You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

828 lines
26 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2006 by Magnus Lundin *
  6. * lundin@mlu.mine.nu *
  7. * *
  8. * Copyright (C) 2008 by Spencer Oliver *
  9. * spen@spen-soft.co.uk *
  10. * *
  11. * Copyright (C) 2007,2008 Øyvind Harboe *
  12. * oyvind.harboe@zylin.com *
  13. * *
  14. * This program is free software; you can redistribute it and/or modify *
  15. * it under the terms of the GNU General Public License as published by *
  16. * the Free Software Foundation; either version 2 of the License, or *
  17. * (at your option) any later version. *
  18. * *
  19. * This program is distributed in the hope that it will be useful, *
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  22. * GNU General Public License for more details. *
  23. * *
  24. * You should have received a copy of the GNU General Public License *
  25. * along with this program; if not, write to the *
  26. * Free Software Foundation, Inc., *
  27. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  28. ***************************************************************************/
  29. #ifdef HAVE_CONFIG_H
  30. #include "config.h"
  31. #endif
  32. #include "armv7m.h"
  33. #if 0
  34. #define _DEBUG_INSTRUCTION_EXECUTION_
  35. #endif
  36. char* armv7m_mode_strings[] =
  37. {
  38. "Thread", "Thread (User)", "Handler",
  39. };
  40. char* armv7m_exception_strings[] =
  41. {
  42. "", "Reset", "NMI", "HardFault", "MemManage", "BusFault", "UsageFault", "RESERVED", "RESERVED", "RESERVED", "RESERVED",
  43. "SVCall", "DebugMonitor", "RESERVED", "PendSV", "SysTick"
  44. };
  45. char* armv7m_core_reg_list[] =
  46. {
  47. /* Registers accessed through core debug */
  48. "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12",
  49. "sp", "lr", "pc",
  50. "xPSR", "msp", "psp",
  51. /* Registers accessed through special reg 20 */
  52. "primask", "basepri", "faultmask", "control"
  53. };
  54. uint8_t armv7m_gdb_dummy_fp_value[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  55. reg_t armv7m_gdb_dummy_fp_reg =
  56. {
  57. "GDB dummy floating-point register", armv7m_gdb_dummy_fp_value, 0, 1, 96, NULL, 0, NULL, 0
  58. };
  59. uint8_t armv7m_gdb_dummy_fps_value[] = {0, 0, 0, 0};
  60. reg_t armv7m_gdb_dummy_fps_reg =
  61. {
  62. "GDB dummy floating-point status register", armv7m_gdb_dummy_fps_value, 0, 1, 32, NULL, 0, NULL, 0
  63. };
  64. #ifdef ARMV7_GDB_HACKS
  65. uint8_t armv7m_gdb_dummy_cpsr_value[] = {0, 0, 0, 0};
  66. reg_t armv7m_gdb_dummy_cpsr_reg =
  67. {
  68. "GDB dummy cpsr register", armv7m_gdb_dummy_cpsr_value, 0, 1, 32, NULL, 0, NULL, 0
  69. };
  70. #endif
  71. armv7m_core_reg_t armv7m_core_reg_list_arch_info[] =
  72. {
  73. /* CORE_GP are accesible using the core debug registers */
  74. {0, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  75. {1, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  76. {2, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  77. {3, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  78. {4, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  79. {5, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  80. {6, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  81. {7, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  82. {8, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  83. {9, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  84. {10, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  85. {11, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  86. {12, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  87. {13, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  88. {14, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  89. {15, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL},
  90. {16, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL}, /* xPSR */
  91. {17, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL}, /* MSP */
  92. {18, ARMV7M_REGISTER_CORE_GP, ARMV7M_MODE_ANY, NULL, NULL}, /* PSP */
  93. /* CORE_SP are accesible using coreregister 20 */
  94. {19, ARMV7M_REGISTER_CORE_SP, ARMV7M_MODE_ANY, NULL, NULL}, /* PRIMASK */
  95. {20, ARMV7M_REGISTER_CORE_SP, ARMV7M_MODE_ANY, NULL, NULL}, /* BASEPRI */
  96. {21, ARMV7M_REGISTER_CORE_SP, ARMV7M_MODE_ANY, NULL, NULL}, /* FAULTMASK */
  97. {22, ARMV7M_REGISTER_CORE_SP, ARMV7M_MODE_ANY, NULL, NULL} /* CONTROL */
  98. };
  99. int armv7m_core_reg_arch_type = -1;
  100. int armv7m_dummy_core_reg_arch_type = -1;
  101. int armv7m_restore_context(target_t *target)
  102. {
  103. int i;
  104. /* get pointers to arch-specific information */
  105. armv7m_common_t *armv7m = target->arch_info;
  106. LOG_DEBUG(" ");
  107. if (armv7m->pre_restore_context)
  108. armv7m->pre_restore_context(target);
  109. for (i = ARMV7NUMCOREREGS-1; i >= 0; i--)
  110. {
  111. if (armv7m->core_cache->reg_list[i].dirty)
  112. {
  113. armv7m->write_core_reg(target, i);
  114. }
  115. }
  116. if (armv7m->post_restore_context)
  117. armv7m->post_restore_context(target);
  118. return ERROR_OK;
  119. }
  120. /* Core state functions */
  121. char *armv7m_exception_string(int number)
  122. {
  123. static char enamebuf[32];
  124. if ((number < 0) | (number > 511))
  125. return "Invalid exception";
  126. if (number < 16)
  127. return armv7m_exception_strings[number];
  128. sprintf(enamebuf, "External Interrupt(%i)", number - 16);
  129. return enamebuf;
  130. }
  131. int armv7m_get_core_reg(reg_t *reg)
  132. {
  133. int retval;
  134. armv7m_core_reg_t *armv7m_reg = reg->arch_info;
  135. target_t *target = armv7m_reg->target;
  136. armv7m_common_t *armv7m_target = target->arch_info;
  137. if (target->state != TARGET_HALTED)
  138. {
  139. return ERROR_TARGET_NOT_HALTED;
  140. }
  141. retval = armv7m_target->read_core_reg(target, armv7m_reg->num);
  142. return retval;
  143. }
  144. int armv7m_set_core_reg(reg_t *reg, uint8_t *buf)
  145. {
  146. armv7m_core_reg_t *armv7m_reg = reg->arch_info;
  147. target_t *target = armv7m_reg->target;
  148. uint32_t value = buf_get_u32(buf, 0, 32);
  149. if (target->state != TARGET_HALTED)
  150. {
  151. return ERROR_TARGET_NOT_HALTED;
  152. }
  153. buf_set_u32(reg->value, 0, 32, value);
  154. reg->dirty = 1;
  155. reg->valid = 1;
  156. return ERROR_OK;
  157. }
  158. int armv7m_read_core_reg(struct target_s *target, int num)
  159. {
  160. uint32_t reg_value;
  161. int retval;
  162. armv7m_core_reg_t * armv7m_core_reg;
  163. /* get pointers to arch-specific information */
  164. armv7m_common_t *armv7m = target->arch_info;
  165. if ((num < 0) || (num >= ARMV7NUMCOREREGS))
  166. return ERROR_INVALID_ARGUMENTS;
  167. armv7m_core_reg = armv7m->core_cache->reg_list[num].arch_info;
  168. retval = armv7m->load_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, &reg_value);
  169. buf_set_u32(armv7m->core_cache->reg_list[num].value, 0, 32, reg_value);
  170. armv7m->core_cache->reg_list[num].valid = 1;
  171. armv7m->core_cache->reg_list[num].dirty = 0;
  172. return retval;
  173. }
  174. int armv7m_write_core_reg(struct target_s *target, int num)
  175. {
  176. int retval;
  177. uint32_t reg_value;
  178. armv7m_core_reg_t *armv7m_core_reg;
  179. /* get pointers to arch-specific information */
  180. armv7m_common_t *armv7m = target->arch_info;
  181. if ((num < 0) || (num >= ARMV7NUMCOREREGS))
  182. return ERROR_INVALID_ARGUMENTS;
  183. reg_value = buf_get_u32(armv7m->core_cache->reg_list[num].value, 0, 32);
  184. armv7m_core_reg = armv7m->core_cache->reg_list[num].arch_info;
  185. retval = armv7m->store_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, reg_value);
  186. if (retval != ERROR_OK)
  187. {
  188. LOG_ERROR("JTAG failure");
  189. armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
  190. return ERROR_JTAG_DEVICE_ERROR;
  191. }
  192. LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
  193. armv7m->core_cache->reg_list[num].valid = 1;
  194. armv7m->core_cache->reg_list[num].dirty = 0;
  195. return ERROR_OK;
  196. }
  197. int armv7m_invalidate_core_regs(target_t *target)
  198. {
  199. /* get pointers to arch-specific information */
  200. armv7m_common_t *armv7m = target->arch_info;
  201. int i;
  202. for (i = 0; i < armv7m->core_cache->num_regs; i++)
  203. {
  204. armv7m->core_cache->reg_list[i].valid = 0;
  205. armv7m->core_cache->reg_list[i].dirty = 0;
  206. }
  207. return ERROR_OK;
  208. }
  209. int armv7m_get_gdb_reg_list(target_t *target, reg_t **reg_list[], int *reg_list_size)
  210. {
  211. /* get pointers to arch-specific information */
  212. armv7m_common_t *armv7m = target->arch_info;
  213. int i;
  214. *reg_list_size = 26;
  215. *reg_list = malloc(sizeof(reg_t*) * (*reg_list_size));
  216. for (i = 0; i < 16; i++)
  217. {
  218. (*reg_list)[i] = &armv7m->core_cache->reg_list[i];
  219. }
  220. for (i = 16; i < 24; i++)
  221. {
  222. (*reg_list)[i] = &armv7m_gdb_dummy_fp_reg;
  223. }
  224. (*reg_list)[24] = &armv7m_gdb_dummy_fps_reg;
  225. #ifdef ARMV7_GDB_HACKS
  226. /* use dummy cpsr reg otherwise gdb may try and set the thumb bit */
  227. (*reg_list)[25] = &armv7m_gdb_dummy_cpsr_reg;
  228. /* ARMV7M is always in thumb mode, try to make GDB understand this
  229. * if it does not support this arch */
  230. *((char*)armv7m->core_cache->reg_list[15].value) |= 1;
  231. #else
  232. (*reg_list)[25] = &armv7m->core_cache->reg_list[ARMV7M_xPSR];
  233. #endif
  234. return ERROR_OK;
  235. }
  236. /* run to exit point. return error if exit point was not reached. */
  237. static int armv7m_run_and_wait(struct target_s *target, uint32_t entry_point, int timeout_ms, uint32_t exit_point, armv7m_common_t *armv7m)
  238. {
  239. uint32_t pc;
  240. int retval;
  241. /* This code relies on the target specific resume() and poll()->debug_entry()
  242. * sequence to write register values to the processor and the read them back */
  243. if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK)
  244. {
  245. return retval;
  246. }
  247. retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
  248. /* If the target fails to halt due to the breakpoint, force a halt */
  249. if (retval != ERROR_OK || target->state != TARGET_HALTED)
  250. {
  251. if ((retval = target_halt(target)) != ERROR_OK)
  252. return retval;
  253. if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
  254. {
  255. return retval;
  256. }
  257. return ERROR_TARGET_TIMEOUT;
  258. }
  259. armv7m->load_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 15, &pc);
  260. if (pc != exit_point)
  261. {
  262. LOG_DEBUG("failed algoritm halted at 0x%" PRIx32 " ", pc);
  263. return ERROR_TARGET_TIMEOUT;
  264. }
  265. return ERROR_OK;
  266. }
  267. int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
  268. {
  269. /* get pointers to arch-specific information */
  270. armv7m_common_t *armv7m = target->arch_info;
  271. armv7m_algorithm_t *armv7m_algorithm_info = arch_info;
  272. enum armv7m_mode core_mode = armv7m->core_mode;
  273. int retval = ERROR_OK;
  274. int i;
  275. uint32_t context[ARMV7NUMCOREREGS];
  276. if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC)
  277. {
  278. LOG_ERROR("current target isn't an ARMV7M target");
  279. return ERROR_TARGET_INVALID;
  280. }
  281. if (target->state != TARGET_HALTED)
  282. {
  283. LOG_WARNING("target not halted");
  284. return ERROR_TARGET_NOT_HALTED;
  285. }
  286. /* refresh core register cache */
  287. /* Not needed if core register cache is always consistent with target process state */
  288. for (i = 0; i < ARMV7NUMCOREREGS; i++)
  289. {
  290. if (!armv7m->core_cache->reg_list[i].valid)
  291. armv7m->read_core_reg(target, i);
  292. context[i] = buf_get_u32(armv7m->core_cache->reg_list[i].value, 0, 32);
  293. }
  294. for (i = 0; i < num_mem_params; i++)
  295. {
  296. if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
  297. return retval;
  298. }
  299. for (i = 0; i < num_reg_params; i++)
  300. {
  301. reg_t *reg = register_get_by_name(armv7m->core_cache, reg_params[i].reg_name, 0);
  302. // uint32_t regvalue;
  303. if (!reg)
  304. {
  305. LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
  306. exit(-1);
  307. }
  308. if (reg->size != reg_params[i].size)
  309. {
  310. LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
  311. exit(-1);
  312. }
  313. // regvalue = buf_get_u32(reg_params[i].value, 0, 32);
  314. armv7m_set_core_reg(reg, reg_params[i].value);
  315. }
  316. if (armv7m_algorithm_info->core_mode != ARMV7M_MODE_ANY)
  317. {
  318. LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
  319. buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1, armv7m_algorithm_info->core_mode);
  320. armv7m->core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
  321. armv7m->core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
  322. }
  323. /* ARMV7M always runs in Thumb state */
  324. if ((retval = breakpoint_add(target, exit_point, 2, BKPT_SOFT)) != ERROR_OK)
  325. {
  326. LOG_ERROR("can't add breakpoint to finish algorithm execution");
  327. return ERROR_TARGET_FAILURE;
  328. }
  329. retval = armv7m_run_and_wait(target, entry_point, timeout_ms, exit_point, armv7m);
  330. breakpoint_remove(target, exit_point);
  331. if (retval != ERROR_OK)
  332. {
  333. return retval;
  334. }
  335. /* Read memory values to mem_params[] */
  336. for (i = 0; i < num_mem_params; i++)
  337. {
  338. if (mem_params[i].direction != PARAM_OUT)
  339. if ((retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
  340. {
  341. return retval;
  342. }
  343. }
  344. /* Copy core register values to reg_params[] */
  345. for (i = 0; i < num_reg_params; i++)
  346. {
  347. if (reg_params[i].direction != PARAM_OUT)
  348. {
  349. reg_t *reg = register_get_by_name(armv7m->core_cache, reg_params[i].reg_name, 0);
  350. if (!reg)
  351. {
  352. LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
  353. exit(-1);
  354. }
  355. if (reg->size != reg_params[i].size)
  356. {
  357. LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
  358. exit(-1);
  359. }
  360. buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
  361. }
  362. }
  363. for (i = ARMV7NUMCOREREGS-1; i >= 0; i--)
  364. {
  365. uint32_t regvalue;
  366. regvalue = buf_get_u32(armv7m->core_cache->reg_list[i].value, 0, 32);
  367. if (regvalue != context[i])
  368. {
  369. LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "", armv7m->core_cache->reg_list[i].name, context[i]);
  370. buf_set_u32(armv7m->core_cache->reg_list[i].value, 0, 32, context[i]);
  371. armv7m->core_cache->reg_list[i].valid = 1;
  372. armv7m->core_cache->reg_list[i].dirty = 1;
  373. }
  374. }
  375. armv7m->core_mode = core_mode;
  376. return retval;
  377. }
  378. int armv7m_arch_state(struct target_s *target)
  379. {
  380. /* get pointers to arch-specific information */
  381. armv7m_common_t *armv7m = target->arch_info;
  382. LOG_USER("target halted due to %s, current mode: %s %s\nxPSR: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "",
  383. Jim_Nvp_value2name_simple(nvp_target_debug_reason,target->debug_reason)->name,
  384. armv7m_mode_strings[armv7m->core_mode],
  385. armv7m_exception_string(armv7m->exception_number),
  386. buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32),
  387. buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32));
  388. return ERROR_OK;
  389. }
  390. reg_cache_t *armv7m_build_reg_cache(target_t *target)
  391. {
  392. /* get pointers to arch-specific information */
  393. armv7m_common_t *armv7m = target->arch_info;
  394. int num_regs = ARMV7NUMCOREREGS;
  395. reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
  396. reg_cache_t *cache = malloc(sizeof(reg_cache_t));
  397. reg_t *reg_list = malloc(sizeof(reg_t) * num_regs);
  398. armv7m_core_reg_t *arch_info = malloc(sizeof(armv7m_core_reg_t) * num_regs);
  399. int i;
  400. if (armv7m_core_reg_arch_type == -1)
  401. {
  402. armv7m_core_reg_arch_type = register_reg_arch_type(armv7m_get_core_reg, armv7m_set_core_reg);
  403. }
  404. register_init_dummy(&armv7m_gdb_dummy_fps_reg);
  405. #ifdef ARMV7_GDB_HACKS
  406. register_init_dummy(&armv7m_gdb_dummy_cpsr_reg);
  407. #endif
  408. register_init_dummy(&armv7m_gdb_dummy_fp_reg);
  409. /* Build the process context cache */
  410. cache->name = "arm v7m registers";
  411. cache->next = NULL;
  412. cache->reg_list = reg_list;
  413. cache->num_regs = num_regs;
  414. (*cache_p) = cache;
  415. armv7m->core_cache = cache;
  416. for (i = 0; i < num_regs; i++)
  417. {
  418. arch_info[i] = armv7m_core_reg_list_arch_info[i];
  419. arch_info[i].target = target;
  420. arch_info[i].armv7m_common = armv7m;
  421. reg_list[i].name = armv7m_core_reg_list[i];
  422. reg_list[i].size = 32;
  423. reg_list[i].value = calloc(1, 4);
  424. reg_list[i].dirty = 0;
  425. reg_list[i].valid = 0;
  426. reg_list[i].bitfield_desc = NULL;
  427. reg_list[i].num_bitfields = 0;
  428. reg_list[i].arch_type = armv7m_core_reg_arch_type;
  429. reg_list[i].arch_info = &arch_info[i];
  430. }
  431. return cache;
  432. }
  433. int armv7m_init_target(struct command_context_s *cmd_ctx, struct target_s *target)
  434. {
  435. armv7m_build_reg_cache(target);
  436. return ERROR_OK;
  437. }
  438. int armv7m_init_arch_info(target_t *target, armv7m_common_t *armv7m)
  439. {
  440. /* register arch-specific functions */
  441. target->arch_info = armv7m;
  442. armv7m->read_core_reg = armv7m_read_core_reg;
  443. armv7m->write_core_reg = armv7m_write_core_reg;
  444. return ERROR_OK;
  445. }
  446. int armv7m_register_commands(struct command_context_s *cmd_ctx)
  447. {
  448. command_t *arm_adi_v5_dap_cmd;
  449. arm_adi_v5_dap_cmd = register_command(cmd_ctx, NULL, "dap", NULL, COMMAND_ANY, "cortex dap specific commands");
  450. register_command(cmd_ctx, arm_adi_v5_dap_cmd, "info", handle_dap_info_command, COMMAND_EXEC, "Displays dap info for ap [num], default currently selected AP");
  451. register_command(cmd_ctx, arm_adi_v5_dap_cmd, "apsel", handle_dap_apsel_command, COMMAND_EXEC, "Select a different AP [num] (default 0)");
  452. register_command(cmd_ctx, arm_adi_v5_dap_cmd, "apid", handle_dap_apid_command, COMMAND_EXEC, "Displays id reg from AP [num], default currently selected AP");
  453. register_command(cmd_ctx, arm_adi_v5_dap_cmd, "baseaddr", handle_dap_baseaddr_command, COMMAND_EXEC, "Displays debug base address from AP [num], default currently selected AP");
  454. register_command(cmd_ctx, arm_adi_v5_dap_cmd, "memaccess", handle_dap_memaccess_command, COMMAND_EXEC, "set/get number of extra tck for mem-ap memory bus access [0-255]");
  455. return ERROR_OK;
  456. }
  457. int armv7m_checksum_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* checksum)
  458. {
  459. working_area_t *crc_algorithm;
  460. armv7m_algorithm_t armv7m_info;
  461. reg_param_t reg_params[2];
  462. int retval;
  463. uint16_t cortex_m3_crc_code[] = {
  464. 0x4602, /* mov r2, r0 */
  465. 0xF04F, 0x30FF, /* mov r0, #0xffffffff */
  466. 0x460B, /* mov r3, r1 */
  467. 0xF04F, 0x0400, /* mov r4, #0 */
  468. 0xE013, /* b ncomp */
  469. /* nbyte: */
  470. 0x5D11, /* ldrb r1, [r2, r4] */
  471. 0xF8DF, 0x7028, /* ldr r7, CRC32XOR */
  472. 0xEA80, 0x6001, /* eor r0, r0, r1, asl #24 */
  473. 0xF04F, 0x0500, /* mov r5, #0 */
  474. /* loop: */
  475. 0x2800, /* cmp r0, #0 */
  476. 0xEA4F, 0x0640, /* mov r6, r0, asl #1 */
  477. 0xF105, 0x0501, /* add r5, r5, #1 */
  478. 0x4630, /* mov r0, r6 */
  479. 0xBFB8, /* it lt */
  480. 0xEA86, 0x0007, /* eor r0, r6, r7 */
  481. 0x2D08, /* cmp r5, #8 */
  482. 0xD1F4, /* bne loop */
  483. 0xF104, 0x0401, /* add r4, r4, #1 */
  484. /* ncomp: */
  485. 0x429C, /* cmp r4, r3 */
  486. 0xD1E9, /* bne nbyte */
  487. /* end: */
  488. 0xE7FE, /* b end */
  489. 0x1DB7, 0x04C1 /* CRC32XOR: .word 0x04C11DB7 */
  490. };
  491. uint32_t i;
  492. if (target_alloc_working_area(target, sizeof(cortex_m3_crc_code), &crc_algorithm) != ERROR_OK)
  493. {
  494. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  495. }
  496. /* convert flash writing code into a buffer in target endianness */
  497. for (i = 0; i < (sizeof(cortex_m3_crc_code)/sizeof(uint16_t)); i++)
  498. if ((retval = target_write_u16(target, crc_algorithm->address + i*sizeof(uint16_t), cortex_m3_crc_code[i])) != ERROR_OK)
  499. {
  500. return retval;
  501. }
  502. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  503. armv7m_info.core_mode = ARMV7M_MODE_ANY;
  504. init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
  505. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  506. buf_set_u32(reg_params[0].value, 0, 32, address);
  507. buf_set_u32(reg_params[1].value, 0, 32, count);
  508. if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
  509. crc_algorithm->address, crc_algorithm->address + (sizeof(cortex_m3_crc_code)-6), 20000, &armv7m_info)) != ERROR_OK)
  510. {
  511. LOG_ERROR("error executing cortex_m3 crc algorithm");
  512. destroy_reg_param(&reg_params[0]);
  513. destroy_reg_param(&reg_params[1]);
  514. target_free_working_area(target, crc_algorithm);
  515. return retval;
  516. }
  517. *checksum = buf_get_u32(reg_params[0].value, 0, 32);
  518. destroy_reg_param(&reg_params[0]);
  519. destroy_reg_param(&reg_params[1]);
  520. target_free_working_area(target, crc_algorithm);
  521. return ERROR_OK;
  522. }
  523. int armv7m_blank_check_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* blank)
  524. {
  525. working_area_t *erase_check_algorithm;
  526. reg_param_t reg_params[3];
  527. armv7m_algorithm_t armv7m_info;
  528. int retval;
  529. uint32_t i;
  530. uint16_t erase_check_code[] =
  531. {
  532. /* loop: */
  533. 0xF810, 0x3B01, /* ldrb r3, [r0], #1 */
  534. 0xEA02, 0x0203, /* and r2, r2, r3 */
  535. 0x3901, /* subs r1, r1, #1 */
  536. 0xD1F9, /* bne loop */
  537. /* end: */
  538. 0xE7FE, /* b end */
  539. };
  540. /* make sure we have a working area */
  541. if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
  542. {
  543. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  544. }
  545. /* convert flash writing code into a buffer in target endianness */
  546. for (i = 0; i < (sizeof(erase_check_code)/sizeof(uint16_t)); i++)
  547. target_write_u16(target, erase_check_algorithm->address + i*sizeof(uint16_t), erase_check_code[i]);
  548. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  549. armv7m_info.core_mode = ARMV7M_MODE_ANY;
  550. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
  551. buf_set_u32(reg_params[0].value, 0, 32, address);
  552. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  553. buf_set_u32(reg_params[1].value, 0, 32, count);
  554. init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
  555. buf_set_u32(reg_params[2].value, 0, 32, 0xff);
  556. if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
  557. erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code)-2), 10000, &armv7m_info)) != ERROR_OK)
  558. {
  559. destroy_reg_param(&reg_params[0]);
  560. destroy_reg_param(&reg_params[1]);
  561. destroy_reg_param(&reg_params[2]);
  562. target_free_working_area(target, erase_check_algorithm);
  563. return 0;
  564. }
  565. *blank = buf_get_u32(reg_params[2].value, 0, 32);
  566. destroy_reg_param(&reg_params[0]);
  567. destroy_reg_param(&reg_params[1]);
  568. destroy_reg_param(&reg_params[2]);
  569. target_free_working_area(target, erase_check_algorithm);
  570. return ERROR_OK;
  571. }
  572. /********************************************************************************************************************
  573. * Return the debug ap baseaddress in hexadecimal, no extra output to simplify script processing
  574. *********************************************************************************************************************/
  575. int handle_dap_baseaddr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  576. {
  577. target_t *target = get_current_target(cmd_ctx);
  578. armv7m_common_t *armv7m = target->arch_info;
  579. swjdp_common_t *swjdp = &armv7m->swjdp_info;
  580. uint32_t apsel, apselsave, baseaddr;
  581. int retval;
  582. apsel = swjdp->apsel;
  583. apselsave = swjdp->apsel;
  584. if (argc > 0)
  585. {
  586. apsel = strtoul(args[0], NULL, 0);
  587. }
  588. if (apselsave != apsel)
  589. {
  590. dap_ap_select(swjdp, apsel);
  591. }
  592. dap_ap_read_reg_u32(swjdp, 0xF8, &baseaddr);
  593. retval = swjdp_transaction_endcheck(swjdp);
  594. command_print(cmd_ctx, "0x%8.8" PRIx32 "", baseaddr);
  595. if (apselsave != apsel)
  596. {
  597. dap_ap_select(swjdp, apselsave);
  598. }
  599. return retval;
  600. }
  601. /********************************************************************************************************************
  602. * Return the debug ap id in hexadecimal, no extra output to simplify script processing
  603. *********************************************************************************************************************/
  604. extern int handle_dap_apid_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  605. {
  606. target_t *target = get_current_target(cmd_ctx);
  607. armv7m_common_t *armv7m = target->arch_info;
  608. swjdp_common_t *swjdp = &armv7m->swjdp_info;
  609. uint32_t apsel, apselsave, apid;
  610. int retval;
  611. apsel = swjdp->apsel;
  612. apselsave = swjdp->apsel;
  613. if (argc > 0)
  614. {
  615. apsel = strtoul(args[0], NULL, 0);
  616. }
  617. if (apselsave != apsel)
  618. {
  619. dap_ap_select(swjdp, apsel);
  620. }
  621. dap_ap_read_reg_u32(swjdp, 0xFC, &apid);
  622. retval = swjdp_transaction_endcheck(swjdp);
  623. command_print(cmd_ctx, "0x%8.8" PRIx32 "", apid);
  624. if (apselsave != apsel)
  625. {
  626. dap_ap_select(swjdp, apselsave);
  627. }
  628. return retval;
  629. }
  630. int handle_dap_apsel_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  631. {
  632. target_t *target = get_current_target(cmd_ctx);
  633. armv7m_common_t *armv7m = target->arch_info;
  634. swjdp_common_t *swjdp = &armv7m->swjdp_info;
  635. uint32_t apsel, apid;
  636. int retval;
  637. apsel = 0;
  638. if (argc > 0)
  639. {
  640. apsel = strtoul(args[0], NULL, 0);
  641. }
  642. dap_ap_select(swjdp, apsel);
  643. dap_ap_read_reg_u32(swjdp, 0xFC, &apid);
  644. retval = swjdp_transaction_endcheck(swjdp);
  645. command_print(cmd_ctx, "ap %i selected, identification register 0x%8.8" PRIx32 "", (int)apsel, apid);
  646. return retval;
  647. }
  648. int handle_dap_memaccess_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  649. {
  650. target_t *target = get_current_target(cmd_ctx);
  651. armv7m_common_t *armv7m = target->arch_info;
  652. swjdp_common_t *swjdp = &armv7m->swjdp_info;
  653. uint32_t memaccess_tck;
  654. memaccess_tck = swjdp->memaccess_tck;
  655. if (argc > 0)
  656. {
  657. memaccess_tck = strtoul(args[0], NULL, 0);
  658. }
  659. swjdp->memaccess_tck = memaccess_tck;
  660. command_print(cmd_ctx, "memory bus access delay set to %i tck", (int)(swjdp->memaccess_tck));
  661. return ERROR_OK;
  662. }
  663. int handle_dap_info_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  664. {
  665. target_t *target = get_current_target(cmd_ctx);
  666. armv7m_common_t *armv7m = target->arch_info;
  667. swjdp_common_t *swjdp = &armv7m->swjdp_info;
  668. int retval;
  669. uint32_t apsel;
  670. apsel = swjdp->apsel;
  671. if (argc > 0)
  672. {
  673. apsel = strtoul(args[0], NULL, 0);
  674. }
  675. retval = dap_info_command(cmd_ctx, swjdp, apsel);
  676. return retval;
  677. }