You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2276 lines
73 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005, 2007 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 2 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, write to the *
  17. * Free Software Foundation, Inc., *
  18. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  19. ***************************************************************************/
  20. #ifdef HAVE_CONFIG_H
  21. #include "config.h"
  22. #endif
  23. #include "replacements.h"
  24. #include "cfi.h"
  25. #include "non_cfi.h"
  26. #include "flash.h"
  27. #include "target.h"
  28. #include "log.h"
  29. #include "armv4_5.h"
  30. #include "algorithm.h"
  31. #include "binarybuffer.h"
  32. #include "types.h"
  33. #include <stdlib.h>
  34. #include <string.h>
  35. #include <unistd.h>
  36. int cfi_register_commands(struct command_context_s *cmd_ctx);
  37. int cfi_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank);
  38. int cfi_erase(struct flash_bank_s *bank, int first, int last);
  39. int cfi_protect(struct flash_bank_s *bank, int set, int first, int last);
  40. int cfi_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count);
  41. int cfi_probe(struct flash_bank_s *bank);
  42. int cfi_auto_probe(struct flash_bank_s *bank);
  43. int cfi_protect_check(struct flash_bank_s *bank);
  44. int cfi_info(struct flash_bank_s *bank, char *buf, int buf_size);
  45. int cfi_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  46. #define CFI_MAX_BUS_WIDTH 4
  47. #define CFI_MAX_CHIP_WIDTH 4
  48. /* defines internal maximum size for code fragment in cfi_intel_write_block() */
  49. #define CFI_MAX_INTEL_CODESIZE 256
  50. flash_driver_t cfi_flash =
  51. {
  52. .name = "cfi",
  53. .register_commands = cfi_register_commands,
  54. .flash_bank_command = cfi_flash_bank_command,
  55. .erase = cfi_erase,
  56. .protect = cfi_protect,
  57. .write = cfi_write,
  58. .probe = cfi_probe,
  59. .auto_probe = cfi_auto_probe,
  60. .erase_check = default_flash_blank_check,
  61. .protect_check = cfi_protect_check,
  62. .info = cfi_info
  63. };
  64. cfi_unlock_addresses_t cfi_unlock_addresses[] =
  65. {
  66. [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
  67. [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
  68. };
  69. /* CFI fixups foward declarations */
  70. void cfi_fixup_0002_erase_regions(flash_bank_t *flash, void *param);
  71. void cfi_fixup_0002_unlock_addresses(flash_bank_t *flash, void *param);
  72. void cfi_fixup_atmel_reversed_erase_regions(flash_bank_t *flash, void *param);
  73. /* fixup after identifying JEDEC manufactuer and ID */
  74. cfi_fixup_t cfi_jedec_fixups[] = {
  75. {CFI_MFR_SST, 0x00D4, cfi_fixup_non_cfi, NULL},
  76. {CFI_MFR_SST, 0x00D5, cfi_fixup_non_cfi, NULL},
  77. {CFI_MFR_SST, 0x00D6, cfi_fixup_non_cfi, NULL},
  78. {CFI_MFR_SST, 0x00D7, cfi_fixup_non_cfi, NULL},
  79. {CFI_MFR_SST, 0x2780, cfi_fixup_non_cfi, NULL},
  80. {CFI_MFR_ST, 0x00D5, cfi_fixup_non_cfi, NULL},
  81. {CFI_MFR_ST, 0x00D6, cfi_fixup_non_cfi, NULL},
  82. {CFI_MFR_AMD, 0x2223, cfi_fixup_non_cfi, NULL},
  83. {CFI_MFR_AMD, 0x22ab, cfi_fixup_non_cfi, NULL},
  84. {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_non_cfi, NULL},
  85. {CFI_MFR_AMIC, 0xb31a, cfi_fixup_non_cfi, NULL},
  86. {0, 0, NULL, NULL}
  87. };
  88. /* fixup after reading cmdset 0002 primary query table */
  89. cfi_fixup_t cfi_0002_fixups[] = {
  90. {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  91. {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  92. {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  93. {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  94. {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  95. {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_atmel_reversed_erase_regions, NULL},
  96. {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  97. {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
  98. {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
  99. {0, 0, NULL, NULL}
  100. };
  101. /* fixup after reading cmdset 0001 primary query table */
  102. cfi_fixup_t cfi_0001_fixups[] = {
  103. {0, 0, NULL, NULL}
  104. };
  105. void cfi_fixup(flash_bank_t *bank, cfi_fixup_t *fixups)
  106. {
  107. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  108. cfi_fixup_t *f;
  109. for (f = fixups; f->fixup; f++)
  110. {
  111. if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
  112. ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
  113. {
  114. f->fixup(bank, f->param);
  115. }
  116. }
  117. }
  118. /* inline u32 flash_address(flash_bank_t *bank, int sector, u32 offset) */
  119. __inline__ u32 flash_address(flash_bank_t *bank, int sector, u32 offset)
  120. {
  121. /* while the sector list isn't built, only accesses to sector 0 work */
  122. if (sector == 0)
  123. return bank->base + offset * bank->bus_width;
  124. else
  125. {
  126. if (!bank->sectors)
  127. {
  128. LOG_ERROR("BUG: sector list not yet built");
  129. exit(-1);
  130. }
  131. return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
  132. }
  133. }
  134. void cfi_command(flash_bank_t *bank, u8 cmd, u8 *cmd_buf)
  135. {
  136. int i;
  137. /* clear whole buffer, to ensure bits that exceed the bus_width
  138. * are set to zero
  139. */
  140. for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
  141. cmd_buf[i] = 0;
  142. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  143. {
  144. for (i = bank->bus_width; i > 0; i--)
  145. {
  146. *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
  147. }
  148. }
  149. else
  150. {
  151. for (i = 1; i <= bank->bus_width; i++)
  152. {
  153. *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
  154. }
  155. }
  156. }
  157. /* read unsigned 8-bit value from the bank
  158. * flash banks are expected to be made of similar chips
  159. * the query result should be the same for all
  160. */
  161. u8 cfi_query_u8(flash_bank_t *bank, int sector, u32 offset)
  162. {
  163. target_t *target = bank->target;
  164. u8 data[CFI_MAX_BUS_WIDTH];
  165. target->type->read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
  166. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  167. return data[0];
  168. else
  169. return data[bank->bus_width - 1];
  170. }
  171. /* read unsigned 8-bit value from the bank
  172. * in case of a bank made of multiple chips,
  173. * the individual values are ORed
  174. */
  175. u8 cfi_get_u8(flash_bank_t *bank, int sector, u32 offset)
  176. {
  177. target_t *target = bank->target;
  178. u8 data[CFI_MAX_BUS_WIDTH];
  179. int i;
  180. target->type->read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
  181. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  182. {
  183. for (i = 0; i < bank->bus_width / bank->chip_width; i++)
  184. data[0] |= data[i];
  185. return data[0];
  186. }
  187. else
  188. {
  189. u8 value = 0;
  190. for (i = 0; i < bank->bus_width / bank->chip_width; i++)
  191. value |= data[bank->bus_width - 1 - i];
  192. return value;
  193. }
  194. }
  195. u16 cfi_query_u16(flash_bank_t *bank, int sector, u32 offset)
  196. {
  197. target_t *target = bank->target;
  198. u8 data[CFI_MAX_BUS_WIDTH * 2];
  199. target->type->read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data);
  200. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  201. return data[0] | data[bank->bus_width] << 8;
  202. else
  203. return data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
  204. }
  205. u32 cfi_query_u32(flash_bank_t *bank, int sector, u32 offset)
  206. {
  207. target_t *target = bank->target;
  208. u8 data[CFI_MAX_BUS_WIDTH * 4];
  209. target->type->read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data);
  210. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  211. return data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
  212. else
  213. return data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
  214. data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
  215. }
  216. void cfi_intel_clear_status_register(flash_bank_t *bank)
  217. {
  218. target_t *target = bank->target;
  219. u8 command[8];
  220. if (target->state != TARGET_HALTED)
  221. {
  222. LOG_ERROR("BUG: attempted to clear status register while target wasn't halted");
  223. exit(-1);
  224. }
  225. cfi_command(bank, 0x50, command);
  226. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  227. }
  228. u8 cfi_intel_wait_status_busy(flash_bank_t *bank, int timeout)
  229. {
  230. u8 status;
  231. while ((!((status = cfi_get_u8(bank, 0, 0x0)) & 0x80)) && (timeout-- > 0))
  232. {
  233. LOG_DEBUG("status: 0x%x", status);
  234. usleep(1000);
  235. }
  236. /* mask out bit 0 (reserved) */
  237. status = status & 0xfe;
  238. LOG_DEBUG("status: 0x%x", status);
  239. if ((status & 0x80) != 0x80)
  240. {
  241. LOG_ERROR("timeout while waiting for WSM to become ready");
  242. }
  243. else if (status != 0x80)
  244. {
  245. LOG_ERROR("status register: 0x%x", status);
  246. if (status & 0x2)
  247. LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
  248. if (status & 0x4)
  249. LOG_ERROR("Program suspended");
  250. if (status & 0x8)
  251. LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
  252. if (status & 0x10)
  253. LOG_ERROR("Program Error / Error in Setting Lock-Bit");
  254. if (status & 0x20)
  255. LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
  256. if (status & 0x40)
  257. LOG_ERROR("Block Erase Suspended");
  258. cfi_intel_clear_status_register(bank);
  259. }
  260. return status;
  261. }
  262. int cfi_spansion_wait_status_busy(flash_bank_t *bank, int timeout)
  263. {
  264. u8 status, oldstatus;
  265. oldstatus = cfi_get_u8(bank, 0, 0x0);
  266. do {
  267. status = cfi_get_u8(bank, 0, 0x0);
  268. if ((status ^ oldstatus) & 0x40) {
  269. if (status & 0x20) {
  270. oldstatus = cfi_get_u8(bank, 0, 0x0);
  271. status = cfi_get_u8(bank, 0, 0x0);
  272. if ((status ^ oldstatus) & 0x40) {
  273. LOG_ERROR("dq5 timeout, status: 0x%x", status);
  274. return(ERROR_FLASH_OPERATION_FAILED);
  275. } else {
  276. LOG_DEBUG("status: 0x%x", status);
  277. return(ERROR_OK);
  278. }
  279. }
  280. } else {
  281. LOG_DEBUG("status: 0x%x", status);
  282. return(ERROR_OK);
  283. }
  284. oldstatus = status;
  285. usleep(1000);
  286. } while (timeout-- > 0);
  287. LOG_ERROR("timeout, status: 0x%x", status);
  288. return(ERROR_FLASH_BUSY);
  289. }
  290. int cfi_read_intel_pri_ext(flash_bank_t *bank)
  291. {
  292. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  293. cfi_intel_pri_ext_t *pri_ext = malloc(sizeof(cfi_intel_pri_ext_t));
  294. target_t *target = bank->target;
  295. u8 command[8];
  296. cfi_info->pri_ext = pri_ext;
  297. pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
  298. pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
  299. pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
  300. if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
  301. {
  302. cfi_command(bank, 0xf0, command);
  303. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  304. cfi_command(bank, 0xff, command);
  305. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  306. LOG_ERROR("Could not read bank flash bank information");
  307. return ERROR_FLASH_BANK_INVALID;
  308. }
  309. pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
  310. pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
  311. LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
  312. pri_ext->feature_support = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5);
  313. pri_ext->suspend_cmd_support = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
  314. pri_ext->blk_status_reg_mask = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa);
  315. LOG_DEBUG("feature_support: 0x%x, suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
  316. pri_ext->vcc_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc);
  317. pri_ext->vpp_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd);
  318. LOG_DEBUG("Vcc opt: %1.1x.%1.1x, Vpp opt: %1.1x.%1.1x",
  319. (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
  320. (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
  321. pri_ext->num_protection_fields = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe);
  322. if (pri_ext->num_protection_fields != 1)
  323. {
  324. LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields);
  325. }
  326. pri_ext->prot_reg_addr = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf);
  327. pri_ext->fact_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11);
  328. pri_ext->user_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12);
  329. LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
  330. return ERROR_OK;
  331. }
  332. int cfi_read_spansion_pri_ext(flash_bank_t *bank)
  333. {
  334. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  335. cfi_spansion_pri_ext_t *pri_ext = malloc(sizeof(cfi_spansion_pri_ext_t));
  336. target_t *target = bank->target;
  337. u8 command[8];
  338. cfi_info->pri_ext = pri_ext;
  339. pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
  340. pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
  341. pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
  342. if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
  343. {
  344. cfi_command(bank, 0xf0, command);
  345. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  346. LOG_ERROR("Could not read spansion bank information");
  347. return ERROR_FLASH_BANK_INVALID;
  348. }
  349. pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
  350. pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
  351. LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
  352. pri_ext->SiliconRevision = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
  353. pri_ext->EraseSuspend = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
  354. pri_ext->BlkProt = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
  355. pri_ext->TmpBlkUnprotect = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
  356. pri_ext->BlkProtUnprot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
  357. pri_ext->SimultaneousOps = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10);
  358. pri_ext->BurstMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11);
  359. pri_ext->PageMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12);
  360. pri_ext->VppMin = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13);
  361. pri_ext->VppMax = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14);
  362. pri_ext->TopBottom = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15);
  363. LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision,
  364. pri_ext->EraseSuspend, pri_ext->BlkProt);
  365. LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
  366. pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
  367. LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
  368. LOG_DEBUG("Vpp min: %2.2d.%1.1d, Vpp max: %2.2d.%1.1x",
  369. (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
  370. (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
  371. LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
  372. /* default values for implementation specific workarounds */
  373. pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
  374. pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
  375. pri_ext->_reversed_geometry = 0;
  376. return ERROR_OK;
  377. }
  378. int cfi_read_atmel_pri_ext(flash_bank_t *bank)
  379. {
  380. cfi_atmel_pri_ext_t atmel_pri_ext;
  381. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  382. cfi_spansion_pri_ext_t *pri_ext = malloc(sizeof(cfi_spansion_pri_ext_t));
  383. target_t *target = bank->target;
  384. u8 command[8];
  385. /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
  386. * but a different primary extended query table.
  387. * We read the atmel table, and prepare a valid AMD/Spansion query table.
  388. */
  389. memset(pri_ext, 0, sizeof(cfi_spansion_pri_ext_t));
  390. cfi_info->pri_ext = pri_ext;
  391. atmel_pri_ext.pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
  392. atmel_pri_ext.pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
  393. atmel_pri_ext.pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
  394. if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I'))
  395. {
  396. cfi_command(bank, 0xf0, command);
  397. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  398. LOG_ERROR("Could not read atmel bank information");
  399. return ERROR_FLASH_BANK_INVALID;
  400. }
  401. pri_ext->pri[0] = atmel_pri_ext.pri[0];
  402. pri_ext->pri[1] = atmel_pri_ext.pri[1];
  403. pri_ext->pri[2] = atmel_pri_ext.pri[2];
  404. atmel_pri_ext.major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
  405. atmel_pri_ext.minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
  406. LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
  407. pri_ext->major_version = atmel_pri_ext.major_version;
  408. pri_ext->minor_version = atmel_pri_ext.minor_version;
  409. atmel_pri_ext.features = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
  410. atmel_pri_ext.bottom_boot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
  411. atmel_pri_ext.burst_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
  412. atmel_pri_ext.page_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
  413. LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
  414. atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
  415. if (atmel_pri_ext.features & 0x02)
  416. pri_ext->EraseSuspend = 2;
  417. if (atmel_pri_ext.bottom_boot)
  418. pri_ext->TopBottom = 2;
  419. else
  420. pri_ext->TopBottom = 3;
  421. pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
  422. pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
  423. return ERROR_OK;
  424. }
  425. int cfi_read_0002_pri_ext(flash_bank_t *bank)
  426. {
  427. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  428. if (cfi_info->manufacturer == CFI_MFR_ATMEL)
  429. {
  430. return cfi_read_atmel_pri_ext(bank);
  431. }
  432. else
  433. {
  434. return cfi_read_spansion_pri_ext(bank);
  435. }
  436. }
  437. int cfi_spansion_info(struct flash_bank_s *bank, char *buf, int buf_size)
  438. {
  439. int printed;
  440. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  441. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  442. printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
  443. buf += printed;
  444. buf_size -= printed;
  445. printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
  446. pri_ext->pri[1], pri_ext->pri[2],
  447. pri_ext->major_version, pri_ext->minor_version);
  448. buf += printed;
  449. buf_size -= printed;
  450. printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
  451. (pri_ext->SiliconRevision) >> 2,
  452. (pri_ext->SiliconRevision) & 0x03);
  453. buf += printed;
  454. buf_size -= printed;
  455. printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
  456. pri_ext->EraseSuspend,
  457. pri_ext->BlkProt);
  458. buf += printed;
  459. buf_size -= printed;
  460. printed = snprintf(buf, buf_size, "VppMin: %2.2d.%1.1x, VppMax: %2.2d.%1.1x\n",
  461. (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
  462. (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
  463. return ERROR_OK;
  464. }
  465. int cfi_intel_info(struct flash_bank_s *bank, char *buf, int buf_size)
  466. {
  467. int printed;
  468. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  469. cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext;
  470. printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
  471. buf += printed;
  472. buf_size -= printed;
  473. printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
  474. buf += printed;
  475. buf_size -= printed;
  476. printed = snprintf(buf, buf_size, "feature_support: 0x%x, suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
  477. buf += printed;
  478. buf_size -= printed;
  479. printed = snprintf(buf, buf_size, "Vcc opt: %1.1x.%1.1x, Vpp opt: %1.1x.%1.1x\n",
  480. (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
  481. (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
  482. buf += printed;
  483. buf_size -= printed;
  484. printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
  485. return ERROR_OK;
  486. }
  487. int cfi_register_commands(struct command_context_s *cmd_ctx)
  488. {
  489. /*command_t *cfi_cmd = */
  490. register_command(cmd_ctx, NULL, "cfi", NULL, COMMAND_ANY, "flash bank cfi <base> <size> <chip_width> <bus_width> <targetNum> [jedec_probe/x16_as_x8]");
  491. /*
  492. register_command(cmd_ctx, cfi_cmd, "part_id", cfi_handle_part_id_command, COMMAND_EXEC,
  493. "print part id of cfi flash bank <num>");
  494. */
  495. return ERROR_OK;
  496. }
  497. /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
  498. */
  499. int cfi_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank)
  500. {
  501. cfi_flash_bank_t *cfi_info;
  502. int i;
  503. if (argc < 6)
  504. {
  505. LOG_WARNING("incomplete flash_bank cfi configuration");
  506. return ERROR_FLASH_BANK_INVALID;
  507. }
  508. if ((strtoul(args[4], NULL, 0) > CFI_MAX_CHIP_WIDTH)
  509. || (strtoul(args[3], NULL, 0) > CFI_MAX_BUS_WIDTH))
  510. {
  511. LOG_ERROR("chip and bus width have to specified in bytes");
  512. return ERROR_FLASH_BANK_INVALID;
  513. }
  514. cfi_info = malloc(sizeof(cfi_flash_bank_t));
  515. cfi_info->probed = 0;
  516. bank->driver_priv = cfi_info;
  517. cfi_info->write_algorithm = NULL;
  518. cfi_info->x16_as_x8 = 0;
  519. cfi_info->jedec_probe = 0;
  520. cfi_info->not_cfi = 0;
  521. for (i = 6; i < argc; i++)
  522. {
  523. if (strcmp(args[i], "x16_as_x8") == 0)
  524. {
  525. cfi_info->x16_as_x8 = 1;
  526. }
  527. else if (strcmp(args[i], "jedec_probe") == 0)
  528. {
  529. cfi_info->jedec_probe = 1;
  530. }
  531. }
  532. cfi_info->write_algorithm = NULL;
  533. /* bank wasn't probed yet */
  534. cfi_info->qry[0] = -1;
  535. return ERROR_OK;
  536. }
  537. int cfi_intel_erase(struct flash_bank_s *bank, int first, int last)
  538. {
  539. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  540. target_t *target = bank->target;
  541. u8 command[8];
  542. int i;
  543. cfi_intel_clear_status_register(bank);
  544. for (i = first; i <= last; i++)
  545. {
  546. cfi_command(bank, 0x20, command);
  547. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  548. cfi_command(bank, 0xd0, command);
  549. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  550. if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == 0x80)
  551. bank->sectors[i].is_erased = 1;
  552. else
  553. {
  554. cfi_command(bank, 0xff, command);
  555. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  556. LOG_ERROR("couldn't erase block %i of flash bank at base 0x%x", i, bank->base);
  557. return ERROR_FLASH_OPERATION_FAILED;
  558. }
  559. }
  560. cfi_command(bank, 0xff, command);
  561. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  562. return ERROR_OK;
  563. }
  564. int cfi_spansion_erase(struct flash_bank_s *bank, int first, int last)
  565. {
  566. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  567. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  568. target_t *target = bank->target;
  569. u8 command[8];
  570. int i;
  571. for (i = first; i <= last; i++)
  572. {
  573. cfi_command(bank, 0xaa, command);
  574. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  575. cfi_command(bank, 0x55, command);
  576. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command);
  577. cfi_command(bank, 0x80, command);
  578. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  579. cfi_command(bank, 0xaa, command);
  580. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  581. cfi_command(bank, 0x55, command);
  582. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command);
  583. cfi_command(bank, 0x30, command);
  584. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  585. if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK)
  586. bank->sectors[i].is_erased = 1;
  587. else
  588. {
  589. cfi_command(bank, 0xf0, command);
  590. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  591. LOG_ERROR("couldn't erase block %i of flash bank at base 0x%x", i, bank->base);
  592. return ERROR_FLASH_OPERATION_FAILED;
  593. }
  594. }
  595. cfi_command(bank, 0xf0, command);
  596. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  597. return ERROR_OK;
  598. }
  599. int cfi_erase(struct flash_bank_s *bank, int first, int last)
  600. {
  601. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  602. if (bank->target->state != TARGET_HALTED)
  603. {
  604. return ERROR_TARGET_NOT_HALTED;
  605. }
  606. if ((first < 0) || (last < first) || (last >= bank->num_sectors))
  607. {
  608. return ERROR_FLASH_SECTOR_INVALID;
  609. }
  610. if (cfi_info->qry[0] != 'Q')
  611. return ERROR_FLASH_BANK_NOT_PROBED;
  612. switch(cfi_info->pri_id)
  613. {
  614. case 1:
  615. case 3:
  616. return cfi_intel_erase(bank, first, last);
  617. break;
  618. case 2:
  619. return cfi_spansion_erase(bank, first, last);
  620. break;
  621. default:
  622. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  623. break;
  624. }
  625. return ERROR_OK;
  626. }
  627. int cfi_intel_protect(struct flash_bank_s *bank, int set, int first, int last)
  628. {
  629. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  630. cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext;
  631. target_t *target = bank->target;
  632. u8 command[8];
  633. int retry = 0;
  634. int i;
  635. /* if the device supports neither legacy lock/unlock (bit 3) nor
  636. * instant individual block locking (bit 5).
  637. */
  638. if (!(pri_ext->feature_support & 0x28))
  639. return ERROR_FLASH_OPERATION_FAILED;
  640. cfi_intel_clear_status_register(bank);
  641. for (i = first; i <= last; i++)
  642. {
  643. cfi_command(bank, 0x60, command);
  644. LOG_DEBUG("address: 0x%4.4x, command: 0x%4.4x", flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
  645. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  646. if (set)
  647. {
  648. cfi_command(bank, 0x01, command);
  649. LOG_DEBUG("address: 0x%4.4x, command: 0x%4.4x", flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
  650. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  651. bank->sectors[i].is_protected = 1;
  652. }
  653. else
  654. {
  655. cfi_command(bank, 0xd0, command);
  656. LOG_DEBUG("address: 0x%4.4x, command: 0x%4.4x", flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
  657. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  658. bank->sectors[i].is_protected = 0;
  659. }
  660. /* instant individual block locking doesn't require reading of the status register */
  661. if (!(pri_ext->feature_support & 0x20))
  662. {
  663. /* Clear lock bits operation may take up to 1.4s */
  664. cfi_intel_wait_status_busy(bank, 1400);
  665. }
  666. else
  667. {
  668. u8 block_status;
  669. /* read block lock bit, to verify status */
  670. cfi_command(bank, 0x90, command);
  671. target->type->write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command);
  672. block_status = cfi_get_u8(bank, i, 0x2);
  673. if ((block_status & 0x1) != set)
  674. {
  675. LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status);
  676. cfi_command(bank, 0x70, command);
  677. target->type->write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command);
  678. cfi_intel_wait_status_busy(bank, 10);
  679. if (retry > 10)
  680. return ERROR_FLASH_OPERATION_FAILED;
  681. else
  682. {
  683. i--;
  684. retry++;
  685. }
  686. }
  687. }
  688. }
  689. /* if the device doesn't support individual block lock bits set/clear,
  690. * all blocks have been unlocked in parallel, so we set those that should be protected
  691. */
  692. if ((!set) && (!(pri_ext->feature_support & 0x20)))
  693. {
  694. for (i = 0; i < bank->num_sectors; i++)
  695. {
  696. if (bank->sectors[i].is_protected == 1)
  697. {
  698. cfi_intel_clear_status_register(bank);
  699. cfi_command(bank, 0x60, command);
  700. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  701. cfi_command(bank, 0x01, command);
  702. target->type->write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command);
  703. cfi_intel_wait_status_busy(bank, 100);
  704. }
  705. }
  706. }
  707. cfi_command(bank, 0xff, command);
  708. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  709. return ERROR_OK;
  710. }
  711. int cfi_protect(struct flash_bank_s *bank, int set, int first, int last)
  712. {
  713. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  714. if (bank->target->state != TARGET_HALTED)
  715. {
  716. return ERROR_TARGET_NOT_HALTED;
  717. }
  718. if ((first < 0) || (last < first) || (last >= bank->num_sectors))
  719. {
  720. return ERROR_FLASH_SECTOR_INVALID;
  721. }
  722. if (cfi_info->qry[0] != 'Q')
  723. return ERROR_FLASH_BANK_NOT_PROBED;
  724. switch(cfi_info->pri_id)
  725. {
  726. case 1:
  727. case 3:
  728. cfi_intel_protect(bank, set, first, last);
  729. break;
  730. default:
  731. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  732. break;
  733. }
  734. return ERROR_OK;
  735. }
  736. /* FIXME Replace this by a simple memcpy() - still unsure about sideeffects */
  737. static void cfi_add_byte(struct flash_bank_s *bank, u8 *word, u8 byte)
  738. {
  739. /* target_t *target = bank->target; */
  740. int i;
  741. /* NOTE:
  742. * The data to flash must not be changed in endian! We write a bytestrem in
  743. * target byte order already. Only the control and status byte lane of the flash
  744. * WSM is interpreted by the CPU in different ways, when read a u16 or u32
  745. * word (data seems to be in the upper or lower byte lane for u16 accesses).
  746. */
  747. #if 0
  748. if (target->endianness == TARGET_LITTLE_ENDIAN)
  749. {
  750. #endif
  751. /* shift bytes */
  752. for (i = 0; i < bank->bus_width - 1; i++)
  753. word[i] = word[i + 1];
  754. word[bank->bus_width - 1] = byte;
  755. #if 0
  756. }
  757. else
  758. {
  759. /* shift bytes */
  760. for (i = bank->bus_width - 1; i > 0; i--)
  761. word[i] = word[i - 1];
  762. word[0] = byte;
  763. }
  764. #endif
  765. }
  766. /* Convert code image to target endian */
  767. /* FIXME create general block conversion fcts in target.c?) */
  768. static void cfi_fix_code_endian(target_t *target, u8 *dest, const u32 *src, u32 count)
  769. {
  770. u32 i;
  771. for (i=0; i< count; i++)
  772. {
  773. target_buffer_set_u32(target, dest, *src);
  774. dest+=4;
  775. src++;
  776. }
  777. }
  778. u32 cfi_command_val(flash_bank_t *bank, u8 cmd)
  779. {
  780. target_t *target = bank->target;
  781. u8 buf[CFI_MAX_BUS_WIDTH];
  782. cfi_command(bank, cmd, buf);
  783. switch (bank->bus_width)
  784. {
  785. case 1 :
  786. return buf[0];
  787. break;
  788. case 2 :
  789. return target_buffer_get_u16(target, buf);
  790. break;
  791. case 4 :
  792. return target_buffer_get_u32(target, buf);
  793. break;
  794. default :
  795. LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
  796. return 0;
  797. }
  798. }
  799. int cfi_intel_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u32 count)
  800. {
  801. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  802. target_t *target = bank->target;
  803. reg_param_t reg_params[7];
  804. armv4_5_algorithm_t armv4_5_info;
  805. working_area_t *source;
  806. u32 buffer_size = 32768;
  807. u32 write_command_val, busy_pattern_val, error_pattern_val;
  808. /* algorithm register usage:
  809. * r0: source address (in RAM)
  810. * r1: target address (in Flash)
  811. * r2: count
  812. * r3: flash write command
  813. * r4: status byte (returned to host)
  814. * r5: busy test pattern
  815. * r6: error test pattern
  816. */
  817. static const u32 word_32_code[] = {
  818. 0xe4904004, /* loop: ldr r4, [r0], #4 */
  819. 0xe5813000, /* str r3, [r1] */
  820. 0xe5814000, /* str r4, [r1] */
  821. 0xe5914000, /* busy: ldr r4, [r1] */
  822. 0xe0047005, /* and r7, r4, r5 */
  823. 0xe1570005, /* cmp r7, r5 */
  824. 0x1afffffb, /* bne busy */
  825. 0xe1140006, /* tst r4, r6 */
  826. 0x1a000003, /* bne done */
  827. 0xe2522001, /* subs r2, r2, #1 */
  828. 0x0a000001, /* beq done */
  829. 0xe2811004, /* add r1, r1 #4 */
  830. 0xeafffff2, /* b loop */
  831. 0xeafffffe /* done: b -2 */
  832. };
  833. static const u32 word_16_code[] = {
  834. 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
  835. 0xe1c130b0, /* strh r3, [r1] */
  836. 0xe1c140b0, /* strh r4, [r1] */
  837. 0xe1d140b0, /* busy ldrh r4, [r1] */
  838. 0xe0047005, /* and r7, r4, r5 */
  839. 0xe1570005, /* cmp r7, r5 */
  840. 0x1afffffb, /* bne busy */
  841. 0xe1140006, /* tst r4, r6 */
  842. 0x1a000003, /* bne done */
  843. 0xe2522001, /* subs r2, r2, #1 */
  844. 0x0a000001, /* beq done */
  845. 0xe2811002, /* add r1, r1 #2 */
  846. 0xeafffff2, /* b loop */
  847. 0xeafffffe /* done: b -2 */
  848. };
  849. static const u32 word_8_code[] = {
  850. 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
  851. 0xe5c13000, /* strb r3, [r1] */
  852. 0xe5c14000, /* strb r4, [r1] */
  853. 0xe5d14000, /* busy ldrb r4, [r1] */
  854. 0xe0047005, /* and r7, r4, r5 */
  855. 0xe1570005, /* cmp r7, r5 */
  856. 0x1afffffb, /* bne busy */
  857. 0xe1140006, /* tst r4, r6 */
  858. 0x1a000003, /* bne done */
  859. 0xe2522001, /* subs r2, r2, #1 */
  860. 0x0a000001, /* beq done */
  861. 0xe2811001, /* add r1, r1 #1 */
  862. 0xeafffff2, /* b loop */
  863. 0xeafffffe /* done: b -2 */
  864. };
  865. u8 target_code[4*CFI_MAX_INTEL_CODESIZE];
  866. const u32 *target_code_src;
  867. int target_code_size;
  868. int retval = ERROR_OK;
  869. cfi_intel_clear_status_register(bank);
  870. armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
  871. armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
  872. armv4_5_info.core_state = ARMV4_5_STATE_ARM;
  873. /* If we are setting up the write_algorith, we need target_code_src */
  874. /* if not we only need target_code_size. */
  875. /* */
  876. /* However, we don't want to create multiple code paths, so we */
  877. /* do the unecessary evaluation of target_code_src, which the */
  878. /* compiler will probably nicely optimize away if not needed */
  879. /* prepare algorithm code for target endian */
  880. switch (bank->bus_width)
  881. {
  882. case 1 :
  883. target_code_src = word_8_code;
  884. target_code_size = sizeof(word_8_code);
  885. break;
  886. case 2 :
  887. target_code_src = word_16_code;
  888. target_code_size = sizeof(word_16_code);
  889. break;
  890. case 4 :
  891. target_code_src = word_32_code;
  892. target_code_size = sizeof(word_32_code);
  893. break;
  894. default:
  895. LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
  896. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  897. }
  898. /* flash write code */
  899. if (!cfi_info->write_algorithm)
  900. {
  901. if ( target_code_size > sizeof(target_code) )
  902. {
  903. LOG_WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile.");
  904. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  905. }
  906. cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
  907. /* Get memory for block write handler */
  908. retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
  909. if (retval != ERROR_OK)
  910. {
  911. LOG_WARNING("No working area available, can't do block memory writes");
  912. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  913. };
  914. /* write algorithm code to working area */
  915. retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code);
  916. if (retval != ERROR_OK)
  917. {
  918. LOG_ERROR("Unable to write block write code to target");
  919. goto cleanup;
  920. }
  921. }
  922. /* Get a workspace buffer for the data to flash starting with 32k size.
  923. Half size until buffer would be smaller 256 Bytem then fail back */
  924. /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
  925. while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
  926. {
  927. buffer_size /= 2;
  928. if (buffer_size <= 256)
  929. {
  930. LOG_WARNING("no large enough working area available, can't do block memory writes");
  931. retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  932. goto cleanup;
  933. }
  934. };
  935. /* setup algo registers */
  936. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
  937. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  938. init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
  939. init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
  940. init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
  941. init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
  942. init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
  943. /* prepare command and status register patterns */
  944. write_command_val = cfi_command_val(bank, 0x40);
  945. busy_pattern_val = cfi_command_val(bank, 0x80);
  946. error_pattern_val = cfi_command_val(bank, 0x7e);
  947. LOG_INFO("Using target buffer at 0x%08x and of size 0x%04x", source->address, buffer_size );
  948. /* Programming main loop */
  949. while (count > 0)
  950. {
  951. u32 thisrun_count = (count > buffer_size) ? buffer_size : count;
  952. u32 wsm_error;
  953. target_write_buffer(target, source->address, thisrun_count, buffer);
  954. buf_set_u32(reg_params[0].value, 0, 32, source->address);
  955. buf_set_u32(reg_params[1].value, 0, 32, address);
  956. buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
  957. buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
  958. buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
  959. buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
  960. LOG_INFO("Write 0x%04x bytes to flash at 0x%08x", thisrun_count, address );
  961. /* Execute algorithm, assume breakpoint for last instruction */
  962. retval = target->type->run_algorithm(target, 0, NULL, 7, reg_params,
  963. cfi_info->write_algorithm->address,
  964. cfi_info->write_algorithm->address + target_code_size - sizeof(u32),
  965. 10000, /* 10s should be enough for max. 32k of data */
  966. &armv4_5_info);
  967. /* On failure try a fall back to direct word writes */
  968. if (retval != ERROR_OK)
  969. {
  970. cfi_intel_clear_status_register(bank);
  971. LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
  972. retval = ERROR_FLASH_OPERATION_FAILED;
  973. /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
  974. /* FIXME To allow fall back or recovery, we must save the actual status
  975. somewhere, so that a higher level code can start recovery. */
  976. goto cleanup;
  977. }
  978. /* Check return value from algo code */
  979. wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
  980. if (wsm_error)
  981. {
  982. /* read status register (outputs debug inforation) */
  983. cfi_intel_wait_status_busy(bank, 100);
  984. cfi_intel_clear_status_register(bank);
  985. retval = ERROR_FLASH_OPERATION_FAILED;
  986. goto cleanup;
  987. }
  988. buffer += thisrun_count;
  989. address += thisrun_count;
  990. count -= thisrun_count;
  991. }
  992. /* free up resources */
  993. cleanup:
  994. if (source)
  995. target_free_working_area(target, source);
  996. if (cfi_info->write_algorithm)
  997. {
  998. target_free_working_area(target, cfi_info->write_algorithm);
  999. cfi_info->write_algorithm = NULL;
  1000. }
  1001. destroy_reg_param(&reg_params[0]);
  1002. destroy_reg_param(&reg_params[1]);
  1003. destroy_reg_param(&reg_params[2]);
  1004. destroy_reg_param(&reg_params[3]);
  1005. destroy_reg_param(&reg_params[4]);
  1006. destroy_reg_param(&reg_params[5]);
  1007. destroy_reg_param(&reg_params[6]);
  1008. return retval;
  1009. }
  1010. int cfi_spansion_write_block(struct flash_bank_s *bank, u8 *buffer, u32 address, u32 count)
  1011. {
  1012. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1013. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1014. target_t *target = bank->target;
  1015. reg_param_t reg_params[10];
  1016. armv4_5_algorithm_t armv4_5_info;
  1017. working_area_t *source;
  1018. u32 buffer_size = 32768;
  1019. u32 status;
  1020. int retval;
  1021. int exit_code = ERROR_OK;
  1022. /* input parameters - */
  1023. /* R0 = source address */
  1024. /* R1 = destination address */
  1025. /* R2 = number of writes */
  1026. /* R3 = flash write command */
  1027. /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
  1028. /* output parameters - */
  1029. /* R5 = 0x80 ok 0x00 bad */
  1030. /* temp registers - */
  1031. /* R6 = value read from flash to test status */
  1032. /* R7 = holding register */
  1033. /* unlock registers - */
  1034. /* R8 = unlock1_addr */
  1035. /* R9 = unlock1_cmd */
  1036. /* R10 = unlock2_addr */
  1037. /* R11 = unlock2_cmd */
  1038. static const u32 word_32_code[] = {
  1039. /* 00008100 <sp_32_code>: */
  1040. 0xe4905004, /* ldr r5, [r0], #4 */
  1041. 0xe5889000, /* str r9, [r8] */
  1042. 0xe58ab000, /* str r11, [r10] */
  1043. 0xe5883000, /* str r3, [r8] */
  1044. 0xe5815000, /* str r5, [r1] */
  1045. 0xe1a00000, /* nop */
  1046. /* */
  1047. /* 00008110 <sp_32_busy>: */
  1048. 0xe5916000, /* ldr r6, [r1] */
  1049. 0xe0257006, /* eor r7, r5, r6 */
  1050. 0xe0147007, /* ands r7, r4, r7 */
  1051. 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
  1052. 0xe0166124, /* ands r6, r6, r4, lsr #2 */
  1053. 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
  1054. 0xe5916000, /* ldr r6, [r1] */
  1055. 0xe0257006, /* eor r7, r5, r6 */
  1056. 0xe0147007, /* ands r7, r4, r7 */
  1057. 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
  1058. 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
  1059. 0x1a000004, /* bne 8154 <sp_32_done> */
  1060. /* */
  1061. /* 00008140 <sp_32_cont>: */
  1062. 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
  1063. 0x03a05080, /* moveq r5, #128 ; 0x80 */
  1064. 0x0a000001, /* beq 8154 <sp_32_done> */
  1065. 0xe2811004, /* add r1, r1, #4 ; 0x4 */
  1066. 0xeaffffe8, /* b 8100 <sp_32_code> */
  1067. /* */
  1068. /* 00008154 <sp_32_done>: */
  1069. 0xeafffffe /* b 8154 <sp_32_done> */
  1070. };
  1071. static const u32 word_16_code[] = {
  1072. /* 00008158 <sp_16_code>: */
  1073. 0xe0d050b2, /* ldrh r5, [r0], #2 */
  1074. 0xe1c890b0, /* strh r9, [r8] */
  1075. 0xe1cab0b0, /* strh r11, [r10] */
  1076. 0xe1c830b0, /* strh r3, [r8] */
  1077. 0xe1c150b0, /* strh r5, [r1] */
  1078. 0xe1a00000, /* nop (mov r0,r0) */
  1079. /* */
  1080. /* 00008168 <sp_16_busy>: */
  1081. 0xe1d160b0, /* ldrh r6, [r1] */
  1082. 0xe0257006, /* eor r7, r5, r6 */
  1083. 0xe0147007, /* ands r7, r4, r7 */
  1084. 0x0a000007, /* beq 8198 <sp_16_cont> */
  1085. 0xe0166124, /* ands r6, r6, r4, lsr #2 */
  1086. 0x0afffff9, /* beq 8168 <sp_16_busy> */
  1087. 0xe1d160b0, /* ldrh r6, [r1] */
  1088. 0xe0257006, /* eor r7, r5, r6 */
  1089. 0xe0147007, /* ands r7, r4, r7 */
  1090. 0x0a000001, /* beq 8198 <sp_16_cont> */
  1091. 0xe3a05000, /* mov r5, #0 ; 0x0 */
  1092. 0x1a000004, /* bne 81ac <sp_16_done> */
  1093. /* */
  1094. /* 00008198 <sp_16_cont>: */
  1095. 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
  1096. 0x03a05080, /* moveq r5, #128 ; 0x80 */
  1097. 0x0a000001, /* beq 81ac <sp_16_done> */
  1098. 0xe2811002, /* add r1, r1, #2 ; 0x2 */
  1099. 0xeaffffe8, /* b 8158 <sp_16_code> */
  1100. /* */
  1101. /* 000081ac <sp_16_done>: */
  1102. 0xeafffffe /* b 81ac <sp_16_done> */
  1103. };
  1104. static const u32 word_8_code[] = {
  1105. /* 000081b0 <sp_16_code_end>: */
  1106. 0xe4d05001, /* ldrb r5, [r0], #1 */
  1107. 0xe5c89000, /* strb r9, [r8] */
  1108. 0xe5cab000, /* strb r11, [r10] */
  1109. 0xe5c83000, /* strb r3, [r8] */
  1110. 0xe5c15000, /* strb r5, [r1] */
  1111. 0xe1a00000, /* nop (mov r0,r0) */
  1112. /* */
  1113. /* 000081c0 <sp_8_busy>: */
  1114. 0xe5d16000, /* ldrb r6, [r1] */
  1115. 0xe0257006, /* eor r7, r5, r6 */
  1116. 0xe0147007, /* ands r7, r4, r7 */
  1117. 0x0a000007, /* beq 81f0 <sp_8_cont> */
  1118. 0xe0166124, /* ands r6, r6, r4, lsr #2 */
  1119. 0x0afffff9, /* beq 81c0 <sp_8_busy> */
  1120. 0xe5d16000, /* ldrb r6, [r1] */
  1121. 0xe0257006, /* eor r7, r5, r6 */
  1122. 0xe0147007, /* ands r7, r4, r7 */
  1123. 0x0a000001, /* beq 81f0 <sp_8_cont> */
  1124. 0xe3a05000, /* mov r5, #0 ; 0x0 */
  1125. 0x1a000004, /* bne 8204 <sp_8_done> */
  1126. /* */
  1127. /* 000081f0 <sp_8_cont>: */
  1128. 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
  1129. 0x03a05080, /* moveq r5, #128 ; 0x80 */
  1130. 0x0a000001, /* beq 8204 <sp_8_done> */
  1131. 0xe2811001, /* add r1, r1, #1 ; 0x1 */
  1132. 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
  1133. /* */
  1134. /* 00008204 <sp_8_done>: */
  1135. 0xeafffffe /* b 8204 <sp_8_done> */
  1136. };
  1137. armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
  1138. armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
  1139. armv4_5_info.core_state = ARMV4_5_STATE_ARM;
  1140. /* flash write code */
  1141. if (!cfi_info->write_algorithm)
  1142. {
  1143. u8 *target_code;
  1144. int target_code_size;
  1145. const u32 *src;
  1146. /* convert bus-width dependent algorithm code to correct endiannes */
  1147. switch (bank->bus_width)
  1148. {
  1149. case 1:
  1150. src = word_8_code;
  1151. target_code_size = sizeof(word_8_code);
  1152. break;
  1153. case 2:
  1154. src = word_16_code;
  1155. target_code_size = sizeof(word_16_code);
  1156. break;
  1157. case 4:
  1158. src = word_32_code;
  1159. target_code_size = sizeof(word_32_code);
  1160. break;
  1161. default:
  1162. LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
  1163. return ERROR_FLASH_OPERATION_FAILED;
  1164. }
  1165. target_code = malloc(target_code_size);
  1166. cfi_fix_code_endian(target, target_code, src, target_code_size / 4);
  1167. /* allocate working area */
  1168. retval=target_alloc_working_area(target, target_code_size,
  1169. &cfi_info->write_algorithm);
  1170. if (retval != ERROR_OK)
  1171. return retval;
  1172. /* write algorithm code to working area */
  1173. target_write_buffer(target, cfi_info->write_algorithm->address,
  1174. target_code_size, target_code);
  1175. free(target_code);
  1176. }
  1177. /* the following code still assumes target code is fixed 24*4 bytes */
  1178. while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
  1179. {
  1180. buffer_size /= 2;
  1181. if (buffer_size <= 256)
  1182. {
  1183. /* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
  1184. if (cfi_info->write_algorithm)
  1185. target_free_working_area(target, cfi_info->write_algorithm);
  1186. LOG_WARNING("not enough working area available, can't do block memory writes");
  1187. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1188. }
  1189. };
  1190. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
  1191. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  1192. init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
  1193. init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
  1194. init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
  1195. init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
  1196. init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
  1197. init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
  1198. init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
  1199. init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
  1200. while (count > 0)
  1201. {
  1202. u32 thisrun_count = (count > buffer_size) ? buffer_size : count;
  1203. target_write_buffer(target, source->address, thisrun_count, buffer);
  1204. buf_set_u32(reg_params[0].value, 0, 32, source->address);
  1205. buf_set_u32(reg_params[1].value, 0, 32, address);
  1206. buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
  1207. buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
  1208. buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
  1209. buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
  1210. buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
  1211. buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
  1212. buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
  1213. retval = target->type->run_algorithm(target, 0, NULL, 10, reg_params,
  1214. cfi_info->write_algorithm->address,
  1215. cfi_info->write_algorithm->address + ((24 * 4) - 4),
  1216. 10000, &armv4_5_info);
  1217. status = buf_get_u32(reg_params[5].value, 0, 32);
  1218. if ((retval != ERROR_OK) || status != 0x80)
  1219. {
  1220. LOG_DEBUG("status: 0x%x", status);
  1221. exit_code = ERROR_FLASH_OPERATION_FAILED;
  1222. break;
  1223. }
  1224. buffer += thisrun_count;
  1225. address += thisrun_count;
  1226. count -= thisrun_count;
  1227. }
  1228. target_free_working_area(target, source);
  1229. destroy_reg_param(&reg_params[0]);
  1230. destroy_reg_param(&reg_params[1]);
  1231. destroy_reg_param(&reg_params[2]);
  1232. destroy_reg_param(&reg_params[3]);
  1233. destroy_reg_param(&reg_params[4]);
  1234. destroy_reg_param(&reg_params[5]);
  1235. destroy_reg_param(&reg_params[6]);
  1236. destroy_reg_param(&reg_params[7]);
  1237. destroy_reg_param(&reg_params[8]);
  1238. destroy_reg_param(&reg_params[9]);
  1239. return exit_code;
  1240. }
  1241. int cfi_intel_write_word(struct flash_bank_s *bank, u8 *word, u32 address)
  1242. {
  1243. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1244. target_t *target = bank->target;
  1245. u8 command[8];
  1246. cfi_intel_clear_status_register(bank);
  1247. cfi_command(bank, 0x40, command);
  1248. target->type->write_memory(target, address, bank->bus_width, 1, command);
  1249. target->type->write_memory(target, address, bank->bus_width, 1, word);
  1250. if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != 0x80)
  1251. {
  1252. cfi_command(bank, 0xff, command);
  1253. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1254. LOG_ERROR("couldn't write word at base 0x%x, address %x", bank->base, address);
  1255. return ERROR_FLASH_OPERATION_FAILED;
  1256. }
  1257. return ERROR_OK;
  1258. }
  1259. int cfi_intel_write_words(struct flash_bank_s *bank, u8 *word, u32 wordcount, u32 address)
  1260. {
  1261. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1262. target_t *target = bank->target;
  1263. u8 command[8];
  1264. /* Calculate buffer size and boundary mask */
  1265. u32 buffersize = 1UL << cfi_info->max_buf_write_size;
  1266. u32 buffermask = buffersize-1;
  1267. u32 bufferwsize;
  1268. /* Check for valid range */
  1269. if (address & buffermask)
  1270. {
  1271. LOG_ERROR("Write address at base 0x%x, address %x not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size);
  1272. return ERROR_FLASH_OPERATION_FAILED;
  1273. }
  1274. switch(bank->chip_width)
  1275. {
  1276. case 4 : bufferwsize = buffersize / 4; break;
  1277. case 2 : bufferwsize = buffersize / 2; break;
  1278. case 1 : bufferwsize = buffersize; break;
  1279. default:
  1280. LOG_ERROR("Unsupported chip width %d", bank->chip_width);
  1281. return ERROR_FLASH_OPERATION_FAILED;
  1282. }
  1283. /* Check for valid size */
  1284. if (wordcount > bufferwsize)
  1285. {
  1286. LOG_ERROR("Number of data words %d exceeds available buffersize %d", wordcount, buffersize);
  1287. return ERROR_FLASH_OPERATION_FAILED;
  1288. }
  1289. /* Write to flash buffer */
  1290. cfi_intel_clear_status_register(bank);
  1291. /* Initiate buffer operation _*/
  1292. cfi_command(bank, 0xE8, command);
  1293. target->type->write_memory(target, address, bank->bus_width, 1, command);
  1294. if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
  1295. {
  1296. cfi_command(bank, 0xff, command);
  1297. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1298. LOG_ERROR("couldn't start buffer write operation at base 0x%x, address %x", bank->base, address);
  1299. return ERROR_FLASH_OPERATION_FAILED;
  1300. }
  1301. /* Write buffer wordcount-1 and data words */
  1302. cfi_command(bank, bufferwsize-1, command);
  1303. target->type->write_memory(target, address, bank->bus_width, 1, command);
  1304. target->type->write_memory(target, address, bank->bus_width, bufferwsize, word);
  1305. /* Commit write operation */
  1306. cfi_command(bank, 0xd0, command);
  1307. target->type->write_memory(target, address, bank->bus_width, 1, command);
  1308. if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
  1309. {
  1310. cfi_command(bank, 0xff, command);
  1311. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1312. LOG_ERROR("Buffer write at base 0x%x, address %x failed.", bank->base, address);
  1313. return ERROR_FLASH_OPERATION_FAILED;
  1314. }
  1315. return ERROR_OK;
  1316. }
  1317. int cfi_spansion_write_word(struct flash_bank_s *bank, u8 *word, u32 address)
  1318. {
  1319. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1320. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1321. target_t *target = bank->target;
  1322. u8 command[8];
  1323. cfi_command(bank, 0xaa, command);
  1324. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  1325. cfi_command(bank, 0x55, command);
  1326. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command);
  1327. cfi_command(bank, 0xa0, command);
  1328. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  1329. target->type->write_memory(target, address, bank->bus_width, 1, word);
  1330. if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
  1331. {
  1332. cfi_command(bank, 0xf0, command);
  1333. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1334. LOG_ERROR("couldn't write word at base 0x%x, address %x", bank->base, address);
  1335. return ERROR_FLASH_OPERATION_FAILED;
  1336. }
  1337. return ERROR_OK;
  1338. }
  1339. int cfi_write_word(struct flash_bank_s *bank, u8 *word, u32 address)
  1340. {
  1341. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1342. switch(cfi_info->pri_id)
  1343. {
  1344. case 1:
  1345. case 3:
  1346. return cfi_intel_write_word(bank, word, address);
  1347. break;
  1348. case 2:
  1349. return cfi_spansion_write_word(bank, word, address);
  1350. break;
  1351. default:
  1352. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1353. break;
  1354. }
  1355. return ERROR_FLASH_OPERATION_FAILED;
  1356. }
  1357. int cfi_write_words(struct flash_bank_s *bank, u8 *word, u32 wordcount, u32 address)
  1358. {
  1359. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1360. switch(cfi_info->pri_id)
  1361. {
  1362. case 1:
  1363. case 3:
  1364. return cfi_intel_write_words(bank, word, wordcount, address);
  1365. break;
  1366. case 2:
  1367. /* return cfi_spansion_write_words(bank, word, address); */
  1368. LOG_ERROR("cfi primary command set %i unimplemented - FIXME", cfi_info->pri_id);
  1369. break;
  1370. default:
  1371. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1372. break;
  1373. }
  1374. return ERROR_FLASH_OPERATION_FAILED;
  1375. }
  1376. int cfi_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count)
  1377. {
  1378. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1379. target_t *target = bank->target;
  1380. u32 address = bank->base + offset; /* address of first byte to be programmed */
  1381. u32 write_p, copy_p;
  1382. int align; /* number of unaligned bytes */
  1383. int blk_count; /* number of bus_width bytes for block copy */
  1384. u8 current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
  1385. int i;
  1386. int retval;
  1387. if (bank->target->state != TARGET_HALTED)
  1388. return ERROR_TARGET_NOT_HALTED;
  1389. if (offset + count > bank->size)
  1390. return ERROR_FLASH_DST_OUT_OF_BANK;
  1391. if (cfi_info->qry[0] != 'Q')
  1392. return ERROR_FLASH_BANK_NOT_PROBED;
  1393. /* start at the first byte of the first word (bus_width size) */
  1394. write_p = address & ~(bank->bus_width - 1);
  1395. if ((align = address - write_p) != 0)
  1396. {
  1397. LOG_INFO("Fixup %d unaligned head bytes", align );
  1398. for (i = 0; i < bank->bus_width; i++)
  1399. current_word[i] = 0;
  1400. copy_p = write_p;
  1401. /* copy bytes before the first write address */
  1402. for (i = 0; i < align; ++i, ++copy_p)
  1403. {
  1404. u8 byte;
  1405. target->type->read_memory(target, copy_p, 1, 1, &byte);
  1406. cfi_add_byte(bank, current_word, byte);
  1407. }
  1408. /* add bytes from the buffer */
  1409. for (; (i < bank->bus_width) && (count > 0); i++)
  1410. {
  1411. cfi_add_byte(bank, current_word, *buffer++);
  1412. count--;
  1413. copy_p++;
  1414. }
  1415. /* if the buffer is already finished, copy bytes after the last write address */
  1416. for (; (count == 0) && (i < bank->bus_width); ++i, ++copy_p)
  1417. {
  1418. u8 byte;
  1419. target->type->read_memory(target, copy_p, 1, 1, &byte);
  1420. cfi_add_byte(bank, current_word, byte);
  1421. }
  1422. retval = cfi_write_word(bank, current_word, write_p);
  1423. if (retval != ERROR_OK)
  1424. return retval;
  1425. write_p = copy_p;
  1426. }
  1427. /* handle blocks of bus_size aligned bytes */
  1428. blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
  1429. switch(cfi_info->pri_id)
  1430. {
  1431. /* try block writes (fails without working area) */
  1432. case 1:
  1433. case 3:
  1434. retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
  1435. break;
  1436. case 2:
  1437. retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
  1438. break;
  1439. default:
  1440. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1441. retval = ERROR_FLASH_OPERATION_FAILED;
  1442. break;
  1443. }
  1444. if (retval == ERROR_OK)
  1445. {
  1446. /* Increment pointers and decrease count on succesful block write */
  1447. buffer += blk_count;
  1448. write_p += blk_count;
  1449. count -= blk_count;
  1450. }
  1451. else
  1452. {
  1453. if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
  1454. {
  1455. u32 buffersize = 1UL << cfi_info->max_buf_write_size;
  1456. u32 buffermask = buffersize-1;
  1457. u32 bufferwsize;
  1458. switch(bank->chip_width)
  1459. {
  1460. case 4 : bufferwsize = buffersize / 4; break;
  1461. case 2 : bufferwsize = buffersize / 2; break;
  1462. case 1 : bufferwsize = buffersize; break;
  1463. default:
  1464. LOG_ERROR("Unsupported chip width %d", bank->chip_width);
  1465. return ERROR_FLASH_OPERATION_FAILED;
  1466. }
  1467. /* fall back to memory writes */
  1468. while (count >= bank->bus_width)
  1469. {
  1470. int fallback;
  1471. if ((write_p & 0xff) == 0)
  1472. {
  1473. LOG_INFO("Programming at %08x, count %08x bytes remaining", write_p, count);
  1474. }
  1475. fallback = 1;
  1476. if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
  1477. {
  1478. retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
  1479. if (retval == ERROR_OK)
  1480. {
  1481. buffer += buffersize;
  1482. write_p += buffersize;
  1483. count -= buffersize;
  1484. fallback=0;
  1485. }
  1486. }
  1487. /* try the slow way? */
  1488. if (fallback)
  1489. {
  1490. for (i = 0; i < bank->bus_width; i++)
  1491. current_word[i] = 0;
  1492. for (i = 0; i < bank->bus_width; i++)
  1493. {
  1494. cfi_add_byte(bank, current_word, *buffer++);
  1495. }
  1496. retval = cfi_write_word(bank, current_word, write_p);
  1497. if (retval != ERROR_OK)
  1498. return retval;
  1499. write_p += bank->bus_width;
  1500. count -= bank->bus_width;
  1501. }
  1502. }
  1503. }
  1504. else
  1505. return retval;
  1506. }
  1507. /* return to read array mode, so we can read from flash again for padding */
  1508. cfi_command(bank, 0xf0, current_word);
  1509. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
  1510. cfi_command(bank, 0xff, current_word);
  1511. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
  1512. /* handle unaligned tail bytes */
  1513. if (count > 0)
  1514. {
  1515. LOG_INFO("Fixup %d unaligned tail bytes", count );
  1516. copy_p = write_p;
  1517. for (i = 0; i < bank->bus_width; i++)
  1518. current_word[i] = 0;
  1519. for (i = 0; (i < bank->bus_width) && (count > 0); ++i, ++copy_p)
  1520. {
  1521. cfi_add_byte(bank, current_word, *buffer++);
  1522. count--;
  1523. }
  1524. for (; i < bank->bus_width; ++i, ++copy_p)
  1525. {
  1526. u8 byte;
  1527. target->type->read_memory(target, copy_p, 1, 1, &byte);
  1528. cfi_add_byte(bank, current_word, byte);
  1529. }
  1530. retval = cfi_write_word(bank, current_word, write_p);
  1531. if (retval != ERROR_OK)
  1532. return retval;
  1533. }
  1534. /* return to read array mode */
  1535. cfi_command(bank, 0xf0, current_word);
  1536. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
  1537. cfi_command(bank, 0xff, current_word);
  1538. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
  1539. return ERROR_OK;
  1540. }
  1541. void cfi_fixup_atmel_reversed_erase_regions(flash_bank_t *bank, void *param)
  1542. {
  1543. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1544. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1545. pri_ext->_reversed_geometry = 1;
  1546. }
  1547. void cfi_fixup_0002_erase_regions(flash_bank_t *bank, void *param)
  1548. {
  1549. int i;
  1550. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1551. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1552. if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
  1553. {
  1554. LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
  1555. for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
  1556. {
  1557. int j = (cfi_info->num_erase_regions - 1) - i;
  1558. u32 swap;
  1559. swap = cfi_info->erase_region_info[i];
  1560. cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
  1561. cfi_info->erase_region_info[j] = swap;
  1562. }
  1563. }
  1564. }
  1565. void cfi_fixup_0002_unlock_addresses(flash_bank_t *bank, void *param)
  1566. {
  1567. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1568. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1569. cfi_unlock_addresses_t *unlock_addresses = param;
  1570. pri_ext->_unlock1 = unlock_addresses->unlock1;
  1571. pri_ext->_unlock2 = unlock_addresses->unlock2;
  1572. }
  1573. int cfi_probe(struct flash_bank_s *bank)
  1574. {
  1575. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1576. target_t *target = bank->target;
  1577. u8 command[8];
  1578. int num_sectors = 0;
  1579. int i;
  1580. int sector = 0;
  1581. u32 offset = 0;
  1582. u32 unlock1 = 0x555;
  1583. u32 unlock2 = 0x2aa;
  1584. if (bank->target->state != TARGET_HALTED)
  1585. {
  1586. return ERROR_TARGET_NOT_HALTED;
  1587. }
  1588. cfi_info->probed = 0;
  1589. /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
  1590. * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
  1591. */
  1592. if (cfi_info->jedec_probe)
  1593. {
  1594. unlock1 = 0x5555;
  1595. unlock2 = 0x2aaa;
  1596. }
  1597. /* switch to read identifier codes mode ("AUTOSELECT") */
  1598. cfi_command(bank, 0xaa, command);
  1599. target->type->write_memory(target, flash_address(bank, 0, unlock1), bank->bus_width, 1, command);
  1600. cfi_command(bank, 0x55, command);
  1601. target->type->write_memory(target, flash_address(bank, 0, unlock2), bank->bus_width, 1, command);
  1602. cfi_command(bank, 0x90, command);
  1603. target->type->write_memory(target, flash_address(bank, 0, unlock1), bank->bus_width, 1, command);
  1604. if (bank->chip_width == 1)
  1605. {
  1606. u8 manufacturer, device_id;
  1607. target_read_u8(target, bank->base + 0x0, &manufacturer);
  1608. target_read_u8(target, bank->base + 0x1, &device_id);
  1609. cfi_info->manufacturer = manufacturer;
  1610. cfi_info->device_id = device_id;
  1611. }
  1612. else if (bank->chip_width == 2)
  1613. {
  1614. target_read_u16(target, bank->base + 0x0, &cfi_info->manufacturer);
  1615. target_read_u16(target, bank->base + 0x2, &cfi_info->device_id);
  1616. }
  1617. /* switch back to read array mode */
  1618. cfi_command(bank, 0xf0, command);
  1619. target->type->write_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, command);
  1620. cfi_command(bank, 0xff, command);
  1621. target->type->write_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, command);
  1622. cfi_fixup(bank, cfi_jedec_fixups);
  1623. /* query only if this is a CFI compatible flash,
  1624. * otherwise the relevant info has already been filled in
  1625. */
  1626. if (cfi_info->not_cfi == 0)
  1627. {
  1628. /* enter CFI query mode
  1629. * according to JEDEC Standard No. 68.01,
  1630. * a single bus sequence with address = 0x55, data = 0x98 should put
  1631. * the device into CFI query mode.
  1632. *
  1633. * SST flashes clearly violate this, and we will consider them incompatbile for now
  1634. */
  1635. cfi_command(bank, 0x98, command);
  1636. target->type->write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command);
  1637. cfi_info->qry[0] = cfi_query_u8(bank, 0, 0x10);
  1638. cfi_info->qry[1] = cfi_query_u8(bank, 0, 0x11);
  1639. cfi_info->qry[2] = cfi_query_u8(bank, 0, 0x12);
  1640. LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
  1641. if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
  1642. {
  1643. cfi_command(bank, 0xf0, command);
  1644. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1645. cfi_command(bank, 0xff, command);
  1646. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1647. LOG_ERROR("Could not probe bank");
  1648. return ERROR_FLASH_BANK_INVALID;
  1649. }
  1650. cfi_info->pri_id = cfi_query_u16(bank, 0, 0x13);
  1651. cfi_info->pri_addr = cfi_query_u16(bank, 0, 0x15);
  1652. cfi_info->alt_id = cfi_query_u16(bank, 0, 0x17);
  1653. cfi_info->alt_addr = cfi_query_u16(bank, 0, 0x19);
  1654. LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
  1655. cfi_info->vcc_min = cfi_query_u8(bank, 0, 0x1b);
  1656. cfi_info->vcc_max = cfi_query_u8(bank, 0, 0x1c);
  1657. cfi_info->vpp_min = cfi_query_u8(bank, 0, 0x1d);
  1658. cfi_info->vpp_max = cfi_query_u8(bank, 0, 0x1e);
  1659. cfi_info->word_write_timeout_typ = cfi_query_u8(bank, 0, 0x1f);
  1660. cfi_info->buf_write_timeout_typ = cfi_query_u8(bank, 0, 0x20);
  1661. cfi_info->block_erase_timeout_typ = cfi_query_u8(bank, 0, 0x21);
  1662. cfi_info->chip_erase_timeout_typ = cfi_query_u8(bank, 0, 0x22);
  1663. cfi_info->word_write_timeout_max = cfi_query_u8(bank, 0, 0x23);
  1664. cfi_info->buf_write_timeout_max = cfi_query_u8(bank, 0, 0x24);
  1665. cfi_info->block_erase_timeout_max = cfi_query_u8(bank, 0, 0x25);
  1666. cfi_info->chip_erase_timeout_max = cfi_query_u8(bank, 0, 0x26);
  1667. LOG_DEBUG("Vcc min: %1.1x.%1.1x, Vcc max: %1.1x.%1.1x, Vpp min: %1.1x.%1.1x, Vpp max: %1.1x.%1.1x",
  1668. (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
  1669. (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
  1670. (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
  1671. (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
  1672. LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
  1673. 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
  1674. LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
  1675. (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
  1676. (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
  1677. (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
  1678. cfi_info->dev_size = cfi_query_u8(bank, 0, 0x27);
  1679. cfi_info->interface_desc = cfi_query_u16(bank, 0, 0x28);
  1680. cfi_info->max_buf_write_size = cfi_query_u16(bank, 0, 0x2a);
  1681. cfi_info->num_erase_regions = cfi_query_u8(bank, 0, 0x2c);
  1682. LOG_DEBUG("size: 0x%x, interface desc: %i, max buffer write size: %x", 1 << cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
  1683. if (((1 << cfi_info->dev_size) * bank->bus_width / bank->chip_width) != bank->size)
  1684. {
  1685. LOG_WARNING("configuration specifies 0x%x size, but a 0x%x size flash was found", bank->size, 1 << cfi_info->dev_size);
  1686. }
  1687. if (cfi_info->num_erase_regions)
  1688. {
  1689. cfi_info->erase_region_info = malloc(4 * cfi_info->num_erase_regions);
  1690. for (i = 0; i < cfi_info->num_erase_regions; i++)
  1691. {
  1692. cfi_info->erase_region_info[i] = cfi_query_u32(bank, 0, 0x2d + (4 * i));
  1693. LOG_DEBUG("erase region[%i]: %i blocks of size 0x%x", i, (cfi_info->erase_region_info[i] & 0xffff) + 1, (cfi_info->erase_region_info[i] >> 16) * 256);
  1694. }
  1695. }
  1696. else
  1697. {
  1698. cfi_info->erase_region_info = NULL;
  1699. }
  1700. /* We need to read the primary algorithm extended query table before calculating
  1701. * the sector layout to be able to apply fixups
  1702. */
  1703. switch(cfi_info->pri_id)
  1704. {
  1705. /* Intel command set (standard and extended) */
  1706. case 0x0001:
  1707. case 0x0003:
  1708. cfi_read_intel_pri_ext(bank);
  1709. break;
  1710. /* AMD/Spansion, Atmel, ... command set */
  1711. case 0x0002:
  1712. cfi_read_0002_pri_ext(bank);
  1713. break;
  1714. default:
  1715. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1716. break;
  1717. }
  1718. /* return to read array mode
  1719. * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
  1720. */
  1721. cfi_command(bank, 0xf0, command);
  1722. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1723. cfi_command(bank, 0xff, command);
  1724. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1725. }
  1726. /* apply fixups depending on the primary command set */
  1727. switch(cfi_info->pri_id)
  1728. {
  1729. /* Intel command set (standard and extended) */
  1730. case 0x0001:
  1731. case 0x0003:
  1732. cfi_fixup(bank, cfi_0001_fixups);
  1733. break;
  1734. /* AMD/Spansion, Atmel, ... command set */
  1735. case 0x0002:
  1736. cfi_fixup(bank, cfi_0002_fixups);
  1737. break;
  1738. default:
  1739. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1740. break;
  1741. }
  1742. if (cfi_info->num_erase_regions == 0)
  1743. {
  1744. /* a device might have only one erase block, spanning the whole device */
  1745. bank->num_sectors = 1;
  1746. bank->sectors = malloc(sizeof(flash_sector_t));
  1747. bank->sectors[sector].offset = 0x0;
  1748. bank->sectors[sector].size = bank->size;
  1749. bank->sectors[sector].is_erased = -1;
  1750. bank->sectors[sector].is_protected = -1;
  1751. }
  1752. else
  1753. {
  1754. for (i = 0; i < cfi_info->num_erase_regions; i++)
  1755. {
  1756. num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
  1757. }
  1758. bank->num_sectors = num_sectors;
  1759. bank->sectors = malloc(sizeof(flash_sector_t) * num_sectors);
  1760. for (i = 0; i < cfi_info->num_erase_regions; i++)
  1761. {
  1762. int j;
  1763. for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
  1764. {
  1765. bank->sectors[sector].offset = offset;
  1766. bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width;
  1767. offset += bank->sectors[sector].size;
  1768. bank->sectors[sector].is_erased = -1;
  1769. bank->sectors[sector].is_protected = -1;
  1770. sector++;
  1771. }
  1772. }
  1773. }
  1774. cfi_info->probed = 1;
  1775. return ERROR_OK;
  1776. }
  1777. int cfi_auto_probe(struct flash_bank_s *bank)
  1778. {
  1779. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1780. if (cfi_info->probed)
  1781. return ERROR_OK;
  1782. return cfi_probe(bank);
  1783. }
  1784. int cfi_intel_protect_check(struct flash_bank_s *bank)
  1785. {
  1786. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1787. cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1788. target_t *target = bank->target;
  1789. u8 command[CFI_MAX_BUS_WIDTH];
  1790. int i;
  1791. /* check if block lock bits are supported on this device */
  1792. if (!(pri_ext->blk_status_reg_mask & 0x1))
  1793. return ERROR_FLASH_OPERATION_FAILED;
  1794. cfi_command(bank, 0x90, command);
  1795. target->type->write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command);
  1796. for (i = 0; i < bank->num_sectors; i++)
  1797. {
  1798. u8 block_status = cfi_get_u8(bank, i, 0x2);
  1799. if (block_status & 1)
  1800. bank->sectors[i].is_protected = 1;
  1801. else
  1802. bank->sectors[i].is_protected = 0;
  1803. }
  1804. cfi_command(bank, 0xff, command);
  1805. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1806. return ERROR_OK;
  1807. }
  1808. int cfi_spansion_protect_check(struct flash_bank_s *bank)
  1809. {
  1810. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1811. cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
  1812. target_t *target = bank->target;
  1813. u8 command[8];
  1814. int i;
  1815. cfi_command(bank, 0xaa, command);
  1816. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  1817. cfi_command(bank, 0x55, command);
  1818. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command);
  1819. cfi_command(bank, 0x90, command);
  1820. target->type->write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command);
  1821. for (i = 0; i < bank->num_sectors; i++)
  1822. {
  1823. u8 block_status = cfi_get_u8(bank, i, 0x2);
  1824. if (block_status & 1)
  1825. bank->sectors[i].is_protected = 1;
  1826. else
  1827. bank->sectors[i].is_protected = 0;
  1828. }
  1829. cfi_command(bank, 0xf0, command);
  1830. target->type->write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
  1831. return ERROR_OK;
  1832. }
  1833. int cfi_protect_check(struct flash_bank_s *bank)
  1834. {
  1835. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1836. if (bank->target->state != TARGET_HALTED)
  1837. {
  1838. return ERROR_TARGET_NOT_HALTED;
  1839. }
  1840. if (cfi_info->qry[0] != 'Q')
  1841. return ERROR_FLASH_BANK_NOT_PROBED;
  1842. switch(cfi_info->pri_id)
  1843. {
  1844. case 1:
  1845. case 3:
  1846. return cfi_intel_protect_check(bank);
  1847. break;
  1848. case 2:
  1849. return cfi_spansion_protect_check(bank);
  1850. break;
  1851. default:
  1852. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1853. break;
  1854. }
  1855. return ERROR_OK;
  1856. }
  1857. int cfi_info(struct flash_bank_s *bank, char *buf, int buf_size)
  1858. {
  1859. int printed;
  1860. cfi_flash_bank_t *cfi_info = bank->driver_priv;
  1861. if (cfi_info->qry[0] == (char)-1)
  1862. {
  1863. printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
  1864. return ERROR_OK;
  1865. }
  1866. if (cfi_info->not_cfi == 0)
  1867. printed = snprintf(buf, buf_size, "\ncfi information:\n");
  1868. else
  1869. printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n");
  1870. buf += printed;
  1871. buf_size -= printed;
  1872. printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n",
  1873. cfi_info->manufacturer, cfi_info->device_id);
  1874. buf += printed;
  1875. buf_size -= printed;
  1876. if (cfi_info->not_cfi == 0)
  1877. {
  1878. printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
  1879. buf += printed;
  1880. buf_size -= printed;
  1881. printed = snprintf(buf, buf_size, "Vcc min: %1.1x.%1.1x, Vcc max: %1.1x.%1.1x, Vpp min: %1.1x.%1.1x, Vpp max: %1.1x.%1.1x\n",
  1882. (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
  1883. (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
  1884. (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
  1885. (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
  1886. buf += printed;
  1887. buf_size -= printed;
  1888. printed = snprintf(buf, buf_size, "typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n",
  1889. 1 << cfi_info->word_write_timeout_typ,
  1890. 1 << cfi_info->buf_write_timeout_typ,
  1891. 1 << cfi_info->block_erase_timeout_typ,
  1892. 1 << cfi_info->chip_erase_timeout_typ);
  1893. buf += printed;
  1894. buf_size -= printed;
  1895. printed = snprintf(buf, buf_size, "max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n",
  1896. (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
  1897. (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
  1898. (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
  1899. (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
  1900. buf += printed;
  1901. buf_size -= printed;
  1902. printed = snprintf(buf, buf_size, "size: 0x%x, interface desc: %i, max buffer write size: %x\n",
  1903. 1 << cfi_info->dev_size,
  1904. cfi_info->interface_desc,
  1905. cfi_info->max_buf_write_size);
  1906. buf += printed;
  1907. buf_size -= printed;
  1908. switch(cfi_info->pri_id)
  1909. {
  1910. case 1:
  1911. case 3:
  1912. cfi_intel_info(bank, buf, buf_size);
  1913. break;
  1914. case 2:
  1915. cfi_spansion_info(bank, buf, buf_size);
  1916. break;
  1917. default:
  1918. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1919. break;
  1920. }
  1921. }
  1922. return ERROR_OK;
  1923. }