You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

591 lines
22 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2007-2010 Øyvind Harboe *
  6. * oyvind.harboe@zylin.com *
  7. * *
  8. * Copyright (C) 2008 by Spencer Oliver *
  9. * spen@spen-soft.co.uk *
  10. * *
  11. * Copyright (C) 2011 by Broadcom Corporation *
  12. * Evan Hunter - ehunter@broadcom.com *
  13. * *
  14. * Copyright (C) ST-Ericsson SA 2011 *
  15. * michel.jaouen@stericsson.com : smp minimum support *
  16. * *
  17. * This program is free software; you can redistribute it and/or modify *
  18. * it under the terms of the GNU General Public License as published by *
  19. * the Free Software Foundation; either version 2 of the License, or *
  20. * (at your option) any later version. *
  21. * *
  22. * This program is distributed in the hope that it will be useful, *
  23. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  24. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  25. * GNU General Public License for more details. *
  26. * *
  27. * You should have received a copy of the GNU General Public License *
  28. * along with this program; if not, write to the *
  29. * Free Software Foundation, Inc., *
  30. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  31. ***************************************************************************/
  32. #ifndef TARGET_H
  33. #define TARGET_H
  34. struct reg;
  35. struct trace;
  36. struct command_context;
  37. struct breakpoint;
  38. struct watchpoint;
  39. struct mem_param;
  40. struct reg_param;
  41. struct target_list;
  42. /*
  43. * TARGET_UNKNOWN = 0: we don't know anything about the target yet
  44. * TARGET_RUNNING = 1: the target is executing user code
  45. * TARGET_HALTED = 2: the target is not executing code, and ready to talk to the
  46. * debugger. on an xscale it means that the debug handler is executing
  47. * TARGET_RESET = 3: the target is being held in reset (only a temporary state,
  48. * not sure how this is used with all the recent changes)
  49. * TARGET_DEBUG_RUNNING = 4: the target is running, but it is executing code on
  50. * behalf of the debugger (e.g. algorithm for flashing)
  51. *
  52. * also see: target_state_name();
  53. */
  54. enum target_state {
  55. TARGET_UNKNOWN = 0,
  56. TARGET_RUNNING = 1,
  57. TARGET_HALTED = 2,
  58. TARGET_RESET = 3,
  59. TARGET_DEBUG_RUNNING = 4,
  60. };
  61. enum nvp_assert {
  62. NVP_DEASSERT,
  63. NVP_ASSERT,
  64. };
  65. enum target_reset_mode {
  66. RESET_UNKNOWN = 0,
  67. RESET_RUN = 1, /* reset and let target run */
  68. RESET_HALT = 2, /* reset and halt target out of reset */
  69. RESET_INIT = 3, /* reset and halt target out of reset, then run init script */
  70. };
  71. enum target_debug_reason {
  72. DBG_REASON_DBGRQ = 0,
  73. DBG_REASON_BREAKPOINT = 1,
  74. DBG_REASON_WATCHPOINT = 2,
  75. DBG_REASON_WPTANDBKPT = 3,
  76. DBG_REASON_SINGLESTEP = 4,
  77. DBG_REASON_NOTHALTED = 5,
  78. DBG_REASON_UNDEFINED = 6
  79. };
  80. enum target_endianness {
  81. TARGET_ENDIAN_UNKNOWN = 0,
  82. TARGET_BIG_ENDIAN = 1, TARGET_LITTLE_ENDIAN = 2
  83. };
  84. struct working_area {
  85. uint32_t address;
  86. uint32_t size;
  87. bool free;
  88. uint8_t *backup;
  89. struct working_area **user;
  90. struct working_area *next;
  91. };
  92. struct gdb_service {
  93. struct target *target;
  94. /* field for smp display */
  95. /* element 0 coreid currently displayed ( 1 till n) */
  96. /* element 1 coreid to be displayed at next resume 1 till n 0 means resume
  97. * all cores core displayed */
  98. int32_t core[2];
  99. };
  100. /* target back off timer */
  101. struct backoff_timer {
  102. int times;
  103. int count;
  104. };
  105. /* target_type.h contains the full definition of struct target_type */
  106. struct target {
  107. struct target_type *type; /* target type definition (name, access functions) */
  108. const char *cmd_name; /* tcl Name of target */
  109. int target_number; /* DO NOT USE! field to be removed in 2010 */
  110. struct jtag_tap *tap; /* where on the jtag chain is this */
  111. int32_t coreid; /* which device on the TAP? */
  112. const char *variant; /* what variant of this chip is it? */
  113. /**
  114. * Indicates whether this target has been examined.
  115. *
  116. * Do @b not access this field directly, use target_was_examined()
  117. * or target_set_examined().
  118. */
  119. bool examined;
  120. /**
  121. * true if the target is currently running a downloaded
  122. * "algorithm" instead of arbitrary user code. OpenOCD code
  123. * invoking algorithms is trusted to maintain correctness of
  124. * any cached state (e.g. for flash status), which arbitrary
  125. * code will have no reason to know about.
  126. */
  127. bool running_alg;
  128. struct target_event_action *event_action;
  129. int reset_halt; /* attempt resetting the CPU into the halted mode? */
  130. uint32_t working_area; /* working area (initialised RAM). Evaluated
  131. * upon first allocation from virtual/physical address. */
  132. bool working_area_virt_spec; /* virtual address specified? */
  133. uint32_t working_area_virt; /* virtual address */
  134. bool working_area_phys_spec; /* virtual address specified? */
  135. uint32_t working_area_phys; /* physical address */
  136. uint32_t working_area_size; /* size in bytes */
  137. uint32_t backup_working_area; /* whether the content of the working area has to be preserved */
  138. struct working_area *working_areas;/* list of allocated working areas */
  139. enum target_debug_reason debug_reason;/* reason why the target entered debug state */
  140. enum target_endianness endianness; /* target endianness */
  141. /* also see: target_state_name() */
  142. enum target_state state; /* the current backend-state (running, halted, ...) */
  143. struct reg_cache *reg_cache; /* the first register cache of the target (core regs) */
  144. struct breakpoint *breakpoints; /* list of breakpoints */
  145. struct watchpoint *watchpoints; /* list of watchpoints */
  146. struct trace *trace_info; /* generic trace information */
  147. struct debug_msg_receiver *dbgmsg; /* list of debug message receivers */
  148. uint32_t dbg_msg_enabled; /* debug message status */
  149. void *arch_info; /* architecture specific information */
  150. struct target *next; /* next target in list */
  151. int display; /* display async info in telnet session. Do not display
  152. * lots of halted/resumed info when stepping in debugger. */
  153. bool halt_issued; /* did we transition to halted state? */
  154. long long halt_issued_time; /* Note time when halt was issued */
  155. bool dbgbase_set; /* By default the debug base is not set */
  156. uint32_t dbgbase; /* Really a Cortex-A specific option, but there is no
  157. * system in place to support target specific options
  158. * currently. */
  159. struct rtos *rtos; /* Instance of Real Time Operating System support */
  160. bool rtos_auto_detect; /* A flag that indicates that the RTOS has been specified as "auto"
  161. * and must be detected when symbols are offered */
  162. struct backoff_timer backoff;
  163. int smp; /* add some target attributes for smp support */
  164. struct target_list *head;
  165. /* the gdb service is there in case of smp, we have only one gdb server
  166. * for all smp target
  167. * the target attached to the gdb is changing dynamically by changing
  168. * gdb_service->target pointer */
  169. struct gdb_service *gdb_service;
  170. };
  171. struct target_list {
  172. struct target *target;
  173. struct target_list *next;
  174. };
  175. /** Returns the instance-specific name of the specified target. */
  176. static inline const char *target_name(struct target *target)
  177. {
  178. return target->cmd_name;
  179. }
  180. const char *debug_reason_name(struct target *t);
  181. enum target_event {
  182. /* allow GDB to do stuff before others handle the halted event,
  183. * this is in lieu of defining ordering of invocation of events,
  184. * which would be more complicated
  185. *
  186. * Telling GDB to halt does not mean that the target stopped running,
  187. * simply that we're dropping out of GDB's waiting for step or continue.
  188. *
  189. * This can be useful when e.g. detecting power dropout.
  190. */
  191. TARGET_EVENT_GDB_HALT,
  192. TARGET_EVENT_HALTED, /* target entered debug state from normal execution or reset */
  193. TARGET_EVENT_RESUMED, /* target resumed to normal execution */
  194. TARGET_EVENT_RESUME_START,
  195. TARGET_EVENT_RESUME_END,
  196. TARGET_EVENT_GDB_START, /* debugger started execution (step/run) */
  197. TARGET_EVENT_GDB_END, /* debugger stopped execution (step/run) */
  198. TARGET_EVENT_RESET_START,
  199. TARGET_EVENT_RESET_ASSERT_PRE,
  200. TARGET_EVENT_RESET_ASSERT, /* C code uses this instead of SRST */
  201. TARGET_EVENT_RESET_ASSERT_POST,
  202. TARGET_EVENT_RESET_DEASSERT_PRE,
  203. TARGET_EVENT_RESET_DEASSERT_POST,
  204. TARGET_EVENT_RESET_HALT_PRE,
  205. TARGET_EVENT_RESET_HALT_POST,
  206. TARGET_EVENT_RESET_WAIT_PRE,
  207. TARGET_EVENT_RESET_WAIT_POST,
  208. TARGET_EVENT_RESET_INIT,
  209. TARGET_EVENT_RESET_END,
  210. TARGET_EVENT_DEBUG_HALTED, /* target entered debug state, but was executing on behalf of the debugger */
  211. TARGET_EVENT_DEBUG_RESUMED, /* target resumed to execute on behalf of the debugger */
  212. TARGET_EVENT_EXAMINE_START,
  213. TARGET_EVENT_EXAMINE_END,
  214. TARGET_EVENT_GDB_ATTACH,
  215. TARGET_EVENT_GDB_DETACH,
  216. TARGET_EVENT_GDB_FLASH_ERASE_START,
  217. TARGET_EVENT_GDB_FLASH_ERASE_END,
  218. TARGET_EVENT_GDB_FLASH_WRITE_START,
  219. TARGET_EVENT_GDB_FLASH_WRITE_END,
  220. };
  221. struct target_event_action {
  222. enum target_event event;
  223. struct Jim_Interp *interp;
  224. struct Jim_Obj *body;
  225. int has_percent;
  226. struct target_event_action *next;
  227. };
  228. bool target_has_event_action(struct target *target, enum target_event event);
  229. struct target_event_callback {
  230. int (*callback)(struct target *target, enum target_event event, void *priv);
  231. void *priv;
  232. struct target_event_callback *next;
  233. };
  234. struct target_timer_callback {
  235. int (*callback)(void *priv);
  236. int time_ms;
  237. int periodic;
  238. struct timeval when;
  239. void *priv;
  240. struct target_timer_callback *next;
  241. };
  242. int target_register_commands(struct command_context *cmd_ctx);
  243. int target_examine(void);
  244. int target_register_event_callback(
  245. int (*callback)(struct target *target,
  246. enum target_event event, void *priv),
  247. void *priv);
  248. int target_unregister_event_callback(
  249. int (*callback)(struct target *target,
  250. enum target_event event, void *priv),
  251. void *priv);
  252. /* Poll the status of the target, detect any error conditions and report them.
  253. *
  254. * Also note that this fn will clear such error conditions, so a subsequent
  255. * invocation will then succeed.
  256. *
  257. * These error conditions can be "sticky" error conditions. E.g. writing
  258. * to memory could be implemented as an open loop and if memory writes
  259. * fails, then a note is made of it, the error is sticky, but the memory
  260. * write loop still runs to completion. This improves performance in the
  261. * normal case as there is no need to verify that every single write succeed,
  262. * yet it is possible to detect error conditions.
  263. */
  264. int target_poll(struct target *target);
  265. int target_resume(struct target *target, int current, uint32_t address,
  266. int handle_breakpoints, int debug_execution);
  267. int target_halt(struct target *target);
  268. int target_call_event_callbacks(struct target *target, enum target_event event);
  269. /**
  270. * The period is very approximate, the callback can happen much more often
  271. * or much more rarely than specified
  272. */
  273. int target_register_timer_callback(int (*callback)(void *priv),
  274. int time_ms, int periodic, void *priv);
  275. int target_call_timer_callbacks(void);
  276. /**
  277. * Invoke this to ensure that e.g. polling timer callbacks happen before
  278. * a synchronous command completes.
  279. */
  280. int target_call_timer_callbacks_now(void);
  281. struct target *get_current_target(struct command_context *cmd_ctx);
  282. struct target *get_target(const char *id);
  283. /**
  284. * Get the target type name.
  285. *
  286. * This routine is a wrapper for the target->type->name field.
  287. * Note that this is not an instance-specific name for his target.
  288. */
  289. const char *target_type_name(struct target *target);
  290. /**
  291. * Examine the specified @a target, letting it perform any
  292. * Initialisation that requires JTAG access.
  293. *
  294. * This routine is a wrapper for target->type->examine.
  295. */
  296. int target_examine_one(struct target *target);
  297. /** @returns @c true if target_set_examined() has been called. */
  298. static inline bool target_was_examined(struct target *target)
  299. {
  300. return target->examined;
  301. }
  302. /** Sets the @c examined flag for the given target. */
  303. /** Use in target->type->examine() after one-time setup is done. */
  304. static inline void target_set_examined(struct target *target)
  305. {
  306. target->examined = true;
  307. }
  308. /**
  309. * Add the @a breakpoint for @a target.
  310. *
  311. * This routine is a wrapper for target->type->add_breakpoint.
  312. */
  313. int target_add_breakpoint(struct target *target,
  314. struct breakpoint *breakpoint);
  315. /**
  316. * Add the @a ContextID breakpoint for @a target.
  317. *
  318. * This routine is a wrapper for target->type->add_context_breakpoint.
  319. */
  320. int target_add_context_breakpoint(struct target *target,
  321. struct breakpoint *breakpoint);
  322. /**
  323. * Add the @a ContextID & IVA breakpoint for @a target.
  324. *
  325. * This routine is a wrapper for target->type->add_hybrid_breakpoint.
  326. */
  327. int target_add_hybrid_breakpoint(struct target *target,
  328. struct breakpoint *breakpoint);
  329. /**
  330. * Remove the @a breakpoint for @a target.
  331. *
  332. * This routine is a wrapper for target->type->remove_breakpoint.
  333. */
  334. int target_remove_breakpoint(struct target *target,
  335. struct breakpoint *breakpoint);
  336. /**
  337. * Add the @a watchpoint for @a target.
  338. *
  339. * This routine is a wrapper for target->type->add_watchpoint.
  340. */
  341. int target_add_watchpoint(struct target *target,
  342. struct watchpoint *watchpoint);
  343. /**
  344. * Remove the @a watchpoint for @a target.
  345. *
  346. * This routine is a wrapper for target->type->remove_watchpoint.
  347. */
  348. int target_remove_watchpoint(struct target *target,
  349. struct watchpoint *watchpoint);
  350. /**
  351. * Obtain the registers for GDB.
  352. *
  353. * This routine is a wrapper for target->type->get_gdb_reg_list.
  354. */
  355. int target_get_gdb_reg_list(struct target *target,
  356. struct reg **reg_list[], int *reg_list_size);
  357. /**
  358. * Step the target.
  359. *
  360. * This routine is a wrapper for target->type->step.
  361. */
  362. int target_step(struct target *target,
  363. int current, uint32_t address, int handle_breakpoints);
  364. /**
  365. * Run an algorithm on the @a target given.
  366. *
  367. * This routine is a wrapper for target->type->run_algorithm.
  368. */
  369. int target_run_algorithm(struct target *target,
  370. int num_mem_params, struct mem_param *mem_params,
  371. int num_reg_params, struct reg_param *reg_param,
  372. uint32_t entry_point, uint32_t exit_point,
  373. int timeout_ms, void *arch_info);
  374. /**
  375. * Starts an algorithm in the background on the @a target given.
  376. *
  377. * This routine is a wrapper for target->type->start_algorithm.
  378. */
  379. int target_start_algorithm(struct target *target,
  380. int num_mem_params, struct mem_param *mem_params,
  381. int num_reg_params, struct reg_param *reg_params,
  382. uint32_t entry_point, uint32_t exit_point,
  383. void *arch_info);
  384. /**
  385. * Wait for an algorithm on the @a target given.
  386. *
  387. * This routine is a wrapper for target->type->wait_algorithm.
  388. */
  389. int target_wait_algorithm(struct target *target,
  390. int num_mem_params, struct mem_param *mem_params,
  391. int num_reg_params, struct reg_param *reg_params,
  392. uint32_t exit_point, int timeout_ms,
  393. void *arch_info);
  394. /**
  395. * This routine is a wrapper for asynchronous algorithms.
  396. *
  397. */
  398. int target_run_flash_async_algorithm(struct target *target,
  399. uint8_t *buffer, uint32_t count, int block_size,
  400. int num_mem_params, struct mem_param *mem_params,
  401. int num_reg_params, struct reg_param *reg_params,
  402. uint32_t buffer_start, uint32_t buffer_size,
  403. uint32_t entry_point, uint32_t exit_point,
  404. void *arch_info);
  405. /**
  406. * Read @a count items of @a size bytes from the memory of @a target at
  407. * the @a address given.
  408. *
  409. * This routine is a wrapper for target->type->read_memory.
  410. */
  411. int target_read_memory(struct target *target,
  412. uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
  413. int target_read_phys_memory(struct target *target,
  414. uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
  415. /**
  416. * Write @a count items of @a size bytes to the memory of @a target at
  417. * the @a address given. @a address must be aligned to @a size
  418. * in target memory.
  419. *
  420. * The endianness is the same in the host and target memory for this
  421. * function.
  422. *
  423. * \todo TODO:
  424. * Really @a buffer should have been defined as "const void *" and
  425. * @a buffer should have been aligned to @a size in the host memory.
  426. *
  427. * This is not enforced via e.g. assert's today and e.g. the
  428. * target_write_buffer fn breaks this assumption.
  429. *
  430. * This routine is wrapper for target->type->write_memory.
  431. */
  432. int target_write_memory(struct target *target,
  433. uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
  434. int target_write_phys_memory(struct target *target,
  435. uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
  436. /*
  437. * Write to target memory using the virtual address.
  438. *
  439. * Note that this fn is used to implement software breakpoints. Targets
  440. * can implement support for software breakpoints to memory marked as read
  441. * only by making this fn write to ram even if it is read only(MMU or
  442. * MPUs).
  443. *
  444. * It is sufficient to implement for writing a single word(16 or 32 in
  445. * ARM32/16 bit case) to write the breakpoint to ram.
  446. *
  447. * The target should also take care of "other things" to make sure that
  448. * software breakpoints can be written using this function. E.g.
  449. * when there is a separate instruction and data cache, this fn must
  450. * make sure that the instruction cache is synced up to the potential
  451. * code change that can happen as a result of the memory write(typically
  452. * by invalidating the cache).
  453. *
  454. * The high level wrapper fn in target.c will break down this memory write
  455. * request to multiple write requests to the target driver to e.g. guarantee
  456. * that writing 4 bytes to an aligned address happens with a single 32 bit
  457. * write operation, thus making this fn suitable to e.g. write to special
  458. * peripheral registers which do not support byte operations.
  459. */
  460. int target_write_buffer(struct target *target,
  461. uint32_t address, uint32_t size, const uint8_t *buffer);
  462. int target_read_buffer(struct target *target,
  463. uint32_t address, uint32_t size, uint8_t *buffer);
  464. int target_checksum_memory(struct target *target,
  465. uint32_t address, uint32_t size, uint32_t *crc);
  466. int target_blank_check_memory(struct target *target,
  467. uint32_t address, uint32_t size, uint32_t *blank);
  468. int target_wait_state(struct target *target, enum target_state state, int ms);
  469. /** Return the *name* of this targets current state */
  470. const char *target_state_name(struct target *target);
  471. /* DANGER!!!!!
  472. *
  473. * if "area" passed in to target_alloc_working_area() points to a memory
  474. * location that goes out of scope (e.g. a pointer on the stack), then
  475. * the caller of target_alloc_working_area() is responsible for invoking
  476. * target_free_working_area() before "area" goes out of scope.
  477. *
  478. * target_free_all_working_areas() will NULL out the "area" pointer
  479. * upon resuming or resetting the CPU.
  480. *
  481. */
  482. int target_alloc_working_area(struct target *target,
  483. uint32_t size, struct working_area **area);
  484. /* Same as target_alloc_working_area, except that no error is logged
  485. * when ERROR_TARGET_RESOURCE_NOT_AVAILABLE is returned.
  486. *
  487. * This allows the calling code to *try* to allocate target memory
  488. * and have a fallback to another behaviour(slower?).
  489. */
  490. int target_alloc_working_area_try(struct target *target,
  491. uint32_t size, struct working_area **area);
  492. int target_free_working_area(struct target *target, struct working_area *area);
  493. void target_free_all_working_areas(struct target *target);
  494. uint32_t target_get_working_area_avail(struct target *target);
  495. extern struct target *all_targets;
  496. uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer);
  497. uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer);
  498. uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer);
  499. void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value);
  500. void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value);
  501. void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value);
  502. void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf);
  503. void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf);
  504. void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf);
  505. void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf);
  506. int target_read_u32(struct target *target, uint32_t address, uint32_t *value);
  507. int target_read_u16(struct target *target, uint32_t address, uint16_t *value);
  508. int target_read_u8(struct target *target, uint32_t address, uint8_t *value);
  509. int target_write_u32(struct target *target, uint32_t address, uint32_t value);
  510. int target_write_u16(struct target *target, uint32_t address, uint16_t value);
  511. int target_write_u8(struct target *target, uint32_t address, uint8_t value);
  512. /* Issues USER() statements with target state information */
  513. int target_arch_state(struct target *target);
  514. void target_handle_event(struct target *t, enum target_event e);
  515. #define ERROR_TARGET_INVALID (-300)
  516. #define ERROR_TARGET_INIT_FAILED (-301)
  517. #define ERROR_TARGET_TIMEOUT (-302)
  518. #define ERROR_TARGET_NOT_HALTED (-304)
  519. #define ERROR_TARGET_FAILURE (-305)
  520. #define ERROR_TARGET_UNALIGNED_ACCESS (-306)
  521. #define ERROR_TARGET_DATA_ABORT (-307)
  522. #define ERROR_TARGET_RESOURCE_NOT_AVAILABLE (-308)
  523. #define ERROR_TARGET_TRANSLATION_FAULT (-309)
  524. #define ERROR_TARGET_NOT_RUNNING (-310)
  525. #define ERROR_TARGET_NOT_EXAMINED (-311)
  526. extern bool get_target_reset_nag(void);
  527. #endif /* TARGET_H */