You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

492 lines
14 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2009 by Simon Qian *
  3. * SimonQian@SimonQian.com *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 2 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, write to the *
  17. * Free Software Foundation, Inc., *
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
  19. ***************************************************************************/
  20. #ifdef HAVE_CONFIG_H
  21. #include "config.h"
  22. #endif
  23. #include "imp.h"
  24. #include <target/avrt.h>
  25. /* AVR_JTAG_Instructions */
  26. #define AVR_JTAG_INS_LEN 4
  27. /* Public Instructions: */
  28. #define AVR_JTAG_INS_EXTEST 0x00
  29. #define AVR_JTAG_INS_IDCODE 0x01
  30. #define AVR_JTAG_INS_SAMPLE_PRELOAD 0x02
  31. #define AVR_JTAG_INS_BYPASS 0x0F
  32. /* AVR Specified Public Instructions: */
  33. #define AVR_JTAG_INS_AVR_RESET 0x0C
  34. #define AVR_JTAG_INS_PROG_ENABLE 0x04
  35. #define AVR_JTAG_INS_PROG_COMMANDS 0x05
  36. #define AVR_JTAG_INS_PROG_PAGELOAD 0x06
  37. #define AVR_JTAG_INS_PROG_PAGEREAD 0x07
  38. /* Data Registers: */
  39. #define AVR_JTAG_REG_Bypass_Len 1
  40. #define AVR_JTAG_REG_DeviceID_Len 32
  41. #define AVR_JTAG_REG_Reset_Len 1
  42. #define AVR_JTAG_REG_JTAGID_Len 32
  43. #define AVR_JTAG_REG_ProgrammingEnable_Len 16
  44. #define AVR_JTAG_REG_ProgrammingCommand_Len 15
  45. #define AVR_JTAG_REG_FlashDataByte_Len 16
  46. struct avrf_type {
  47. char name[15];
  48. uint16_t chip_id;
  49. int flash_page_size;
  50. int flash_page_num;
  51. int eeprom_page_size;
  52. int eeprom_page_num;
  53. };
  54. struct avrf_flash_bank {
  55. int ppage_size;
  56. int probed;
  57. };
  58. static const struct avrf_type avft_chips_info[] = {
  59. /* name, chip_id, flash_page_size, flash_page_num,
  60. * eeprom_page_size, eeprom_page_num
  61. */
  62. {"atmega128", 0x9702, 256, 512, 8, 512},
  63. {"at90can128", 0x9781, 256, 512, 8, 512},
  64. {"at90usb128", 0x9782, 256, 512, 8, 512},
  65. {"atmega164p", 0x940a, 128, 128, 4, 128},
  66. {"atmega324p", 0x9508, 128, 256, 4, 256},
  67. {"atmega324pa", 0x9511, 128, 256, 4, 256},
  68. {"atmega644p", 0x960a, 256, 256, 8, 256},
  69. {"atmega1284p", 0x9705, 256, 512, 8, 512},
  70. };
  71. /* avr program functions */
  72. static int avr_jtag_reset(struct avr_common *avr, uint32_t reset)
  73. {
  74. avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_AVR_RESET);
  75. avr_jtag_senddat(avr->jtag_info.tap, NULL, reset, AVR_JTAG_REG_Reset_Len);
  76. return ERROR_OK;
  77. }
  78. static int avr_jtag_read_jtagid(struct avr_common *avr, uint32_t *id)
  79. {
  80. avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_IDCODE);
  81. avr_jtag_senddat(avr->jtag_info.tap, id, 0, AVR_JTAG_REG_JTAGID_Len);
  82. return ERROR_OK;
  83. }
  84. static int avr_jtagprg_enterprogmode(struct avr_common *avr)
  85. {
  86. avr_jtag_reset(avr, 1);
  87. avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_ENABLE);
  88. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0xA370, AVR_JTAG_REG_ProgrammingEnable_Len);
  89. return ERROR_OK;
  90. }
  91. static int avr_jtagprg_leaveprogmode(struct avr_common *avr)
  92. {
  93. avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
  94. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2300, AVR_JTAG_REG_ProgrammingCommand_Len);
  95. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3300, AVR_JTAG_REG_ProgrammingCommand_Len);
  96. avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_ENABLE);
  97. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0, AVR_JTAG_REG_ProgrammingEnable_Len);
  98. avr_jtag_reset(avr, 0);
  99. return ERROR_OK;
  100. }
  101. static int avr_jtagprg_chiperase(struct avr_common *avr)
  102. {
  103. uint32_t poll_value;
  104. avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
  105. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2380, AVR_JTAG_REG_ProgrammingCommand_Len);
  106. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3180, AVR_JTAG_REG_ProgrammingCommand_Len);
  107. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3380, AVR_JTAG_REG_ProgrammingCommand_Len);
  108. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3380, AVR_JTAG_REG_ProgrammingCommand_Len);
  109. do {
  110. poll_value = 0;
  111. avr_jtag_senddat(avr->jtag_info.tap,
  112. &poll_value,
  113. 0x3380,
  114. AVR_JTAG_REG_ProgrammingCommand_Len);
  115. if (ERROR_OK != mcu_execute_queue())
  116. return ERROR_FAIL;
  117. LOG_DEBUG("poll_value = 0x%04" PRIx32 "", poll_value);
  118. } while (!(poll_value & 0x0200));
  119. return ERROR_OK;
  120. }
  121. static int avr_jtagprg_writeflashpage(struct avr_common *avr,
  122. const uint8_t *page_buf,
  123. uint32_t buf_size,
  124. uint32_t addr,
  125. uint32_t page_size)
  126. {
  127. uint32_t i, poll_value;
  128. avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
  129. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2310, AVR_JTAG_REG_ProgrammingCommand_Len);
  130. /* load addr high byte */
  131. avr_jtag_senddat(avr->jtag_info.tap,
  132. NULL,
  133. 0x0700 | ((addr >> 9) & 0xFF),
  134. AVR_JTAG_REG_ProgrammingCommand_Len);
  135. /* load addr low byte */
  136. avr_jtag_senddat(avr->jtag_info.tap,
  137. NULL,
  138. 0x0300 | ((addr >> 1) & 0xFF),
  139. AVR_JTAG_REG_ProgrammingCommand_Len);
  140. avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_PAGELOAD);
  141. for (i = 0; i < page_size; i++) {
  142. if (i < buf_size)
  143. avr_jtag_senddat(avr->jtag_info.tap, NULL, page_buf[i], 8);
  144. else
  145. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0xFF, 8);
  146. }
  147. avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
  148. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
  149. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3500, AVR_JTAG_REG_ProgrammingCommand_Len);
  150. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
  151. avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
  152. do {
  153. poll_value = 0;
  154. avr_jtag_senddat(avr->jtag_info.tap,
  155. &poll_value,
  156. 0x3700,
  157. AVR_JTAG_REG_ProgrammingCommand_Len);
  158. if (ERROR_OK != mcu_execute_queue())
  159. return ERROR_FAIL;
  160. LOG_DEBUG("poll_value = 0x%04" PRIx32 "", poll_value);
  161. } while (!(poll_value & 0x0200));
  162. return ERROR_OK;
  163. }
  164. FLASH_BANK_COMMAND_HANDLER(avrf_flash_bank_command)
  165. {
  166. struct avrf_flash_bank *avrf_info;
  167. if (CMD_ARGC < 6)
  168. return ERROR_COMMAND_SYNTAX_ERROR;
  169. avrf_info = malloc(sizeof(struct avrf_flash_bank));
  170. bank->driver_priv = avrf_info;
  171. avrf_info->probed = 0;
  172. return ERROR_OK;
  173. }
  174. static int avrf_erase(struct flash_bank *bank, int first, int last)
  175. {
  176. struct target *target = bank->target;
  177. struct avr_common *avr = target->arch_info;
  178. int status;
  179. LOG_DEBUG("%s", __func__);
  180. if (target->state != TARGET_HALTED) {
  181. LOG_ERROR("Target not halted");
  182. return ERROR_TARGET_NOT_HALTED;
  183. }
  184. status = avr_jtagprg_enterprogmode(avr);
  185. if (status != ERROR_OK)
  186. return status;
  187. status = avr_jtagprg_chiperase(avr);
  188. if (status != ERROR_OK)
  189. return status;
  190. return avr_jtagprg_leaveprogmode(avr);
  191. }
  192. static int avrf_protect(struct flash_bank *bank, int set, int first, int last)
  193. {
  194. LOG_INFO("%s", __func__);
  195. return ERROR_OK;
  196. }
  197. static int avrf_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
  198. {
  199. struct target *target = bank->target;
  200. struct avr_common *avr = target->arch_info;
  201. uint32_t cur_size, cur_buffer_size, page_size;
  202. if (bank->target->state != TARGET_HALTED) {
  203. LOG_ERROR("Target not halted");
  204. return ERROR_TARGET_NOT_HALTED;
  205. }
  206. page_size = bank->sectors[0].size;
  207. if ((offset % page_size) != 0) {
  208. LOG_WARNING("offset 0x%" PRIx32 " breaks required %" PRIu32 "-byte alignment",
  209. offset,
  210. page_size);
  211. return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
  212. }
  213. LOG_DEBUG("offset is 0x%08" PRIx32 "", offset);
  214. LOG_DEBUG("count is %" PRId32 "", count);
  215. if (ERROR_OK != avr_jtagprg_enterprogmode(avr))
  216. return ERROR_FAIL;
  217. cur_size = 0;
  218. while (count > 0) {
  219. if (count > page_size)
  220. cur_buffer_size = page_size;
  221. else
  222. cur_buffer_size = count;
  223. avr_jtagprg_writeflashpage(avr,
  224. buffer + cur_size,
  225. cur_buffer_size,
  226. offset + cur_size,
  227. page_size);
  228. count -= cur_buffer_size;
  229. cur_size += cur_buffer_size;
  230. keep_alive();
  231. }
  232. return avr_jtagprg_leaveprogmode(avr);
  233. }
  234. #define EXTRACT_MFG(X) (((X) & 0xffe) >> 1)
  235. #define EXTRACT_PART(X) (((X) & 0xffff000) >> 12)
  236. #define EXTRACT_VER(X) (((X) & 0xf0000000) >> 28)
  237. static int avrf_probe(struct flash_bank *bank)
  238. {
  239. struct target *target = bank->target;
  240. struct avrf_flash_bank *avrf_info = bank->driver_priv;
  241. struct avr_common *avr = target->arch_info;
  242. const struct avrf_type *avr_info = NULL;
  243. int i;
  244. uint32_t device_id;
  245. if (bank->target->state != TARGET_HALTED) {
  246. LOG_ERROR("Target not halted");
  247. return ERROR_TARGET_NOT_HALTED;
  248. }
  249. avrf_info->probed = 0;
  250. avr_jtag_read_jtagid(avr, &device_id);
  251. if (ERROR_OK != mcu_execute_queue())
  252. return ERROR_FAIL;
  253. LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
  254. if (EXTRACT_MFG(device_id) != 0x1F)
  255. LOG_ERROR("0x%" PRIx32 " is invalid Manufacturer for avr, 0x%X is expected",
  256. EXTRACT_MFG(device_id),
  257. 0x1F);
  258. for (i = 0; i < (int)ARRAY_SIZE(avft_chips_info); i++) {
  259. if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id)) {
  260. avr_info = &avft_chips_info[i];
  261. LOG_INFO("target device is %s", avr_info->name);
  262. break;
  263. }
  264. }
  265. if (avr_info != NULL) {
  266. if (bank->sectors) {
  267. free(bank->sectors);
  268. bank->sectors = NULL;
  269. }
  270. /* chip found */
  271. bank->base = 0x00000000;
  272. bank->size = (avr_info->flash_page_size * avr_info->flash_page_num);
  273. bank->num_sectors = avr_info->flash_page_num;
  274. bank->sectors = malloc(sizeof(struct flash_sector) * avr_info->flash_page_num);
  275. for (i = 0; i < avr_info->flash_page_num; i++) {
  276. bank->sectors[i].offset = i * avr_info->flash_page_size;
  277. bank->sectors[i].size = avr_info->flash_page_size;
  278. bank->sectors[i].is_erased = -1;
  279. bank->sectors[i].is_protected = 1;
  280. }
  281. avrf_info->probed = 1;
  282. return ERROR_OK;
  283. } else {
  284. /* chip not supported */
  285. LOG_ERROR("0x%" PRIx32 " is not support for avr", EXTRACT_PART(device_id));
  286. avrf_info->probed = 1;
  287. return ERROR_FAIL;
  288. }
  289. }
  290. static int avrf_auto_probe(struct flash_bank *bank)
  291. {
  292. struct avrf_flash_bank *avrf_info = bank->driver_priv;
  293. if (avrf_info->probed)
  294. return ERROR_OK;
  295. return avrf_probe(bank);
  296. }
  297. static int avrf_protect_check(struct flash_bank *bank)
  298. {
  299. LOG_INFO("%s", __func__);
  300. return ERROR_OK;
  301. }
  302. static int avrf_info(struct flash_bank *bank, char *buf, int buf_size)
  303. {
  304. struct target *target = bank->target;
  305. struct avr_common *avr = target->arch_info;
  306. const struct avrf_type *avr_info = NULL;
  307. int i;
  308. uint32_t device_id;
  309. if (bank->target->state != TARGET_HALTED) {
  310. LOG_ERROR("Target not halted");
  311. return ERROR_TARGET_NOT_HALTED;
  312. }
  313. avr_jtag_read_jtagid(avr, &device_id);
  314. if (ERROR_OK != mcu_execute_queue())
  315. return ERROR_FAIL;
  316. LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
  317. if (EXTRACT_MFG(device_id) != 0x1F)
  318. LOG_ERROR("0x%" PRIx32 " is invalid Manufacturer for avr, 0x%X is expected",
  319. EXTRACT_MFG(device_id),
  320. 0x1F);
  321. for (i = 0; i < (int)ARRAY_SIZE(avft_chips_info); i++) {
  322. if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id)) {
  323. avr_info = &avft_chips_info[i];
  324. LOG_INFO("target device is %s", avr_info->name);
  325. break;
  326. }
  327. }
  328. if (avr_info != NULL) {
  329. /* chip found */
  330. snprintf(buf, buf_size, "%s - Rev: 0x%" PRIx32 "", avr_info->name,
  331. EXTRACT_VER(device_id));
  332. return ERROR_OK;
  333. } else {
  334. /* chip not supported */
  335. snprintf(buf, buf_size, "Cannot identify target as a avr\n");
  336. return ERROR_FLASH_OPERATION_FAILED;
  337. }
  338. }
  339. static int avrf_mass_erase(struct flash_bank *bank)
  340. {
  341. struct target *target = bank->target;
  342. struct avr_common *avr = target->arch_info;
  343. if (target->state != TARGET_HALTED) {
  344. LOG_ERROR("Target not halted");
  345. return ERROR_TARGET_NOT_HALTED;
  346. }
  347. if ((ERROR_OK != avr_jtagprg_enterprogmode(avr))
  348. || (ERROR_OK != avr_jtagprg_chiperase(avr))
  349. || (ERROR_OK != avr_jtagprg_leaveprogmode(avr)))
  350. return ERROR_FAIL;
  351. return ERROR_OK;
  352. }
  353. COMMAND_HANDLER(avrf_handle_mass_erase_command)
  354. {
  355. int i;
  356. if (CMD_ARGC < 1)
  357. return ERROR_COMMAND_SYNTAX_ERROR;
  358. struct flash_bank *bank;
  359. int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
  360. if (ERROR_OK != retval)
  361. return retval;
  362. if (avrf_mass_erase(bank) == ERROR_OK) {
  363. /* set all sectors as erased */
  364. for (i = 0; i < bank->num_sectors; i++)
  365. bank->sectors[i].is_erased = 1;
  366. command_print(CMD_CTX, "avr mass erase complete");
  367. } else
  368. command_print(CMD_CTX, "avr mass erase failed");
  369. LOG_DEBUG("%s", __func__);
  370. return ERROR_OK;
  371. }
  372. static const struct command_registration avrf_exec_command_handlers[] = {
  373. {
  374. .name = "mass_erase",
  375. .usage = "<bank>",
  376. .handler = avrf_handle_mass_erase_command,
  377. .mode = COMMAND_EXEC,
  378. .help = "erase entire device",
  379. },
  380. COMMAND_REGISTRATION_DONE
  381. };
  382. static const struct command_registration avrf_command_handlers[] = {
  383. {
  384. .name = "avrf",
  385. .mode = COMMAND_ANY,
  386. .help = "AVR flash command group",
  387. .usage = "",
  388. .chain = avrf_exec_command_handlers,
  389. },
  390. COMMAND_REGISTRATION_DONE
  391. };
  392. struct flash_driver avr_flash = {
  393. .name = "avr",
  394. .commands = avrf_command_handlers,
  395. .flash_bank_command = avrf_flash_bank_command,
  396. .erase = avrf_erase,
  397. .protect = avrf_protect,
  398. .write = avrf_write,
  399. .read = default_flash_read,
  400. .probe = avrf_probe,
  401. .auto_probe = avrf_auto_probe,
  402. .erase_check = default_flash_blank_check,
  403. .protect_check = avrf_protect_check,
  404. .info = avrf_info,
  405. };