register in that case
  638. */
  639. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
  640. }
  641. else
  642. {
  643. /* restore registers if watchpoint unit 0 was in use
  644. */
  645. if (arm7_9->wp0_used)
  646. {
  647. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
  648. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
  649. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
  650. }
  651. /* control value always has to be restored, as it was either disabled,
  652. * or enabled with possibly different bits
  653. */
  654. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
  655. }
  656. }
  657. return ERROR_OK;
  658. }
  659. int arm7_9_soft_reset_halt(struct target_s *target)
  660. {
  661. armv4_5_common_t *armv4_5 = target->arch_info;
  662. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  663. reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
  664. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  665. int i;
  666. if (target->state == TARGET_RUNNING)
  667. {
  668. target->type->halt(target);
  669. }
  670. while (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0)
  671. {
  672. embeddedice_read_reg(dbg_stat);
  673. jtag_execute_queue();
  674. }
  675. target->state = TARGET_HALTED;
  676. /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
  677. * ensure that DBGRQ is cleared
  678. */
  679. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
  680. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
  681. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
  682. embeddedice_store_reg(dbg_ctrl);
  683. arm7_9_clear_halt(target);
  684. /* if the target is in Thumb state, change to ARM state */
  685. if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
  686. {
  687. u32 r0_thumb, pc_thumb;
  688. DEBUG("target entered debug from Thumb state, changing to ARM");
  689. /* Entered debug from Thumb mode */
  690. armv4_5->core_state = ARMV4_5_STATE_THUMB;
  691. arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
  692. }
  693. /* all register content is now invalid */
  694. armv4_5_invalidate_core_regs(target);
  695. /* SVC, ARM state, IRQ and FIQ disabled */
  696. buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
  697. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
  698. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
  699. /* start fetching from 0x0 */
  700. buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
  701. armv4_5->core_cache->reg_list[15].dirty = 1;
  702. armv4_5->core_cache->reg_list[15].valid = 1;
  703. armv4_5->core_mode = ARMV4_5_MODE_SVC;
  704. armv4_5->core_state = ARMV4_5_STATE_ARM;
  705. /* reset registers */
  706. for (i = 0; i <= 14; i++)
  707. {
  708. buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
  709. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
  710. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
  711. }
  712. target_call_event_callbacks(target, TARGET_EVENT_HALTED);
  713. return ERROR_OK;
  714. }
  715. int arm7_9_prepare_reset_halt(target_t *target)
  716. {
  717. armv4_5_common_t *armv4_5 = target->arch_info;
  718. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  719. if (arm7_9->has_vector_catch)
  720. {
  721. /* program vector catch register to catch reset vector */
  722. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
  723. }
  724. else
  725. {
  726. /* program watchpoint unit to match on reset vector address */
  727. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
  728. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
  729. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x100);
  730. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xf7);
  731. }
  732. return ERROR_OK;
  733. }
  734. int arm7_9_halt(target_t *target)
  735. {
  736. armv4_5_common_t *armv4_5 = target->arch_info;
  737. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  738. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  739. DEBUG("target->state: %s", target_state_strings[target->state]);
  740. if (target->state == TARGET_HALTED)
  741. {
  742. WARNING("target was already halted");
  743. return ERROR_TARGET_ALREADY_HALTED;
  744. }
  745. if (target->state == TARGET_UNKNOWN)
  746. {
  747. WARNING("target was in unknown state when halt was requested");
  748. }
  749. if (target->state == TARGET_RESET)
  750. {
  751. if ((jtag_reset_config & RESET_SRST_PULLS_TRST) && jtag_srst)
  752. {
  753. ERROR("can't request a halt while in reset if nSRST pulls nTRST");
  754. return ERROR_TARGET_FAILURE;
  755. }
  756. else
  757. {
  758. /* we came here in a reset_halt or reset_init sequence
  759. * debug entry was already prepared in arm7_9_prepare_reset_halt()
  760. */
  761. target->debug_reason = DBG_REASON_DBGRQ;
  762. return ERROR_OK;
  763. }
  764. }
  765. if (arm7_9->use_dbgrq)
  766. {
  767. /* program EmbeddedICE Debug Control Register to assert DBGRQ
  768. */
  769. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
  770. embeddedice_store_reg(dbg_ctrl);
  771. }
  772. else
  773. {
  774. /* program watchpoint unit to match on any address
  775. */
  776. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
  777. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
  778. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x100);
  779. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xf7);
  780. }
  781. target->debug_reason = DBG_REASON_DBGRQ;
  782. return ERROR_OK;
  783. }
  784. int arm7_9_debug_entry(target_t *target)
  785. {
  786. int i;
  787. u32 context[16];
  788. u32* context_p[16];
  789. u32 r0_thumb, pc_thumb;
  790. u32 cpsr;
  791. int retval;
  792. /* get pointers to arch-specific information */
  793. armv4_5_common_t *armv4_5 = target->arch_info;
  794. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  795. reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
  796. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  797. #ifdef _DEBUG_ARM7_9_
  798. DEBUG("-");
  799. #endif
  800. if (arm7_9->pre_debug_entry)
  801. arm7_9->pre_debug_entry(target);
  802. /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
  803. * ensure that DBGRQ is cleared
  804. */
  805. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
  806. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
  807. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
  808. embeddedice_store_reg(dbg_ctrl);
  809. arm7_9_clear_halt(target);
  810. if ((retval = jtag_execute_queue()) != ERROR_OK)
  811. {
  812. switch (retval)
  813. {
  814. case ERROR_JTAG_QUEUE_FAILED:
  815. ERROR("JTAG queue failed while writing EmbeddedICE control register");
  816. exit(-1);
  817. break;
  818. default:
  819. break;
  820. }
  821. }
  822. if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
  823. return retval;
  824. if (target->state != TARGET_HALTED)
  825. {
  826. WARNING("target not halted");
  827. return ERROR_TARGET_NOT_HALTED;
  828. }
  829. /* if the target is in Thumb state, change to ARM state */
  830. if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
  831. {
  832. DEBUG("target entered debug from Thumb state");
  833. /* Entered debug from Thumb mode */
  834. armv4_5->core_state = ARMV4_5_STATE_THUMB;
  835. arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
  836. DEBUG("r0_thumb: 0x%8.8x, pc_thumb: 0x%8.8x", r0_thumb, pc_thumb);
  837. }
  838. else
  839. {
  840. DEBUG("target entered debug from ARM state");
  841. /* Entered debug from ARM mode */
  842. armv4_5->core_state = ARMV4_5_STATE_ARM;
  843. }
  844. for (i = 0; i < 16; i++)
  845. context_p[i] = &context[i];
  846. /* save core registers (r0 - r15 of current core mode) */
  847. arm7_9->read_core_regs(target, 0xffff, context_p);
  848. arm7_9->read_xpsr(target, &cpsr, 0);
  849. if ((retval = jtag_execute_queue()) != ERROR_OK)
  850. return retval;
  851. /* if the core has been executing in Thumb state, set the T bit */
  852. if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
  853. cpsr |= 0x20;
  854. buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
  855. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
  856. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
  857. armv4_5->core_mode = cpsr & 0x1f;
  858. if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
  859. {
  860. target->state = TARGET_UNKNOWN;
  861. ERROR("cpsr contains invalid mode value - communication failure");
  862. return ERROR_TARGET_FAILURE;
  863. }
  864. DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
  865. if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
  866. {
  867. DEBUG("thumb state, applying fixups");
  868. context[0] = r0_thumb;
  869. context[15] = pc_thumb;
  870. } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
  871. {
  872. /* adjust value stored by STM */
  873. context[15] -= 3 * 4;
  874. }
  875. if ((target->debug_reason == DBG_REASON_BREAKPOINT)
  876. || (target->debug_reason == DBG_REASON_SINGLESTEP)
  877. || (target->debug_reason == DBG_REASON_WATCHPOINT)
  878. || (target->debug_reason == DBG_REASON_WPTANDBKPT)
  879. || ((target->debug_reason == DBG_REASON_DBGRQ) && (arm7_9->use_dbgrq == 0)))
  880. context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
  881. else if (target->debug_reason == DBG_REASON_DBGRQ)
  882. context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
  883. else
  884. {
  885. ERROR("unknown debug reason: %i", target->debug_reason);
  886. }
  887. for (i=0; i<=15; i++)
  888. {
  889. DEBUG("r%i: 0x%8.8x", i, context[i]);
  890. buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
  891. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
  892. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
  893. }
  894. DEBUG("entered debug state at PC 0x%x", context[15]);
  895. /* exceptions other than USR & SYS have a saved program status register */
  896. if ((armv4_5_mode_to_number(armv4_5->core_mode) != ARMV4_5_MODE_USR) && (armv4_5_mode_to_number(armv4_5->core_mode) != ARMV4_5_MODE_SYS))
  897. {
  898. u32 spsr;
  899. arm7_9->read_xpsr(target, &spsr, 1);
  900. jtag_execute_queue();
  901. buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
  902. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
  903. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
  904. }
  905. /* r0 and r15 (pc) have to be restored later */
  906. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = 1;
  907. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = 1;
  908. if ((retval = jtag->execute_queue()) != ERROR_OK)
  909. return retval;
  910. if (arm7_9->post_debug_entry)
  911. arm7_9->post_debug_entry(target);
  912. return ERROR_OK;
  913. }
  914. int arm7_9_full_context(target_t *target)
  915. {
  916. int i;
  917. int retval;
  918. armv4_5_common_t *armv4_5 = target->arch_info;
  919. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  920. DEBUG("-");
  921. if (target->state != TARGET_HALTED)
  922. {
  923. WARNING("target not halted");
  924. return ERROR_TARGET_NOT_HALTED;
  925. }
  926. /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
  927. * SYS shares registers with User, so we don't touch SYS
  928. */
  929. for(i = 0; i < 6; i++)
  930. {
  931. u32 mask = 0;
  932. u32* reg_p[16];
  933. int j;
  934. int valid = 1;
  935. /* check if there are invalid registers in the current mode
  936. */
  937. for (j = 0; j <= 16; j++)
  938. {
  939. if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
  940. valid = 0;
  941. }
  942. if (!valid)
  943. {
  944. u32 tmp_cpsr;
  945. /* change processor mode (and mask T bit) */
  946. tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
  947. tmp_cpsr |= armv4_5_number_to_mode(i);
  948. tmp_cpsr &= ~0x20;
  949. arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
  950. for (j = 0; j < 15; j++)
  951. {
  952. if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
  953. {
  954. reg_p[j] = (u32*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
  955. mask |= 1 << j;
  956. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
  957. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
  958. }
  959. }
  960. /* if only the PSR is invalid, mask is all zeroes */
  961. if (mask)
  962. arm7_9->read_core_regs(target, mask, reg_p);
  963. /* check if the PSR has to be read */
  964. if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
  965. {
  966. arm7_9->read_xpsr(target, (u32*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
  967. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
  968. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
  969. }
  970. }
  971. }
  972. /* restore processor mode (mask T bit) */
  973. arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
  974. if ((retval = jtag_execute_queue()) != ERROR_OK)
  975. {
  976. ERROR("JTAG failure");
  977. exit(-1);
  978. }
  979. return ERROR_OK;
  980. }
  981. int arm7_9_restore_context(target_t *target)
  982. {
  983. armv4_5_common_t *armv4_5 = target->arch_info;
  984. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  985. reg_t *reg;
  986. armv4_5_core_reg_t *reg_arch_info;
  987. enum armv4_5_mode current_mode = armv4_5->core_mode;
  988. int i, j;
  989. int dirty;
  990. int mode_change;
  991. DEBUG("-");
  992. if (target->state != TARGET_HALTED)
  993. {
  994. WARNING("target not halted");
  995. return ERROR_TARGET_NOT_HALTED;
  996. }
  997. if (arm7_9->pre_restore_context)
  998. arm7_9->pre_restore_context(target);
  999. /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
  1000. * SYS shares registers with User, so we don't touch SYS
  1001. */
  1002. for (i = 0; i < 6; i++)
  1003. {
  1004. DEBUG("examining %s mode", armv4_5_mode_strings[i]);
  1005. dirty = 0;
  1006. mode_change = 0;
  1007. /* check if there are dirty registers in the current mode
  1008. */
  1009. for (j = 0; j <= 16; j++)
  1010. {
  1011. reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
  1012. reg_arch_info = reg->arch_info;
  1013. if (reg->dirty == 1)
  1014. {
  1015. if (reg->valid == 1)
  1016. {
  1017. dirty = 1;
  1018. DEBUG("examining dirty reg: %s", reg->name);
  1019. if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
  1020. && (reg_arch_info->mode != current_mode)
  1021. && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
  1022. && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
  1023. {
  1024. mode_change = 1;
  1025. DEBUG("require mode change");
  1026. }
  1027. }
  1028. else
  1029. {
  1030. ERROR("BUG: dirty register '%s', but no valid data", reg->name);
  1031. exit(-1);
  1032. }
  1033. }
  1034. }
  1035. if (dirty)
  1036. {
  1037. u32 mask = 0x0;
  1038. int num_regs = 0;
  1039. u32 regs[16];
  1040. if (mode_change)
  1041. {
  1042. u32 tmp_cpsr;
  1043. /* change processor mode (mask T bit) */
  1044. tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
  1045. tmp_cpsr |= armv4_5_number_to_mode(i);
  1046. tmp_cpsr &= ~0x20;
  1047. arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
  1048. current_mode = armv4_5_number_to_mode(i);
  1049. }
  1050. for (j = 0; j <= 14; j++)
  1051. {
  1052. reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
  1053. reg_arch_info = reg->arch_info;
  1054. if (reg->dirty == 1)
  1055. {
  1056. regs[j] = buf_get_u32(reg->value, 0, 32);
  1057. mask |= 1 << j;
  1058. num_regs++;
  1059. reg->dirty = 0;
  1060. reg->valid = 1;
  1061. DEBUG("writing register %i of mode %s with value 0x%8.8x", j, armv4_5_mode_strings[i], regs[j]);
  1062. }
  1063. }
  1064. if (mask)
  1065. {
  1066. arm7_9->write_core_regs(target, mask, regs);
  1067. }
  1068. reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
  1069. reg_arch_info = reg->arch_info;
  1070. if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
  1071. {
  1072. DEBUG("writing SPSR of mode %i with value 0x%8.8x", i, buf_get_u32(reg->value, 0, 32));
  1073. arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
  1074. }
  1075. }
  1076. }
  1077. if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
  1078. {
  1079. /* restore processor mode (mask T bit) */
  1080. u32 tmp_cpsr;
  1081. tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
  1082. tmp_cpsr |= armv4_5_number_to_mode(i);
  1083. tmp_cpsr &= ~0x20;
  1084. DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", tmp_cpsr);
  1085. arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
  1086. }
  1087. else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
  1088. {
  1089. /* CPSR has been changed, full restore necessary (mask T bit) */
  1090. DEBUG("writing cpsr with value 0x%8.8x", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
  1091. arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
  1092. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
  1093. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
  1094. }
  1095. /* restore PC */
  1096. DEBUG("writing PC with value 0x%8.8x", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
  1097. arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
  1098. armv4_5->core_cache->reg_list[15].dirty = 0;
  1099. if (arm7_9->post_restore_context)
  1100. arm7_9->post_restore_context(target);
  1101. return ERROR_OK;
  1102. }
  1103. int arm7_9_restart_core(struct target_s *target)
  1104. {
  1105. armv4_5_common_t *armv4_5 = target->arch_info;
  1106. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1107. arm_jtag_t *jtag_info = &arm7_9->jtag_info;
  1108. /* set RESTART instruction */
  1109. jtag_add_end_state(TAP_RTI);
  1110. arm_jtag_set_instr(jtag_info, 0x4, NULL);
  1111. jtag_add_runtest(1, TAP_RTI);
  1112. if ((jtag_execute_queue()) != ERROR_OK)
  1113. {
  1114. exit(-1);
  1115. }
  1116. return ERROR_OK;
  1117. }
  1118. void arm7_9_enable_watchpoints(struct target_s *target)
  1119. {
  1120. watchpoint_t *watchpoint = target->watchpoints;
  1121. while (watchpoint)
  1122. {
  1123. if (watchpoint->set == 0)
  1124. arm7_9_set_watchpoint(target, watchpoint);
  1125. watchpoint = watchpoint->next;
  1126. }
  1127. }
  1128. void arm7_9_enable_breakpoints(struct target_s *target)
  1129. {
  1130. breakpoint_t *breakpoint = target->breakpoints;
  1131. /* set any pending breakpoints */
  1132. while (breakpoint)
  1133. {
  1134. if (breakpoint->set == 0)
  1135. arm7_9_set_breakpoint(target, breakpoint);
  1136. breakpoint = breakpoint->next;
  1137. }
  1138. }
  1139. void arm7_9_disable_bkpts_and_wpts(struct target_s *target)
  1140. {
  1141. breakpoint_t *breakpoint = target->breakpoints;
  1142. watchpoint_t *watchpoint = target->watchpoints;
  1143. /* set any pending breakpoints */
  1144. while (breakpoint)
  1145. {
  1146. if (breakpoint->set != 0)
  1147. arm7_9_unset_breakpoint(target, breakpoint);
  1148. breakpoint = breakpoint->next;
  1149. }
  1150. while (watchpoint)
  1151. {
  1152. if (watchpoint->set != 0)
  1153. arm7_9_unset_watchpoint(target, watchpoint);
  1154. watchpoint = watchpoint->next;
  1155. }
  1156. }
  1157. int arm7_9_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
  1158. {
  1159. armv4_5_common_t *armv4_5 = target->arch_info;
  1160. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1161. breakpoint_t *breakpoint = target->breakpoints;
  1162. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  1163. DEBUG("-");
  1164. if (target->state != TARGET_HALTED)
  1165. {
  1166. WARNING("target not halted");
  1167. return ERROR_TARGET_NOT_HALTED;
  1168. }
  1169. if (!debug_execution)
  1170. {
  1171. target_free_all_working_areas(target);
  1172. }
  1173. /* current = 1: continue on current pc, otherwise continue at <address> */
  1174. if (!current)
  1175. buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
  1176. /* the front-end may request us not to handle breakpoints */
  1177. if (handle_breakpoints)
  1178. {
  1179. if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
  1180. {
  1181. DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
  1182. arm7_9_unset_breakpoint(target, breakpoint);
  1183. DEBUG("enable single-step");
  1184. arm7_9->enable_single_step(target);
  1185. target->debug_reason = DBG_REASON_SINGLESTEP;
  1186. arm7_9_restore_context(target);
  1187. if (armv4_5->core_state == ARMV4_5_STATE_ARM)
  1188. arm7_9->branch_resume(target);
  1189. else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
  1190. {
  1191. arm7_9->branch_resume_thumb(target);
  1192. }
  1193. else
  1194. {
  1195. ERROR("unhandled core state");
  1196. exit(-1);
  1197. }
  1198. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
  1199. embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
  1200. arm7_9_execute_sys_speed(target);
  1201. DEBUG("disable single-step");
  1202. arm7_9->disable_single_step(target);
  1203. arm7_9_debug_entry(target);
  1204. DEBUG("new PC after step: 0x%8.8x", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
  1205. DEBUG("set breakpoint at 0x%8.8x", breakpoint->address);
  1206. arm7_9_set_breakpoint(target, breakpoint);
  1207. }
  1208. }
  1209. /* enable any pending breakpoints and watchpoints */
  1210. arm7_9_enable_breakpoints(target);
  1211. arm7_9_enable_watchpoints(target);
  1212. arm7_9_restore_context(target);
  1213. if (armv4_5->core_state == ARMV4_5_STATE_ARM)
  1214. {
  1215. arm7_9->branch_resume(target);
  1216. }
  1217. else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
  1218. {
  1219. arm7_9->branch_resume_thumb(target);
  1220. }
  1221. else
  1222. {
  1223. ERROR("unhandled core state");
  1224. exit(-1);
  1225. }
  1226. /* deassert DBGACK and INTDIS */
  1227. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
  1228. /* INTDIS only when we really resume, not during debug execution */
  1229. if (!debug_execution)
  1230. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
  1231. embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
  1232. arm7_9_restart_core(target);
  1233. target->debug_reason = DBG_REASON_NOTHALTED;
  1234. if (!debug_execution)
  1235. {
  1236. /* registers are now invalid */
  1237. armv4_5_invalidate_core_regs(target);
  1238. target->state = TARGET_RUNNING;
  1239. target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
  1240. }
  1241. else
  1242. {
  1243. target->state = TARGET_DEBUG_RUNNING;
  1244. target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
  1245. }
  1246. DEBUG("target resumed");
  1247. return ERROR_OK;
  1248. }
  1249. void arm7_9_enable_eice_step(target_t *target)
  1250. {
  1251. armv4_5_common_t *armv4_5 = target->arch_info;
  1252. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1253. /* setup an inverse breakpoint on the current PC
  1254. * - comparator 1 matches the current address
  1255. * - rangeout from comparator 1 is connected to comparator 0 rangein
  1256. * - comparator 0 matches any address, as long as rangein is low */
  1257. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
  1258. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
  1259. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x100);
  1260. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0x77);
  1261. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
  1262. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
  1263. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
  1264. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
  1265. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xf7);
  1266. }
  1267. void arm7_9_disable_eice_step(target_t *target)
  1268. {
  1269. armv4_5_common_t *armv4_5 = target->arch_info;
  1270. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1271. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
  1272. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
  1273. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
  1274. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
  1275. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
  1276. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
  1277. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
  1278. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
  1279. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
  1280. }
  1281. int arm7_9_step(struct target_s *target, int current, u32 address, int handle_breakpoints)
  1282. {
  1283. armv4_5_common_t *armv4_5 = target->arch_info;
  1284. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1285. breakpoint_t *breakpoint = NULL;
  1286. if (target->state != TARGET_HALTED)
  1287. {
  1288. WARNING("target not halted");
  1289. return ERROR_TARGET_NOT_HALTED;
  1290. }
  1291. /* current = 1: continue on current pc, otherwise continue at <address> */
  1292. if (!current)
  1293. buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
  1294. /* the front-end may request us not to handle breakpoints */
  1295. if (handle_breakpoints)
  1296. if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
  1297. arm7_9_unset_breakpoint(target, breakpoint);
  1298. target->debug_reason = DBG_REASON_SINGLESTEP;
  1299. arm7_9_restore_context(target);
  1300. arm7_9->enable_single_step(target);
  1301. if (armv4_5->core_state == ARMV4_5_STATE_ARM)
  1302. {
  1303. arm7_9->branch_resume(target);
  1304. }
  1305. else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
  1306. {
  1307. arm7_9->branch_resume_thumb(target);
  1308. }
  1309. else
  1310. {
  1311. ERROR("unhandled core state");
  1312. exit(-1);
  1313. }
  1314. target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
  1315. arm7_9_execute_sys_speed(target);
  1316. arm7_9->disable_single_step(target);
  1317. /* registers are now invalid */
  1318. armv4_5_invalidate_core_regs(target);
  1319. arm7_9_debug_entry(target);
  1320. target_call_event_callbacks(target, TARGET_EVENT_HALTED);
  1321. if (breakpoint)
  1322. arm7_9_set_breakpoint(target, breakpoint);
  1323. DEBUG("target stepped");
  1324. return ERROR_OK;
  1325. }
  1326. int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode)
  1327. {
  1328. u32* reg_p[16];
  1329. u32 value;
  1330. int retval;
  1331. armv4_5_common_t *armv4_5 = target->arch_info;
  1332. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1333. enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
  1334. if ((num < 0) || (num > 16))
  1335. return ERROR_INVALID_ARGUMENTS;
  1336. if ((mode != ARMV4_5_MODE_ANY)
  1337. && (mode != armv4_5->core_mode)
  1338. && (reg_mode != ARMV4_5_MODE_ANY))
  1339. {
  1340. u32 tmp_cpsr;
  1341. /* change processor mode (mask T bit) */
  1342. tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
  1343. tmp_cpsr |= mode;
  1344. tmp_cpsr &= ~0x20;
  1345. arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
  1346. }
  1347. if ((num >= 0) && (num <= 15))
  1348. {
  1349. /* read a normal core register */
  1350. reg_p[num] = &value;
  1351. arm7_9->read_core_regs(target, 1 << num, reg_p);
  1352. }
  1353. else
  1354. {
  1355. /* read a program status register
  1356. * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
  1357. */
  1358. armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
  1359. int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
  1360. arm7_9->read_xpsr(target, &value, spsr);
  1361. }
  1362. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1363. {
  1364. ERROR("JTAG failure");
  1365. exit(-1);
  1366. }
  1367. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
  1368. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
  1369. buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
  1370. if ((mode != ARMV4_5_MODE_ANY)
  1371. && (mode != armv4_5->core_mode)
  1372. && (reg_mode != ARMV4_5_MODE_ANY)) {
  1373. /* restore processor mode (mask T bit) */
  1374. arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
  1375. }
  1376. return ERROR_OK;
  1377. }
  1378. int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, u32 value)
  1379. {
  1380. u32 reg[16];
  1381. int retval;
  1382. armv4_5_common_t *armv4_5 = target->arch_info;
  1383. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1384. enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
  1385. if ((num < 0) || (num > 16))
  1386. return ERROR_INVALID_ARGUMENTS;
  1387. if ((mode != ARMV4_5_MODE_ANY)
  1388. && (mode != armv4_5->core_mode)
  1389. && (reg_mode != ARMV4_5_MODE_ANY)) {
  1390. u32 tmp_cpsr;
  1391. /* change processor mode (mask T bit) */
  1392. tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
  1393. tmp_cpsr |= mode;
  1394. tmp_cpsr &= ~0x20;
  1395. arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
  1396. }
  1397. if ((num >= 0) && (num <= 15))
  1398. {
  1399. /* write a normal core register */
  1400. reg[num] = value;
  1401. arm7_9->write_core_regs(target, 1 << num, reg);
  1402. }
  1403. else
  1404. {
  1405. /* write a program status register
  1406. * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
  1407. */
  1408. armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
  1409. int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
  1410. /* if we're writing the CPSR, mask the T bit */
  1411. if (!spsr)
  1412. value &= ~0x20;
  1413. arm7_9->write_xpsr(target, value, spsr);
  1414. }
  1415. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
  1416. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
  1417. if ((mode != ARMV4_5_MODE_ANY)
  1418. && (mode != armv4_5->core_mode)
  1419. && (reg_mode != ARMV4_5_MODE_ANY)) {
  1420. /* restore processor mode (mask T bit) */
  1421. arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
  1422. }
  1423. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1424. {
  1425. ERROR("JTAG failure");
  1426. exit(-1);
  1427. }
  1428. return ERROR_OK;
  1429. }
  1430. int arm7_9_read_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
  1431. {
  1432. armv4_5_common_t *armv4_5 = target->arch_info;
  1433. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1434. u32 reg[16];
  1435. int num_accesses = 0;
  1436. int thisrun_accesses;
  1437. int i;
  1438. u32 cpsr;
  1439. int retval;
  1440. int last_reg = 0;
  1441. DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
  1442. if (target->state != TARGET_HALTED)
  1443. {
  1444. WARNING("target not halted");
  1445. return ERROR_TARGET_NOT_HALTED;
  1446. }
  1447. /* sanitize arguments */
  1448. if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
  1449. return ERROR_INVALID_ARGUMENTS;
  1450. if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
  1451. return ERROR_TARGET_UNALIGNED_ACCESS;
  1452. /* load the base register with the address of the first word */
  1453. reg[0] = address;
  1454. arm7_9->write_core_regs(target, 0x1, reg);
  1455. switch (size)
  1456. {
  1457. case 4:
  1458. while (num_accesses < count)
  1459. {
  1460. u32 reg_list;
  1461. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1462. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1463. if (last_reg <= thisrun_accesses)
  1464. last_reg = thisrun_accesses;
  1465. arm7_9->load_word_regs(target, reg_list);
  1466. /* fast memory reads are only safe when the target is running
  1467. * from a sufficiently high clock (32 kHz is usually too slow)
  1468. */
  1469. if (arm7_9->fast_memory_access)
  1470. arm7_9_execute_fast_sys_speed(target);
  1471. else
  1472. arm7_9_execute_sys_speed(target);
  1473. arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
  1474. /* advance buffer, count number of accesses */
  1475. buffer += thisrun_accesses * 4;
  1476. num_accesses += thisrun_accesses;
  1477. }
  1478. break;
  1479. case 2:
  1480. while (num_accesses < count)
  1481. {
  1482. u32 reg_list;
  1483. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1484. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1485. for (i = 1; i <= thisrun_accesses; i++)
  1486. {
  1487. if (i > last_reg)
  1488. last_reg = i;
  1489. arm7_9->load_hword_reg(target, i);
  1490. /* fast memory reads are only safe when the target is running
  1491. * from a sufficiently high clock (32 kHz is usually too slow)
  1492. */
  1493. if (arm7_9->fast_memory_access)
  1494. arm7_9_execute_fast_sys_speed(target);
  1495. else
  1496. arm7_9_execute_sys_speed(target);
  1497. }
  1498. arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
  1499. /* advance buffer, count number of accesses */
  1500. buffer += thisrun_accesses * 2;
  1501. num_accesses += thisrun_accesses;
  1502. }
  1503. break;
  1504. case 1:
  1505. while (num_accesses < count)
  1506. {
  1507. u32 reg_list;
  1508. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1509. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1510. for (i = 1; i <= thisrun_accesses; i++)
  1511. {
  1512. if (i > last_reg)
  1513. last_reg = i;
  1514. arm7_9->load_byte_reg(target, i);
  1515. /* fast memory reads are only safe when the target is running
  1516. * from a sufficiently high clock (32 kHz is usually too slow)
  1517. */
  1518. if (arm7_9->fast_memory_access)
  1519. arm7_9_execute_fast_sys_speed(target);
  1520. else
  1521. arm7_9_execute_sys_speed(target);
  1522. }
  1523. arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
  1524. /* advance buffer, count number of accesses */
  1525. buffer += thisrun_accesses * 1;
  1526. num_accesses += thisrun_accesses;
  1527. }
  1528. break;
  1529. default:
  1530. ERROR("BUG: we shouldn't get here");
  1531. exit(-1);
  1532. break;
  1533. }
  1534. for (i=0; i<=last_reg; i++)
  1535. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
  1536. arm7_9->read_xpsr(target, &cpsr, 0);
  1537. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1538. {
  1539. ERROR("JTAG error while reading cpsr");
  1540. exit(-1);
  1541. }
  1542. if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
  1543. {
  1544. WARNING("memory read caused data abort (address: 0x%8.8x, size: 0x%x, count: 0x%x)", address, size, count);
  1545. arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
  1546. return ERROR_TARGET_DATA_ABORT;
  1547. }
  1548. return ERROR_OK;
  1549. }
  1550. int arm7_9_write_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
  1551. {
  1552. armv4_5_common_t *armv4_5 = target->arch_info;
  1553. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1554. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  1555. u32 reg[16];
  1556. int num_accesses = 0;
  1557. int thisrun_accesses;
  1558. int i;
  1559. u32 cpsr;
  1560. int retval;
  1561. int last_reg = 0;
  1562. DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
  1563. if (target->state != TARGET_HALTED)
  1564. {
  1565. WARNING("target not halted");
  1566. return ERROR_TARGET_NOT_HALTED;
  1567. }
  1568. /* sanitize arguments */
  1569. if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
  1570. return ERROR_INVALID_ARGUMENTS;
  1571. if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
  1572. return ERROR_TARGET_UNALIGNED_ACCESS;
  1573. /* load the base register with the address of the first word */
  1574. reg[0] = address;
  1575. arm7_9->write_core_regs(target, 0x1, reg);
  1576. /* Clear DBGACK, to make sure memory fetches work as expected */
  1577. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
  1578. embeddedice_store_reg(dbg_ctrl);
  1579. switch (size)
  1580. {
  1581. case 4:
  1582. while (num_accesses < count)
  1583. {
  1584. u32 reg_list;
  1585. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1586. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1587. for (i = 1; i <= thisrun_accesses; i++)
  1588. {
  1589. if (i > last_reg)
  1590. last_reg = i;
  1591. reg[i] = target_buffer_get_u32(target, buffer);
  1592. buffer += 4;
  1593. }
  1594. arm7_9->write_core_regs(target, reg_list, reg);
  1595. arm7_9->store_word_regs(target, reg_list);
  1596. /* fast memory writes are only safe when the target is running
  1597. * from a sufficiently high clock (32 kHz is usually too slow)
  1598. */
  1599. if (arm7_9->fast_memory_access)
  1600. arm7_9_execute_fast_sys_speed(target);
  1601. else
  1602. arm7_9_execute_sys_speed(target);
  1603. num_accesses += thisrun_accesses;
  1604. }
  1605. break;
  1606. case 2:
  1607. while (num_accesses < count)
  1608. {
  1609. u32 reg_list;
  1610. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1611. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1612. for (i = 1; i <= thisrun_accesses; i++)
  1613. {
  1614. if (i > last_reg)
  1615. last_reg = i;
  1616. reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
  1617. buffer += 2;
  1618. }
  1619. arm7_9->write_core_regs(target, reg_list, reg);
  1620. for (i = 1; i <= thisrun_accesses; i++)
  1621. {
  1622. arm7_9->store_hword_reg(target, i);
  1623. /* fast memory writes are only safe when the target is running
  1624. * from a sufficiently high clock (32 kHz is usually too slow)
  1625. */
  1626. if (arm7_9->fast_memory_access)
  1627. arm7_9_execute_fast_sys_speed(target);
  1628. else
  1629. arm7_9_execute_sys_speed(target);
  1630. }
  1631. num_accesses += thisrun_accesses;
  1632. }
  1633. break;
  1634. case 1:
  1635. while (num_accesses < count)
  1636. {
  1637. u32 reg_list;
  1638. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1639. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1640. for (i = 1; i <= thisrun_accesses; i++)
  1641. {
  1642. if (i > last_reg)
  1643. last_reg = i;
  1644. reg[i] = *buffer++ & 0xff;
  1645. }
  1646. arm7_9->write_core_regs(target, reg_list, reg);
  1647. for (i = 1; i <= thisrun_accesses; i++)
  1648. {
  1649. arm7_9->store_byte_reg(target, i);
  1650. /* fast memory writes are only safe when the target is running
  1651. * from a sufficiently high clock (32 kHz is usually too slow)
  1652. */
  1653. if (arm7_9->fast_memory_access)
  1654. arm7_9_execute_fast_sys_speed(target);
  1655. else
  1656. arm7_9_execute_sys_speed(target);
  1657. }
  1658. num_accesses += thisrun_accesses;
  1659. }
  1660. break;
  1661. default:
  1662. ERROR("BUG: we shouldn't get here");
  1663. exit(-1);
  1664. break;
  1665. }
  1666. /* Re-Set DBGACK */
  1667. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
  1668. embeddedice_store_reg(dbg_ctrl);
  1669. for (i=0; i<=last_reg; i++)
  1670. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
  1671. arm7_9->read_xpsr(target, &cpsr, 0);
  1672. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1673. {
  1674. ERROR("JTAG error while reading cpsr");
  1675. exit(-1);
  1676. }
  1677. if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
  1678. {
  1679. WARNING("memory write caused data abort (address: 0x%8.8x, size: 0x%x, count: 0x%x)", address, size, count);
  1680. arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
  1681. return ERROR_TARGET_DATA_ABORT;
  1682. }
  1683. return ERROR_OK;
  1684. }
  1685. int arm7_9_bulk_write_memory(target_t *target, u32 address, u32 count, u8 *buffer)
  1686. {
  1687. armv4_5_common_t *armv4_5 = target->arch_info;
  1688. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1689. enum armv4_5_state core_state = armv4_5->core_state;
  1690. u32 r0 = buf_get_u32(armv4_5->core_cache->reg_list[0].value, 0, 32);
  1691. u32 r1 = buf_get_u32(armv4_5->core_cache->reg_list[1].value, 0, 32);
  1692. u32 pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
  1693. int i;
  1694. u32 dcc_code[] =
  1695. {
  1696. /* MRC TST BNE MRC STR B */
  1697. 0xee101e10, 0xe3110001, 0x0afffffc, 0xee111e10, 0xe4801004, 0xeafffff9
  1698. };
  1699. if (!arm7_9->dcc_downloads)
  1700. return target->type->write_memory(target, address, 4, count, buffer);
  1701. /* regrab previously allocated working_area, or allocate a new one */
  1702. if (!arm7_9->dcc_working_area)
  1703. {
  1704. u8 dcc_code_buf[6 * 4];
  1705. /* make sure we have a working area */
  1706. if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
  1707. {
  1708. INFO("no working area available, falling back to memory writes");
  1709. return target->type->write_memory(target, address, 4, count, buffer);
  1710. }
  1711. /* copy target instructions to target endianness */
  1712. for (i = 0; i < 6; i++)
  1713. {
  1714. target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
  1715. }
  1716. /* write DCC code to working area */
  1717. target->type->write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf);
  1718. }
  1719. buf_set_u32(armv4_5->core_cache->reg_list[0].value, 0, 32, address);
  1720. armv4_5->core_cache->reg_list[0].valid = 1;
  1721. armv4_5->core_cache->reg_list[0].dirty = 1;
  1722. armv4_5->core_state = ARMV4_5_STATE_ARM;
  1723. arm7_9_resume(target, 0, arm7_9->dcc_working_area->address, 1, 1);
  1724. for (i = 0; i < count; i++)
  1725. {
  1726. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], target_buffer_get_u32(target, buffer));
  1727. buffer += 4;
  1728. }
  1729. target->type->halt(target);
  1730. while (target->state != TARGET_HALTED)
  1731. target->type->poll(target);
  1732. /* restore target state */
  1733. buf_set_u32(armv4_5->core_cache->reg_list[0].value, 0, 32, r0);
  1734. armv4_5->core_cache->reg_list[0].valid = 1;
  1735. armv4_5->core_cache->reg_list[0].dirty = 1;
  1736. buf_set_u32(armv4_5->core_cache->reg_list[1].value, 0, 32, r1);
  1737. armv4_5->core_cache->reg_list[1].valid = 1;
  1738. armv4_5->core_cache->reg_list[1].dirty = 1;
  1739. buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, pc);
  1740. armv4_5->core_cache->reg_list[15].valid = 1;
  1741. armv4_5->core_cache->reg_list[15].dirty = 1;
  1742. armv4_5->core_state = core_state;
  1743. return ERROR_OK;
  1744. }
  1745. int arm7_9_register_commands(struct command_context_s *cmd_ctx)
  1746. {
  1747. command_t *arm7_9_cmd;
  1748. arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands");
  1749. register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register <value> <not cpsr|spsr>");
  1750. register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register <8bit immediate> <rotate> <not cpsr|spsr>");
  1751. register_command(cmd_ctx, arm7_9_cmd, "write_core_reg", handle_arm7_9_write_core_reg_command, COMMAND_EXEC, "write core register <num> <mode> <value>");
  1752. register_command(cmd_ctx, arm7_9_cmd, "sw_bkpts", handle_arm7_9_sw_bkpts_command, COMMAND_EXEC, "support for software breakpoints <enable|disable>");
  1753. register_command(cmd_ctx, arm7_9_cmd, "force_hw_bkpts", handle_arm7_9_force_hw_bkpts_command, COMMAND_EXEC, "use hardware breakpoints for all breakpoints (disables sw breakpoint support) <enable|disable>");
  1754. register_command(cmd_ctx, arm7_9_cmd, "dbgrq", handle_arm7_9_dbgrq_command,
  1755. COMMAND_ANY, "use EmbeddedICE dbgrq instead of breakpoint for target halt requests <enable|disable>");
  1756. register_command(cmd_ctx, arm7_9_cmd, "fast_writes", handle_arm7_9_fast_memory_access_command,
  1757. COMMAND_ANY, "(deprecated, see: arm7_9 fast_memory_access)");
  1758. register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access", handle_arm7_9_fast_memory_access_command,
  1759. COMMAND_ANY, "use fast memory accesses instead of slower but potentially unsafe slow accesses <enable|disable>");
  1760. register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads", handle_arm7_9_dcc_downloads_command,
  1761. COMMAND_ANY, "use DCC downloads for larger memory writes <enable|disable>");
  1762. armv4_5_register_commands(cmd_ctx);
  1763. etm_register_commands(cmd_ctx);
  1764. return ERROR_OK;
  1765. }
  1766. int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1767. {
  1768. u32 value;
  1769. int spsr;
  1770. int retval;
  1771. target_t *target = get_current_target(cmd_ctx);
  1772. armv4_5_common_t *armv4_5;
  1773. arm7_9_common_t *arm7_9;
  1774. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  1775. {
  1776. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  1777. return ERROR_OK;
  1778. }
  1779. if (target->state != TARGET_HALTED)
  1780. {
  1781. command_print(cmd_ctx, "can't write registers while running");
  1782. return ERROR_OK;
  1783. }
  1784. if (argc < 2)
  1785. {
  1786. command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr|spsr>");
  1787. return ERROR_OK;
  1788. }
  1789. value = strtoul(args[0], NULL, 0);
  1790. spsr = strtol(args[1], NULL, 0);
  1791. /* if we're writing the CPSR, mask the T bit */
  1792. if (!spsr)
  1793. value &= ~0x20;
  1794. arm7_9->write_xpsr(target, value, spsr);
  1795. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1796. {
  1797. ERROR("JTAG error while writing to xpsr");
  1798. exit(-1);
  1799. }
  1800. return ERROR_OK;
  1801. }
  1802. int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1803. {
  1804. u32 value;
  1805. int rotate;
  1806. int spsr;
  1807. int retval;
  1808. target_t *target = get_current_target(cmd_ctx);
  1809. armv4_5_common_t *armv4_5;
  1810. arm7_9_common_t *arm7_9;
  1811. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  1812. {
  1813. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  1814. return ERROR_OK;
  1815. }
  1816. if (target->state != TARGET_HALTED)
  1817. {
  1818. command_print(cmd_ctx, "can't write registers while running");
  1819. return ERROR_OK;
  1820. }
  1821. if (argc < 3)
  1822. {
  1823. command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr|spsr>");
  1824. return ERROR_OK;
  1825. }
  1826. value = strtoul(args[0], NULL, 0);
  1827. rotate = strtol(args[1], NULL, 0);
  1828. spsr = strtol(args[2], NULL, 0);
  1829. arm7_9->write_xpsr_im8(target, value, rotate, spsr);
  1830. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1831. {
  1832. ERROR("JTAG error while writing 8-bit immediate to xpsr");
  1833. exit(-1);
  1834. }
  1835. return ERROR_OK;
  1836. }
  1837. int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1838. {
  1839. u32 value;
  1840. u32 mode;
  1841. int num;
  1842. target_t *target = get_current_target(cmd_ctx);
  1843. armv4_5_common_t *armv4_5;
  1844. arm7_9_common_t *arm7_9;
  1845. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  1846. {
  1847. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  1848. return ERROR_OK;
  1849. }
  1850. if (target->state != TARGET_HALTED)
  1851. {
  1852. command_print(cmd_ctx, "can't write registers while running");
  1853. return ERROR_OK;
  1854. }
  1855. if (argc < 3)
  1856. {
  1857. command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
  1858. return ERROR_OK;
  1859. }
  1860. num = strtol(args[0], NULL, 0);
  1861. mode = strtoul(args[1], NULL, 0);
  1862. value = strtoul(args[2], NULL, 0);
  1863. arm7_9_write_core_reg(target, num, mode, value);
  1864. return ERROR_OK;
  1865. }
  1866. int handle_arm7_9_sw_bkpts_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1867. {
  1868. target_t *target = get_current_target(cmd_ctx);
  1869. armv4_5_common_t *armv4_5;
  1870. arm7_9_common_t *arm7_9;
  1871. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  1872. {
  1873. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  1874. return ERROR_OK;
  1875. }
  1876. if (argc == 0)
  1877. {
  1878. command_print(cmd_ctx, "software breakpoints %s", (arm7_9->sw_bkpts_enabled) ? "enabled" : "disabled");
  1879. return ERROR_OK;
  1880. }
  1881. if (strcmp("enable", args[0]) == 0)
  1882. {
  1883. if (arm7_9->sw_bkpts_use_wp)
  1884. {
  1885. arm7_9_enable_sw_bkpts(target);
  1886. }
  1887. else
  1888. {
  1889. arm7_9->sw_bkpts_enabled = 1;
  1890. }
  1891. }
  1892. else if (strcmp("disable", args[0]) == 0)
  1893. {
  1894. if (arm7_9->sw_bkpts_use_wp)
  1895. {
  1896. arm7_9_disable_sw_bkpts(target);
  1897. }
  1898. else
  1899. {
  1900. arm7_9->sw_bkpts_enabled = 0;
  1901. }
  1902. }
  1903. else
  1904. {
  1905. command_print(cmd_ctx, "usage: arm7_9 sw_bkpts <enable|disable>");
  1906. }
  1907. command_print(cmd_ctx, "software breakpoints %s", (arm7_9->sw_bkpts_enabled) ? "enabled" : "disabled");
  1908. return ERROR_OK;
  1909. }
  1910. int handle_arm7_9_force_hw_bkpts_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1911. {
  1912. target_t *target = get_current_target(cmd_ctx);
  1913. armv4_5_common_t *armv4_5;
  1914. arm7_9_common_t *arm7_9;
  1915. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  1916. {
  1917. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  1918. return ERROR_OK;
  1919. }
  1920. if ((argc >= 1) && (strcmp("enable", args[0]) == 0))
  1921. {
  1922. arm7_9->force_hw_bkpts = 1;
  1923. if (arm7_9->sw_bkpts_use_wp)
  1924. {
  1925. arm7_9_disable_sw_bkpts(target);
  1926. }
  1927. }
  1928. else if ((argc >= 1) && (strcmp("disable", args[0]) == 0))
  1929. {
  1930. arm7_9->force_hw_bkpts = 0;
  1931. }
  1932. else
  1933. {
  1934. command_print(cmd_ctx, "usage: arm7_9 force_hw_bkpts <enable|disable>");
  1935. }
  1936. command_print(cmd_ctx, "force hardware breakpoints %s", (arm7_9->force_hw_bkpts) ? "enabled" : "disabled");
  1937. return ERROR_OK;
  1938. }
  1939. int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1940. {
  1941. target_t *target = get_current_target(cmd_ctx);
  1942. armv4_5_common_t *armv4_5;
  1943. arm7_9_common_t *arm7_9;
  1944. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  1945. {
  1946. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  1947. return ERROR_OK;
  1948. }
  1949. if (argc > 0)
  1950. {
  1951. if (strcmp("enable", args[0]) == 0)
  1952. {
  1953. arm7_9->use_dbgrq = 1;
  1954. }
  1955. else if (strcmp("disable", args[0]) == 0)
  1956. {
  1957. arm7_9->use_dbgrq = 0;
  1958. }
  1959. else
  1960. {
  1961. command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable|disable>");
  1962. }
  1963. }
  1964. command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
  1965. return ERROR_OK;
  1966. }
  1967. int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1968. {
  1969. target_t *target = get_current_target(cmd_ctx);
  1970. armv4_5_common_t *armv4_5;
  1971. arm7_9_common_t *arm7_9;
  1972. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  1973. {
  1974. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  1975. return ERROR_OK;
  1976. }
  1977. if (argc > 0)
  1978. {
  1979. if (strcmp("enable", args[0]) == 0)
  1980. {
  1981. arm7_9->fast_memory_access = 1;
  1982. }
  1983. else if (strcmp("disable", args[0]) == 0)
  1984. {
  1985. arm7_9->fast_memory_access = 0;
  1986. }
  1987. else
  1988. {
  1989. command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable|disable>");
  1990. }
  1991. }
  1992. command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
  1993. return ERROR_OK;
  1994. }
  1995. int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1996. {
  1997. target_t *target = get_current_target(cmd_ctx);
  1998. armv4_5_common_t *armv4_5;
  1999. arm7_9_common_t *arm7_9;
  2000. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  2001. {
  2002. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  2003. return ERROR_OK;
  2004. }
  2005. if (argc > 0)
  2006. {
  2007. if (strcmp("enable", args[0]) == 0)
  2008. {
  2009. arm7_9->dcc_downloads = 1;
  2010. }
  2011. else if (strcmp("disable", args[0]) == 0)
  2012. {
  2013. arm7_9->dcc_downloads = 0;
  2014. }
  2015. else
  2016. {
  2017. command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable|disable>");
  2018. }
  2019. }
  2020. command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
  2021. return ERROR_OK;
  2022. }
  2023. int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
  2024. {
  2025. armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;
  2026. arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
  2027. arm_jtag_setup_connection(&arm7_9->jtag_info);
  2028. arm7_9->wp_available = 2;
  2029. arm7_9->wp0_used = 0;
  2030. arm7_9->wp1_used = 0;
  2031. arm7_9->force_hw_bkpts = 0;
  2032. arm7_9->use_dbgrq = 0;
  2033. arm7_9->etm_ctx = NULL;
  2034. arm7_9->has_single_step = 0;
  2035. arm7_9->has_monitor_mode = 0;
  2036. arm7_9->has_vector_catch = 0;
  2037. arm7_9->reinit_embeddedice = 0;
  2038. arm7_9->debug_entry_from_reset = 0;
  2039. arm7_9->dcc_working_area = NULL;
  2040. arm7_9->fast_memory_access = 0;
  2041. arm7_9->dcc_downloads = 0;
  2042. jtag_register_event_callback(arm7_9_jtag_callback, target);
  2043. armv4_5->arch_info = arm7_9;
  2044. armv4_5->read_core_reg = arm7_9_read_core_reg;
  2045. armv4_5->write_core_reg = arm7_9_write_core_reg;
  2046. armv4_5->full_context = arm7_9_full_context;
  2047. armv4_5_init_arch_info(target, armv4_5);
  2048. return ERROR_OK;
  2049. }