You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3694 lines
129 KiB

  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename openocd.info
  4. @settitle Open On-Chip Debugger (OpenOCD)
  5. @dircategory Development
  6. @direntry
  7. @paragraphindent 0
  8. * OpenOCD: (openocd). Open On-Chip Debugger.
  9. @end direntry
  10. @c %**end of header
  11. @include version.texi
  12. @copying
  13. @itemize @bullet
  14. @item Copyright @copyright{} 2008 The OpenOCD Project
  15. @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
  16. @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
  17. @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
  18. @end itemize
  19. @quotation
  20. Permission is granted to copy, distribute and/or modify this document
  21. under the terms of the GNU Free Documentation License, Version 1.2 or
  22. any later version published by the Free Software Foundation; with no
  23. Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
  24. Texts. A copy of the license is included in the section entitled ``GNU
  25. Free Documentation License''.
  26. @end quotation
  27. @end copying
  28. @titlepage
  29. @title Open On-Chip Debugger (OpenOCD)
  30. @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
  31. @subtitle @value{UPDATED}
  32. @page
  33. @vskip 0pt plus 1filll
  34. @insertcopying
  35. @end titlepage
  36. @summarycontents
  37. @contents
  38. @node Top, About, , (dir)
  39. @top OpenOCD
  40. This manual documents edition @value{EDITION} of the Open On-Chip Debugger
  41. (OpenOCD) version @value{VERSION}, @value{UPDATED}.
  42. @insertcopying
  43. @menu
  44. * About:: About OpenOCD.
  45. * Developers:: OpenOCD developers
  46. * Building:: Building OpenOCD
  47. * JTAG Hardware Dongles:: JTAG Hardware Dongles
  48. * Running:: Running OpenOCD
  49. * Simple Configuration Files:: Simple Configuration Files
  50. * Config File Guidelines:: Config File Guidelines
  51. * About JIM-Tcl:: About JIM-Tcl
  52. * Daemon Configuration:: Daemon Configuration
  53. * Interface - Dongle Configuration:: Interface - Dongle Configuration
  54. * Reset Configuration:: Reset Configuration
  55. * Tap Creation:: Tap Creation
  56. * Target Configuration:: Target Configuration
  57. * Flash Configuration:: Flash Configuration
  58. * General Commands:: General Commands
  59. * JTAG Commands:: JTAG Commands
  60. * Sample Scripts:: Sample Target Scripts
  61. * TFTP:: TFTP
  62. * GDB and OpenOCD:: Using GDB and OpenOCD
  63. * TCL scripting API:: Tcl scripting API
  64. * Upgrading:: Deprecated/Removed Commands
  65. * Target library:: Target library
  66. * FAQ:: Frequently Asked Questions
  67. * TCL Crash Course:: TCL Crash Course
  68. * License:: GNU Free Documentation License
  69. @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
  70. @comment case issue with ``Index.html'' and ``index.html''
  71. @comment Occurs when creating ``--html --no-split'' output
  72. @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
  73. * OpenOCD Index:: Main index.
  74. @end menu
  75. @node About
  76. @unnumbered About
  77. @cindex about
  78. The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
  79. in-system programming and boundary-scan testing for embedded target
  80. devices.
  81. @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
  82. with the JTAG (IEEE 1149.1) complient taps on your target board.
  83. @b{Dongles:} OpenOCD currently many types of hardware dongles: USB
  84. Based, Parallel Port Based, and other standalone boxes that run
  85. OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
  86. @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920t,
  87. ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
  88. Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
  89. debugged via the GDB Protocol.
  90. @b{Flash Programing:} Flash writing is supported for external CFI
  91. compatible flashes (Intel and AMD/Spansion command set) and several
  92. internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
  93. STM32x). Preliminary support for using the LPC3180's NAND flash
  94. controller is included.
  95. @node Developers
  96. @chapter Developers
  97. @cindex developers
  98. OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
  99. University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
  100. Others interested in improving the state of free and open debug and testing technology
  101. are welcome to participate.
  102. Other developers have contributed support for additional targets and flashes as well
  103. as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
  104. The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
  105. @node Building
  106. @chapter Building
  107. @cindex building OpenOCD
  108. If you are interested in getting actual work done rather than building
  109. OpenOCD, then check if your interface supplier provides binaries for
  110. you. Chances are that that binary is from some SVN version that is more
  111. stable than SVN trunk where bleeding edge development takes place.
  112. You can download the current SVN version with SVN client of your choice from the
  113. following repositories:
  114. (@uref{svn://svn.berlios.de/openocd/trunk})
  115. or
  116. (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
  117. Using the SVN command line client, you can use the following command to fetch the
  118. latest version (make sure there is no (non-svn) directory called "openocd" in the
  119. current directory):
  120. @example
  121. svn checkout svn://svn.berlios.de/openocd/trunk openocd
  122. @end example
  123. Building OpenOCD requires a recent version of the GNU autotools.
  124. On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
  125. you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
  126. other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
  127. paths, resulting in obscure dependency errors (This is an observation I've gathered
  128. from the logs of one user - correct me if I'm wrong).
  129. You further need the appropriate driver files, if you want to build support for
  130. a FTDI FT2232 based interface:
  131. @itemize @bullet
  132. @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
  133. @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
  134. @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
  135. homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
  136. @end itemize
  137. libftdi is supported under windows. Versions earlier than 0.13 will require patching.
  138. see contrib/libftdi for more details.
  139. In general, the D2XX driver provides superior performance (several times as fast),
  140. but has the draw-back of being binary-only - though that isn't that bad, as it isn't
  141. a kernel module, only a user space library.
  142. To build OpenOCD (on both Linux and Cygwin), use the following commands:
  143. @example
  144. ./bootstrap
  145. @end example
  146. Bootstrap generates the configure script, and prepares building on your system.
  147. @example
  148. ./configure
  149. @end example
  150. Configure generates the Makefiles used to build OpenOCD.
  151. @example
  152. make
  153. @end example
  154. Make builds OpenOCD, and places the final executable in ./src/.
  155. The configure script takes several options, specifying which JTAG interfaces
  156. should be included:
  157. @itemize @bullet
  158. @item
  159. @option{--enable-parport}
  160. @item
  161. @option{--enable-parport_ppdev}
  162. @item
  163. @option{--enable-parport_giveio}
  164. @item
  165. @option{--enable-amtjtagaccel}
  166. @item
  167. @option{--enable-ft2232_ftd2xx}
  168. @footnote{Using the latest D2XX drivers from FTDI and following their installation
  169. instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
  170. build properly.}
  171. @item
  172. @option{--enable-ft2232_libftdi}
  173. @item
  174. @option{--with-ftd2xx=/path/to/d2xx/}
  175. @item
  176. @option{--enable-gw16012}
  177. @item
  178. @option{--enable-usbprog}
  179. @item
  180. @option{--enable-presto_libftdi}
  181. @item
  182. @option{--enable-presto_ftd2xx}
  183. @item
  184. @option{--enable-jlink}
  185. @item
  186. @option{--enable-rlink}
  187. @end itemize
  188. If you want to access the parallel port using the PPDEV interface you have to specify
  189. both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
  190. the @option{--enable-parport_ppdev} option actually is an option to the parport driver
  191. (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
  192. Cygwin users have to specify the location of the FTDI D2XX package. This should be an
  193. absolute path containing no spaces.
  194. Linux users should copy the various parts of the D2XX package to the appropriate
  195. locations, i.e. /usr/include, /usr/lib.
  196. Miscellaneous configure options
  197. @itemize @bullet
  198. @item
  199. @option{--enable-gccwarnings} - enable extra gcc warnings during build
  200. @end itemize
  201. @node JTAG Hardware Dongles
  202. @chapter JTAG Hardware Dongles
  203. @cindex dongles
  204. @cindex ftdi
  205. @cindex wiggler
  206. @cindex zy1000
  207. @cindex printer port
  208. @cindex usb adapter
  209. @cindex rtck
  210. Defined: @b{dongle}: A small device that plugins into a computer and serves as
  211. an adapter .... [snip]
  212. In the OpenOCD case, this generally refers to @b{a small adapater} one
  213. attaches to your computer via USB or the Parallel Printer Port. The
  214. execption being the Zylin ZY1000 which is a small box you attach via
  215. an ethernet cable.
  216. @section Choosing a Dongle
  217. There are three things you should keep in mind when choosing a dongle.
  218. @enumerate
  219. @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
  220. @item @b{Connection} Printer Ports - Does your computer have one?
  221. @item @b{Connection} Is that long printer bit-bang cable practical?
  222. @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
  223. @end enumerate
  224. @section Stand alone Systems
  225. @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
  226. dongle, but a standalone box.
  227. @section USB FT2232 Based
  228. There are many USB jtag dongles on the market, many of them are based
  229. on a chip from ``Future Technology Devices International'' (FTDI)
  230. known as the FTDI FT2232.
  231. See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
  232. As of 28/Nov/2008, the following are supported:
  233. @itemize @bullet
  234. @item @b{usbjtag}
  235. @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
  236. @item @b{jtagkey}
  237. @* See: @url{http://www.amontec.com/jtagkey.shtml}
  238. @item @b{oocdlink}
  239. @* See: @url{http://www.oocdlink.com} By Joern Kaipf
  240. @item @b{signalyzer}
  241. @* See: @url{http://www.signalyzer.com}
  242. @item @b{evb_lm3s811}
  243. @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
  244. @item @b{olimex-jtag}
  245. @* See: @url{http://www.olimex.com}
  246. @item @b{flyswatter}
  247. @* See: @url{http://www.tincantools.com}
  248. @item @b{turtelizer2}
  249. @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
  250. @item @b{comstick}
  251. @* Link: @url{http://www.hitex.com/index.php?id=383}
  252. @item @b{stm32stick}
  253. @* Link @url{http://www.hitex.com/stm32-stick}
  254. @item @b{axm0432_jtag}
  255. @* Axiom AXM-0432 Link @url{http://www.axman.com}
  256. @end itemize
  257. @section USB JLINK based
  258. There are several OEM versions of the Segger @b{JLINK} adapter. It is
  259. an example of a micro controller based JTAG adapter, it uses an
  260. AT91SAM764 internally.
  261. @itemize @bullet
  262. @item @b{ATMEL SAMICE} Only works with ATMEL chips!
  263. @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
  264. @item @b{SEGGER JLINK}
  265. @* Link: @url{http://www.segger.com/jlink.html}
  266. @item @b{IAR J-Link}
  267. @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
  268. @end itemize
  269. @section USB RLINK based
  270. Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
  271. @itemize @bullet
  272. @item @b{Raisonance RLink}
  273. @* Link: @url{http://www.raisonance.com/products/RLink.php}
  274. @item @b{STM32 Primer}
  275. @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
  276. @item @b{STM32 Primer2}
  277. @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
  278. @end itemize
  279. @section USB Other
  280. @itemize @bullet
  281. @item @b{USBprog}
  282. @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
  283. @item @b{USB - Presto}
  284. @* Link: @url{http://tools.asix.net/prg_presto.htm}
  285. @end itemize
  286. @section IBM PC Parallel Printer Port Based
  287. The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
  288. and the MacGraigor Wiggler. There are many clones and variations of
  289. these on the market.
  290. @itemize @bullet
  291. @item @b{Wiggler} - There are many clones of this.
  292. @* Link: @url{http://www.macraigor.com/wiggler.htm}
  293. @item @b{DLC5} - From XILINX - There are many clones of this
  294. @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
  295. produced, PDF schematics are easily found and it is easy to make.
  296. @item @b{Amontec - JTAG Accelerator}
  297. @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
  298. @item @b{GW16402}
  299. @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
  300. @item @b{Wiggler2}
  301. @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
  302. @item @b{Wiggler_ntrst_inverted}
  303. @* Yet another variation - See the source code, src/jtag/parport.c
  304. @item @b{old_amt_wiggler}
  305. @* Unknown - probably not on the market today
  306. @item @b{arm-jtag}
  307. @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
  308. @item @b{chameleon}
  309. @* Link: @url{http://www.amontec.com/chameleon.shtml}
  310. @item @b{Triton}
  311. @* Unknown.
  312. @item @b{Lattice}
  313. @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
  314. @item @b{flashlink}
  315. @* From ST Microsystems, link:
  316. @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
  317. Title: FlashLINK JTAG programing cable for PSD and uPSD
  318. @end itemize
  319. @section Other...
  320. @itemize @bullet
  321. @item @b{ep93xx}
  322. @* An EP93xx based linux machine using the GPIO pins directly.
  323. @item @b{at91rm9200}
  324. @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
  325. @end itemize
  326. @node Running
  327. @chapter Running
  328. @cindex running OpenOCD
  329. @cindex --configfile
  330. @cindex --debug_level
  331. @cindex --logfile
  332. @cindex --search
  333. The @option{--help} option shows:
  334. @verbatim
  335. bash$ openocd --help
  336. --help | -h display this help
  337. --version | -v display OpenOCD version
  338. --file | -f use configuration file <name>
  339. --search | -s dir to search for config files and scripts
  340. --debug | -d set debug level <0-3>
  341. --log_output | -l redirect log output to file <name>
  342. --command | -c run <command>
  343. --pipe | -p use pipes when talking to gdb
  344. @end verbatim
  345. By default OpenOCD reads the file configuration file ``openocd.cfg''
  346. in the current directory. To specify a different (or multiple)
  347. configuration file, you can use the ``-f'' option. For example:
  348. @example
  349. openocd -f config1.cfg -f config2.cfg -f config3.cfg
  350. @end example
  351. Once started, OpenOCD runs as a daemon, waiting for connections from
  352. clients (Telnet, GDB, Other).
  353. If you are having problems, you can enable internal debug messages via
  354. the ``-d'' option.
  355. Also it is possible to interleave commands w/config scripts using the
  356. @option{-c} command line switch.
  357. To enable debug output (when reporting problems or working on OpenOCD
  358. itself), use the @option{-d} command line switch. This sets the
  359. @option{debug_level} to "3", outputting the most information,
  360. including debug messages. The default setting is "2", outputting only
  361. informational messages, warnings and errors. You can also change this
  362. setting from within a telnet or gdb session using @option{debug_level
  363. <n>} @xref{debug_level}.
  364. You can redirect all output from the daemon to a file using the
  365. @option{-l <logfile>} switch.
  366. Search paths for config/script files can be added to OpenOCD by using
  367. the @option{-s <search>} switch. The current directory and the OpenOCD
  368. target library is in the search path by default.
  369. For details on the @option{-p} option. @xref{Connecting to GDB}.
  370. Option @option{-p} is not currently supported under native win32.
  371. Note! OpenOCD will launch the GDB & telnet server even if it can not
  372. establish a connection with the target. In general, it is possible for
  373. the JTAG controller to be unresponsive until the target is set up
  374. correctly via e.g. GDB monitor commands in a GDB init script.
  375. @node Simple Configuration Files
  376. @chapter Simple Configuration Files
  377. @cindex configuration
  378. @section Outline
  379. There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
  380. @enumerate
  381. @item A small openocd.cfg file which ``sources'' other configuration files
  382. @item A monolithic openocd.cfg file
  383. @item Many -f filename options on the command line
  384. @item Your Mixed Solution
  385. @end enumerate
  386. @section Small configuration file method
  387. This is the prefered method, it is simple and is works well for many
  388. people. The developers of OpenOCD would encourage you to use this
  389. method. If you create a new configuration please email new
  390. configurations to the development list.
  391. Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
  392. @example
  393. source [find interface/signalyzer.cfg]
  394. # Change the default telnet port...
  395. telnet_port 4444
  396. # GDB connects here
  397. gdb_port 3333
  398. # GDB can also flash my flash!
  399. gdb_memory_map enable
  400. gdb_flash_program enable
  401. source [find target/sam7x256.cfg]
  402. @end example
  403. There are many example configuration scripts you can work with. You
  404. should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
  405. should find:
  406. @enumerate
  407. @item @b{board} - eval board level configurations
  408. @item @b{interface} - specific dongle configurations
  409. @item @b{target} - the target chips
  410. @item @b{tcl} - helper scripts
  411. @item @b{xscale} - things specific to the xscale.
  412. @end enumerate
  413. Look first in the ``boards'' area, then the ``targets'' area. Often a board
  414. configuration is a good example to work from.
  415. @section Many -f filename options
  416. Some believe this is a wonderful solution, others find it painful.
  417. You can use a series of ``-f filename'' options on the command line,
  418. OpenOCD will read each filename in sequence, for example:
  419. @example
  420. openocd -f file1.cfg -f file2.cfg -f file2.cfg
  421. @end example
  422. You can also intermix various commands with the ``-c'' command line
  423. option.
  424. @section Monolithic file
  425. The ``Monolithic File'' dispenses with all ``source'' statements and
  426. puts everything in one self contained (monolithic) file. This is not
  427. encouraged.
  428. Please try to ``source'' various files or use the multiple -f
  429. technique.
  430. @section Advice for you
  431. Often, one uses a ``mixed approach''. Where possible, please try to
  432. ``source'' common things, and if needed cut/paste parts of the
  433. standard distribution configuration files as needed.
  434. @b{REMEMBER:} The ``important parts'' of your configuration file are:
  435. @enumerate
  436. @item @b{Interface} - Defines the dongle
  437. @item @b{Taps} - Defines the JTAG Taps
  438. @item @b{GDB Targets} - What GDB talks to
  439. @item @b{Flash Programing} - Very Helpful
  440. @end enumerate
  441. Some key things you should look at and understand are:
  442. @enumerate
  443. @item The RESET configuration of your debug environment as a hole
  444. @item Is there a ``work area'' that OpenOCD can use?
  445. @* For ARM - work areas mean up to 10x faster downloads.
  446. @item For MMU/MPU based ARM chips (ie: ARM9 and later) will that work area still be available?
  447. @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
  448. @end enumerate
  449. @node Config File Guidelines
  450. @chapter Config File Guidelines
  451. This section/chapter is aimed at developers and integrators of
  452. OpenOCD. These are guidelines for creating new boards and new target
  453. configurations as of 28/Nov/2008.
  454. However, you the user of OpenOCD should be some what familiar with
  455. this section as it should help explain some of the internals of what
  456. you might be looking at.
  457. The user should find under @t{$(INSTALLDIR)/lib/openocd} the
  458. following directories:
  459. @itemize @bullet
  460. @item @b{interface}
  461. @*Think JTAG Dongle. Files that configure the jtag dongle go here.
  462. @item @b{board}
  463. @* Thing Circuit Board, PWA, PCB, they go by many names. Board files
  464. contain initialization items that are specific to a board - for
  465. example: The SDRAM initialization sequence for the board, or the type
  466. of external flash and what address it is found at. Any initialization
  467. sequence to enable that external flash or sdram should be found in the
  468. board file. Boards may also contain multiple targets, ie: Two cpus, or
  469. a CPU and an FPGA or CPLD.
  470. @item @b{target}
  471. @* Think CHIP. The ``target'' directory represents a jtag tap (or
  472. chip) OpenOCD should control, not a board. Two common types of targets
  473. are ARM chips and FPGA or CPLD chips.
  474. @end itemize
  475. @b{If needed...} The user in their ``openocd.cfg'' file or the board
  476. file might override a specific feature in any of the above files by
  477. setting a variable or two before sourcing the target file. Or adding
  478. various commands specific to their situation.
  479. @section Interface Config Files
  480. The user should be able to source one of these files via a command like this:
  481. @example
  482. source [find interface/FOOBAR.cfg]
  483. Or:
  484. openocd -f interface/FOOBAR.cfg
  485. @end example
  486. A preconfigured interface file should exist for every interface in use
  487. today, that said, perhaps some interfaces have only been used by the
  488. sole developer who created it.
  489. @b{FIXME/NOTE:} We need to add support for a variable like TCL variable
  490. tcl_platform(platform), it should be called jim_platform (because it
  491. is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
  492. ``cygwin'' or ``mingw''
  493. Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
  494. @section Board Config Files
  495. @b{Note: BOARD directory NEW as of 28/nov/2008}
  496. The user should be able to source one of these files via a command like this:
  497. @example
  498. source [find board/FOOBAR.cfg]
  499. Or:
  500. openocd -f board/FOOBAR.cfg
  501. @end example
  502. The board file should contain one or more @t{source [find
  503. target/FOO.cfg]} statements along with any board specific things.
  504. In summery the board files should contain (if present)
  505. @enumerate
  506. @item External flash configuration (ie: the flash on CS0)
  507. @item SDRAM configuration (size, speed, etc)
  508. @item Board specific IO configuration (ie: GPIO pins might disable a 2nd flash)
  509. @item Multiple TARGET source statements
  510. @item All things that are not ``inside a chip''
  511. @item Things inside a chip go in a 'target' file
  512. @end enumerate
  513. @section Target Config Files
  514. The user should be able to source one of these files via a command like this:
  515. @example
  516. source [find target/FOOBAR.cfg]
  517. Or:
  518. openocd -f target/FOOBAR.cfg
  519. @end example
  520. In summery the target files should contain
  521. @enumerate
  522. @item Set Defaults
  523. @item Create Taps
  524. @item Reset Configuration
  525. @item Work Areas
  526. @item CPU/Chip/CPU-Core Specific features
  527. @item OnChip Flash
  528. @end enumerate
  529. @subsection Important variable names
  530. By default, the end user should never need to set these
  531. variables. However, if the user needs to override a setting they only
  532. need to set the variable in a simple way.
  533. @itemize @bullet
  534. @item @b{CHIPNAME}
  535. @* This gives a name to the overall chip, and is used as part of the
  536. tap identifier dotted name.
  537. @item @b{ENDIAN}
  538. @* By default little - unless the chip or board is not normally used that way.
  539. @item @b{CPUTAPID}
  540. @* When OpenOCD examines the JTAG chain, it will attempt to identify
  541. every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
  542. to verify the tap id number verses configuration file and may issue an
  543. error or warning like this. The hope is this will help pin point
  544. problem OpenOCD configurations.
  545. @example
  546. Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
  547. Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
  548. Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
  549. Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
  550. @end example
  551. @item @b{_TARGETNAME}
  552. @* By convention, this variable is created by the target configuration
  553. script. The board configuration file may make use of this variable to
  554. configure things like a ``reset init'' script, or other things
  555. specific to that board and that target.
  556. If the chip has 2 targets, use the names @b{_TARGETNAME0},
  557. @b{_TARGETNAME1}, ... etc.
  558. @b{Remember:} The ``board file'' may include multiple targets.
  559. At no time should the name ``target0'' (the default target name if
  560. none was specified) be used. The name ``target0'' is a hard coded name
  561. - the next target on the board will be some other number.
  562. The user (or board file) should reasonably be able to:
  563. @example
  564. source [find target/FOO.cfg]
  565. $_TARGETNAME configure ... FOO specific parameters
  566. source [find target/BAR.cfg]
  567. $_TARGETNAME configure ... BAR specific parameters
  568. @end example
  569. @end itemize
  570. @subsection TCL Variables Guide Line
  571. The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
  572. Thus the rule we follow in OpenOCD is this: Variables that begin with
  573. a leading underscore are temporal in nature, and can be modified and
  574. used at will within a ?TARGET? configuration file
  575. @b{EXAMPLE:} The user should be able to do this:
  576. @example
  577. # Board has 3 chips,
  578. # PXA270 #1 network side, big endian
  579. # PXA270 #2 video side, little endian
  580. # Xilinx Glue logic
  581. set CHIPNAME network
  582. set ENDIAN big
  583. source [find target/pxa270.cfg]
  584. # variable: _TARGETNAME = network.cpu
  585. # other commands can refer to the "network.cpu" tap.
  586. $_TARGETNAME configure .... params for this cpu..
  587. set ENDIAN little
  588. set CHIPNAME video
  589. source [find target/pxa270.cfg]
  590. # variable: _TARGETNAME = video.cpu
  591. # other commands can refer to the "video.cpu" tap.
  592. $_TARGETNAME configure .... params for this cpu..
  593. unset ENDIAN
  594. set CHIPNAME xilinx
  595. source [find target/spartan3.cfg]
  596. # Since $_TARGETNAME is temporal..
  597. # these names still work!
  598. network.cpu configure ... params
  599. video.cpu configure ... params
  600. @end example
  601. @subsection Default Value Boiler Plate Code
  602. All target configuration files should start with this (or a modified form)
  603. @example
  604. # SIMPLE example
  605. if @{ [info exists CHIPNAME] @} @{
  606. set _CHIPNAME $CHIPNAME
  607. @} else @{
  608. set _CHIPNAME sam7x256
  609. @}
  610. if @{ [info exists ENDIAN] @} @{
  611. set _ENDIAN $ENDIAN
  612. @} else @{
  613. set _ENDIAN little
  614. @}
  615. if @{ [info exists CPUTAPID ] @} @{
  616. set _CPUTAPID $CPUTAPID
  617. @} else @{
  618. set _CPUTAPID 0x3f0f0f0f
  619. @}
  620. @end example
  621. @subsection Creating Taps
  622. After the ``defaults'' are choosen, [see above], the taps are created.
  623. @b{SIMPLE example:} such as an Atmel AT91SAM7X256
  624. @example
  625. # for an ARM7TDMI.
  626. set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
  627. jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
  628. @end example
  629. @b{COMPLEX example:}
  630. This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
  631. @enumerate
  632. @item @b{Unform tap names} - See: Tap Naming Convention
  633. @item @b{_TARGETNAME} is created at the end where used.
  634. @end enumerate
  635. @example
  636. if @{ [info exists FLASHTAPID ] @} @{
  637. set _FLASHTAPID $FLASHTAPID
  638. @} else @{
  639. set _FLASHTAPID 0x25966041
  640. @}
  641. jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
  642. if @{ [info exists CPUTAPID ] @} @{
  643. set _CPUTAPID $CPUTAPID
  644. @} else @{
  645. set _CPUTAPID 0x25966041
  646. @}
  647. jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
  648. if @{ [info exists BSTAPID ] @} @{
  649. set _BSTAPID $BSTAPID
  650. @} else @{
  651. set _BSTAPID 0x1457f041
  652. @}
  653. jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
  654. set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
  655. @end example
  656. @b{Tap Naming Convention}
  657. See the command ``jtag newtap'' for detail, but in breif the names you should use are:
  658. @itemize @bullet
  659. @item @b{tap}
  660. @item @b{cpu}
  661. @item @b{flash}
  662. @item @b{bs}
  663. @item @b{jrc}
  664. @item @b{unknownN} - it happens :-(
  665. @end itemize
  666. @subsection Reset Configuration
  667. Some chips have specific ways the TRST and SRST signals are
  668. managed. If these are @b{CHIP SPECIFIC} they go here, if they are
  669. @b{BOARD SPECIFIC} they go in the board file.
  670. @subsection Work Areas
  671. Work areas are small RAM areas used by OpenOCD to speed up downloads,
  672. and to download small snippits of code to program flash chips.
  673. If the chip includes an form of ``on-chip-ram'' - and many do - define
  674. a reasonable work area and use the ``backup'' option.
  675. @b{PROBLEMS:} On more complex chips, this ``work area'' may become
  676. inaccessable if/when the application code enables or disables the MMU.
  677. @subsection ARM Core Specific Hacks
  678. If the chip has a DCC, enable it. If the chip is an arm9 with some
  679. special high speed download - enable it.
  680. If the chip has an ARM ``vector catch'' feature - by defeault enable
  681. it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
  682. user is really writing a handler for those situations - they can
  683. easily disable it. Experiance has shown the ``vector catch'' is
  684. helpful - for common programing errors.
  685. If present, the MMU, the MPU and the CACHE should be disabled.
  686. @subsection Internal Flash Configuration
  687. This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
  688. @b{Never ever} in the ``target configuration file'' define any type of
  689. flash that is external to the chip. (For example the BOOT flash on
  690. Chip Select 0). The BOOT flash information goes in a board file - not
  691. the TARGET (chip) file.
  692. Examples:
  693. @itemize @bullet
  694. @item at91sam7x256 - has 256K flash YES enable it.
  695. @item str912 - has flash internal YES enable it.
  696. @item imx27 - uses boot flash on CS0 - it goes in the board file.
  697. @item pxa270 - again - CS0 flash - it goes in the board file.
  698. @end itemize
  699. @node About JIM-Tcl
  700. @chapter About JIM-Tcl
  701. @cindex JIM Tcl
  702. @cindex tcl
  703. OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
  704. learn more about JIM here: @url{http://jim.berlios.de}
  705. @itemize @bullet
  706. @item @b{JIM vrs TCL}
  707. @* JIM-TCL is a stripped down version of the well known Tcl language,
  708. which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
  709. fewer features. JIM-Tcl is a single .C file and a single .H file and
  710. impliments the basic TCL command set along. In contrast: Tcl 8.6 is a
  711. 4.2MEG zip file containing 1540 files.
  712. @item @b{Missing Features}
  713. @* Our practice has been: Add/clone the Real TCL feature if/when
  714. needed. We welcome JIM Tcl improvements, not bloat.
  715. @item @b{Scripts}
  716. @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
  717. command interpretor today (28/nov/2008) is a mixture of (newer)
  718. JIM-Tcl commands, and (older) the orginal command interpretor.
  719. @item @b{Commands}
  720. @* At the OpenOCD telnet command line (or via the GDB mon command) one
  721. can type a Tcl for() loop, set variables, etc.
  722. @item @b{Historical Note}
  723. @* JIM-Tcl was introduced to OpenOCD in Spring 2008.
  724. @item @b{Need a Crash Course In TCL?}
  725. @* See: @xref{TCL Crash Course}.
  726. @end itemize
  727. @node Daemon Configuration
  728. @chapter Daemon Configuration
  729. The commands here are commonly found in the openocd.cfg file and are
  730. used to specify what TCP/IP ports are used, and how GDB should be
  731. supported.
  732. @section init
  733. @cindex init
  734. This command terminates the configuration stage and
  735. enters the normal command mode. This can be useful to add commands to
  736. the startup scripts and commands such as resetting the target,
  737. programming flash, etc. To reset the CPU upon startup, add "init" and
  738. "reset" at the end of the config script or at the end of the OpenOCD
  739. command line using the @option{-c} command line switch.
  740. If this command does not appear in any startup/configuration file
  741. OpenOCD executes the command for you after processing all
  742. configuration files and/or command line options.
  743. @b{NOTE:} This command normally occurs at or near the end of your
  744. openocd.cfg file to force OpenOCD to ``initialize'' and make the
  745. targets ready. For example: If your openocd.cfg file needs to
  746. read/write memory on your target - the init command must occur before
  747. the memory read/write commands.
  748. @section TCP/IP Ports
  749. @itemize @bullet
  750. @item @b{telnet_port} <@var{number}>
  751. @cindex telnet_port
  752. @*Intended for a human. Port on which to listen for incoming telnet connections.
  753. @item @b{tcl_port} <@var{number}>
  754. @cindex tcl_port
  755. @*Intended as a machine interface. Port on which to listen for
  756. incoming TCL syntax. This port is intended as a simplified RPC
  757. connection that can be used by clients to issue commands and get the
  758. output from the TCL engine.
  759. @item @b{gdb_port} <@var{number}>
  760. @cindex gdb_port
  761. @*First port on which to listen for incoming GDB connections. The GDB port for the
  762. first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
  763. @end itemize
  764. @section GDB Items
  765. @itemize @bullet
  766. @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
  767. @cindex gdb_breakpoint_override
  768. @anchor{gdb_breakpoint_override}
  769. @*Force breakpoint type for gdb 'break' commands.
  770. The raison d'etre for this option is to support GDB GUI's without
  771. a hard/soft breakpoint concept where the default OpenOCD and
  772. GDB behaviour is not sufficient. Note that GDB will use hardware
  773. breakpoints if the memory map has been set up for flash regions.
  774. This option replaces older arm7_9 target commands that addressed
  775. the same issue.
  776. @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
  777. @cindex gdb_detach
  778. @*Configures what OpenOCD will do when gdb detaches from the daeman.
  779. Default behaviour is <@var{resume}>
  780. @item @b{gdb_memory_map} <@var{enable|disable}>
  781. @cindex gdb_memory_map
  782. @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
  783. requested. gdb will then know when to set hardware breakpoints, and program flash
  784. using the gdb load command. @option{gdb_flash_program enable} will also need enabling
  785. for flash programming to work.
  786. Default behaviour is <@var{enable}>
  787. @xref{gdb_flash_program}.
  788. @item @b{gdb_flash_program} <@var{enable|disable}>
  789. @cindex gdb_flash_program
  790. @anchor{gdb_flash_program}
  791. @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
  792. vFlash packet is received.
  793. Default behaviour is <@var{enable}>
  794. @comment END GDB Items
  795. @end itemize
  796. @node Interface - Dongle Configuration
  797. @chapter Interface - Dongle Configuration
  798. Interface commands are normally found in an interface configuration
  799. file which is sourced by your openocd.cfg file. These commands tell
  800. OpenOCD what type of JTAG dongle you have and how to talk to it.
  801. @section Simple Complete Interface Examples
  802. @b{A Turtelizer FT2232 Based JTAG Dongle}
  803. @verbatim
  804. #interface
  805. interface ft2232
  806. ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
  807. ft2232_layout turtelizer2
  808. ft2232_vid_pid 0x0403 0xbdc8
  809. @end verbatim
  810. @b{A SEGGER Jlink}
  811. @verbatim
  812. # jlink interface
  813. interface jlink
  814. @end verbatim
  815. @b{A Raisonance RLink}
  816. @verbatim
  817. # rlink interface
  818. interface rlink
  819. @end verbatim
  820. @b{Parallel Port}
  821. @verbatim
  822. interface parport
  823. parport_port 0xc8b8
  824. parport_cable wiggler
  825. jtag_speed 0
  826. @end verbatim
  827. @section Interface Conmmand
  828. The interface command tells OpenOCD what type of jtag dongle you are
  829. using. Depending upon the type of dongle, you may need to have one or
  830. more additional commands.
  831. @itemize @bullet
  832. @item @b{interface} <@var{name}>
  833. @cindex interface
  834. @*Use the interface driver <@var{name}> to connect to the
  835. target. Currently supported interfaces are
  836. @itemize @minus
  837. @item @b{parport}
  838. @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
  839. @item @b{amt_jtagaccel}
  840. @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
  841. mode parallel port
  842. @item @b{ft2232}
  843. @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
  844. FTD2XX driver. The FTD2XX is superior in performance, but not available on every
  845. platform. The libftdi uses libusb, and should be portable to all systems that provide
  846. libusb.
  847. @item @b{ep93xx}
  848. @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
  849. @item @b{presto}
  850. @* ASIX PRESTO USB JTAG programmer.
  851. @item @b{usbprog}
  852. @* usbprog is a freely programmable USB adapter.
  853. @item @b{gw16012}
  854. @* Gateworks GW16012 JTAG programmer.
  855. @item @b{jlink}
  856. @* Segger jlink usb adapter
  857. @item @b{rlink}
  858. @* Raisonance RLink usb adapter
  859. @comment - End parameters
  860. @end itemize
  861. @comment - End Interface
  862. @end itemize
  863. @subsection parport options
  864. @itemize @bullet
  865. @item @b{parport_port} <@var{number}>
  866. @cindex parport_port
  867. @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
  868. the @file{/dev/parport} device
  869. When using PPDEV to access the parallel port, use the number of the parallel port:
  870. @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
  871. you may encounter a problem.
  872. @item @b{parport_cable} <@var{name}>
  873. @cindex parport_cable
  874. @*The layout of the parallel port cable used to connect to the target.
  875. Currently supported cables are
  876. @itemize @minus
  877. @item @b{wiggler}
  878. @cindex wiggler
  879. The original Wiggler layout, also supported by several clones, such
  880. as the Olimex ARM-JTAG
  881. @item @b{wiggler2}
  882. @cindex wiggler2
  883. Same as original wiggler except an led is fitted on D5.
  884. @item @b{wiggler_ntrst_inverted}
  885. @cindex wiggler_ntrst_inverted
  886. Same as original wiggler except TRST is inverted.
  887. @item @b{old_amt_wiggler}
  888. @cindex old_amt_wiggler
  889. The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
  890. version available from the website uses the original Wiggler layout ('@var{wiggler}')
  891. @item @b{chameleon}
  892. @cindex chameleon
  893. The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
  894. program the Chameleon itself, not a connected target.
  895. @item @b{dlc5}
  896. @cindex dlc5
  897. The Xilinx Parallel cable III.
  898. @item @b{triton}
  899. @cindex triton
  900. The parallel port adapter found on the 'Karo Triton 1 Development Board'.
  901. This is also the layout used by the HollyGates design
  902. (see @uref{http://www.lartmaker.nl/projects/jtag/}).
  903. @item @b{flashlink}
  904. @cindex flashlink
  905. The ST Parallel cable.
  906. @item @b{arm-jtag}
  907. @cindex arm-jtag
  908. Same as original wiggler except SRST and TRST connections reversed and
  909. TRST is also inverted.
  910. @item @b{altium}
  911. @cindex altium
  912. Altium Universal JTAG cable.
  913. @end itemize
  914. @item @b{parport_write_on_exit} <@var{on}|@var{off}>
  915. @cindex parport_write_on_exit
  916. @*This will configure the parallel driver to write a known value to the parallel
  917. interface on exiting OpenOCD
  918. @end itemize
  919. @subsection amt_jtagaccel options
  920. @itemize @bullet
  921. @item @b{parport_port} <@var{number}>
  922. @cindex parport_port
  923. @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
  924. @file{/dev/parport} device
  925. @end itemize
  926. @subsection ft2232 options
  927. @itemize @bullet
  928. @item @b{ft2232_device_desc} <@var{description}>
  929. @cindex ft2232_device_desc
  930. @*The USB device description of the FTDI FT2232 device. If not
  931. specified, the FTDI default value is used. This setting is only valid
  932. if compiled with FTD2XX support.
  933. @b{TODO:} Confirm the following: On windows the name needs to end with
  934. a ``space A''? Or not? It has to do with the FTD2xx driver. When must
  935. this be added and when must it not be added? Why can't the code in the
  936. interface or in OpenOCD automatically add this if needed? -- Duane.
  937. @item @b{ft2232_serial} <@var{serial-number}>
  938. @cindex ft2232_serial
  939. @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
  940. values are used.
  941. @item @b{ft2232_layout} <@var{name}>
  942. @cindex ft2232_layout
  943. @*The layout of the FT2232 GPIO signals used to control output-enables and reset
  944. signals. Valid layouts are
  945. @itemize @minus
  946. @item @b{usbjtag}
  947. "USBJTAG-1" layout described in the original OpenOCD diploma thesis
  948. @item @b{jtagkey}
  949. Amontec JTAGkey and JTAGkey-tiny
  950. @item @b{signalyzer}
  951. Signalyzer
  952. @item @b{olimex-jtag}
  953. Olimex ARM-USB-OCD
  954. @item @b{m5960}
  955. American Microsystems M5960
  956. @item @b{evb_lm3s811}
  957. Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
  958. SRST signals on external connector
  959. @item @b{comstick}
  960. Hitex STR9 comstick
  961. @item @b{stm32stick}
  962. Hitex STM32 Performance Stick
  963. @item @b{flyswatter}
  964. Tin Can Tools Flyswatter
  965. @item @b{turtelizer2}
  966. egnite Software turtelizer2
  967. @item @b{oocdlink}
  968. OOCDLink
  969. @item @b{axm0432_jtag}
  970. Axiom AXM-0432
  971. @end itemize
  972. @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
  973. @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
  974. default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
  975. @example
  976. ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
  977. @end example
  978. @item @b{ft2232_latency} <@var{ms}>
  979. @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
  980. ft2232_read() fails to return the expected number of bytes. This can be caused by
  981. USB communication delays and has proved hard to reproduce and debug. Setting the
  982. FT2232 latency timer to a larger value increases delays for short USB packages but it
  983. also reduces the risk of timeouts before receiving the expected number of bytes.
  984. The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
  985. @end itemize
  986. @subsection ep93xx options
  987. @cindex ep93xx options
  988. Currently, there are no options available for the ep93xx interface.
  989. @section JTAG Speed
  990. @itemize @bullet
  991. @item @b{jtag_khz} <@var{reset speed kHz}>
  992. @cindex jtag_khz
  993. It is debatable if this command belongs here - or in a board
  994. configuration file. In fact, in some situations the jtag speed is
  995. changed during the target initialization process (ie: (1) slow at
  996. reset, (2) program the cpu clocks, (3) run fast)
  997. Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
  998. Not all interfaces support ``rtck''. If the interface device can not
  999. support the rate asked for, or can not translate from kHz to
  1000. jtag_speed, then an error is returned.
  1001. Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
  1002. especially true for synthesized cores (-S). Also see RTCK.
  1003. @b{NOTE: Script writers} If the target chip requires/uses RTCK -
  1004. please use the command: 'jtag_rclk FREQ'. This TCL proc (in
  1005. startup.tcl) attempts to enable RTCK, if that fails it falls back to
  1006. the specified frequency.
  1007. @example
  1008. # Fall back to 3mhz if RCLK is not supported
  1009. jtag_rclk 3000
  1010. @end example
  1011. @item @b{DEPRICATED} @b{jtag_speed} - please use jtag_khz above.
  1012. @cindex jtag_speed
  1013. @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
  1014. speed. The actual effect of this option depends on the JTAG interface used.
  1015. The speed used during reset can be adjusted using setting jtag_speed during
  1016. pre_reset and post_reset events.
  1017. @itemize @minus
  1018. @item wiggler: maximum speed / @var{number}
  1019. @item ft2232: 6MHz / (@var{number}+1)
  1020. @item amt jtagaccel: 8 / 2**@var{number}
  1021. @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
  1022. @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
  1023. @comment end speed list.
  1024. @end itemize
  1025. @comment END command list
  1026. @end itemize
  1027. @node Reset Configuration
  1028. @chapter Reset Configuration
  1029. @cindex reset configuration
  1030. Every system configuration may require a different reset
  1031. configuration. This can also be quite confusing. Please see the
  1032. various board files for example.
  1033. @section jtag_nsrst_delay <@var{ms}>
  1034. @cindex jtag_nsrst_delay
  1035. @*How long (in milliseconds) OpenOCD should wait after deasserting
  1036. nSRST before starting new JTAG operations.
  1037. @section jtag_ntrst_delay <@var{ms}>
  1038. @cindex jtag_ntrst_delay
  1039. @*Same @b{jtag_nsrst_delay}, but for nTRST
  1040. The jtag_n[st]rst_delay options are useful if reset circuitry (like a
  1041. big resistor/capacitor, reset supervisor, or on-chip features). This
  1042. keeps the signal asserted for some time after the external reset got
  1043. deasserted.
  1044. @section reset_config
  1045. @b{Note:} To maintainer types and integrators. Where exactly the
  1046. ``reset configuration'' goes is a good question. It touches several
  1047. things at once. In the end, if you have a board file - the board file
  1048. should define it and assume 100% that the DONGLE supports
  1049. anything. However, that does not mean the target should not also make
  1050. not of something the silicon vendor has done inside the
  1051. chip. @i{Grr.... nothing is every pretty.}
  1052. @* @b{Problems:}
  1053. @enumerate
  1054. @item Every JTAG Dongle is slightly different, some dongles impliment reset differently.
  1055. @item Every board is also slightly different; some boards tie TRST and SRST together.
  1056. @item Every chip is slightly different; some chips internally tie the two signals together.
  1057. @item Some may not impliment all of the signals the same way.
  1058. @item Some signals might be push-pull, others open-drain/collector.
  1059. @end enumerate
  1060. @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
  1061. reset the TAP via TRST and send commands through the JTAG tap to halt
  1062. the CPU at the reset vector before the 1st instruction is executed,
  1063. and finally release the SRST signal.
  1064. @*Depending upon your board vendor, your chip vendor, etc, these
  1065. signals may have slightly different names.
  1066. OpenOCD defines these signals in these terms:
  1067. @itemize @bullet
  1068. @item @b{TRST} - is Tap Reset - and should reset only the TAP.
  1069. @item @b{SRST} - is System Reset - typically equal to a reset push button.
  1070. @end itemize
  1071. The Command:
  1072. @itemize @bullet
  1073. @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
  1074. @cindex reset_config
  1075. @* The @t{reset_config} command tells OpenOCD the reset configuration
  1076. of your combination of Dongle, Board, and Chips.
  1077. If the JTAG interface provides SRST, but the target doesn't connect
  1078. that signal properly, then OpenOCD can't use it. <@var{signals}> can
  1079. be @option{none}, @option{trst_only}, @option{srst_only} or
  1080. @option{trst_and_srst}.
  1081. [@var{combination}] is an optional value specifying broken reset
  1082. signal implementations. @option{srst_pulls_trst} states that the
  1083. testlogic is reset together with the reset of the system (e.g. Philips
  1084. LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
  1085. the system is reset together with the test logic (only hypothetical, I
  1086. haven't seen hardware with such a bug, and can be worked around).
  1087. @option{combined} imples both @option{srst_pulls_trst} and
  1088. @option{trst_pulls_srst}. The default behaviour if no option given is
  1089. @option{separate}.
  1090. The [@var{trst_type}] and [@var{srst_type}] parameters allow the
  1091. driver type of the reset lines to be specified. Possible values are
  1092. @option{trst_push_pull} (default) and @option{trst_open_drain} for the
  1093. test reset signal, and @option{srst_open_drain} (default) and
  1094. @option{srst_push_pull} for the system reset. These values only affect
  1095. JTAG interfaces with support for different drivers, like the Amontec
  1096. JTAGkey and JTAGAccelerator.
  1097. @comment - end command
  1098. @end itemize
  1099. @node Tap Creation
  1100. @chapter Tap Creation
  1101. @cindex tap creation
  1102. @cindex tap configuration
  1103. In order for OpenOCD to control a target, a JTAG tap must be
  1104. defined/created.
  1105. Commands to create taps are normally found in a configuration file and
  1106. are not normally typed by a human.
  1107. When a tap is created a @b{dotted.name} is created for the tap. Other
  1108. commands use that dotted.name to manipulate or refer to the tap.
  1109. Tap Uses:
  1110. @itemize @bullet
  1111. @item @b{Debug Target} A tap can be used by a GDB debug target
  1112. @item @b{Flash Programing} Some chips program the flash via JTAG
  1113. @item @b{Boundry Scan} Some chips support boundry scan.
  1114. @end itemize
  1115. @section jtag newtap
  1116. @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
  1117. @cindex jtag_device
  1118. @cindex jtag newtap
  1119. @cindex tap
  1120. @cindex tap order
  1121. @cindex tap geometry
  1122. @comment START options
  1123. @itemize @bullet
  1124. @item @b{CHIPNAME}
  1125. @* is a symbolic name of the chip.
  1126. @item @b{TAPNAME}
  1127. @* is a symbol name of a tap present on the chip.
  1128. @item @b{Required configparams}
  1129. @* Every tap has 3 required configparams, and several ``optional
  1130. parameters'', the required parameters are:
  1131. @comment START REQUIRED
  1132. @itemize @bullet
  1133. @item @b{-irlen NUMBER} - the length in bits of the instruction register
  1134. @item @b{-ircapture NUMBER} - the ID code capture command.
  1135. @item @b{-irmask NUMBER} - the corrisponding mask for the ir register.
  1136. @comment END REQUIRED
  1137. @end itemize
  1138. An example of a FOOBAR Tap
  1139. @example
  1140. jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
  1141. @end example
  1142. Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
  1143. bits long, during Capture-IR 0x42 is loaded into the IR, and bits
  1144. [6,4,2,0] are checked.
  1145. FIXME: The IDCODE - this was not used in the old code, it should be?
  1146. Right? -Duane.
  1147. @item @b{Optional configparams}
  1148. @comment START Optional
  1149. @itemize @bullet
  1150. @item @b{-expected-id NUMBER}
  1151. @* By default it is zero. If non-zero represents the
  1152. expected tap ID used when the Jtag Chain is examined. See below.
  1153. @item @b{-disable}
  1154. @item @b{-enable}
  1155. @* By default not specified the tap is enabled. Some chips have a
  1156. jtag route controller (JRC) that is used to enable and/or disable
  1157. specific jtag taps. You can later enable or disable any JTAG tap via
  1158. the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
  1159. DOTTED.NAME}
  1160. @comment END Optional
  1161. @end itemize
  1162. @comment END OPTIONS
  1163. @end itemize
  1164. @b{Notes:}
  1165. @comment START NOTES
  1166. @itemize @bullet
  1167. @item @b{Technically}
  1168. @* newtap is a sub command of the ``jtag'' command
  1169. @item @b{Big Picture Background}
  1170. @*GDB Talks to OpenOCD using the GDB protocol via
  1171. tcpip. OpenOCD then uses the JTAG interface (the dongle) to
  1172. control the JTAG chain on your board. Your board has one or more chips
  1173. in a @i{daisy chain configuration}. Each chip may have one or more
  1174. jtag taps. GDB ends up talking via OpenOCD to one of the taps.
  1175. @item @b{NAME Rules}
  1176. @*Names follow ``C'' symbol name rules (start with alpha ...)
  1177. @item @b{TAPNAME - Conventions}
  1178. @itemize @bullet
  1179. @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
  1180. @item @b{cpu} - the main cpu of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
  1181. @item @b{flash} - if the chip has a flash tap, example: str912.flash
  1182. @item @b{bs} - for boundary scan if this is a seperate tap.
  1183. @item @b{jrc} - for jtag route controller (example: OMAP3530 found on Beagleboards)
  1184. @item @b{unknownN} - where N is a number if you have no idea what the tap is for
  1185. @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
  1186. @item @b{When in doubt} - use the chip makers name in their data sheet.
  1187. @end itemize
  1188. @item @b{DOTTED.NAME}
  1189. @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
  1190. @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
  1191. dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
  1192. @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
  1193. numerous other places to refer to various taps.
  1194. @item @b{ORDER}
  1195. @* The order this command appears via the config files is
  1196. important.
  1197. @item @b{Multi Tap Example}
  1198. @* This example is based on the ST Microsystems STR912. See the ST
  1199. document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
  1200. 28/102, Figure 3: Jtag chaining inside the STR91xFA}.
  1201. @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
  1202. @*@b{checked: 28/nov/2008}
  1203. The diagram shows the TDO pin connects to the flash tap, flash TDI
  1204. connects to the CPU debug tap, CPU TDI connects to the boundary scan
  1205. tap which then connects to the TDI pin.
  1206. @example
  1207. # The order is...
  1208. # create tap: 'str912.flash'
  1209. jtag newtap str912 flash ... params ...
  1210. # create tap: 'str912.cpu'
  1211. jtag newtap str912 cpu ... params ...
  1212. # create tap: 'str912.bs'
  1213. jtag newtap str912 bs ... params ...
  1214. @end example
  1215. @item @b{Note: Deprecated} - Index Numbers
  1216. @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
  1217. feature is still present, however its use is highly discouraged and
  1218. should not be counted upon.
  1219. @item @b{Multiple chips}
  1220. @* If your board has multiple chips, you should be
  1221. able to @b{source} two configuration files, in the proper order, and
  1222. have the taps created in the proper order.
  1223. @comment END NOTES
  1224. @end itemize
  1225. @comment at command level
  1226. @comment DOCUMENT old command
  1227. @section jtag_device - REMOVED
  1228. @example
  1229. @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
  1230. @end example
  1231. @cindex jtag_device
  1232. @* @b{Removed: 28/nov/2008} This command has been removed and replaced
  1233. by the ``jtag newtap'' command. The documentation remains here so that
  1234. one can easily convert the old syntax to the new syntax. About the old
  1235. syntax: The old syntax is positional, ie: The 4th parameter is the
  1236. ``irmask''. The new syntax requires named prefixes, and supports
  1237. additional options, for example ``-irmask 4''. Please refer to the
  1238. @b{jtag newtap} command for details.
  1239. @example
  1240. OLD: jtag_device 8 0x01 0x0e3 0xfe
  1241. NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0xe3 -irmask 0xfe
  1242. @end example
  1243. @section Enable/Disable Taps
  1244. @b{Note:} These commands are intended to be used as a machine/script
  1245. interface. Humans might find the ``scan_chain'' command more helpful
  1246. when querying the state of the JTAG taps.
  1247. @b{By default, all taps are enabled}
  1248. @itemize @bullet
  1249. @item @b{jtag tapenable} @var{DOTTED.NAME}
  1250. @item @b{jtag tapdisable} @var{DOTTED.NAME}
  1251. @item @b{jtag tapisenabled} @var{DOTTED.NAME}
  1252. @end itemize
  1253. @cindex tap enable
  1254. @cindex tap disable
  1255. @cindex JRC
  1256. @cindex route controller
  1257. These commands are used when your target has a JTAG Route controller
  1258. that effectively adds or removes a tap from the jtag chain in a
  1259. non-standard way.
  1260. The ``standard way'' to remove a tap would be to place the tap in
  1261. bypass mode. But with the advent of modern chips, this is not always a
  1262. good solution. Some taps operate slowly, others operate fast, and
  1263. there are other JTAG clock syncronization problems one must face. To
  1264. solve that problem, the JTAG Route controller was introduced. Rather
  1265. then ``bypass'' the tap, the tap is completely removed from the
  1266. circuit and skipped.
  1267. From OpenOCD's view point, a JTAG TAP is in one of 3 states:
  1268. @itemize @bullet
  1269. @item @b{Enabled - Not In ByPass} and has a variable bit length
  1270. @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
  1271. @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
  1272. @end itemize
  1273. The IEEE JTAG definition has no concept of a ``disabled'' tap.
  1274. @b{Historical note:} this feature was added 28/nov/2008
  1275. @b{jtag tapisenabled DOTTED.NAME}
  1276. This command returns 1 if the named tap is currently enabled, 0 if not.
  1277. This command exists so that scripts that manipulate a JRC (like the
  1278. Omap3530 has) can determine if OpenOCD thinks a tap is presently
  1279. enabled, or disabled.
  1280. @page
  1281. @node Target Configuration
  1282. @chapter Target Configuration
  1283. This chapter discusses how to create a GDB Debug Target. Before
  1284. creating a ``target'' a JTAG Tap DOTTED.NAME must exist first.
  1285. @section targets [NAME]
  1286. @b{Note:} This command name is PLURAL - not singular.
  1287. With NO parameter, this plural @b{targets} command lists all known
  1288. targets in a human friendly form.
  1289. With a parameter, this pural @b{targets} command sets the current
  1290. target to the given name. (ie: If there are multiple debug targets)
  1291. Example:
  1292. @verbatim
  1293. (gdb) mon targets
  1294. CmdName Type Endian ChainPos State
  1295. -- ---------- ---------- ---------- -------- ----------
  1296. 0: target0 arm7tdmi little 0 halted
  1297. @end verbatim
  1298. @section target COMMANDS
  1299. @b{Note:} This command name is SINGULAR - not plural. It is used to
  1300. manipulate specific targets, to create targets and other things.
  1301. Once a target is created, a TARGETNAME (object) command is created;
  1302. see below for details.
  1303. The TARGET command accepts these sub-commands:
  1304. @itemize @bullet
  1305. @item @b{create} .. parameters ..
  1306. @* creates a new target, See below for details.
  1307. @item @b{types}
  1308. @* Lists all supported target types (perhaps some are not yet in this document).
  1309. @item @b{names}
  1310. @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
  1311. @verbatim
  1312. foreach t [target names] {
  1313. puts [format "Target: %s\n" $t]
  1314. }
  1315. @end verbatim
  1316. @item @b{current}
  1317. @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
  1318. By default, commands like: ``mww'' (used to write memory) operate on the current target.
  1319. @item @b{number} @b{NUMBER}
  1320. @* Internally OpenOCD maintains a list of targets - in numerical index
  1321. (0..N-1) this command returns the name of the target at index N.
  1322. Example usage:
  1323. @verbatim
  1324. set thename [target number $x]
  1325. puts [format "Target %d is: %s\n" $x $thename]
  1326. @end verbatim
  1327. @item @b{count}
  1328. @* Returns the number of targets known to OpenOCD (see number above)
  1329. Example:
  1330. @verbatim
  1331. set c [target count]
  1332. for { set x 0 } { $x < $c } { incr x } {
  1333. # Assuming you have created this function
  1334. print_target_details $x
  1335. }
  1336. @end verbatim
  1337. @end itemize
  1338. @section TARGETNAME (object) commands
  1339. @b{Use:} Once a target is created, an ``object name'' that represents the
  1340. target is created. By convention, the target name is identical to the
  1341. tap name. In a multiple target system, one can preceed many common
  1342. commands with a specific target name and effect only that target.
  1343. @example
  1344. str912.cpu mww 0x1234 0x42
  1345. omap3530.cpu mww 0x5555 123
  1346. @end example
  1347. @b{Model:} The Tcl/Tk language has the concept of object commands. A
  1348. good example is a on screen button, once a button is created a button
  1349. has a name (a path in TK terms) and that name is useable as a 1st
  1350. class command. For example in TK, one can create a button and later
  1351. configure it like this:
  1352. @example
  1353. # Create
  1354. button .foobar -background red -command @{ foo @}
  1355. # Modify
  1356. .foobar configure -foreground blue
  1357. # Query
  1358. set x [.foobar cget -background]
  1359. # Report
  1360. puts [format "The button is %s" $x]
  1361. @end example
  1362. In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
  1363. button. Commands avaialble as a ``target object'' are:
  1364. @comment START targetobj commands.
  1365. @itemize @bullet
  1366. @item @b{configure} - configure the target; see Target Config/Cget Options below
  1367. @item @b{cget} - query the target configuration; see Target Config/Cget Options below
  1368. @item @b{curstate} - current target state (running, halt, etc)
  1369. @item @b{eventlist}
  1370. @* Intended for a human to see/read the currently configure target events.
  1371. @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
  1372. @comment start memory
  1373. @itemize @bullet
  1374. @item @b{mww} ...
  1375. @item @b{mwh} ...
  1376. @item @b{mwb} ...
  1377. @item @b{mdw} ...
  1378. @item @b{mdh} ...
  1379. @item @b{mdb} ...
  1380. @comment end memory
  1381. @end itemize
  1382. @item @b{Memory To Array, Array To Memory}
  1383. @* These are aimed at a machine interface to memory
  1384. @itemize @bullet
  1385. @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
  1386. @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
  1387. @* Where:
  1388. @* @b{ARRAYNAME} is the name of an array variable
  1389. @* @b{WIDTH} is 8/16/32 - indicating the memory access size
  1390. @* @b{ADDRESS} is the target memory address
  1391. @* @b{COUNT} is the number of elements to process
  1392. @end itemize
  1393. @item @b{Used during ``reset''}
  1394. @* These commands are used internally by the OpenOCD scripts to deal
  1395. with odd reset situations and are not documented here.
  1396. @itemize @bullet
  1397. @item @b{arp_examine}
  1398. @item @b{arp_poll}
  1399. @item @b{arp_reset}
  1400. @item @b{arp_halt}
  1401. @item @b{arp_waitstate}
  1402. @end itemize
  1403. @item @b{invoke-event} @b{EVENT-NAME}
  1404. @* Invokes the specific event manually for the target
  1405. @end itemize
  1406. @section Target Events
  1407. At various times, certain things can happen, or you want them to happen.
  1408. Examples:
  1409. @itemize @bullet
  1410. @item What should happen when GDB connects? Should your target reset?
  1411. @item When GDB tries to flash the target, do you need to enable the flash via a special command?
  1412. @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
  1413. @end itemize
  1414. All of the above items are handled by target events.
  1415. To specify an event action, either during target creation, or later
  1416. via ``$_TARGETNAME configure'' see this example.
  1417. Syntactially, the option is: ``-event NAME BODY'' where NAME is a
  1418. target event name, and BODY is a tcl procedure or string of commands
  1419. to execute.
  1420. The programmers model is the ``-command'' option used in Tcl/Tk
  1421. buttons and events. Below are two identical examples, the first
  1422. creates and invokes small procedure. The second inlines the procedure.
  1423. @example
  1424. proc my_attach_proc @{ @} @{
  1425. puts "RESET...."
  1426. reset halt
  1427. @}
  1428. mychip.cpu configure -event gdb-attach my_attach_proc
  1429. mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
  1430. @end example
  1431. @section Current Events
  1432. The following events are available:
  1433. @itemize @bullet
  1434. @item @b{debug-halted}
  1435. @* The target has halted for debug reasons (ie: breakpoint)
  1436. @item @b{debug-resumed}
  1437. @* The target has resumed (ie: gdb said run)
  1438. @item @b{early-halted}
  1439. @* Occurs early in the halt process
  1440. @item @b{examine-end}
  1441. @* Currently not used (goal: when JTAG examine completes)
  1442. @item @b{examine-start}
  1443. @* Currently not used (goal: when JTAG examine starts)
  1444. @item @b{gdb-attach}
  1445. @* When GDB connects
  1446. @item @b{gdb-detach}
  1447. @* When GDB disconnects
  1448. @item @b{gdb-end}
  1449. @* When the taret has halted and GDB is not doing anything (see early halt)
  1450. @item @b{gdb-flash-erase-start}
  1451. @* Before the GDB flash process tries to erase the flash
  1452. @item @b{gdb-flash-erase-end}
  1453. @* After the GDB flash process has finished erasing the flash
  1454. @item @b{gdb-flash-write-start}
  1455. @* Before GDB writes to the flash
  1456. @item @b{gdb-flash-write-end}
  1457. @* After GDB writes to the flash
  1458. @item @b{gdb-start}
  1459. @* Before the taret steps, gdb is trying to start/resume the tarfget
  1460. @item @b{halted}
  1461. @* The target has halted
  1462. @item @b{old-gdb_program_config}
  1463. @* DO NOT USE THIS: Used internally
  1464. @item @b{old-pre_resume}
  1465. @* DO NOT USE THIS: Used internally
  1466. @item @b{reset-assert-pre}
  1467. @* Before reset is asserted on the tap.
  1468. @item @b{reset-assert-post}
  1469. @* Reset is now asserted on the tap.
  1470. @item @b{reset-deassert-pre}
  1471. @* Reset is about to be released on the tap
  1472. @item @b{reset-deassert-post}
  1473. @* Reset has been released on the tap
  1474. @item @b{reset-end}
  1475. @* Currently not used.
  1476. @item @b{reset-halt-post}
  1477. @* Currently not usd
  1478. @item @b{reset-halt-pre}
  1479. @* Currently not used
  1480. @item @b{reset-init}
  1481. @* Currently not used
  1482. @item @b{reset-start}
  1483. @* Currently not used
  1484. @item @b{reset-wait-pos}
  1485. @* Currently not used
  1486. @item @b{reset-wait-pre}
  1487. @* Currently not used
  1488. @item @b{resume-start}
  1489. @* Before any target is resumed
  1490. @item @b{resume-end}
  1491. @* After all targets have resumed
  1492. @item @b{resume-ok}
  1493. @* Success
  1494. @item @b{resumed}
  1495. @* Target has resumed
  1496. @item @b{tap-enable}
  1497. @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
  1498. @example
  1499. jtag configure DOTTED.NAME -event tap-enable @{
  1500. puts "Enabling CPU"
  1501. ...
  1502. @}
  1503. @end example
  1504. @item @b{tap-disable}
  1505. @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
  1506. @example
  1507. jtag configure DOTTED.NAME -event tap-disable @{
  1508. puts "Disabling CPU"
  1509. ...
  1510. @}
  1511. @end example
  1512. @end itemize
  1513. @section target create
  1514. @cindex target
  1515. @cindex target creation
  1516. @example
  1517. @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
  1518. @end example
  1519. @*This command creates a GDB debug target that refers to a specific JTAG tap.
  1520. @comment START params
  1521. @itemize @bullet
  1522. @item @b{NAME}
  1523. @* Is the name of the debug target. By convention it should be the tap
  1524. DOTTED.NAME, this name is also used to create the target object
  1525. command.
  1526. @item @b{TYPE}
  1527. @* Specifies the target type, ie: arm7tdmi, or cortexM3. Currently supported targes are:
  1528. @comment START types
  1529. @itemize @minus
  1530. @item @b{arm7tdmi}
  1531. @item @b{arm720t}
  1532. @item @b{arm9tdmi}
  1533. @item @b{arm920t}
  1534. @item @b{arm922t}
  1535. @item @b{arm926ejs}
  1536. @item @b{arm966e}
  1537. @item @b{cortex_m3}
  1538. @item @b{feroceon}
  1539. @item @b{xscale}
  1540. @item @b{arm11}
  1541. @item @b{mips_m4k}
  1542. @comment end TYPES
  1543. @end itemize
  1544. @item @b{PARAMS}
  1545. @*PARAMs are various target configure parameters, the following are mandatory
  1546. at configuration:
  1547. @comment START mandatory
  1548. @itemize @bullet
  1549. @item @b{-endian big|little}
  1550. @item @b{-chain-position DOTTED.NAME}
  1551. @comment end MANDATORY
  1552. @end itemize
  1553. @comment END params
  1554. @end itemize
  1555. @section Target Config/Cget Options
  1556. These options can be specified when the target is created, or later
  1557. via the configure option or to query the target via cget.
  1558. @itemize @bullet
  1559. @item @b{-type} - returns the target type
  1560. @item @b{-event NAME BODY} see Target events
  1561. @item @b{-work-area-virt [ADDRESS]} specify/set the work area
  1562. @item @b{-work-area-phys [ADDRESS]} specify/set the work area
  1563. @item @b{-work-area-size [ADDRESS]} specify/set the work area
  1564. @item @b{-work-area-backup [0|1]} does the work area get backed up
  1565. @item @b{-endian [big|little]}
  1566. @item @b{-variant [NAME]} some chips have varients OpenOCD needs to know about
  1567. @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
  1568. @end itemize
  1569. Example:
  1570. @example
  1571. for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
  1572. set name [target number $x]
  1573. set y [$name cget -endian]
  1574. set z [$name cget -type]
  1575. puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
  1576. @}
  1577. @end example
  1578. @section Target Varients
  1579. @itemize @bullet
  1580. @item @b{arm7tdmi}
  1581. @* Unknown (please write me)
  1582. @item @b{arm720t}
  1583. @* Unknown (please write me) (simular to arm7tdmi)
  1584. @item @b{arm9tdmi}
  1585. @* Varients: @option{arm920t}, @option{arm922t} and @option{arm940t}
  1586. This enables the hardware single-stepping support found on these
  1587. cores.
  1588. @item @b{arm920t}
  1589. @* None.
  1590. @item @b{arm966e}
  1591. @* None (this is also used as the ARM946)
  1592. @item @b{cortex_m3}
  1593. @* use variant <@var{-variant lm3s}> when debugging luminary lm3s targets. This will cause
  1594. OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
  1595. the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
  1596. be detected and the normal reset behaviour used.
  1597. @item @b{xscale}
  1598. @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
  1599. @item @b{arm11}
  1600. @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
  1601. @item @b{mips_m4k}
  1602. @* Use variant @option{ejtag_srst} when debugging targets that do not
  1603. provide a functional SRST line on the EJTAG connector. This causes
  1604. OpenOCD to instead use an EJTAG software reset command to reset the
  1605. processor. You still need to enable @option{srst} on the reset
  1606. configuration command to enable OpenOCD hardware reset functionality.
  1607. @comment END varients
  1608. @end itemize
  1609. @section working_area - Command Removed
  1610. @cindex working_area
  1611. @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
  1612. @* This documentation remains because there are existing scripts that
  1613. still use this that need to be converted.
  1614. @example
  1615. working_area target# address size backup| [virtualaddress]
  1616. @end example
  1617. @* The target# is a the 0 based target numerical index.
  1618. This command specifies a working area for the debugger to use. This
  1619. may be used to speed-up downloads to target memory and flash
  1620. operations, or to perform otherwise unavailable operations (some
  1621. coprocessor operations on ARM7/9 systems, for example). The last
  1622. parameter decides whether the memory should be preserved
  1623. (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
  1624. possible, use a working_area that doesn't need to be backed up, as
  1625. performing a backup slows down operation.
  1626. @node Flash Configuration
  1627. @chapter Flash Programing
  1628. @cindex Flash Configuration
  1629. @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
  1630. flash that a micro may boot from. Perhaps you the reader would like to
  1631. contribute support for this.
  1632. Flash Steps:
  1633. @enumerate
  1634. @item Configure via the command @b{flash bank}
  1635. @* Normally this is done in a configuration file.
  1636. @item Operate on the flash via @b{flash SOMECOMMAND}
  1637. @* Often commands to manipulate the flash are typed by a human, or run
  1638. via a script in some automated way. For example: To program the boot
  1639. flash on your board.
  1640. @item GDB Flashing
  1641. @* Flashing via GDB requires the flash be configured via ``flash
  1642. bank'', and the GDB flash features be enabled. See the Daemon
  1643. configuration section for more details.
  1644. @end enumerate
  1645. @section Flash commands
  1646. @cindex Flash commands
  1647. @subsection flash banks
  1648. @b{flash banks}
  1649. @cindex flash banks
  1650. @*List configured flash banks
  1651. @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
  1652. @subsection flash info
  1653. @b{flash info} <@var{num}>
  1654. @cindex flash info
  1655. @*Print info about flash bank <@option{num}>
  1656. @subsection flash probe
  1657. @b{flash probe} <@var{num}>
  1658. @cindex flash probe
  1659. @*Identify the flash, or validate the parameters of the configured flash. Operation
  1660. depends on the flash type.
  1661. @subsection flash erase_check
  1662. @b{flash erase_check} <@var{num}>
  1663. @cindex flash erase_check
  1664. @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
  1665. updates the erase state information displayed by @option{flash info}. That means you have
  1666. to issue an @option{erase_check} command after erasing or programming the device to get
  1667. updated information.
  1668. @subsection flash protect_check
  1669. @b{flash protect_check} <@var{num}>
  1670. @cindex flash protect_check
  1671. @*Check protection state of sectors in flash bank <num>.
  1672. @option{flash erase_sector} using the same syntax.
  1673. @subsection flash erase_sector
  1674. @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
  1675. @cindex flash erase_sector
  1676. @anchor{flash erase_sector}
  1677. @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
  1678. <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
  1679. require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
  1680. the CFI driver).
  1681. @subsection flash erase_address
  1682. @b{flash erase_address} <@var{address}> <@var{length}>
  1683. @cindex flash erase_address
  1684. @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
  1685. @subsection flash write_bank
  1686. @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
  1687. @cindex flash write_bank
  1688. @anchor{flash write_bank}
  1689. @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
  1690. <@option{offset}> bytes from the beginning of the bank.
  1691. @subsection flash write_image
  1692. @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
  1693. @cindex flash write_image
  1694. @anchor{flash write_image}
  1695. @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
  1696. [@var{offset}] can be specified and the file [@var{type}] can be specified
  1697. explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
  1698. (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
  1699. if the @option{erase} parameter is given.
  1700. @subsection flash protect
  1701. @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
  1702. @cindex flash protect
  1703. @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
  1704. <@var{last}> of @option{flash bank} <@var{num}>.
  1705. @subsection mFlash commands
  1706. @cindex mFlash commands
  1707. @itemize @bullet
  1708. @item @b{mflash probe}
  1709. @cindex mflash probe
  1710. Probe mflash.
  1711. @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
  1712. @cindex mflash write
  1713. Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
  1714. <@var{offset}> bytes from the beginning of the bank.
  1715. @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
  1716. @cindex mflash dump
  1717. Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
  1718. to a <@var{file}>.
  1719. @end itemize
  1720. @section flash bank command
  1721. The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
  1722. @example
  1723. @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
  1724. <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
  1725. @end example
  1726. @cindex flash bank
  1727. @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
  1728. and <@var{bus_width}> bytes using the selected flash <driver>.
  1729. @subsection External Flash - cfi options
  1730. @cindex cfi options
  1731. CFI flash are external flash chips - often they are connected to a
  1732. specific chip select on the micro. By default at hard reset most
  1733. micros have the ablity to ``boot'' from some flash chip - typically
  1734. attached to the chips CS0 pin.
  1735. For other chip selects: OpenOCD does not know how to configure, or
  1736. access a specific chip select. Instead you the human might need to via
  1737. other commands (like: mww) configure additional chip selects, or
  1738. perhaps configure a GPIO pin that controls the ``write protect'' pin
  1739. on the FLASH chip.
  1740. @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
  1741. <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
  1742. @*CFI flashes require the number of the target they're connected to as an additional
  1743. argument. The CFI driver makes use of a working area (specified for the target)
  1744. to significantly speed up operation.
  1745. @var{chip_width} and @var{bus_width} are specified in bytes.
  1746. The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
  1747. @var{x16_as_x8} ???
  1748. @subsection Internal Flash (Micro Controllers)
  1749. @subsubsection lpc2000 options
  1750. @cindex lpc2000 options
  1751. @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  1752. <@var{clock}> [@var{calc_checksum}]
  1753. @*LPC flashes don't require the chip and bus width to be specified. Additional
  1754. parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
  1755. or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
  1756. of the target this flash belongs to (first is 0), the frequency at which the core
  1757. is currently running (in kHz - must be an integral number), and the optional keyword
  1758. @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
  1759. vector table.
  1760. @subsubsection at91sam7 options
  1761. @cindex at91sam7 options
  1762. @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
  1763. @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
  1764. reading the chip-id and type.
  1765. @subsubsection str7 options
  1766. @cindex str7 options
  1767. @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  1768. @*variant can be either STR71x, STR73x or STR75x.
  1769. @subsubsection str9 options
  1770. @cindex str9 options
  1771. @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1772. @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
  1773. @example
  1774. str9x flash_config 0 4 2 0 0x80000
  1775. @end example
  1776. This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
  1777. @subsubsection str9 options (str9xpec driver)
  1778. @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1779. @*Before using the flash commands the turbo mode will need enabling using str9xpec
  1780. @option{enable_turbo} <@var{num>.}
  1781. Only use this driver for locking/unlocking the device or configuring the option bytes.
  1782. Use the standard str9 driver for programming. @xref{STR9 specific commands}.
  1783. @subsubsection stellaris (LM3Sxxx) options
  1784. @cindex stellaris (LM3Sxxx) options
  1785. @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1786. @*stellaris flash plugin only require the @var{target#}.
  1787. @subsubsection stm32x options
  1788. @cindex stm32x options
  1789. @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1790. @*stm32x flash plugin only require the @var{target#}.
  1791. @subsubsection aduc702x options
  1792. @cindex aduc702x options
  1793. @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1794. @*aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
  1795. @subsection mFlash configuration
  1796. @cindex mFlash configuration
  1797. @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
  1798. <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
  1799. @cindex mflash bank
  1800. @*Configures a mflash for <@var{soc}> host bank at
  1801. <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
  1802. order. Pin number format is dependent on host GPIO calling convention.
  1803. If WP or DPD pin was not used, write -1. Currently, mflash bank
  1804. support s3c2440 and pxa270.
  1805. (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
  1806. @example
  1807. mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
  1808. @end example
  1809. (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
  1810. @example
  1811. mflash bank pxa270 0x08000000 2 2 43 -1 51 0
  1812. @end example
  1813. @section Micro Controller Specific Flash Commands
  1814. @subsection AT91SAM7 specific commands
  1815. @cindex AT91SAM7 specific commands
  1816. The flash configuration is deduced from the chip identification register. The flash
  1817. controller handles erases automatically on a page (128/265 byte) basis so erase is
  1818. not necessary for flash programming. AT91SAM7 processors with less than 512K flash
  1819. only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
  1820. that can be erased separatly. Only an EraseAll command is supported by the controller
  1821. for each flash plane and this is called with
  1822. @itemize @bullet
  1823. @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
  1824. @*bulk erase flash planes first_plane to last_plane.
  1825. @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
  1826. @cindex at91sam7 gpnvm
  1827. @*set or clear a gpnvm bit for the processor
  1828. @end itemize
  1829. @subsection STR9 specific commands
  1830. @cindex STR9 specific commands
  1831. @anchor{STR9 specific commands}
  1832. These are flash specific commands when using the str9xpec driver.
  1833. @itemize @bullet
  1834. @item @b{str9xpec enable_turbo} <@var{num}>
  1835. @cindex str9xpec enable_turbo
  1836. @*enable turbo mode, simply this will remove the str9 from the chain and talk
  1837. directly to the embedded flash controller.
  1838. @item @b{str9xpec disable_turbo} <@var{num}>
  1839. @cindex str9xpec disable_turbo
  1840. @*restore the str9 into jtag chain.
  1841. @item @b{str9xpec lock} <@var{num}>
  1842. @cindex str9xpec lock
  1843. @*lock str9 device. The str9 will only respond to an unlock command that will
  1844. erase the device.
  1845. @item @b{str9xpec unlock} <@var{num}>
  1846. @cindex str9xpec unlock
  1847. @*unlock str9 device.
  1848. @item @b{str9xpec options_read} <@var{num}>
  1849. @cindex str9xpec options_read
  1850. @*read str9 option bytes.
  1851. @item @b{str9xpec options_write} <@var{num}>
  1852. @cindex str9xpec options_write
  1853. @*write str9 option bytes.
  1854. @end itemize
  1855. Note: Before using the str9xpec driver here is some background info to help
  1856. you better understand how the drivers works. OpenOCD has two flash drivers for
  1857. the str9.
  1858. @enumerate
  1859. @item
  1860. Standard driver @option{str9x} programmed via the str9 core. Normally used for
  1861. flash programming as it is faster than the @option{str9xpec} driver.
  1862. @item
  1863. Direct programming @option{str9xpec} using the flash controller, this is
  1864. ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
  1865. core does not need to be running to program using this flash driver. Typical use
  1866. for this driver is locking/unlocking the target and programming the option bytes.
  1867. @end enumerate
  1868. Before we run any cmds using the @option{str9xpec} driver we must first disable
  1869. the str9 core. This example assumes the @option{str9xpec} driver has been
  1870. configured for flash bank 0.
  1871. @example
  1872. # assert srst, we do not want core running
  1873. # while accessing str9xpec flash driver
  1874. jtag_reset 0 1
  1875. # turn off target polling
  1876. poll off
  1877. # disable str9 core
  1878. str9xpec enable_turbo 0
  1879. # read option bytes
  1880. str9xpec options_read 0
  1881. # re-enable str9 core
  1882. str9xpec disable_turbo 0
  1883. poll on
  1884. reset halt
  1885. @end example
  1886. The above example will read the str9 option bytes.
  1887. When performing a unlock remember that you will not be able to halt the str9 - it
  1888. has been locked. Halting the core is not required for the @option{str9xpec} driver
  1889. as mentioned above, just issue the cmds above manually or from a telnet prompt.
  1890. @subsection STR9 configuration
  1891. @cindex STR9 configuration
  1892. @itemize @bullet
  1893. @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
  1894. <@var{BBADR}> <@var{NBBADR}>
  1895. @cindex str9x flash_config
  1896. @*Configure str9 flash controller.
  1897. @example
  1898. eg. str9x flash_config 0 4 2 0 0x80000
  1899. This will setup
  1900. BBSR - Boot Bank Size register
  1901. NBBSR - Non Boot Bank Size register
  1902. BBADR - Boot Bank Start Address register
  1903. NBBADR - Boot Bank Start Address register
  1904. @end example
  1905. @end itemize
  1906. @subsection STR9 option byte configuration
  1907. @cindex STR9 option byte configuration
  1908. @itemize @bullet
  1909. @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
  1910. @cindex str9xpec options_cmap
  1911. @*configure str9 boot bank.
  1912. @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
  1913. @cindex str9xpec options_lvdthd
  1914. @*configure str9 lvd threshold.
  1915. @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
  1916. @cindex str9xpec options_lvdsel
  1917. @*configure str9 lvd source.
  1918. @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
  1919. @cindex str9xpec options_lvdwarn
  1920. @*configure str9 lvd reset warning source.
  1921. @end itemize
  1922. @subsection STM32x specific commands
  1923. @cindex STM32x specific commands
  1924. These are flash specific commands when using the stm32x driver.
  1925. @itemize @bullet
  1926. @item @b{stm32x lock} <@var{num}>
  1927. @cindex stm32x lock
  1928. @*lock stm32 device.
  1929. @item @b{stm32x unlock} <@var{num}>
  1930. @cindex stm32x unlock
  1931. @*unlock stm32 device.
  1932. @item @b{stm32x options_read} <@var{num}>
  1933. @cindex stm32x options_read
  1934. @*read stm32 option bytes.
  1935. @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
  1936. <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
  1937. @cindex stm32x options_write
  1938. @*write stm32 option bytes.
  1939. @item @b{stm32x mass_erase} <@var{num}>
  1940. @cindex stm32x mass_erase
  1941. @*mass erase flash memory.
  1942. @end itemize
  1943. @subsection Stellaris specific commands
  1944. @cindex Stellaris specific commands
  1945. These are flash specific commands when using the Stellaris driver.
  1946. @itemize @bullet
  1947. @item @b{stellaris mass_erase} <@var{num}>
  1948. @cindex stellaris mass_erase
  1949. @*mass erase flash memory.
  1950. @end itemize
  1951. @node General Commands
  1952. @chapter General Commands
  1953. @cindex commands
  1954. The commands documented in this chapter here are common commands that
  1955. you a human may want to type and see the output of. Configuration type
  1956. commands are documented elsewhere.
  1957. Intent:
  1958. @itemize @bullet
  1959. @item @b{Source Of Commands}
  1960. @* OpenOCD commands can occur in a configuration script (discussed
  1961. elsewhere) or typed manually by a human or supplied programatically,
  1962. or via one of several Tcp/Ip Ports.
  1963. @item @b{From the human}
  1964. @* A human should interact with the Telnet interface (default port: 4444,
  1965. or via GDB, default port 3333)
  1966. To issue commands from within a GDB session, use the @option{monitor}
  1967. command, e.g. use @option{monitor poll} to issue the @option{poll}
  1968. command. All output is relayed through the GDB session.
  1969. @item @b{Machine Interface}
  1970. The TCL interface intent is to be a machine interface. The default TCL
  1971. port is 5555.
  1972. @end itemize
  1973. @section Daemon Commands
  1974. @subsection sleep
  1975. @b{sleep} <@var{msec}>
  1976. @cindex sleep
  1977. @*Wait for n milliseconds before resuming. Useful in connection with script files
  1978. (@var{script} command and @var{target_script} configuration).
  1979. @subsection sleep
  1980. @b{shutdown}
  1981. @cindex shutdown
  1982. @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
  1983. @subsection debug_level [@var{n}]
  1984. @cindex debug_level
  1985. @anchor{debug_level}
  1986. @*Display or adjust debug level to n<0-3>
  1987. @subsection fast [@var{enable|disable}]
  1988. @cindex fast
  1989. @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
  1990. downloads and fast memory access will work if the JTAG interface isn't too fast and
  1991. the core doesn't run at a too low frequency. Note that this option only changes the default
  1992. and that the indvidual options, like DCC memory downloads, can be enabled and disabled
  1993. individually.
  1994. The target specific "dangerous" optimisation tweaking options may come and go
  1995. as more robust and user friendly ways are found to ensure maximum throughput
  1996. and robustness with a minimum of configuration.
  1997. Typically the "fast enable" is specified first on the command line:
  1998. @example
  1999. openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
  2000. @end example
  2001. @subsection log_output <@var{file}>
  2002. @cindex log_output
  2003. @*Redirect logging to <file> (default: stderr)
  2004. @subsection script <@var{file}>
  2005. @cindex script
  2006. @*Execute commands from <file>
  2007. Also see: ``source [find FILENAME]''
  2008. @section Target state handling
  2009. @subsection power <@var{on}|@var{off}>
  2010. @cindex reg
  2011. @*Turn power switch to target on/off.
  2012. No arguments: print status.
  2013. Not all interfaces support this.
  2014. @subsection reg [@option{#}|@option{name}] [value]
  2015. @cindex reg
  2016. @*Access a single register by its number[@option{#}] or by its [@option{name}].
  2017. No arguments: list all available registers for the current target.
  2018. Number or name argument: display a register
  2019. Number or name and value arguments: set register value
  2020. @subsection poll [@option{on}|@option{off}]
  2021. @cindex poll
  2022. @*Poll the target for its current state. If the target is in debug mode, architecture
  2023. specific information about the current state is printed. An optional parameter
  2024. allows continuous polling to be enabled and disabled.
  2025. @subsection halt [@option{ms}]
  2026. @cindex halt
  2027. @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
  2028. Default [@option{ms}] is 5 seconds if no arg given.
  2029. Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
  2030. will stop OpenOCD from waiting.
  2031. @subsection wait_halt [@option{ms}]
  2032. @cindex wait_halt
  2033. @*Wait for the target to enter debug mode. Optional [@option{ms}] is
  2034. a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
  2035. arg given.
  2036. @subsection resume [@var{address}]
  2037. @cindex resume
  2038. @*Resume the target at its current code position, or at an optional address.
  2039. OpenOCD will wait 5 seconds for the target to resume.
  2040. @subsection step [@var{address}]
  2041. @cindex step
  2042. @*Single-step the target at its current code position, or at an optional address.
  2043. @subsection reset [@option{run}|@option{halt}|@option{init}]
  2044. @cindex reset
  2045. @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
  2046. With no arguments a "reset run" is executed
  2047. @itemize @minus
  2048. @item @b{run}
  2049. @cindex reset run
  2050. @*Let the target run.
  2051. @item @b{halt}
  2052. @cindex reset halt
  2053. @*Immediately halt the target (works only with certain configurations).
  2054. @item @b{init}
  2055. @cindex reset init
  2056. @*Immediately halt the target, and execute the reset script (works only with certain
  2057. configurations)
  2058. @end itemize
  2059. @subsection soft_reset_halt
  2060. @cindex reset
  2061. @*Requesting target halt and executing a soft reset. This often used
  2062. when a target cannot be reset and halted. The target, after reset is
  2063. released begins to execute code. OpenOCD attempts to stop the CPU and
  2064. then sets the Program counter back at the reset vector. Unfortunatlly
  2065. that code that was executed may have left hardware in an unknown
  2066. state.
  2067. @section Memory access commands
  2068. @subsection meminfo
  2069. display available ram memory.
  2070. @subsection Memory Peek/Poke type commands
  2071. These commands allow accesses of a specific size to the memory
  2072. system. Often these are used to configure the current target in some
  2073. special way. For example - one may need to write certian values to the
  2074. SDRAM controller to enable SDRAM.
  2075. @enumerate
  2076. @item To change the current target see the ``targets'' (plural) command
  2077. @item In system level scripts these commands are depricated, please use the TARGET object versions.
  2078. @end enumerate
  2079. @itemize @bullet
  2080. @item @b{mdw} <@var{addr}> [@var{count}]
  2081. @cindex mdw
  2082. @*display memory words (32bit)
  2083. @item @b{mdh} <@var{addr}> [@var{count}]
  2084. @cindex mdh
  2085. @*display memory half-words (16bit)
  2086. @item @b{mdb} <@var{addr}> [@var{count}]
  2087. @cindex mdb
  2088. @*display memory bytes (8bit)
  2089. @item @b{mww} <@var{addr}> <@var{value}>
  2090. @cindex mww
  2091. @*write memory word (32bit)
  2092. @item @b{mwh} <@var{addr}> <@var{value}>
  2093. @cindex mwh
  2094. @*write memory half-word (16bit)
  2095. @item @b{mwb} <@var{addr}> <@var{value}>
  2096. @cindex mwb
  2097. @*write memory byte (8bit)
  2098. @end itemize
  2099. @section Image Loading Commands
  2100. @subsection load_image
  2101. @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2102. @cindex load_image
  2103. @anchor{load_image}
  2104. @*Load image <@var{file}> to target memory at <@var{address}>
  2105. @subsection fast_load_image
  2106. @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2107. @cindex fast_load_image
  2108. @anchor{fast_load_image}
  2109. @*Normally you should be using @b{load_image} or GDB load. However, for
  2110. testing purposes or when IO overhead is significant(OpenOCD running on embedded
  2111. host), then storing the image in memory and uploading the image to the target
  2112. can be a way to upload e.g. multiple debug sessions when the binary does not change.
  2113. Arguments as @b{load_image}, but image is stored in OpenOCD host
  2114. memory, i.e. does not affect target. This approach is also useful when profiling
  2115. target programming performance as IO and target programming can easily be profiled
  2116. seperately.
  2117. @subsection fast_load
  2118. @b{fast_load}
  2119. @cindex fast_image
  2120. @anchor{fast_image}
  2121. @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
  2122. @subsection dump_image
  2123. @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
  2124. @cindex dump_image
  2125. @anchor{dump_image}
  2126. @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
  2127. (binary) <@var{file}>.
  2128. @subsection verify_image
  2129. @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2130. @cindex verify_image
  2131. @*Verify <@var{file}> against target memory starting at <@var{address}>.
  2132. This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
  2133. @section Breakpoint commands
  2134. @cindex Breakpoint commands
  2135. @itemize @bullet
  2136. @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
  2137. @cindex bp
  2138. @*set breakpoint <address> <length> [hw]
  2139. @item @b{rbp} <@var{addr}>
  2140. @cindex rbp
  2141. @*remove breakpoint <adress>
  2142. @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
  2143. @cindex wp
  2144. @*set watchpoint <address> <length> <r/w/a> [value] [mask]
  2145. @item @b{rwp} <@var{addr}>
  2146. @cindex rwp
  2147. @*remove watchpoint <adress>
  2148. @end itemize
  2149. @section Misc Commands
  2150. @cindex Other Target Commands
  2151. @itemize
  2152. @item @b{profile} <@var{seconds}> <@var{gmon.out}>
  2153. Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
  2154. @end itemize
  2155. @section Target Specific Commands
  2156. @cindex Target Specific Commands
  2157. @page
  2158. @section Architecture Specific Commands
  2159. @cindex Architecture Specific Commands
  2160. @subsection ARMV4/5 specific commands
  2161. @cindex ARMV4/5 specific commands
  2162. These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
  2163. or Intel XScale (XScale isn't supported yet).
  2164. @itemize @bullet
  2165. @item @b{armv4_5 reg}
  2166. @cindex armv4_5 reg
  2167. @*Display a list of all banked core registers, fetching the current value from every
  2168. core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
  2169. register value.
  2170. @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
  2171. @cindex armv4_5 core_mode
  2172. @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
  2173. The target is resumed in the currently set @option{core_mode}.
  2174. @end itemize
  2175. @subsection ARM7/9 specific commands
  2176. @cindex ARM7/9 specific commands
  2177. These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
  2178. ARM920t or ARM926EJ-S.
  2179. @itemize @bullet
  2180. @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
  2181. @cindex arm7_9 dbgrq
  2182. @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
  2183. safe for all but ARM7TDMI--S cores (like Philips LPC).
  2184. @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
  2185. @cindex arm7_9 fast_memory_access
  2186. @anchor{arm7_9 fast_memory_access}
  2187. @*Allow OpenOCD to read and write memory without checking completion of
  2188. the operation. This provides a huge speed increase, especially with USB JTAG
  2189. cables (FT2232), but might be unsafe if used with targets running at a very low
  2190. speed, like the 32kHz startup clock of an AT91RM9200.
  2191. @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
  2192. @cindex arm7_9 dcc_downloads
  2193. @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
  2194. amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
  2195. unsafe, especially with targets running at a very low speed. This command was introduced
  2196. with OpenOCD rev. 60.
  2197. @end itemize
  2198. @subsection ARM720T specific commands
  2199. @cindex ARM720T specific commands
  2200. @itemize @bullet
  2201. @item @b{arm720t cp15} <@var{num}> [@var{value}]
  2202. @cindex arm720t cp15
  2203. @*display/modify cp15 register <@option{num}> [@option{value}].
  2204. @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
  2205. @cindex arm720t md<bhw>_phys
  2206. @*Display memory at physical address addr.
  2207. @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
  2208. @cindex arm720t mw<bhw>_phys
  2209. @*Write memory at physical address addr.
  2210. @item @b{arm720t virt2phys} <@var{va}>
  2211. @cindex arm720t virt2phys
  2212. @*Translate a virtual address to a physical address.
  2213. @end itemize
  2214. @subsection ARM9TDMI specific commands
  2215. @cindex ARM9TDMI specific commands
  2216. @itemize @bullet
  2217. @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
  2218. @cindex arm9tdmi vector_catch
  2219. @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
  2220. @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
  2221. @option{irq} @option{fiq}.
  2222. Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
  2223. @end itemize
  2224. @subsection ARM966E specific commands
  2225. @cindex ARM966E specific commands
  2226. @itemize @bullet
  2227. @item @b{arm966e cp15} <@var{num}> [@var{value}]
  2228. @cindex arm966e cp15
  2229. @*display/modify cp15 register <@option{num}> [@option{value}].
  2230. @end itemize
  2231. @subsection ARM920T specific commands
  2232. @cindex ARM920T specific commands
  2233. @itemize @bullet
  2234. @item @b{arm920t cp15} <@var{num}> [@var{value}]
  2235. @cindex arm920t cp15
  2236. @*display/modify cp15 register <@option{num}> [@option{value}].
  2237. @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
  2238. @cindex arm920t cp15i
  2239. @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
  2240. @item @b{arm920t cache_info}
  2241. @cindex arm920t cache_info
  2242. @*Print information about the caches found. This allows you to see if your target
  2243. is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
  2244. @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
  2245. @cindex arm920t md<bhw>_phys
  2246. @*Display memory at physical address addr.
  2247. @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
  2248. @cindex arm920t mw<bhw>_phys
  2249. @*Write memory at physical address addr.
  2250. @item @b{arm920t read_cache} <@var{filename}>
  2251. @cindex arm920t read_cache
  2252. @*Dump the content of ICache and DCache to a file.
  2253. @item @b{arm920t read_mmu} <@var{filename}>
  2254. @cindex arm920t read_mmu
  2255. @*Dump the content of the ITLB and DTLB to a file.
  2256. @item @b{arm920t virt2phys} <@var{va}>
  2257. @cindex arm920t virt2phys
  2258. @*Translate a virtual address to a physical address.
  2259. @end itemize
  2260. @subsection ARM926EJS specific commands
  2261. @cindex ARM926EJS specific commands
  2262. @itemize @bullet
  2263. @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
  2264. @cindex arm926ejs cp15
  2265. @*display/modify cp15 register <@option{num}> [@option{value}].
  2266. @item @b{arm926ejs cache_info}
  2267. @cindex arm926ejs cache_info
  2268. @*Print information about the caches found.
  2269. @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
  2270. @cindex arm926ejs md<bhw>_phys
  2271. @*Display memory at physical address addr.
  2272. @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
  2273. @cindex arm926ejs mw<bhw>_phys
  2274. @*Write memory at physical address addr.
  2275. @item @b{arm926ejs virt2phys} <@var{va}>
  2276. @cindex arm926ejs virt2phys
  2277. @*Translate a virtual address to a physical address.
  2278. @end itemize
  2279. @subsection CORTEX_M3 specific commands
  2280. @cindex CORTEX_M3 specific commands
  2281. @itemize @bullet
  2282. @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
  2283. @cindex cortex_m3 maskisr
  2284. @*Enable masking (disabling) interrupts during target step/resume.
  2285. @end itemize
  2286. @page
  2287. @section Debug commands
  2288. @cindex Debug commands
  2289. The following commands give direct access to the core, and are most likely
  2290. only useful while debugging OpenOCD.
  2291. @itemize @bullet
  2292. @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
  2293. @cindex arm7_9 write_xpsr
  2294. @*Immediately write either the current program status register (CPSR) or the saved
  2295. program status register (SPSR), without changing the register cache (as displayed
  2296. by the @option{reg} and @option{armv4_5 reg} commands).
  2297. @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
  2298. <@var{0=cpsr},@var{1=spsr}>
  2299. @cindex arm7_9 write_xpsr_im8
  2300. @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
  2301. operation (similar to @option{write_xpsr}).
  2302. @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
  2303. @cindex arm7_9 write_core_reg
  2304. @*Write a core register, without changing the register cache (as displayed by the
  2305. @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
  2306. encoding of the [M4:M0] bits of the PSR.
  2307. @end itemize
  2308. @section Target Requests
  2309. @cindex Target Requests
  2310. OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
  2311. See libdcc in the contrib dir for more details.
  2312. @itemize @bullet
  2313. @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
  2314. @cindex target_request debugmsgs
  2315. @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
  2316. @end itemize
  2317. @node JTAG Commands
  2318. @chapter JTAG Commands
  2319. @cindex JTAG commands
  2320. Generally most people will not use the bulk of these commands. They
  2321. are mostly used by the OpenOCD developers or those who need to
  2322. directly manipulate the JTAG taps.
  2323. In general these commands control JTAG taps at a very low level. For
  2324. example if you need to control a JTAG Route Controller (ie: the
  2325. OMAP3530 on the Beagle Board has one) you might use these commands in
  2326. a script or an event procedure.
  2327. @itemize @bullet
  2328. @item @b{scan_chain}
  2329. @cindex scan_chain
  2330. @*Print current scan chain configuration.
  2331. @item @b{jtag_reset} <@var{trst}> <@var{srst}>
  2332. @cindex jtag_reset
  2333. @*Toggle reset lines.
  2334. @item @b{endstate} <@var{tap_state}>
  2335. @cindex endstate
  2336. @*Finish JTAG operations in <@var{tap_state}>.
  2337. @item @b{runtest} <@var{num_cycles}>
  2338. @cindex runtest
  2339. @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
  2340. @item @b{statemove} [@var{tap_state}]
  2341. @cindex statemove
  2342. @*Move to current endstate or [@var{tap_state}]
  2343. @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  2344. @cindex irscan
  2345. @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  2346. @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
  2347. @cindex drscan
  2348. @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
  2349. @item @b{verify_ircapture} <@option{enable}|@option{disable}>
  2350. @cindex verify_ircapture
  2351. @*Verify value captured during Capture-IR. Default is enabled.
  2352. @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  2353. @cindex var
  2354. @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  2355. @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
  2356. @cindex field
  2357. Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
  2358. @end itemize
  2359. @node TFTP
  2360. @chapter TFTP
  2361. @cindex TFTP
  2362. If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
  2363. be used to access files on PCs(either developer PC or some other PC).
  2364. The way this works on the ZY1000 is to prefix a filename by
  2365. "/tftp/ip/" and append the tftp path on the tftp
  2366. server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
  2367. load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
  2368. if the file was hosted on the embedded host.
  2369. In order to achieve decent performance, you must choose a tftp server
  2370. that supports a packet size bigger than the default packet size(512 bytes). There
  2371. are numerous tftp servers out there(free and commercial) and you will have to do
  2372. a bit of googling to find something that fits your requirements.
  2373. @node Sample Scripts
  2374. @chapter Sample Scripts
  2375. @cindex scripts
  2376. This page shows how to use the target library.
  2377. The configuration script can be divided in the following section:
  2378. @itemize @bullet
  2379. @item daemon configuration
  2380. @item interface
  2381. @item jtag scan chain
  2382. @item target configuration
  2383. @item flash configuration
  2384. @end itemize
  2385. Detailed information about each section can be found at OpenOCD configuration.
  2386. @section AT91R40008 example
  2387. @cindex AT91R40008 example
  2388. To start OpenOCD with a target script for the AT91R40008 CPU and reset
  2389. the CPU upon startup of the OpenOCD daemon.
  2390. @example
  2391. openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
  2392. @end example
  2393. @node GDB and OpenOCD
  2394. @chapter GDB and OpenOCD
  2395. @cindex GDB and OpenOCD
  2396. OpenOCD complies with the remote gdbserver protocol, and as such can be used
  2397. to debug remote targets.
  2398. @section Connecting to GDB
  2399. @cindex Connecting to GDB
  2400. @anchor{Connecting to GDB}
  2401. Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
  2402. instance 6.3 has a known bug where it produces bogus memory access
  2403. errors, which has since been fixed: look up 1836 in
  2404. @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
  2405. @*OpenOCD can communicate with GDB in two ways:
  2406. @enumerate
  2407. @item
  2408. A socket (tcp) connection is typically started as follows:
  2409. @example
  2410. target remote localhost:3333
  2411. @end example
  2412. This would cause GDB to connect to the gdbserver on the local pc using port 3333.
  2413. @item
  2414. A pipe connection is typically started as follows:
  2415. @example
  2416. target remote openocd --pipe
  2417. @end example
  2418. This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
  2419. Using this method has the advantage of GDB starting/stopping OpenOCD for debug session.
  2420. @end enumerate
  2421. @*To see a list of available OpenOCD commands type @option{monitor help} on the
  2422. GDB commandline.
  2423. OpenOCD supports the gdb @option{qSupported} packet, this enables information
  2424. to be sent by the gdb server (OpenOCD) to GDB. Typical information includes
  2425. packet size and device memory map.
  2426. Previous versions of OpenOCD required the following GDB options to increase
  2427. the packet size and speed up GDB communication.
  2428. @example
  2429. set remote memory-write-packet-size 1024
  2430. set remote memory-write-packet-size fixed
  2431. set remote memory-read-packet-size 1024
  2432. set remote memory-read-packet-size fixed
  2433. @end example
  2434. This is now handled in the @option{qSupported} PacketSize and should not be required.
  2435. @section Programming using GDB
  2436. @cindex Programming using GDB
  2437. By default the target memory map is sent to GDB, this can be disabled by
  2438. the following OpenOCD config option:
  2439. @example
  2440. gdb_memory_map disable
  2441. @end example
  2442. For this to function correctly a valid flash config must also be configured
  2443. in OpenOCD. For faster performance you should also configure a valid
  2444. working area.
  2445. Informing GDB of the memory map of the target will enable GDB to protect any
  2446. flash area of the target and use hardware breakpoints by default. This means
  2447. that the OpenOCD option @option{gdb_breakpoint_override} is not required when
  2448. using a memory map. @xref{gdb_breakpoint_override}.
  2449. To view the configured memory map in GDB, use the gdb command @option{info mem}
  2450. All other unasigned addresses within GDB are treated as RAM.
  2451. GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
  2452. this can be changed to the old behaviour by using the following GDB command.
  2453. @example
  2454. set mem inaccessible-by-default off
  2455. @end example
  2456. If @option{gdb_flash_program enable} is also used, GDB will be able to
  2457. program any flash memory using the vFlash interface.
  2458. GDB will look at the target memory map when a load command is given, if any
  2459. areas to be programmed lie within the target flash area the vFlash packets
  2460. will be used.
  2461. If the target needs configuring before GDB programming, an event
  2462. script can be executed.
  2463. @example
  2464. $_TARGETNAME configure -event EVENTNAME BODY
  2465. @end example
  2466. To verify any flash programming the GDB command @option{compare-sections}
  2467. can be used.
  2468. @node TCL scripting API
  2469. @chapter TCL scripting API
  2470. @cindex TCL scripting API
  2471. API rules
  2472. The commands are stateless. E.g. the telnet command line has a concept
  2473. of currently active target, the Tcl API proc's take this sort of state
  2474. information as an argument to each proc.
  2475. There are three main types of return values: single value, name value
  2476. pair list and lists.
  2477. Name value pair. The proc 'foo' below returns a name/value pair
  2478. list.
  2479. @verbatim
  2480. > set foo(me) Duane
  2481. > set foo(you) Oyvind
  2482. > set foo(mouse) Micky
  2483. > set foo(duck) Donald
  2484. If one does this:
  2485. > set foo
  2486. The result is:
  2487. me Duane you Oyvind mouse Micky duck Donald
  2488. Thus, to get the names of the associative array is easy:
  2489. foreach { name value } [set foo] {
  2490. puts "Name: $name, Value: $value"
  2491. }
  2492. @end verbatim
  2493. Lists returned must be relatively small. Otherwise a range
  2494. should be passed in to the proc in question.
  2495. Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
  2496. is the low level API upon which "flash banks" is implemented.
  2497. @itemize @bullet
  2498. @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
  2499. Read memory and return as a TCL array for script processing
  2500. @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
  2501. Convert a TCL array to memory locations and write the values
  2502. @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
  2503. Return information about the flash banks
  2504. @end itemize
  2505. OpenOCD commands can consist of two words, e.g. "flash banks". The
  2506. startup.tcl "unknown" proc will translate this into a tcl proc
  2507. called "flash_banks".
  2508. @node Upgrading
  2509. @chapter Deprecated/Removed Commands
  2510. @cindex Deprecated/Removed Commands
  2511. Certain OpenOCD commands have been deprecated/removed during the various revisions.
  2512. @itemize @bullet
  2513. @item @b{arm7_9 fast_writes}
  2514. @cindex arm7_9 fast_writes
  2515. @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
  2516. @item @b{arm7_9 force_hw_bkpts}
  2517. @cindex arm7_9 force_hw_bkpts
  2518. @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
  2519. for flash if the gdb memory map has been set up(default when flash is declared in
  2520. target configuration). @xref{gdb_breakpoint_override}.
  2521. @item @b{arm7_9 sw_bkpts}
  2522. @cindex arm7_9 sw_bkpts
  2523. @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
  2524. @item @b{daemon_startup}
  2525. @cindex daemon_startup
  2526. @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
  2527. the end of your config script will give the same behaviour as using @option{daemon_startup reset}
  2528. and @option{target cortex_m3 little reset_halt 0}.
  2529. @item @b{dump_binary}
  2530. @cindex dump_binary
  2531. @*use @option{dump_image} command with same args. @xref{dump_image}.
  2532. @item @b{flash erase}
  2533. @cindex flash erase
  2534. @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
  2535. @item @b{flash write}
  2536. @cindex flash write
  2537. @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
  2538. @item @b{flash write_binary}
  2539. @cindex flash write_binary
  2540. @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
  2541. @item @b{flash auto_erase}
  2542. @cindex flash auto_erase
  2543. @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
  2544. @item @b{load_binary}
  2545. @cindex load_binary
  2546. @*use @option{load_image} command with same args. @xref{load_image}.
  2547. @item @b{run_and_halt_time}
  2548. @cindex run_and_halt_time
  2549. @*This command has been removed for simpler reset behaviour, it can be simulated with the
  2550. following commands:
  2551. @smallexample
  2552. reset run
  2553. sleep 100
  2554. halt
  2555. @end smallexample
  2556. @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
  2557. @cindex target
  2558. @*use the create subcommand of @option{target}.
  2559. @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
  2560. @cindex target_script
  2561. @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
  2562. @item @b{working_area}
  2563. @cindex working_area
  2564. @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
  2565. @end itemize
  2566. @node FAQ
  2567. @chapter FAQ
  2568. @cindex faq
  2569. @enumerate
  2570. @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
  2571. @cindex RTCK
  2572. @cindex adaptive clocking
  2573. @*
  2574. In digital circuit design it is often refered to as ``clock
  2575. syncronization'' the JTAG interface uses one clock (TCK or TCLK)
  2576. operating at some speed, your target is operating at another. The two
  2577. clocks are not syncronized, they are ``asynchronous''
  2578. In order for the two to work together they must syncronize. Otherwise
  2579. the two systems will get out of sync with each other and nothing will
  2580. work. There are 2 basic options. @b{1.} use a special circuit or
  2581. @b{2.} one clock must be some multile slower the the other.
  2582. @b{Does this really matter?} For some chips and some situations, this
  2583. is a non-issue (ie: A 500mhz ARM926) but for others - for example some
  2584. ATMEL SAM7 and SAM9 chips start operation from reset at 32khz -
  2585. program/enable the oscillators and eventually the main clock. It is in
  2586. those critical times you must slow the jtag clock to sometimes 1 to
  2587. 4khz.
  2588. Imagine debugging that 500mhz arm926 hand held battery powered device
  2589. that ``deep sleeps'' at 32khz between every keystroke. It can be
  2590. painful.
  2591. @b{Solution #1 - A special circuit}
  2592. In order to make use of this your jtag dongle must support the RTCK
  2593. feature. Not all dongles support this - keep reading!
  2594. The RTCK signal often found in some ARM chips is used to help with
  2595. this problem. ARM has a good description of the problem described at
  2596. this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
  2597. 28/nov/2008]. Link title: ``How does the jtag synchronisation logic
  2598. work? / how does adaptive clocking working?''.
  2599. The nice thing about adaptive clocking is that ``battery powered hand
  2600. held device example'' - the adaptiveness works perfectly all the
  2601. time. One can set a break point or halt the system in the deep power
  2602. down code, slow step out until the system speeds up.
  2603. @b{Solution #2 - Always works - but is slower}
  2604. Often this is a perfectly acceptable solution.
  2605. In the most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
  2606. the target clock speed. But what is that ``magic division'' it varies
  2607. depending upon the chips on your board. @b{ARM Rule of thumb} Most ARM
  2608. based systems require an 8:1 division. @b{Xilinx Rule of thumb} is
  2609. 1/12 the clock speed.
  2610. Note: Many FTDI2232C based JTAG dongles are limited to 6mhz.
  2611. You can still debug the 'lower power' situations - you just need to
  2612. manually adjust the clock speed at every step. While painful and
  2613. teadious, it is not always practical.
  2614. It is however easy to ``code your way around it'' - ie: Cheat a little
  2615. have a special debug mode in your application that does a ``high power
  2616. sleep''. If you are careful - 98% of your problems can be debugged
  2617. this way.
  2618. To set the JTAG frequency use the command:
  2619. @example
  2620. # Example: 1.234mhz
  2621. jtag_khz 1234
  2622. @end example
  2623. @item @b{Win32 Pathnames} Why does not backslashes in paths under Windows doesn't work?
  2624. OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
  2625. around Windows filenames.
  2626. @example
  2627. > echo \a
  2628. > echo @{\a@}
  2629. \a
  2630. > echo "\a"
  2631. >
  2632. @end example
  2633. @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
  2634. Make sure you have Cygwin installed, or at least a version of OpenOCD that
  2635. claims to come with all the necessary dlls. When using Cygwin, try launching
  2636. OpenOCD from the Cygwin shell.
  2637. @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
  2638. Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
  2639. arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
  2640. GDB issues software breakpoints when a normal breakpoint is requested, or to implement
  2641. source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
  2642. software breakpoints consume one of the two available hardware breakpoints.
  2643. @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
  2644. and works sometimes fine.
  2645. Make sure the core frequency specified in the @option{flash lpc2000} line matches the
  2646. clock at the time you're programming the flash. If you've specified the crystal's
  2647. frequency, make sure the PLL is disabled, if you've specified the full core speed
  2648. (e.g. 60MHz), make sure the PLL is enabled.
  2649. @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
  2650. I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
  2651. out while waiting for end of scan, rtck was disabled".
  2652. Make sure your PC's parallel port operates in EPP mode. You might have to try several
  2653. settings in your PC BIOS (ECP, EPP, and different versions of those).
  2654. @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
  2655. I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
  2656. memory read caused data abort".
  2657. The errors are non-fatal, and are the result of GDB trying to trace stack frames
  2658. beyond the last valid frame. It might be possible to prevent this by setting up
  2659. a proper "initial" stack frame, if you happen to know what exactly has to
  2660. be done, feel free to add this here.
  2661. @b{Simple:} In your startup code - push 8 registers of ZEROs onto the
  2662. stack before calling main(). What GDB is doing is ``climbing'' the run
  2663. time stack by reading various values on the stack using the standard
  2664. call frame for the target. GDB keeps going - until one of 2 things
  2665. happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
  2666. stackframes have been processed. By pushing ZEROs on the stack, GDB
  2667. gracefully stops.
  2668. @b{Debugging Interrupt Service Routines} - In your ISR before you call
  2669. your C code, do the same, artifically push some zeros on to the stack,
  2670. remember to pop them off when the ISR is done.
  2671. @b{Also note:} If you have a multi-threaded operating system, they
  2672. often do not @b{in the intrest of saving memory} waste these few
  2673. bytes. Painful...
  2674. @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
  2675. "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
  2676. This warning doesn't indicate any serious problem, as long as you don't want to
  2677. debug your core right out of reset. Your .cfg file specified @option{jtag_reset
  2678. trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
  2679. your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
  2680. independently. With this setup, it's not possible to halt the core right out of
  2681. reset, everything else should work fine.
  2682. @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
  2683. Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
  2684. unstable. When single-stepping over large blocks of code, GDB and OpenOCD
  2685. quit with an error message. Is there a stability issue with OpenOCD?
  2686. No, this is not a stability issue concerning OpenOCD. Most users have solved
  2687. this issue by simply using a self-powered USB hub, which they connect their
  2688. Amontec JTAGkey to. Apparently, some computers do not provide a USB power
  2689. supply stable enough for the Amontec JTAGkey to be operated.
  2690. @b{Laptops running on battery have this problem too...}
  2691. @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
  2692. following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
  2693. 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
  2694. What does that mean and what might be the reason for this?
  2695. First of all, the reason might be the USB power supply. Try using a self-powered
  2696. hub instead of a direct connection to your computer. Secondly, the error code 4
  2697. corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
  2698. chip ran into some sort of error - this points us to a USB problem.
  2699. @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
  2700. error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
  2701. What does that mean and what might be the reason for this?
  2702. Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
  2703. has closed the connection to OpenOCD. This might be a GDB issue.
  2704. @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
  2705. are described, there is a parameter for specifying the clock frequency
  2706. for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
  2707. 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
  2708. specified in kilohertz. However, I do have a quartz crystal of a
  2709. frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
  2710. i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
  2711. clock frequency?
  2712. No. The clock frequency specified here must be given as an integral number.
  2713. However, this clock frequency is used by the In-Application-Programming (IAP)
  2714. routines of the LPC2000 family only, which seems to be very tolerant concerning
  2715. the given clock frequency, so a slight difference between the specified clock
  2716. frequency and the actual clock frequency will not cause any trouble.
  2717. @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
  2718. Well, yes and no. Commands can be given in arbitrary order, yet the
  2719. devices listed for the JTAG scan chain must be given in the right
  2720. order (jtag newdevice), with the device closest to the TDO-Pin being
  2721. listed first. In general, whenever objects of the same type exist
  2722. which require an index number, then these objects must be given in the
  2723. right order (jtag newtap, targets and flash banks - a target
  2724. references a jtag newtap and a flash bank references a target).
  2725. You can use the ``scan_chain'' command to verify and display the tap order.
  2726. @item @b{JTAG Tap Order} JTAG Tap Order - Command Order
  2727. Many newer devices have multiple JTAG taps. For example: ST
  2728. Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
  2729. ``cortexM3'' tap. Example: The STM32 reference manual, Document ID:
  2730. RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
  2731. connected to the Boundary Scan Tap, which then connects to the
  2732. CortexM3 Tap, which then connects to the TDO pin.
  2733. Thus, the proper order for the STM32 chip is: (1) The CortexM3, then
  2734. (2) The Boundary Scan Tap. If your board includes an additional JTAG
  2735. chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
  2736. place it before or after the stm32 chip in the chain. For example:
  2737. @itemize @bullet
  2738. @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
  2739. @item STM32 BS TDO (output) -> STM32 CortexM3 TDI (input)
  2740. @item STM32 CortexM3 TDO (output) -> SM32 TDO Pin
  2741. @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
  2742. @item Xilinx TDO Pin -> OpenOCD TDO (input)
  2743. @end itemize
  2744. The ``jtag device'' commands would thus be in the order shown below. Note
  2745. @itemize @bullet
  2746. @item jtag newtap Xilinx tap -irlen ...
  2747. @item jtag newtap stm32 cpu -irlen ...
  2748. @item jtag newtap stm32 bs -irlen ...
  2749. @item # Create the debug target and say where it is
  2750. @item target create stm32.cpu -chain-position stm32.cpu ...
  2751. @end itemize
  2752. @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
  2753. log file, I can see these error messages: Error: arm7_9_common.c:561
  2754. arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
  2755. TODO.
  2756. @end enumerate
  2757. @node TCL Crash Course
  2758. @chapter TCL Crash Course
  2759. @cindex TCL
  2760. Not everyone knows TCL - this is not intended to be a replacement for
  2761. learning TCL, the intent of this chapter is to give you some idea of
  2762. how the TCL Scripts work.
  2763. This chapter is written with two audiences in mind. (1) OpenOCD users
  2764. who need to understand a bit more of how JIM-Tcl works so they can do
  2765. something useful, and (2) those that want to add a new command to
  2766. OpenOCD.
  2767. @section TCL Rule #1
  2768. There is a famous joke, it goes like this:
  2769. @enumerate
  2770. @item Rule #1: The wife is always correct
  2771. @item Rule #2: If you think otherwise, See Rule #1
  2772. @end enumerate
  2773. The TCL equal is this:
  2774. @enumerate
  2775. @item Rule #1: Everything is a string
  2776. @item Rule #2: If you think otherwise, See Rule #1
  2777. @end enumerate
  2778. As in the famous joke, the consequences of Rule #1 are profound. Once
  2779. you understand Rule #1, you will understand TCL.
  2780. @section TCL Rule #1b
  2781. There is a second pair of rules.
  2782. @enumerate
  2783. @item Rule #1: Control flow does not exist. Only commands
  2784. @* For example: the classic FOR loop or IF statement is not a control
  2785. flow item, they are commands, there is no such thing as control flow
  2786. in TCL.
  2787. @item Rule #2: If you think otherwise, See Rule #1
  2788. @* Actually what happens is this: There are commands that by
  2789. convention, act like control flow key words in other languages. One of
  2790. those commands is the word ``for'', another command is ``if''.
  2791. @end enumerate
  2792. @section Per Rule #1 - All Results are strings
  2793. Every TCL command results in a string. The word ``result'' is used
  2794. deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
  2795. Everything is a string}
  2796. @section TCL Quoting Operators
  2797. In life of a TCL script, there are two important periods of time, the
  2798. difference is subtle.
  2799. @enumerate
  2800. @item Parse Time
  2801. @item Evaluation Time
  2802. @end enumerate
  2803. The two key items here are how ``quoted things'' work in TCL. TCL has
  2804. three primary quoting constructs, the [square-brackets] the
  2805. @{curly-braces@} and ``double-quotes''
  2806. By now you should know $VARIABLES always start with a $DOLLAR
  2807. sign. BTW, to set a variable, you actually use the command ``set'', as
  2808. in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
  2809. = 1'' statement, but without the equal sign.
  2810. @itemize @bullet
  2811. @item @b{[square-brackets]}
  2812. @* @b{[square-brackets]} are command subsitution. It operates much
  2813. like Unix Shell `back-ticks`. The result of a [square-bracket]
  2814. operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
  2815. string}. These two statments are roughly identical.
  2816. @example
  2817. # bash example
  2818. X=`date`
  2819. echo "The Date is: $X"
  2820. # TCL example
  2821. set X [date]
  2822. puts "The Date is: $X"
  2823. @end example
  2824. @item @b{``double-quoted-things''}
  2825. @* @b{``double-quoted-things''} are just simply quoted
  2826. text. $VARIABLES and [square-brackets] are expanded in place - the
  2827. result however is exactly 1 string. @i{Remember Rule #1 - Everything
  2828. is a string}
  2829. @example
  2830. set x "Dinner"
  2831. puts "It is now \"[date]\", $x is in 1 hour"
  2832. @end example
  2833. @item @b{@{Curly-Braces@}}
  2834. @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
  2835. parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
  2836. 'single-quote' operators in BASH shell scripts, with the added
  2837. feature: @{curly-braces@} nest, single quotes can not. @{@{@{this is
  2838. nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
  2839. 28/nov/2008, Jim/OpenOCD does not have a date command.
  2840. @end itemize
  2841. @section Consequences of Rule 1/2/3/4
  2842. The consequences of Rule 1 is profound.
  2843. @subsection Tokenizing & Execution.
  2844. Of course, whitespace, blank lines and #comment lines are handled in
  2845. the normal way.
  2846. As a script is parsed, each (multi) line in the script file is
  2847. tokenized and according to the quoting rules. After tokenizing, that
  2848. line is immedatly executed.
  2849. Multi line statements end with one or more ``still-open''
  2850. @{curly-braces@} which - eventually - a few lines later closes.
  2851. @subsection Command Execution
  2852. Remember earlier: There is no such thing as ``control flow''
  2853. statements in TCL. Instead there are COMMANDS that simpily act like
  2854. control flow operators.
  2855. Commands are executed like this:
  2856. @enumerate
  2857. @item Parse the next line into (argc) and (argv[]).
  2858. @item Look up (argv[0]) in a table and call its function.
  2859. @item Repeat until End Of File.
  2860. @end enumerate
  2861. It sort of works like this:
  2862. @example
  2863. for(;;)@{
  2864. ReadAndParse( &argc, &argv );
  2865. cmdPtr = LookupCommand( argv[0] );
  2866. (*cmdPtr->Execute)( argc, argv );
  2867. @}
  2868. @end example
  2869. When the command ``proc'' is parsed (which creates a procedure
  2870. function) it gets 3 parameters on the command line. @b{1} the name of
  2871. the proc (function), @b{2} the list of parameters, and @b{3} the body
  2872. of the function. Not the choice of words: LIST and BODY. The PROC
  2873. command stores these items in a table somewhere so it can be found by
  2874. ``LookupCommand()''
  2875. @subsection The FOR Command
  2876. The most interesting command to look at is the FOR command. In TCL,
  2877. the FOR command is normally implimented in C. Remember, FOR is a
  2878. command just like any other command.
  2879. When the ascii text containing the FOR command is parsed, the parser
  2880. produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
  2881. are:
  2882. @enumerate 0
  2883. @item The ascii text 'for'
  2884. @item The start text
  2885. @item The test expression
  2886. @item The next text
  2887. @item The body text
  2888. @end enumerate
  2889. Sort of reminds you of ``main( int argc, char **argv )'' does it not?
  2890. Remember @i{Rule #1 - Everything is a string.} The key point is this:
  2891. Often many of those parameters are in @{curly-braces@} - thus the
  2892. variables inside are not expanded or replaced until later.
  2893. Remember that every TCL command looks like the classic ``main( argc,
  2894. argv )'' function in C. In JimTCL - they actually look like this:
  2895. @example
  2896. int
  2897. MyCommand( Jim_Interp *interp,
  2898. int *argc,
  2899. Jim_Obj * const *argvs );
  2900. @end example
  2901. Real TCL is nearly identical. Although the newer versions have
  2902. introduced a byte-code parser and intepreter, but at the core, it
  2903. still operates in the same basic way.
  2904. @subsection FOR Command Implimentation
  2905. To understand TCL it is perhaps most helpful to see the FOR
  2906. command. Remember, it is a COMMAND not a control flow structure.
  2907. In TCL there are two underying C helper functions.
  2908. Remember Rule #1 - You are a string.
  2909. The @b{first} helper parses and executes commands found in an ascii
  2910. string. Commands can be seperated by semi-colons, or newlines. While
  2911. parsing, variables are expanded per the quoting rules
  2912. The @b{second} helper evaluates an ascii string as a numerical
  2913. expression and returns a value.
  2914. Here is an example of how the @b{FOR} command could be
  2915. implimented. The pseudo code below does not show error handling.
  2916. @example
  2917. void Execute_AsciiString( void *interp, const char *string );
  2918. int Evaluate_AsciiExpression( void *interp, const char *string );
  2919. int
  2920. MyForCommand( void *interp,
  2921. int argc,
  2922. char **argv )
  2923. @{
  2924. if( argc != 5 )@{
  2925. SetResult( interp, "WRONG number of parameters");
  2926. return ERROR;
  2927. @}
  2928. // argv[0] = the ascii string just like C
  2929. // Execute the start statement.
  2930. Execute_AsciiString( interp, argv[1] );
  2931. // Top of loop test
  2932. for(;;)@{
  2933. i = Evaluate_AsciiExpression(interp, argv[2]);
  2934. if( i == 0 )
  2935. break;
  2936. // Execute the body
  2937. Execute_AsciiString( interp, argv[3] );
  2938. // Execute the LOOP part
  2939. Execute_AsciiString( interp, argv[4] );
  2940. @}
  2941. // Return no error
  2942. SetResult( interp, "" );
  2943. return SUCCESS;
  2944. @}
  2945. @end example
  2946. Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
  2947. in the same basic way.
  2948. @section OpenOCD TCL Usage
  2949. @subsection source and find commands
  2950. @b{Where:} In many configuration files
  2951. @* Example: @b{ source [find FILENAME] }
  2952. @*Remember the parsing rules
  2953. @enumerate
  2954. @item The FIND command is in square brackets.
  2955. @* The FIND command is executed with the parameter FILENAME. It should
  2956. find the full path to the named file. The RESULT is a string, which is
  2957. subsituted on the orginal command line.
  2958. @item The command source is executed with the resulting filename.
  2959. @* SOURCE reads a file and executes as a script.
  2960. @end enumerate
  2961. @subsection format command
  2962. @b{Where:} Generally occurs in numerous places.
  2963. @* TCL no command like @b{printf()}, intead it has @b{format}, which is really more like
  2964. @b{sprintf()}.
  2965. @b{Example}
  2966. @example
  2967. set x 6
  2968. set y 7
  2969. puts [format "The answer: %d" [expr $x * $y]]
  2970. @end example
  2971. @enumerate
  2972. @item The SET command creates 2 variables, X and Y.
  2973. @item The double [nested] EXPR command performs math
  2974. @* The EXPR command produces numerical result as a string.
  2975. @* Refer to Rule #1
  2976. @item The format command is executed, producing a single string
  2977. @* Refer to Rule #1.
  2978. @item The PUTS command outputs the text.
  2979. @end enumerate
  2980. @subsection Body Or Inlined Text
  2981. @b{Where:} Various TARGET scripts.
  2982. @example
  2983. #1 Good
  2984. proc someproc @{@} @{
  2985. ... multiple lines of stuff ...
  2986. @}
  2987. $_TARGETNAME configure -event FOO someproc
  2988. #2 Good - no variables
  2989. $_TARGETNAME confgure -event foo "this ; that;"
  2990. #3 Good Curly Braces
  2991. $_TARGETNAME configure -event FOO @{
  2992. puts "Time: [date]"
  2993. @}
  2994. #4 DANGER DANGER DANGER
  2995. $_TARGETNAME configure -event foo "puts \"Time: [date]\""
  2996. @end example
  2997. @enumerate
  2998. @item The $_TARGETNAME is an OpenOCD variable convention.
  2999. @*@b{$_TARGETNAME} represents the last target created, the value changes
  3000. each time a new target is created. Remember the parsing rules. When
  3001. the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
  3002. the name of the target which happens to be a TARGET (object)
  3003. command.
  3004. @item The 2nd parameter to the @option{-event} parameter is a TCBODY
  3005. @*There are 4 examples:
  3006. @enumerate
  3007. @item The TCLBODY is a simple string that happens to be a proc name
  3008. @item The TCLBODY is several simple commands semi-colon seperated
  3009. @item The TCLBODY is a multi-line @{curly-brace@} quoted string
  3010. @item The TCLBODY is a string with variables that get expanded.
  3011. @end enumerate
  3012. In the end, when the target event FOO occurs the TCLBODY is
  3013. evaluated. Method @b{#1} and @b{#2} are functionally identical. For
  3014. Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
  3015. Remember the parsing rules. In case #3, @{curly-braces@} mean the
  3016. $VARS and [square-brackets] are expanded later, when the EVENT occurs,
  3017. and the text is evaluated. In case #4, they are replaced before the
  3018. ``Target Object Command'' is executed. This occurs at the same time
  3019. $_TARGETNAME is replaced. In case #4 the date will never
  3020. change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
  3021. Jim/OpenOCD does not have a date command@}
  3022. @end enumerate
  3023. @subsection Global Variables
  3024. @b{Where:} You might discover this when writing your own procs @* In
  3025. simple terms: Inside a PROC, if you need to access a global variable
  3026. you must say so. Also see ``upvar''. Example:
  3027. @example
  3028. proc myproc @{ @} @{
  3029. set y 0 #Local variable Y
  3030. global x #Global variable X
  3031. puts [format "X=%d, Y=%d" $x $y]
  3032. @}
  3033. @end example
  3034. @section Other Tcl Hacks
  3035. @b{Dynamic Variable Creation}
  3036. @example
  3037. # Dynamically create a bunch of variables.
  3038. for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
  3039. # Create var name
  3040. set vn [format "BIT%d" $x]
  3041. # Make it a global
  3042. global $vn
  3043. # Set it.
  3044. set $vn [expr (1 << $x)]
  3045. @}
  3046. @end example
  3047. @b{Dynamic Proc/Command Creation}
  3048. @example
  3049. # One "X" function - 5 uart functions.
  3050. foreach who @{A B C D E@}
  3051. proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
  3052. @}
  3053. @end example
  3054. @node Target library
  3055. @chapter Target library
  3056. @cindex Target library
  3057. OpenOCD comes with a target configuration script library. These scripts can be
  3058. used as-is or serve as a starting point.
  3059. The target library is published together with the OpenOCD executable and
  3060. the path to the target library is in the OpenOCD script search path.
  3061. Similarly there are example scripts for configuring the JTAG interface.
  3062. The command line below uses the example parport configuration scripts
  3063. that ship with OpenOCD, then configures the str710.cfg target and
  3064. finally issues the init and reset command. The communication speed
  3065. is set to 10kHz for reset and 8MHz for post reset.
  3066. @example
  3067. openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
  3068. @end example
  3069. To list the target scripts available:
  3070. @example
  3071. $ ls /usr/local/lib/openocd/target
  3072. arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
  3073. at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
  3074. at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
  3075. at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
  3076. @end example
  3077. @include fdl.texi
  3078. @node OpenOCD Index
  3079. @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
  3080. @comment case issue with ``Index.html'' and ``index.html''
  3081. @comment Occurs when creating ``--html --no-split'' output
  3082. @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
  3083. @unnumbered OpenOCD Index
  3084. @printindex cp
  3085. @bye