You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3969 lines
141 KiB

  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename openocd.info
  4. @settitle Open On-Chip Debugger (OpenOCD)
  5. @dircategory Development
  6. @direntry
  7. @paragraphindent 0
  8. * OpenOCD: (openocd). Open On-Chip Debugger.
  9. @end direntry
  10. @c %**end of header
  11. @include version.texi
  12. @copying
  13. @itemize @bullet
  14. @item Copyright @copyright{} 2008 The OpenOCD Project
  15. @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
  16. @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
  17. @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
  18. @end itemize
  19. @quotation
  20. Permission is granted to copy, distribute and/or modify this document
  21. under the terms of the GNU Free Documentation License, Version 1.2 or
  22. any later version published by the Free Software Foundation; with no
  23. Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
  24. Texts. A copy of the license is included in the section entitled ``GNU
  25. Free Documentation License''.
  26. @end quotation
  27. @end copying
  28. @titlepage
  29. @title Open On-Chip Debugger (OpenOCD)
  30. @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
  31. @subtitle @value{UPDATED}
  32. @page
  33. @vskip 0pt plus 1filll
  34. @insertcopying
  35. @end titlepage
  36. @summarycontents
  37. @contents
  38. @node Top, About, , (dir)
  39. @top OpenOCD
  40. This manual documents edition @value{EDITION} of the Open On-Chip Debugger
  41. (OpenOCD) version @value{VERSION}, @value{UPDATED}.
  42. @insertcopying
  43. @menu
  44. * About:: About OpenOCD
  45. * Developers:: OpenOCD Developers
  46. * Building:: Building OpenOCD
  47. * JTAG Hardware Dongles:: JTAG Hardware Dongles
  48. * Running:: Running OpenOCD
  49. * Simple Configuration Files:: Simple Configuration Files
  50. * Config File Guidelines:: Config File Guidelines
  51. * About JIM-Tcl:: About JIM-Tcl
  52. * Daemon Configuration:: Daemon Configuration
  53. * Interface - Dongle Configuration:: Interface - Dongle Configuration
  54. * Reset Configuration:: Reset Configuration
  55. * Tap Creation:: Tap Creation
  56. * Target Configuration:: Target Configuration
  57. * Flash Configuration:: Flash Configuration
  58. * General Commands:: General Commands
  59. * JTAG Commands:: JTAG Commands
  60. * Sample Scripts:: Sample Target Scripts
  61. * TFTP:: TFTP
  62. * GDB and OpenOCD:: Using GDB and OpenOCD
  63. * Tcl Scripting API:: Tcl Scripting API
  64. * Upgrading:: Deprecated/Removed Commands
  65. * Target Library:: Target Library
  66. * FAQ:: Frequently Asked Questions
  67. * Tcl Crash Course:: Tcl Crash Course
  68. * License:: GNU Free Documentation License
  69. @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
  70. @comment case issue with ``Index.html'' and ``index.html''
  71. @comment Occurs when creating ``--html --no-split'' output
  72. @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
  73. * OpenOCD Index:: Main Index
  74. @end menu
  75. @node About
  76. @unnumbered About
  77. @cindex about
  78. The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
  79. in-system programming and boundary-scan testing for embedded target
  80. devices.
  81. @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
  82. with the JTAG (IEEE 1149.1) compliant taps on your target board.
  83. @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB
  84. based, parallel port based, and other standalone boxes that run
  85. OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
  86. @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
  87. ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
  88. Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
  89. debugged via the GDB protocol.
  90. @b{Flash Programing:} Flash writing is supported for external CFI
  91. compatible flashes (Intel and AMD/Spansion command set) and several
  92. internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3, and
  93. STM32x). Preliminary support for using the LPC3180's NAND flash
  94. controller is included.
  95. @node Developers
  96. @chapter Developers
  97. @cindex developers
  98. OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
  99. University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
  100. Others interested in improving the state of free and open debug and testing technology
  101. are welcome to participate.
  102. Other developers have contributed support for additional targets and flashes as well
  103. as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
  104. The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}.
  105. @section Coding Style
  106. @cindex Coding Style
  107. The following rules try to describe formatting and naming conventions that should be
  108. followed to make the whole OpenOCD code look more consistent. The ultimate goal of
  109. coding style should be readability, and these rules may be ignored for a particular
  110. (small) piece of code if that makes it more readable.
  111. @subsection Formatting rules:
  112. @itemize @bullet
  113. @item remove any trailing white space
  114. @item use TAB characters for indentation, not spaces
  115. @item displayed TAB width is 4 characters
  116. @item make sure NOT to use DOS '\r\n' line feeds
  117. @item do not add more than 2 empty lines to source files
  118. @item do not add trailing empty lines to source files
  119. @item do not use C++ style comments (//)
  120. @item lines may be reasonably wide - there's no anachronistic 80 characters limit
  121. @end itemize
  122. @subsection Naming rules:
  123. @itemize @bullet
  124. @item identifiers use lower-case letters only
  125. @item identifiers consisting of multiple words use underline characters between consecutive words
  126. @item macros use upper-case letters only
  127. @item structure names shall be appended with '_s'
  128. @item typedefs shall be appended with '_t'
  129. @end itemize
  130. @subsection Function calls:
  131. @itemize @bullet
  132. @item function calls have no space between the functions name and the parameter
  133. list: my_func(param1, param2, ...)
  134. @end itemize
  135. @node Building
  136. @chapter Building
  137. @cindex building OpenOCD
  138. @section Pre-Built Tools
  139. If you are interested in getting actual work done rather than building
  140. OpenOCD, then check if your interface supplier provides binaries for
  141. you. Chances are that that binary is from some SVN version that is more
  142. stable than SVN trunk where bleeding edge development takes place.
  143. @section Packagers Please Read!
  144. You are a @b{PACKAGER} of OpenOCD if you
  145. @enumerate
  146. @item @b{Sell dongles} and include pre-built binaries
  147. @item @b{Supply tools} i.e.: A complete development solution
  148. @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
  149. @item @b{Build packages} i.e.: RPM files, or DEB files for a Linux Distro
  150. @end enumerate
  151. As a @b{PACKAGER} - you are at the top of the food chain. You solve
  152. problems for downstream users. What you fix or solve - solves hundreds
  153. if not thousands of user questions. If something does not work for you
  154. please let us know. That said, would also like you to follow a few
  155. suggestions:
  156. @enumerate
  157. @item @b{Always build with printer ports enabled.}
  158. @item @b{Try to use LIBFTDI + LIBUSB where possible. You cover more bases.}
  159. @end enumerate
  160. @itemize @bullet
  161. @item @b{Why YES to LIBFTDI + LIBUSB?}
  162. @itemize @bullet
  163. @item @b{LESS} work - libusb perhaps already there
  164. @item @b{LESS} work - identical code, multiple platforms
  165. @item @b{MORE} dongles are supported
  166. @item @b{MORE} platforms are supported
  167. @item @b{MORE} complete solution
  168. @end itemize
  169. @item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)?
  170. @itemize @bullet
  171. @item @b{LESS} speed - some say it is slower
  172. @item @b{LESS} complex to distribute (external dependencies)
  173. @end itemize
  174. @end itemize
  175. @section Building From Source
  176. You can download the current SVN version with an SVN client of your choice from the
  177. following repositories:
  178. @uref{svn://svn.berlios.de/openocd/trunk}
  179. or
  180. @uref{http://svn.berlios.de/svnroot/repos/openocd/trunk}
  181. Using the SVN command line client, you can use the following command to fetch the
  182. latest version (make sure there is no (non-svn) directory called "openocd" in the
  183. current directory):
  184. @example
  185. svn checkout svn://svn.berlios.de/openocd/trunk openocd
  186. @end example
  187. Building OpenOCD requires a recent version of the GNU autotools (autoconf >= 2.59 and automake >= 1.9).
  188. For building on Windows,
  189. you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
  190. other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
  191. paths, resulting in obscure dependency errors (This is an observation I've gathered
  192. from the logs of one user - correct me if I'm wrong).
  193. You further need the appropriate driver files, if you want to build support for
  194. a FTDI FT2232 based interface:
  195. @itemize @bullet
  196. @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
  197. @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
  198. @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
  199. homepage (@uref{http://www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
  200. @end itemize
  201. libftdi is supported under Windows. Do not use versions earlier than 0.14.
  202. In general, the D2XX driver provides superior performance (several times as fast),
  203. but has the draw-back of being binary-only - though that isn't that bad, as it isn't
  204. a kernel module, only a user space library.
  205. To build OpenOCD (on both Linux and Cygwin), use the following commands:
  206. @example
  207. ./bootstrap
  208. @end example
  209. Bootstrap generates the configure script, and prepares building on your system.
  210. @example
  211. ./configure [options, see below]
  212. @end example
  213. Configure generates the Makefiles used to build OpenOCD.
  214. @example
  215. make
  216. make install
  217. @end example
  218. Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
  219. The configure script takes several options, specifying which JTAG interfaces
  220. should be included (among other things):
  221. @itemize @bullet
  222. @item
  223. @option{--enable-parport} - Enable building the PC parallel port driver.
  224. @item
  225. @option{--enable-parport_ppdev} - Enable use of ppdev (/dev/parportN) for parport.
  226. @item
  227. @option{--enable-parport_giveio} - Enable use of giveio for parport instead of ioperm.
  228. @item
  229. @option{--enable-amtjtagaccel} - Enable building the Amontec JTAG-Accelerator driver.
  230. @item
  231. @option{--enable-ecosboard} - Enable building support for eCosBoard based JTAG debugger.
  232. @item
  233. @option{--enable-ioutil} - Enable ioutil functions - useful for standalone OpenOCD implementations.
  234. @item
  235. @option{--enable-httpd} - Enable builtin httpd server - useful for standalone OpenOCD implementations.
  236. @item
  237. @option{--enable-ep93xx} - Enable building support for EP93xx based SBCs.
  238. @item
  239. @option{--enable-at91rm9200} - Enable building support for AT91RM9200 based SBCs.
  240. @item
  241. @option{--enable-gw16012} - Enable building support for the Gateworks GW16012 JTAG programmer.
  242. @item
  243. @option{--enable-ft2232_ftd2xx} - Numerous USB type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
  244. @item
  245. @option{--enable-ft2232_libftdi} - An open source (free) alternative to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin).
  246. @item
  247. @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
  248. @item
  249. @option{--with-ftd2xx-linux-tardir=PATH} - Linux only. Equivalent of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
  250. @item
  251. @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static. Specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note: 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. The 'shared' value is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
  252. @item
  253. @option{--enable-presto_libftdi} - Enable building support for ASIX Presto programmer using the libftdi driver.
  254. @item
  255. @option{--enable-presto_ftd2xx} - Enable building support for ASIX Presto programmer using the FTD2XX driver.
  256. @item
  257. @option{--enable-usbprog} - Enable building support for the USBprog JTAG programmer.
  258. @item
  259. @option{--enable-oocd_trace} - Enable building support for the OpenOCD+trace ETM capture device.
  260. @item
  261. @option{--enable-jlink} - Enable building support for the Segger J-Link JTAG programmer.
  262. @item
  263. @option{--enable-vsllink} - Enable building support for the Versaloon-Link JTAG programmer.
  264. @item
  265. @option{--enable-rlink} - Enable building support for the Raisonance RLink JTAG programmer.
  266. @item
  267. @option{--enable-arm-jtag-ew} - Enable building support for the Olimex ARM-JTAG-EW programmer.
  268. @item
  269. @option{--enable-dummy} - Enable building the dummy port driver.
  270. @end itemize
  271. @section Parallel Port Dongles
  272. If you want to access the parallel port using the PPDEV interface you have to specify
  273. both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
  274. the @option{--enable-parport_ppdev} option actually is an option to the parport driver
  275. (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
  276. The same is true for the @option{--enable-parport_giveio} option, you have to
  277. use both the @option{--enable-parport} AND the @option{--enable-parport_giveio} option if you want to use giveio instead of ioperm parallel port access method.
  278. @section FT2232C Based USB Dongles
  279. There are 2 methods of using the FTD2232, either (1) using the
  280. FTDICHIP.COM closed source driver, or (2) the open (and free) driver
  281. libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
  282. The FTDICHIP drivers come as either a (win32) ZIP file, or a (Linux)
  283. TAR.GZ file. You must unpack them ``some where'' convient. As of this
  284. writing (12/26/2008) FTDICHIP does not supply means to install these
  285. files ``in an appropriate place'' As a result, there are two
  286. ``./configure'' options that help.
  287. Below is an example build process:
  288. 1) Check out the latest version of ``openocd'' from SVN.
  289. 2) Download & unpack either the Windows or Linux FTD2xx drivers
  290. (@uref{http://www.ftdichip.com/Drivers/D2XX.htm}).
  291. @example
  292. /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
  293. /home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents.
  294. @end example
  295. 3) Configure with these options:
  296. @example
  297. Cygwin FTDICHIP solution:
  298. ./configure --prefix=/home/duane/mytools \
  299. --enable-ft2232_ftd2xx \
  300. --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
  301. Linux FTDICHIP solution:
  302. ./configure --prefix=/home/duane/mytools \
  303. --enable-ft2232_ftd2xx \
  304. --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
  305. Cygwin/Linux LIBFTDI solution:
  306. Assumes:
  307. 1a) For Windows: The Windows port of LIBUSB is in place.
  308. 1b) For Linux: libusb has been built/installed and is in place.
  309. 2) And libftdi has been built and installed
  310. Note: libftdi - relies upon libusb.
  311. ./configure --prefix=/home/duane/mytools \
  312. --enable-ft2232_libftdi
  313. @end example
  314. 4) Then just type ``make'', and perhaps ``make install''.
  315. @section Miscellaneous Configure Options
  316. @itemize @bullet
  317. @item
  318. @option{--disable-option-checking} - Ignore unrecognized @option{--enable} and @option{--with} options.
  319. @item
  320. @option{--enable-gccwarnings} - Enable extra gcc warnings during build.
  321. Default is enabled.
  322. @item
  323. @option{--enable-release} - Enable building of an OpenOCD release, generally
  324. this is for developers. It simply omits the svn version string when the
  325. openocd @option{-v} is executed.
  326. @end itemize
  327. @node JTAG Hardware Dongles
  328. @chapter JTAG Hardware Dongles
  329. @cindex dongles
  330. @cindex FTDI
  331. @cindex wiggler
  332. @cindex zy1000
  333. @cindex printer port
  334. @cindex USB Adapter
  335. @cindex rtck
  336. Defined: @b{dongle}: A small device that plugins into a computer and serves as
  337. an adapter .... [snip]
  338. In the OpenOCD case, this generally refers to @b{a small adapater} one
  339. attaches to your computer via USB or the Parallel Printer Port. The
  340. execption being the Zylin ZY1000 which is a small box you attach via
  341. an ethernet cable. The Zylin ZY1000 has the advantage that it does not
  342. require any drivers to be installed on the developer PC. It also has
  343. a built in web interface. It supports RTCK/RCLK or adaptive clocking
  344. and has a built in relay to power cycle targets remotely.
  345. @section Choosing a Dongle
  346. There are three things you should keep in mind when choosing a dongle.
  347. @enumerate
  348. @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
  349. @item @b{Connection} Printer Ports - Does your computer have one?
  350. @item @b{Connection} Is that long printer bit-bang cable practical?
  351. @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
  352. @end enumerate
  353. @section Stand alone Systems
  354. @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
  355. dongle, but a standalone box. The ZY1000 has the advantage that it does
  356. not require any drivers installed on the developer PC. It also has
  357. a built in web interface. It supports RTCK/RCLK or adaptive clocking
  358. and has a built in relay to power cycle targets remotely.
  359. @section USB FT2232 Based
  360. There are many USB JTAG dongles on the market, many of them are based
  361. on a chip from ``Future Technology Devices International'' (FTDI)
  362. known as the FTDI FT2232.
  363. See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
  364. As of 28/Nov/2008, the following are supported:
  365. @itemize @bullet
  366. @item @b{usbjtag}
  367. @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
  368. @item @b{jtagkey}
  369. @* See: @url{http://www.amontec.com/jtagkey.shtml}
  370. @item @b{oocdlink}
  371. @* See: @url{http://www.oocdlink.com} By Joern Kaipf
  372. @item @b{signalyzer}
  373. @* See: @url{http://www.signalyzer.com}
  374. @item @b{evb_lm3s811}
  375. @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
  376. @item @b{olimex-jtag}
  377. @* See: @url{http://www.olimex.com}
  378. @item @b{flyswatter}
  379. @* See: @url{http://www.tincantools.com}
  380. @item @b{turtelizer2}
  381. @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
  382. @item @b{comstick}
  383. @* Link: @url{http://www.hitex.com/index.php?id=383}
  384. @item @b{stm32stick}
  385. @* Link @url{http://www.hitex.com/stm32-stick}
  386. @item @b{axm0432_jtag}
  387. @* Axiom AXM-0432 Link @url{http://www.axman.com}
  388. @end itemize
  389. @section USB JLINK based
  390. There are several OEM versions of the Segger @b{JLINK} adapter. It is
  391. an example of a micro controller based JTAG adapter, it uses an
  392. AT91SAM764 internally.
  393. @itemize @bullet
  394. @item @b{ATMEL SAMICE} Only works with ATMEL chips!
  395. @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
  396. @item @b{SEGGER JLINK}
  397. @* Link: @url{http://www.segger.com/jlink.html}
  398. @item @b{IAR J-Link}
  399. @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
  400. @end itemize
  401. @section USB RLINK based
  402. Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
  403. @itemize @bullet
  404. @item @b{Raisonance RLink}
  405. @* Link: @url{http://www.raisonance.com/products/RLink.php}
  406. @item @b{STM32 Primer}
  407. @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
  408. @item @b{STM32 Primer2}
  409. @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
  410. @end itemize
  411. @section USB Other
  412. @itemize @bullet
  413. @item @b{USBprog}
  414. @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
  415. @item @b{USB - Presto}
  416. @* Link: @url{http://tools.asix.net/prg_presto.htm}
  417. @item @b{Versaloon-Link}
  418. @* Link: @url{http://www.simonqian.com/en/Versaloon}
  419. @item @b{ARM-JTAG-EW}
  420. @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html}
  421. @end itemize
  422. @section IBM PC Parallel Printer Port Based
  423. The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
  424. and the MacGraigor Wiggler. There are many clones and variations of
  425. these on the market.
  426. @itemize @bullet
  427. @item @b{Wiggler} - There are many clones of this.
  428. @* Link: @url{http://www.macraigor.com/wiggler.htm}
  429. @item @b{DLC5} - From XILINX - There are many clones of this
  430. @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
  431. produced, PDF schematics are easily found and it is easy to make.
  432. @item @b{Amontec - JTAG Accelerator}
  433. @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
  434. @item @b{GW16402}
  435. @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
  436. @item @b{Wiggler2}
  437. @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
  438. @item @b{Wiggler_ntrst_inverted}
  439. @* Yet another variation - See the source code, src/jtag/parport.c
  440. @item @b{old_amt_wiggler}
  441. @* Unknown - probably not on the market today
  442. @item @b{arm-jtag}
  443. @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
  444. @item @b{chameleon}
  445. @* Link: @url{http://www.amontec.com/chameleon.shtml}
  446. @item @b{Triton}
  447. @* Unknown.
  448. @item @b{Lattice}
  449. @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
  450. @item @b{flashlink}
  451. @* From ST Microsystems, link:
  452. @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
  453. Title: FlashLINK JTAG programing cable for PSD and uPSD
  454. @end itemize
  455. @section Other...
  456. @itemize @bullet
  457. @item @b{ep93xx}
  458. @* An EP93xx based Linux machine using the GPIO pins directly.
  459. @item @b{at91rm9200}
  460. @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
  461. @end itemize
  462. @node Running
  463. @chapter Running
  464. @cindex running OpenOCD
  465. @cindex --configfile
  466. @cindex --debug_level
  467. @cindex --logfile
  468. @cindex --search
  469. The @option{--help} option shows:
  470. @verbatim
  471. bash$ openocd --help
  472. --help | -h display this help
  473. --version | -v display OpenOCD version
  474. --file | -f use configuration file <name>
  475. --search | -s dir to search for config files and scripts
  476. --debug | -d set debug level <0-3>
  477. --log_output | -l redirect log output to file <name>
  478. --command | -c run <command>
  479. --pipe | -p use pipes when talking to gdb
  480. @end verbatim
  481. By default OpenOCD reads the file configuration file ``openocd.cfg''
  482. in the current directory. To specify a different (or multiple)
  483. configuration file, you can use the ``-f'' option. For example:
  484. @example
  485. openocd -f config1.cfg -f config2.cfg -f config3.cfg
  486. @end example
  487. Once started, OpenOCD runs as a daemon, waiting for connections from
  488. clients (Telnet, GDB, Other).
  489. If you are having problems, you can enable internal debug messages via
  490. the ``-d'' option.
  491. Also it is possible to interleave commands w/config scripts using the
  492. @option{-c} command line switch.
  493. To enable debug output (when reporting problems or working on OpenOCD
  494. itself), use the @option{-d} command line switch. This sets the
  495. @option{debug_level} to "3", outputting the most information,
  496. including debug messages. The default setting is "2", outputting only
  497. informational messages, warnings and errors. You can also change this
  498. setting from within a telnet or gdb session using @option{debug_level
  499. <n>} @xref{debug_level}.
  500. You can redirect all output from the daemon to a file using the
  501. @option{-l <logfile>} switch.
  502. Search paths for config/script files can be added to OpenOCD by using
  503. the @option{-s <search>} switch. The current directory and the OpenOCD
  504. target library is in the search path by default.
  505. For details on the @option{-p} option. @xref{Connecting to GDB}.
  506. Note! OpenOCD will launch the GDB & telnet server even if it can not
  507. establish a connection with the target. In general, it is possible for
  508. the JTAG controller to be unresponsive until the target is set up
  509. correctly via e.g. GDB monitor commands in a GDB init script.
  510. @node Simple Configuration Files
  511. @chapter Simple Configuration Files
  512. @cindex configuration
  513. @section Outline
  514. There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
  515. @enumerate
  516. @item A small openocd.cfg file which ``sources'' other configuration files
  517. @item A monolithic openocd.cfg file
  518. @item Many -f filename options on the command line
  519. @item Your Mixed Solution
  520. @end enumerate
  521. @section Small configuration file method
  522. This is the preferred method. It is simple and works well for many
  523. people. The developers of OpenOCD would encourage you to use this
  524. method. If you create a new configuration please email new
  525. configurations to the development list.
  526. Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
  527. @example
  528. source [find interface/signalyzer.cfg]
  529. # Change the default telnet port...
  530. telnet_port 4444
  531. # GDB connects here
  532. gdb_port 3333
  533. # GDB can also flash my flash!
  534. gdb_memory_map enable
  535. gdb_flash_program enable
  536. source [find target/sam7x256.cfg]
  537. @end example
  538. There are many example configuration scripts you can work with. You
  539. should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
  540. should find:
  541. @enumerate
  542. @item @b{board} - eval board level configurations
  543. @item @b{interface} - specific dongle configurations
  544. @item @b{target} - the target chips
  545. @item @b{tcl} - helper scripts
  546. @item @b{xscale} - things specific to the xscale.
  547. @end enumerate
  548. Look first in the ``boards'' area, then the ``targets'' area. Often a board
  549. configuration is a good example to work from.
  550. @section Many -f filename options
  551. Some believe this is a wonderful solution, others find it painful.
  552. You can use a series of ``-f filename'' options on the command line,
  553. OpenOCD will read each filename in sequence, for example:
  554. @example
  555. openocd -f file1.cfg -f file2.cfg -f file2.cfg
  556. @end example
  557. You can also intermix various commands with the ``-c'' command line
  558. option.
  559. @section Monolithic file
  560. The ``Monolithic File'' dispenses with all ``source'' statements and
  561. puts everything in one self contained (monolithic) file. This is not
  562. encouraged.
  563. Please try to ``source'' various files or use the multiple -f
  564. technique.
  565. @section Advice for you
  566. Often, one uses a ``mixed approach''. Where possible, please try to
  567. ``source'' common things, and if needed cut/paste parts of the
  568. standard distribution configuration files as needed.
  569. @b{REMEMBER:} The ``important parts'' of your configuration file are:
  570. @enumerate
  571. @item @b{Interface} - Defines the dongle
  572. @item @b{Taps} - Defines the JTAG Taps
  573. @item @b{GDB Targets} - What GDB talks to
  574. @item @b{Flash Programing} - Very Helpful
  575. @end enumerate
  576. Some key things you should look at and understand are:
  577. @enumerate
  578. @item The reset configuration of your debug environment as a whole
  579. @item Is there a ``work area'' that OpenOCD can use?
  580. @* For ARM - work areas mean up to 10x faster downloads.
  581. @item For MMU/MPU based ARM chips (i.e.: ARM9 and later) will that work area still be available?
  582. @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
  583. @end enumerate
  584. @node Config File Guidelines
  585. @chapter Config File Guidelines
  586. This section/chapter is aimed at developers and integrators of
  587. OpenOCD. These are guidelines for creating new boards and new target
  588. configurations as of 28/Nov/2008.
  589. However, you, the user of OpenOCD, should be somewhat familiar with
  590. this section as it should help explain some of the internals of what
  591. you might be looking at.
  592. The user should find the following directories under @t{$(INSTALLDIR)/lib/openocd} :
  593. @itemize @bullet
  594. @item @b{interface}
  595. @*Think JTAG Dongle. Files that configure the JTAG dongle go here.
  596. @item @b{board}
  597. @* Think Circuit Board, PWA, PCB, they go by many names. Board files
  598. contain initialization items that are specific to a board - for
  599. example: The SDRAM initialization sequence for the board, or the type
  600. of external flash and what address it is found at. Any initialization
  601. sequence to enable that external flash or SDRAM should be found in the
  602. board file. Boards may also contain multiple targets, i.e.: Two CPUs, or
  603. a CPU and an FPGA or CPLD.
  604. @item @b{target}
  605. @* Think chip. The ``target'' directory represents a JTAG tap (or
  606. chip) OpenOCD should control, not a board. Two common types of targets
  607. are ARM chips and FPGA or CPLD chips.
  608. @end itemize
  609. @b{If needed...} The user in their ``openocd.cfg'' file or the board
  610. file might override a specific feature in any of the above files by
  611. setting a variable or two before sourcing the target file. Or adding
  612. various commands specific to their situation.
  613. @section Interface Config Files
  614. The user should be able to source one of these files via a command like this:
  615. @example
  616. source [find interface/FOOBAR.cfg]
  617. Or:
  618. openocd -f interface/FOOBAR.cfg
  619. @end example
  620. A preconfigured interface file should exist for every interface in use
  621. today, that said, perhaps some interfaces have only been used by the
  622. sole developer who created it.
  623. @b{FIXME/NOTE:} We need to add support for a variable like Tcl variable
  624. tcl_platform(platform), it should be called jim_platform (because it
  625. is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
  626. ``cygwin'' or ``mingw''
  627. Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
  628. @section Board Config Files
  629. @b{Note: BOARD directory NEW as of 28/nov/2008}
  630. The user should be able to source one of these files via a command like this:
  631. @example
  632. source [find board/FOOBAR.cfg]
  633. Or:
  634. openocd -f board/FOOBAR.cfg
  635. @end example
  636. The board file should contain one or more @t{source [find
  637. target/FOO.cfg]} statements along with any board specific things.
  638. In summary the board files should contain (if present)
  639. @enumerate
  640. @item External flash configuration (i.e.: the flash on CS0)
  641. @item SDRAM configuration (size, speed, etc.
  642. @item Board specific IO configuration (i.e.: GPIO pins might disable a 2nd flash)
  643. @item Multiple TARGET source statements
  644. @item All things that are not ``inside a chip''
  645. @item Things inside a chip go in a 'target' file
  646. @end enumerate
  647. @section Target Config Files
  648. The user should be able to source one of these files via a command like this:
  649. @example
  650. source [find target/FOOBAR.cfg]
  651. Or:
  652. openocd -f target/FOOBAR.cfg
  653. @end example
  654. In summary the target files should contain
  655. @enumerate
  656. @item Set defaults
  657. @item Create taps
  658. @item Reset configuration
  659. @item Work areas
  660. @item CPU/Chip/CPU-Core specific features
  661. @item On-Chip flash
  662. @end enumerate
  663. @subsection Important variable names
  664. By default, the end user should never need to set these
  665. variables. However, if the user needs to override a setting they only
  666. need to set the variable in a simple way.
  667. @itemize @bullet
  668. @item @b{CHIPNAME}
  669. @* This gives a name to the overall chip, and is used as part of the
  670. tap identifier dotted name.
  671. @item @b{ENDIAN}
  672. @* By default little - unless the chip or board is not normally used that way.
  673. @item @b{CPUTAPID}
  674. @* When OpenOCD examines the JTAG chain, it will attempt to identify
  675. every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
  676. to verify the tap id number verses configuration file and may issue an
  677. error or warning like this. The hope is that this will help to pinpoint
  678. problems in OpenOCD configurations.
  679. @example
  680. Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
  681. Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
  682. Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
  683. Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
  684. @end example
  685. @item @b{_TARGETNAME}
  686. @* By convention, this variable is created by the target configuration
  687. script. The board configuration file may make use of this variable to
  688. configure things like a ``reset init'' script, or other things
  689. specific to that board and that target.
  690. If the chip has 2 targets, use the names @b{_TARGETNAME0},
  691. @b{_TARGETNAME1}, ... etc.
  692. @b{Remember:} The ``board file'' may include multiple targets.
  693. At no time should the name ``target0'' (the default target name if
  694. none was specified) be used. The name ``target0'' is a hard coded name
  695. - the next target on the board will be some other number.
  696. In the same way, avoid using target numbers even when they are
  697. permitted; use the right target name(s) for your board.
  698. The user (or board file) should reasonably be able to:
  699. @example
  700. source [find target/FOO.cfg]
  701. $_TARGETNAME configure ... FOO specific parameters
  702. source [find target/BAR.cfg]
  703. $_TARGETNAME configure ... BAR specific parameters
  704. @end example
  705. @end itemize
  706. @subsection Tcl Variables Guide Line
  707. The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
  708. Thus the rule we follow in OpenOCD is this: Variables that begin with
  709. a leading underscore are temporary in nature, and can be modified and
  710. used at will within a ?TARGET? configuration file.
  711. @b{EXAMPLE:} The user should be able to do this:
  712. @example
  713. # Board has 3 chips,
  714. # PXA270 #1 network side, big endian
  715. # PXA270 #2 video side, little endian
  716. # Xilinx Glue logic
  717. set CHIPNAME network
  718. set ENDIAN big
  719. source [find target/pxa270.cfg]
  720. # variable: _TARGETNAME = network.cpu
  721. # other commands can refer to the "network.cpu" tap.
  722. $_TARGETNAME configure .... params for this CPU..
  723. set ENDIAN little
  724. set CHIPNAME video
  725. source [find target/pxa270.cfg]
  726. # variable: _TARGETNAME = video.cpu
  727. # other commands can refer to the "video.cpu" tap.
  728. $_TARGETNAME configure .... params for this CPU..
  729. unset ENDIAN
  730. set CHIPNAME xilinx
  731. source [find target/spartan3.cfg]
  732. # Since $_TARGETNAME is temporal..
  733. # these names still work!
  734. network.cpu configure ... params
  735. video.cpu configure ... params
  736. @end example
  737. @subsection Default Value Boiler Plate Code
  738. All target configuration files should start with this (or a modified form)
  739. @example
  740. # SIMPLE example
  741. if @{ [info exists CHIPNAME] @} @{
  742. set _CHIPNAME $CHIPNAME
  743. @} else @{
  744. set _CHIPNAME sam7x256
  745. @}
  746. if @{ [info exists ENDIAN] @} @{
  747. set _ENDIAN $ENDIAN
  748. @} else @{
  749. set _ENDIAN little
  750. @}
  751. if @{ [info exists CPUTAPID ] @} @{
  752. set _CPUTAPID $CPUTAPID
  753. @} else @{
  754. set _CPUTAPID 0x3f0f0f0f
  755. @}
  756. @end example
  757. @subsection Creating Taps
  758. After the ``defaults'' are choosen [see above] the taps are created.
  759. @b{SIMPLE example:} such as an Atmel AT91SAM7X256
  760. @example
  761. # for an ARM7TDMI.
  762. set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
  763. jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
  764. @end example
  765. @b{COMPLEX example:}
  766. This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
  767. @enumerate
  768. @item @b{Unform tap names} - See: Tap Naming Convention
  769. @item @b{_TARGETNAME} is created at the end where used.
  770. @end enumerate
  771. @example
  772. if @{ [info exists FLASHTAPID ] @} @{
  773. set _FLASHTAPID $FLASHTAPID
  774. @} else @{
  775. set _FLASHTAPID 0x25966041
  776. @}
  777. jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
  778. if @{ [info exists CPUTAPID ] @} @{
  779. set _CPUTAPID $CPUTAPID
  780. @} else @{
  781. set _CPUTAPID 0x25966041
  782. @}
  783. jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
  784. if @{ [info exists BSTAPID ] @} @{
  785. set _BSTAPID $BSTAPID
  786. @} else @{
  787. set _BSTAPID 0x1457f041
  788. @}
  789. jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
  790. set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
  791. @end example
  792. @b{Tap Naming Convention}
  793. See the command ``jtag newtap'' for detail, but in brief the names you should use are:
  794. @itemize @bullet
  795. @item @b{tap}
  796. @item @b{cpu}
  797. @item @b{flash}
  798. @item @b{bs}
  799. @item @b{etb}
  800. @item @b{jrc}
  801. @item @b{unknownN} - it happens :-(
  802. @end itemize
  803. @subsection Reset Configuration
  804. Some chips have specific ways the TRST and SRST signals are
  805. managed. If these are @b{CHIP SPECIFIC} they go here, if they are
  806. @b{BOARD SPECIFIC} they go in the board file.
  807. @subsection Work Areas
  808. Work areas are small RAM areas used by OpenOCD to speed up downloads,
  809. and to download small snippets of code to program flash chips.
  810. If the chip includes a form of ``on-chip-ram'' - and many do - define
  811. a reasonable work area and use the ``backup'' option.
  812. @b{PROBLEMS:} On more complex chips, this ``work area'' may become
  813. inaccessible if/when the application code enables or disables the MMU.
  814. @subsection ARM Core Specific Hacks
  815. If the chip has a DCC, enable it. If the chip is an ARM9 with some
  816. special high speed download features - enable it.
  817. If the chip has an ARM ``vector catch'' feature - by default enable
  818. it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
  819. user is really writing a handler for those situations - they can
  820. easily disable it. Experiance has shown the ``vector catch'' is
  821. helpful - for common programing errors.
  822. If present, the MMU, the MPU and the CACHE should be disabled.
  823. Some ARM cores are equipped with trace support, which permits
  824. examination of the instruction and data bus activity. Trace
  825. activity is controlled through an ``Embedded Trace Module'' (ETM)
  826. on one of the core's scan chains. The ETM emits voluminous data
  827. through a ``trace port''. The trace port is accessed in one
  828. of two ways. When its signals are pinned out from the chip,
  829. boards may provide a special high speed debugging connector;
  830. software support for this is not configured by default, use
  831. the ``--enable-oocd_trace'' option. Alternatively, trace data
  832. may be stored an on-chip SRAM which is packaged as an ``Embedded
  833. Trace Buffer'' (ETB). An ETB has its own TAP, usually right after
  834. its associated ARM core. OpenOCD supports the ETM, and your
  835. target configuration should set it up with the relevant trace
  836. port: ``etb'' for chips which use that, else the board-specific
  837. option will be either ``oocd_trace'' or ``dummy''.
  838. @example
  839. etm config $_TARGETNAME 16 normal full etb
  840. etb config $_TARGETNAME $_CHIPNAME.etb
  841. @end example
  842. @subsection Internal Flash Configuration
  843. This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
  844. @b{Never ever} in the ``target configuration file'' define any type of
  845. flash that is external to the chip. (For example the BOOT flash on
  846. Chip Select 0). The BOOT flash information goes in a board file - not
  847. the TARGET (chip) file.
  848. Examples:
  849. @itemize @bullet
  850. @item at91sam7x256 - has 256K flash YES enable it.
  851. @item str912 - has flash internal YES enable it.
  852. @item imx27 - uses boot flash on CS0 - it goes in the board file.
  853. @item pxa270 - again - CS0 flash - it goes in the board file.
  854. @end itemize
  855. @node About JIM-Tcl
  856. @chapter About JIM-Tcl
  857. @cindex JIM Tcl
  858. @cindex tcl
  859. OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
  860. learn more about JIM here: @url{http://jim.berlios.de}
  861. @itemize @bullet
  862. @item @b{JIM vs. Tcl}
  863. @* JIM-TCL is a stripped down version of the well known Tcl language,
  864. which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
  865. fewer features. JIM-Tcl is a single .C file and a single .H file and
  866. impliments the basic Tcl command set along. In contrast: Tcl 8.6 is a
  867. 4.2 MB .zip file containing 1540 files.
  868. @item @b{Missing Features}
  869. @* Our practice has been: Add/clone the real Tcl feature if/when
  870. needed. We welcome JIM Tcl improvements, not bloat.
  871. @item @b{Scripts}
  872. @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
  873. command interpreter today (28/nov/2008) is a mixture of (newer)
  874. JIM-Tcl commands, and (older) the orginal command interpreter.
  875. @item @b{Commands}
  876. @* At the OpenOCD telnet command line (or via the GDB mon command) one
  877. can type a Tcl for() loop, set variables, etc.
  878. @item @b{Historical Note}
  879. @* JIM-Tcl was introduced to OpenOCD in spring 2008.
  880. @item @b{Need a crash course in Tcl?}
  881. @* See: @xref{Tcl Crash Course}.
  882. @end itemize
  883. @node Daemon Configuration
  884. @chapter Daemon Configuration
  885. The commands here are commonly found in the openocd.cfg file and are
  886. used to specify what TCP/IP ports are used, and how GDB should be
  887. supported.
  888. @section init
  889. @cindex init
  890. This command terminates the configuration stage and
  891. enters the normal command mode. This can be useful to add commands to
  892. the startup scripts and commands such as resetting the target,
  893. programming flash, etc. To reset the CPU upon startup, add "init" and
  894. "reset" at the end of the config script or at the end of the OpenOCD
  895. command line using the @option{-c} command line switch.
  896. If this command does not appear in any startup/configuration file
  897. OpenOCD executes the command for you after processing all
  898. configuration files and/or command line options.
  899. @b{NOTE:} This command normally occurs at or near the end of your
  900. openocd.cfg file to force OpenOCD to ``initialize'' and make the
  901. targets ready. For example: If your openocd.cfg file needs to
  902. read/write memory on your target - the init command must occur before
  903. the memory read/write commands.
  904. @section TCP/IP Ports
  905. @itemize @bullet
  906. @item @b{telnet_port} <@var{number}>
  907. @cindex telnet_port
  908. @*Intended for a human. Port on which to listen for incoming telnet connections.
  909. @item @b{tcl_port} <@var{number}>
  910. @cindex tcl_port
  911. @*Intended as a machine interface. Port on which to listen for
  912. incoming Tcl syntax. This port is intended as a simplified RPC
  913. connection that can be used by clients to issue commands and get the
  914. output from the Tcl engine.
  915. @item @b{gdb_port} <@var{number}>
  916. @cindex gdb_port
  917. @*First port on which to listen for incoming GDB connections. The GDB port for the
  918. first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
  919. @end itemize
  920. @section GDB Items
  921. @itemize @bullet
  922. @item @b{gdb_breakpoint_override} <@var{hard|soft|disable}>
  923. @cindex gdb_breakpoint_override
  924. @anchor{gdb_breakpoint_override}
  925. @*Force breakpoint type for gdb 'break' commands.
  926. The raison d'etre for this option is to support GDB GUI's without
  927. a hard/soft breakpoint concept where the default OpenOCD and
  928. GDB behaviour is not sufficient. Note that GDB will use hardware
  929. breakpoints if the memory map has been set up for flash regions.
  930. This option replaces older arm7_9 target commands that addressed
  931. the same issue.
  932. @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
  933. @cindex gdb_detach
  934. @*Configures what OpenOCD will do when GDB detaches from the daemon.
  935. Default behaviour is <@var{resume}>
  936. @item @b{gdb_memory_map} <@var{enable|disable}>
  937. @cindex gdb_memory_map
  938. @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to GDB when
  939. requested. GDB will then know when to set hardware breakpoints, and program flash
  940. using the GDB load command. @option{gdb_flash_program enable} must also be enabled
  941. for flash programming to work.
  942. Default behaviour is <@var{enable}>
  943. @xref{gdb_flash_program}.
  944. @item @b{gdb_flash_program} <@var{enable|disable}>
  945. @cindex gdb_flash_program
  946. @anchor{gdb_flash_program}
  947. @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
  948. vFlash packet is received.
  949. Default behaviour is <@var{enable}>
  950. @comment END GDB Items
  951. @end itemize
  952. @node Interface - Dongle Configuration
  953. @chapter Interface - Dongle Configuration
  954. Interface commands are normally found in an interface configuration
  955. file which is sourced by your openocd.cfg file. These commands tell
  956. OpenOCD what type of JTAG dongle you have and how to talk to it.
  957. @section Simple Complete Interface Examples
  958. @b{A Turtelizer FT2232 Based JTAG Dongle}
  959. @verbatim
  960. #interface
  961. interface ft2232
  962. ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
  963. ft2232_layout turtelizer2
  964. ft2232_vid_pid 0x0403 0xbdc8
  965. @end verbatim
  966. @b{A SEGGER Jlink}
  967. @verbatim
  968. # jlink interface
  969. interface jlink
  970. @end verbatim
  971. @b{A Raisonance RLink}
  972. @verbatim
  973. # rlink interface
  974. interface rlink
  975. @end verbatim
  976. @b{Parallel Port}
  977. @verbatim
  978. interface parport
  979. parport_port 0xc8b8
  980. parport_cable wiggler
  981. jtag_speed 0
  982. @end verbatim
  983. @b{ARM-JTAG-EW}
  984. @verbatim
  985. interface arm-jtag-ew
  986. @end verbatim
  987. @section Interface Command
  988. The interface command tells OpenOCD what type of JTAG dongle you are
  989. using. Depending on the type of dongle, you may need to have one or
  990. more additional commands.
  991. @itemize @bullet
  992. @item @b{interface} <@var{name}>
  993. @cindex interface
  994. @*Use the interface driver <@var{name}> to connect to the
  995. target. Currently supported interfaces are
  996. @itemize @minus
  997. @item @b{parport}
  998. @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
  999. @item @b{amt_jtagaccel}
  1000. @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
  1001. mode parallel port
  1002. @item @b{ft2232}
  1003. @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
  1004. FTD2XX driver. The FTD2XX is superior in performance, but not available on every
  1005. platform. The libftdi uses libusb, and should be portable to all systems that provide
  1006. libusb.
  1007. @item @b{ep93xx}
  1008. @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
  1009. @item @b{presto}
  1010. @* ASIX PRESTO USB JTAG programmer.
  1011. @item @b{usbprog}
  1012. @* usbprog is a freely programmable USB adapter.
  1013. @item @b{gw16012}
  1014. @* Gateworks GW16012 JTAG programmer.
  1015. @item @b{jlink}
  1016. @* Segger jlink USB adapter
  1017. @item @b{rlink}
  1018. @* Raisonance RLink USB adapter
  1019. @item @b{vsllink}
  1020. @* vsllink is part of Versaloon which is a versatile USB programmer.
  1021. @item @b{arm-jtag-ew}
  1022. @* Olimex ARM-JTAG-EW USB adapter
  1023. @comment - End parameters
  1024. @end itemize
  1025. @comment - End Interface
  1026. @end itemize
  1027. @subsection parport options
  1028. @itemize @bullet
  1029. @item @b{parport_port} <@var{number}>
  1030. @cindex parport_port
  1031. @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
  1032. the @file{/dev/parport} device
  1033. When using PPDEV to access the parallel port, use the number of the parallel port:
  1034. @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
  1035. you may encounter a problem.
  1036. @item @b{parport_cable} <@var{name}>
  1037. @cindex parport_cable
  1038. @*The layout of the parallel port cable used to connect to the target.
  1039. Currently supported cables are
  1040. @itemize @minus
  1041. @item @b{wiggler}
  1042. @cindex wiggler
  1043. The original Wiggler layout, also supported by several clones, such
  1044. as the Olimex ARM-JTAG
  1045. @item @b{wiggler2}
  1046. @cindex wiggler2
  1047. Same as original wiggler except an led is fitted on D5.
  1048. @item @b{wiggler_ntrst_inverted}
  1049. @cindex wiggler_ntrst_inverted
  1050. Same as original wiggler except TRST is inverted.
  1051. @item @b{old_amt_wiggler}
  1052. @cindex old_amt_wiggler
  1053. The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
  1054. version available from the website uses the original Wiggler layout ('@var{wiggler}')
  1055. @item @b{chameleon}
  1056. @cindex chameleon
  1057. The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
  1058. program the Chameleon itself, not a connected target.
  1059. @item @b{dlc5}
  1060. @cindex dlc5
  1061. The Xilinx Parallel cable III.
  1062. @item @b{triton}
  1063. @cindex triton
  1064. The parallel port adapter found on the 'Karo Triton 1 Development Board'.
  1065. This is also the layout used by the HollyGates design
  1066. (see @uref{http://www.lartmaker.nl/projects/jtag/}).
  1067. @item @b{flashlink}
  1068. @cindex flashlink
  1069. The ST Parallel cable.
  1070. @item @b{arm-jtag}
  1071. @cindex arm-jtag
  1072. Same as original wiggler except SRST and TRST connections reversed and
  1073. TRST is also inverted.
  1074. @item @b{altium}
  1075. @cindex altium
  1076. Altium Universal JTAG cable.
  1077. @end itemize
  1078. @item @b{parport_write_on_exit} <@var{on}|@var{off}>
  1079. @cindex parport_write_on_exit
  1080. @*This will configure the parallel driver to write a known value to the parallel
  1081. interface on exiting OpenOCD
  1082. @end itemize
  1083. @subsection amt_jtagaccel options
  1084. @itemize @bullet
  1085. @item @b{parport_port} <@var{number}>
  1086. @cindex parport_port
  1087. @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
  1088. @file{/dev/parport} device
  1089. @end itemize
  1090. @subsection ft2232 options
  1091. @itemize @bullet
  1092. @item @b{ft2232_device_desc} <@var{description}>
  1093. @cindex ft2232_device_desc
  1094. @*The USB device description of the FTDI FT2232 device. If not
  1095. specified, the FTDI default value is used. This setting is only valid
  1096. if compiled with FTD2XX support.
  1097. @b{TODO:} Confirm the following: On Windows the name needs to end with
  1098. a ``space A''? Or not? It has to do with the FTD2xx driver. When must
  1099. this be added and when must it not be added? Why can't the code in the
  1100. interface or in OpenOCD automatically add this if needed? -- Duane.
  1101. @item @b{ft2232_serial} <@var{serial-number}>
  1102. @cindex ft2232_serial
  1103. @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
  1104. values are used.
  1105. @item @b{ft2232_layout} <@var{name}>
  1106. @cindex ft2232_layout
  1107. @*The layout of the FT2232 GPIO signals used to control output-enables and reset
  1108. signals. Valid layouts are
  1109. @itemize @minus
  1110. @item @b{usbjtag}
  1111. "USBJTAG-1" layout described in the original OpenOCD diploma thesis
  1112. @item @b{jtagkey}
  1113. Amontec JTAGkey and JTAGkey-Tiny
  1114. @item @b{signalyzer}
  1115. Signalyzer
  1116. @item @b{olimex-jtag}
  1117. Olimex ARM-USB-OCD
  1118. @item @b{m5960}
  1119. American Microsystems M5960
  1120. @item @b{evb_lm3s811}
  1121. Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
  1122. SRST signals on external connector
  1123. @item @b{comstick}
  1124. Hitex STR9 comstick
  1125. @item @b{stm32stick}
  1126. Hitex STM32 Performance Stick
  1127. @item @b{flyswatter}
  1128. Tin Can Tools Flyswatter
  1129. @item @b{turtelizer2}
  1130. egnite Software turtelizer2
  1131. @item @b{oocdlink}
  1132. OOCDLink
  1133. @item @b{axm0432_jtag}
  1134. Axiom AXM-0432
  1135. @end itemize
  1136. @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
  1137. @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
  1138. default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, e.g.
  1139. @example
  1140. ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
  1141. @end example
  1142. @item @b{ft2232_latency} <@var{ms}>
  1143. @*On some systems using FT2232 based JTAG interfaces the FT_Read function call in
  1144. ft2232_read() fails to return the expected number of bytes. This can be caused by
  1145. USB communication delays and has proved hard to reproduce and debug. Setting the
  1146. FT2232 latency timer to a larger value increases delays for short USB packets but it
  1147. also reduces the risk of timeouts before receiving the expected number of bytes.
  1148. The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
  1149. @end itemize
  1150. @subsection ep93xx options
  1151. @cindex ep93xx options
  1152. Currently, there are no options available for the ep93xx interface.
  1153. @section JTAG Speed
  1154. @itemize @bullet
  1155. @item @b{jtag_khz} <@var{reset speed kHz}>
  1156. @cindex jtag_khz
  1157. It is debatable if this command belongs here - or in a board
  1158. configuration file. In fact, in some situations the JTAG speed is
  1159. changed during the target initialisation process (i.e.: (1) slow at
  1160. reset, (2) program the CPU clocks, (3) run fast)
  1161. Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
  1162. Not all interfaces support ``rtck''. If the interface device can not
  1163. support the rate asked for, or can not translate from kHz to
  1164. jtag_speed, then an error is returned.
  1165. Make sure the JTAG clock is no more than @math{1/6th CPU-Clock}. This is
  1166. especially true for synthesized cores (-S). Also see RTCK.
  1167. @b{NOTE: Script writers} If the target chip requires/uses RTCK -
  1168. please use the command: 'jtag_rclk FREQ'. This Tcl proc (in
  1169. startup.tcl) attempts to enable RTCK, if that fails it falls back to
  1170. the specified frequency.
  1171. @example
  1172. # Fall back to 3mhz if RCLK is not supported
  1173. jtag_rclk 3000
  1174. @end example
  1175. @item @b{DEPRECATED} @b{jtag_speed} - please use jtag_khz above.
  1176. @cindex jtag_speed
  1177. @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
  1178. speed. The actual effect of this option depends on the JTAG interface used.
  1179. The speed used during reset can be adjusted using setting jtag_speed during
  1180. pre_reset and post_reset events.
  1181. @itemize @minus
  1182. @item wiggler: maximum speed / @var{number}
  1183. @item ft2232: 6MHz / (@var{number}+1)
  1184. @item amt jtagaccel: 8 / 2**@var{number}
  1185. @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
  1186. @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
  1187. @comment end speed list.
  1188. @end itemize
  1189. @comment END command list
  1190. @end itemize
  1191. @node Reset Configuration
  1192. @chapter Reset Configuration
  1193. @cindex Reset Configuration
  1194. Every system configuration may require a different reset
  1195. configuration. This can also be quite confusing. Please see the
  1196. various board files for example.
  1197. @section jtag_nsrst_delay <@var{ms}>
  1198. @cindex jtag_nsrst_delay
  1199. @*How long (in milliseconds) OpenOCD should wait after deasserting
  1200. nSRST before starting new JTAG operations.
  1201. @section jtag_ntrst_delay <@var{ms}>
  1202. @cindex jtag_ntrst_delay
  1203. @*Same @b{jtag_nsrst_delay}, but for nTRST
  1204. The jtag_n[st]rst_delay options are useful if reset circuitry (like a
  1205. big resistor/capacitor, reset supervisor, or on-chip features). This
  1206. keeps the signal asserted for some time after the external reset got
  1207. deasserted.
  1208. @section reset_config
  1209. @b{Note:} To maintainers and integrators: Where exactly the
  1210. ``reset configuration'' goes is a good question. It touches several
  1211. things at once. In the end, if you have a board file - the board file
  1212. should define it and assume 100% that the DONGLE supports
  1213. anything. However, that does not mean the target should not also make
  1214. not of something the silicon vendor has done inside the
  1215. chip. @i{Grr.... nothing is every pretty.}
  1216. @* @b{Problems:}
  1217. @enumerate
  1218. @item Every JTAG Dongle is slightly different, some dongles implement reset differently.
  1219. @item Every board is also slightly different; some boards tie TRST and SRST together.
  1220. @item Every chip is slightly different; some chips internally tie the two signals together.
  1221. @item Some may not implement all of the signals the same way.
  1222. @item Some signals might be push-pull, others open-drain/collector.
  1223. @end enumerate
  1224. @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
  1225. reset the TAP via TRST and send commands through the JTAG tap to halt
  1226. the CPU at the reset vector before the 1st instruction is executed,
  1227. and finally release the SRST signal.
  1228. @*Depending on your board vendor, chip vendor, etc., these
  1229. signals may have slightly different names.
  1230. OpenOCD defines these signals in these terms:
  1231. @itemize @bullet
  1232. @item @b{TRST} - is Tap Reset - and should reset only the TAP.
  1233. @item @b{SRST} - is System Reset - typically equal to a reset push button.
  1234. @end itemize
  1235. The Command:
  1236. @itemize @bullet
  1237. @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
  1238. @cindex reset_config
  1239. @* The @t{reset_config} command tells OpenOCD the reset configuration
  1240. of your combination of Dongle, Board, and Chips.
  1241. If the JTAG interface provides SRST, but the target doesn't connect
  1242. that signal properly, then OpenOCD can't use it. <@var{signals}> can
  1243. be @option{none}, @option{trst_only}, @option{srst_only} or
  1244. @option{trst_and_srst}.
  1245. [@var{combination}] is an optional value specifying broken reset
  1246. signal implementations. @option{srst_pulls_trst} states that the
  1247. test logic is reset together with the reset of the system (e.g. Philips
  1248. LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
  1249. the system is reset together with the test logic (only hypothetical, I
  1250. haven't seen hardware with such a bug, and can be worked around).
  1251. @option{combined} implies both @option{srst_pulls_trst} and
  1252. @option{trst_pulls_srst}. The default behaviour if no option given is
  1253. @option{separate}.
  1254. The [@var{trst_type}] and [@var{srst_type}] parameters allow the
  1255. driver type of the reset lines to be specified. Possible values are
  1256. @option{trst_push_pull} (default) and @option{trst_open_drain} for the
  1257. test reset signal, and @option{srst_open_drain} (default) and
  1258. @option{srst_push_pull} for the system reset. These values only affect
  1259. JTAG interfaces with support for different drivers, like the Amontec
  1260. JTAGkey and JTAGAccelerator.
  1261. @comment - end command
  1262. @end itemize
  1263. @node Tap Creation
  1264. @chapter Tap Creation
  1265. @cindex tap creation
  1266. @cindex tap configuration
  1267. In order for OpenOCD to control a target, a JTAG tap must be
  1268. defined/created.
  1269. Commands to create taps are normally found in a configuration file and
  1270. are not normally typed by a human.
  1271. When a tap is created a @b{dotted.name} is created for the tap. Other
  1272. commands use that dotted.name to manipulate or refer to the tap.
  1273. Tap Uses:
  1274. @itemize @bullet
  1275. @item @b{Debug Target} A tap can be used by a GDB debug target
  1276. @item @b{Flash Programing} Some chips program the flash via JTAG
  1277. @item @b{Boundry Scan} Some chips support boundary scan.
  1278. @end itemize
  1279. @section jtag newtap
  1280. @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
  1281. @cindex jtag_device
  1282. @cindex jtag newtap
  1283. @cindex tap
  1284. @cindex tap order
  1285. @cindex tap geometry
  1286. @comment START options
  1287. @itemize @bullet
  1288. @item @b{CHIPNAME}
  1289. @* is a symbolic name of the chip.
  1290. @item @b{TAPNAME}
  1291. @* is a symbol name of a tap present on the chip.
  1292. @item @b{Required configparams}
  1293. @* Every tap has 3 required configparams, and several ``optional
  1294. parameters'', the required parameters are:
  1295. @comment START REQUIRED
  1296. @itemize @bullet
  1297. @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
  1298. @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
  1299. @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
  1300. some devices, there are bits in the IR that aren't used. This lets you mask
  1301. them off when doing comparisons. In general, this should just be all ones for
  1302. the size of the IR.
  1303. @comment END REQUIRED
  1304. @end itemize
  1305. An example of a FOOBAR Tap
  1306. @example
  1307. jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
  1308. @end example
  1309. Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
  1310. bits long, during Capture-IR 0x42 is loaded into the IR, and bits
  1311. [6,4,2,0] are checked.
  1312. @item @b{Optional configparams}
  1313. @comment START Optional
  1314. @itemize @bullet
  1315. @item @b{-expected-id NUMBER}
  1316. @* By default it is zero. If non-zero represents the
  1317. expected tap ID used when the JTAG chain is examined. Repeat
  1318. the option as many times as required if multiple id's can be
  1319. expected. See below.
  1320. @item @b{-disable}
  1321. @item @b{-enable}
  1322. @* By default not specified the tap is enabled. Some chips have a
  1323. JTAG route controller (JRC) that is used to enable and/or disable
  1324. specific JTAG taps. You can later enable or disable any JTAG tap via
  1325. the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
  1326. DOTTED.NAME}
  1327. @comment END Optional
  1328. @end itemize
  1329. @comment END OPTIONS
  1330. @end itemize
  1331. @b{Notes:}
  1332. @comment START NOTES
  1333. @itemize @bullet
  1334. @item @b{Technically}
  1335. @* newtap is a sub command of the ``jtag'' command
  1336. @item @b{Big Picture Background}
  1337. @*GDB Talks to OpenOCD using the GDB protocol via
  1338. TCP/IP. OpenOCD then uses the JTAG interface (the dongle) to
  1339. control the JTAG chain on your board. Your board has one or more chips
  1340. in a @i{daisy chain configuration}. Each chip may have one or more
  1341. JTAG taps. GDB ends up talking via OpenOCD to one of the taps.
  1342. @item @b{NAME Rules}
  1343. @*Names follow ``C'' symbol name rules (start with alpha ...)
  1344. @item @b{TAPNAME - Conventions}
  1345. @itemize @bullet
  1346. @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
  1347. @item @b{cpu} - the main CPU of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
  1348. @item @b{flash} - if the chip has a flash tap, example: str912.flash
  1349. @item @b{bs} - for boundary scan if this is a seperate tap.
  1350. @item @b{etb} - for an embedded trace buffer (example: an ARM ETB11)
  1351. @item @b{jrc} - for JTAG route controller (example: OMAP3530 found on Beagleboards)
  1352. @item @b{unknownN} - where N is a number if you have no idea what the tap is for
  1353. @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
  1354. @item @b{When in doubt} - use the chip maker's name in their data sheet.
  1355. @end itemize
  1356. @item @b{DOTTED.NAME}
  1357. @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
  1358. @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
  1359. dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
  1360. @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
  1361. numerous other places to refer to various taps.
  1362. @item @b{ORDER}
  1363. @* The order this command appears via the config files is
  1364. important.
  1365. @item @b{Multi Tap Example}
  1366. @* This example is based on the ST Microsystems STR912. See the ST
  1367. document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
  1368. 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
  1369. @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
  1370. @*@b{checked: 28/nov/2008}
  1371. The diagram shows that the TDO pin connects to the flash tap, flash TDI
  1372. connects to the CPU debug tap, CPU TDI connects to the boundary scan
  1373. tap which then connects to the TDI pin.
  1374. @example
  1375. # The order is...
  1376. # create tap: 'str912.flash'
  1377. jtag newtap str912 flash ... params ...
  1378. # create tap: 'str912.cpu'
  1379. jtag newtap str912 cpu ... params ...
  1380. # create tap: 'str912.bs'
  1381. jtag newtap str912 bs ... params ...
  1382. @end example
  1383. @item @b{Note: Deprecated} - Index Numbers
  1384. @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
  1385. feature is still present, however its use is highly discouraged and
  1386. should not be counted upon. Update all of your scripts to use
  1387. TAP names rather than numbers.
  1388. @item @b{Multiple chips}
  1389. @* If your board has multiple chips, you should be
  1390. able to @b{source} two configuration files, in the proper order, and
  1391. have the taps created in the proper order.
  1392. @comment END NOTES
  1393. @end itemize
  1394. @comment at command level
  1395. @comment DOCUMENT old command
  1396. @section jtag_device - REMOVED
  1397. @example
  1398. @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
  1399. @end example
  1400. @cindex jtag_device
  1401. @* @b{Removed: 28/nov/2008} This command has been removed and replaced
  1402. by the ``jtag newtap'' command. The documentation remains here so that
  1403. one can easily convert the old syntax to the new syntax. About the old
  1404. syntax: The old syntax is positional, i.e.: The 3rd parameter is the
  1405. ``irmask''. The new syntax requires named prefixes, and supports
  1406. additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
  1407. @b{jtag newtap} command for details.
  1408. @example
  1409. OLD: jtag_device 8 0x01 0xe3 0xfe
  1410. NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
  1411. @end example
  1412. @section Enable/Disable Taps
  1413. @b{Note:} These commands are intended to be used as a machine/script
  1414. interface. Humans might find the ``scan_chain'' command more helpful
  1415. when querying the state of the JTAG taps.
  1416. @b{By default, all taps are enabled}
  1417. @itemize @bullet
  1418. @item @b{jtag tapenable} @var{DOTTED.NAME}
  1419. @item @b{jtag tapdisable} @var{DOTTED.NAME}
  1420. @item @b{jtag tapisenabled} @var{DOTTED.NAME}
  1421. @end itemize
  1422. @cindex tap enable
  1423. @cindex tap disable
  1424. @cindex JRC
  1425. @cindex route controller
  1426. These commands are used when your target has a JTAG route controller
  1427. that effectively adds or removes a tap from the JTAG chain in a
  1428. non-standard way.
  1429. The ``standard way'' to remove a tap would be to place the tap in
  1430. bypass mode. But with the advent of modern chips, this is not always a
  1431. good solution. Some taps operate slowly, others operate fast, and
  1432. there are other JTAG clock synchronisation problems one must face. To
  1433. solve that problem, the JTAG route controller was introduced. Rather
  1434. than ``bypass'' the tap, the tap is completely removed from the
  1435. circuit and skipped.
  1436. From OpenOCD's point of view, a JTAG tap is in one of 3 states:
  1437. @itemize @bullet
  1438. @item @b{Enabled - Not In ByPass} and has a variable bit length
  1439. @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
  1440. @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
  1441. @end itemize
  1442. The IEEE JTAG definition has no concept of a ``disabled'' tap.
  1443. @b{Historical note:} this feature was added 28/nov/2008
  1444. @b{jtag tapisenabled DOTTED.NAME}
  1445. This command returns 1 if the named tap is currently enabled, 0 if not.
  1446. This command exists so that scripts that manipulate a JRC (like the
  1447. OMAP3530 has) can determine if OpenOCD thinks a tap is presently
  1448. enabled or disabled.
  1449. @page
  1450. @node Target Configuration
  1451. @chapter Target Configuration
  1452. This chapter discusses how to create a GDB debug target. Before
  1453. creating a ``target'' a JTAG tap DOTTED.NAME must exist first.
  1454. @section targets [NAME]
  1455. @b{Note:} This command name is PLURAL - not singular.
  1456. With NO parameter, this plural @b{targets} command lists all known
  1457. targets in a human friendly form.
  1458. With a parameter, this plural @b{targets} command sets the current
  1459. target to the given name. (i.e.: If there are multiple debug targets)
  1460. Example:
  1461. @verbatim
  1462. (gdb) mon targets
  1463. CmdName Type Endian ChainPos State
  1464. -- ---------- ---------- ---------- -------- ----------
  1465. 0: target0 arm7tdmi little 0 halted
  1466. @end verbatim
  1467. @section target COMMANDS
  1468. @b{Note:} This command name is SINGULAR - not plural. It is used to
  1469. manipulate specific targets, to create targets and other things.
  1470. Once a target is created, a TARGETNAME (object) command is created;
  1471. see below for details.
  1472. The TARGET command accepts these sub-commands:
  1473. @itemize @bullet
  1474. @item @b{create} .. parameters ..
  1475. @* creates a new target, see below for details.
  1476. @item @b{types}
  1477. @* Lists all supported target types (perhaps some are not yet in this document).
  1478. @item @b{names}
  1479. @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
  1480. @verbatim
  1481. foreach t [target names] {
  1482. puts [format "Target: %s\n" $t]
  1483. }
  1484. @end verbatim
  1485. @item @b{current}
  1486. @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
  1487. By default, commands like: ``mww'' (used to write memory) operate on the current target.
  1488. @item @b{number} @b{NUMBER}
  1489. @* Internally OpenOCD maintains a list of targets - in numerical index
  1490. (0..N-1) this command returns the name of the target at index N.
  1491. Example usage:
  1492. @verbatim
  1493. set thename [target number $x]
  1494. puts [format "Target %d is: %s\n" $x $thename]
  1495. @end verbatim
  1496. @item @b{count}
  1497. @* Returns the number of targets known to OpenOCD (see number above)
  1498. Example:
  1499. @verbatim
  1500. set c [target count]
  1501. for { set x 0 } { $x < $c } { incr x } {
  1502. # Assuming you have created this function
  1503. print_target_details $x
  1504. }
  1505. @end verbatim
  1506. @end itemize
  1507. @section TARGETNAME (object) commands
  1508. @b{Use:} Once a target is created, an ``object name'' that represents the
  1509. target is created. By convention, the target name is identical to the
  1510. tap name. In a multiple target system, one can preceed many common
  1511. commands with a specific target name and effect only that target.
  1512. @example
  1513. str912.cpu mww 0x1234 0x42
  1514. omap3530.cpu mww 0x5555 123
  1515. @end example
  1516. @b{Model:} The Tcl/Tk language has the concept of object commands. A
  1517. good example is a on screen button, once a button is created a button
  1518. has a name (a path in Tk terms) and that name is useable as a 1st
  1519. class command. For example in Tk, one can create a button and later
  1520. configure it like this:
  1521. @example
  1522. # Create
  1523. button .foobar -background red -command @{ foo @}
  1524. # Modify
  1525. .foobar configure -foreground blue
  1526. # Query
  1527. set x [.foobar cget -background]
  1528. # Report
  1529. puts [format "The button is %s" $x]
  1530. @end example
  1531. In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
  1532. button. Commands available as a ``target object'' are:
  1533. @comment START targetobj commands.
  1534. @itemize @bullet
  1535. @item @b{configure} - configure the target; see Target Config/Cget Options below
  1536. @item @b{cget} - query the target configuration; see Target Config/Cget Options below
  1537. @item @b{curstate} - current target state (running, halt, etc.
  1538. @item @b{eventlist}
  1539. @* Intended for a human to see/read the currently configure target events.
  1540. @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
  1541. @comment start memory
  1542. @itemize @bullet
  1543. @item @b{mww} ...
  1544. @item @b{mwh} ...
  1545. @item @b{mwb} ...
  1546. @item @b{mdw} ...
  1547. @item @b{mdh} ...
  1548. @item @b{mdb} ...
  1549. @comment end memory
  1550. @end itemize
  1551. @item @b{Memory To Array, Array To Memory}
  1552. @* These are aimed at a machine interface to memory
  1553. @itemize @bullet
  1554. @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
  1555. @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
  1556. @* Where:
  1557. @* @b{ARRAYNAME} is the name of an array variable
  1558. @* @b{WIDTH} is 8/16/32 - indicating the memory access size
  1559. @* @b{ADDRESS} is the target memory address
  1560. @* @b{COUNT} is the number of elements to process
  1561. @end itemize
  1562. @item @b{Used during ``reset''}
  1563. @* These commands are used internally by the OpenOCD scripts to deal
  1564. with odd reset situations and are not documented here.
  1565. @itemize @bullet
  1566. @item @b{arp_examine}
  1567. @item @b{arp_poll}
  1568. @item @b{arp_reset}
  1569. @item @b{arp_halt}
  1570. @item @b{arp_waitstate}
  1571. @end itemize
  1572. @item @b{invoke-event} @b{EVENT-NAME}
  1573. @* Invokes the specific event manually for the target
  1574. @end itemize
  1575. @section Target Events
  1576. At various times, certain things can happen, or you want them to happen.
  1577. Examples:
  1578. @itemize @bullet
  1579. @item What should happen when GDB connects? Should your target reset?
  1580. @item When GDB tries to flash the target, do you need to enable the flash via a special command?
  1581. @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
  1582. @end itemize
  1583. All of the above items are handled by target events.
  1584. To specify an event action, either during target creation, or later
  1585. via ``$_TARGETNAME configure'' see this example.
  1586. Syntactially, the option is: ``-event NAME BODY'' where NAME is a
  1587. target event name, and BODY is a Tcl procedure or string of commands
  1588. to execute.
  1589. The programmers model is the ``-command'' option used in Tcl/Tk
  1590. buttons and events. Below are two identical examples, the first
  1591. creates and invokes small procedure. The second inlines the procedure.
  1592. @example
  1593. proc my_attach_proc @{ @} @{
  1594. puts "RESET...."
  1595. reset halt
  1596. @}
  1597. mychip.cpu configure -event gdb-attach my_attach_proc
  1598. mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
  1599. @end example
  1600. @section Current Events
  1601. The following events are available:
  1602. @itemize @bullet
  1603. @item @b{debug-halted}
  1604. @* The target has halted for debug reasons (i.e.: breakpoint)
  1605. @item @b{debug-resumed}
  1606. @* The target has resumed (i.e.: gdb said run)
  1607. @item @b{early-halted}
  1608. @* Occurs early in the halt process
  1609. @item @b{examine-end}
  1610. @* Currently not used (goal: when JTAG examine completes)
  1611. @item @b{examine-start}
  1612. @* Currently not used (goal: when JTAG examine starts)
  1613. @item @b{gdb-attach}
  1614. @* When GDB connects
  1615. @item @b{gdb-detach}
  1616. @* When GDB disconnects
  1617. @item @b{gdb-end}
  1618. @* When the taret has halted and GDB is not doing anything (see early halt)
  1619. @item @b{gdb-flash-erase-start}
  1620. @* Before the GDB flash process tries to erase the flash
  1621. @item @b{gdb-flash-erase-end}
  1622. @* After the GDB flash process has finished erasing the flash
  1623. @item @b{gdb-flash-write-start}
  1624. @* Before GDB writes to the flash
  1625. @item @b{gdb-flash-write-end}
  1626. @* After GDB writes to the flash
  1627. @item @b{gdb-start}
  1628. @* Before the taret steps, gdb is trying to start/resume the target
  1629. @item @b{halted}
  1630. @* The target has halted
  1631. @item @b{old-gdb_program_config}
  1632. @* DO NOT USE THIS: Used internally
  1633. @item @b{old-pre_resume}
  1634. @* DO NOT USE THIS: Used internally
  1635. @item @b{reset-assert-pre}
  1636. @* Before reset is asserted on the tap.
  1637. @item @b{reset-assert-post}
  1638. @* Reset is now asserted on the tap.
  1639. @item @b{reset-deassert-pre}
  1640. @* Reset is about to be released on the tap
  1641. @item @b{reset-deassert-post}
  1642. @* Reset has been released on the tap
  1643. @item @b{reset-end}
  1644. @* Currently not used.
  1645. @item @b{reset-halt-post}
  1646. @* Currently not usd
  1647. @item @b{reset-halt-pre}
  1648. @* Currently not used
  1649. @item @b{reset-init}
  1650. @* Currently not used
  1651. @item @b{reset-start}
  1652. @* Currently not used
  1653. @item @b{reset-wait-pos}
  1654. @* Currently not used
  1655. @item @b{reset-wait-pre}
  1656. @* Currently not used
  1657. @item @b{resume-start}
  1658. @* Before any target is resumed
  1659. @item @b{resume-end}
  1660. @* After all targets have resumed
  1661. @item @b{resume-ok}
  1662. @* Success
  1663. @item @b{resumed}
  1664. @* Target has resumed
  1665. @item @b{tap-enable}
  1666. @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
  1667. @example
  1668. jtag configure DOTTED.NAME -event tap-enable @{
  1669. puts "Enabling CPU"
  1670. ...
  1671. @}
  1672. @end example
  1673. @item @b{tap-disable}
  1674. @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
  1675. @example
  1676. jtag configure DOTTED.NAME -event tap-disable @{
  1677. puts "Disabling CPU"
  1678. ...
  1679. @}
  1680. @end example
  1681. @end itemize
  1682. @section target create
  1683. @cindex target
  1684. @cindex target creation
  1685. @example
  1686. @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
  1687. @end example
  1688. @*This command creates a GDB debug target that refers to a specific JTAG tap.
  1689. @comment START params
  1690. @itemize @bullet
  1691. @item @b{NAME}
  1692. @* Is the name of the debug target. By convention it should be the tap
  1693. DOTTED.NAME. This name is also used to create the target object
  1694. command, and in other places the target needs to be identified.
  1695. @item @b{TYPE}
  1696. @* Specifies the target type, i.e.: ARM7TDMI, or Cortex-M3. Currently supported targets are:
  1697. @comment START types
  1698. @itemize @minus
  1699. @item @b{arm7tdmi}
  1700. @item @b{arm720t}
  1701. @item @b{arm9tdmi}
  1702. @item @b{arm920t}
  1703. @item @b{arm922t}
  1704. @item @b{arm926ejs}
  1705. @item @b{arm966e}
  1706. @item @b{cortex_m3}
  1707. @item @b{feroceon}
  1708. @item @b{xscale}
  1709. @item @b{arm11}
  1710. @item @b{mips_m4k}
  1711. @comment end TYPES
  1712. @end itemize
  1713. @item @b{PARAMS}
  1714. @*PARAMs are various target configuration parameters. The following ones are mandatory:
  1715. @comment START mandatory
  1716. @itemize @bullet
  1717. @item @b{-endian big|little}
  1718. @item @b{-chain-position DOTTED.NAME}
  1719. @comment end MANDATORY
  1720. @end itemize
  1721. @comment END params
  1722. @end itemize
  1723. @section Target Config/Cget Options
  1724. These options can be specified when the target is created, or later
  1725. via the configure option or to query the target via cget.
  1726. You should specify a working area if you can; typically it uses some
  1727. on-chip SRAM. Such a working area can speed up many things, including bulk
  1728. writes to target memory; flash operations like checking to see if memory needs
  1729. to be erased; GDB memory checksumming; and may help perform otherwise
  1730. unavailable operations (like some coprocessor operations on ARM7/9 systems).
  1731. @itemize @bullet
  1732. @item @b{-type} - returns the target type
  1733. @item @b{-event NAME BODY} see Target events
  1734. @item @b{-work-area-virt [ADDRESS]} specify/set the work area base address
  1735. which will be used when an MMU is active.
  1736. @item @b{-work-area-phys [ADDRESS]} specify/set the work area base address
  1737. which will be used when an MMU is inactive.
  1738. @item @b{-work-area-size [ADDRESS]} specify/set the work area
  1739. @item @b{-work-area-backup [0|1]} does the work area get backed up;
  1740. by default, it doesn't. When possible, use a working_area that doesn't
  1741. need to be backed up, since performing a backup slows down operations.
  1742. @item @b{-endian [big|little]}
  1743. @item @b{-variant [NAME]} some chips have variants OpenOCD needs to know about
  1744. @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
  1745. @end itemize
  1746. Example:
  1747. @example
  1748. for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
  1749. set name [target number $x]
  1750. set y [$name cget -endian]
  1751. set z [$name cget -type]
  1752. puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
  1753. @}
  1754. @end example
  1755. @section Target Variants
  1756. @itemize @bullet
  1757. @item @b{arm7tdmi}
  1758. @* Unknown (please write me)
  1759. @item @b{arm720t}
  1760. @* Unknown (please write me) (similar to arm7tdmi)
  1761. @item @b{arm9tdmi}
  1762. @* Variants: @option{arm920t}, @option{arm922t} and @option{arm940t}
  1763. This enables the hardware single-stepping support found on these
  1764. cores.
  1765. @item @b{arm920t}
  1766. @* None.
  1767. @item @b{arm966e}
  1768. @* None (this is also used as the ARM946)
  1769. @item @b{cortex_m3}
  1770. @* use variant <@var{-variant lm3s}> when debugging Luminary lm3s targets. This will cause
  1771. OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
  1772. the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
  1773. be detected and the normal reset behaviour used.
  1774. @item @b{xscale}
  1775. @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
  1776. @item @b{arm11}
  1777. @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
  1778. @item @b{mips_m4k}
  1779. @* Use variant @option{ejtag_srst} when debugging targets that do not
  1780. provide a functional SRST line on the EJTAG connector. This causes
  1781. OpenOCD to instead use an EJTAG software reset command to reset the
  1782. processor. You still need to enable @option{srst} on the reset
  1783. configuration command to enable OpenOCD hardware reset functionality.
  1784. @comment END variants
  1785. @end itemize
  1786. @section working_area - Command Removed
  1787. @cindex working_area
  1788. @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
  1789. @* This documentation remains because there are existing scripts that
  1790. still use this that need to be converted.
  1791. @example
  1792. working_area target# address size backup| [virtualaddress]
  1793. @end example
  1794. @* The target# is a the 0 based target numerical index.
  1795. @node Flash Configuration
  1796. @chapter Flash programming
  1797. @cindex Flash Configuration
  1798. @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
  1799. flash that a micro may boot from. Perhaps you, the reader, would like to
  1800. contribute support for this.
  1801. Flash Steps:
  1802. @enumerate
  1803. @item Configure via the command @b{flash bank}
  1804. @* Normally this is done in a configuration file.
  1805. @item Operate on the flash via @b{flash SOMECOMMAND}
  1806. @* Often commands to manipulate the flash are typed by a human, or run
  1807. via a script in some automated way. For example: To program the boot
  1808. flash on your board.
  1809. @item GDB Flashing
  1810. @* Flashing via GDB requires the flash be configured via ``flash
  1811. bank'', and the GDB flash features be enabled. See the daemon
  1812. configuration section for more details.
  1813. @end enumerate
  1814. @section Flash commands
  1815. @cindex Flash commands
  1816. @subsection flash banks
  1817. @b{flash banks}
  1818. @cindex flash banks
  1819. @*List configured flash banks
  1820. @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
  1821. @subsection flash info
  1822. @b{flash info} <@var{num}>
  1823. @cindex flash info
  1824. @*Print info about flash bank <@option{num}>
  1825. @subsection flash probe
  1826. @b{flash probe} <@var{num}>
  1827. @cindex flash probe
  1828. @*Identify the flash, or validate the parameters of the configured flash. Operation
  1829. depends on the flash type.
  1830. @subsection flash erase_check
  1831. @b{flash erase_check} <@var{num}>
  1832. @cindex flash erase_check
  1833. @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
  1834. updates the erase state information displayed by @option{flash info}. That means you have
  1835. to issue an @option{erase_check} command after erasing or programming the device to get
  1836. updated information.
  1837. @subsection flash protect_check
  1838. @b{flash protect_check} <@var{num}>
  1839. @cindex flash protect_check
  1840. @*Check protection state of sectors in flash bank <num>.
  1841. @option{flash erase_sector} using the same syntax.
  1842. @subsection flash erase_sector
  1843. @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
  1844. @cindex flash erase_sector
  1845. @anchor{flash erase_sector}
  1846. @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
  1847. <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
  1848. require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
  1849. the CFI driver).
  1850. @subsection flash erase_address
  1851. @b{flash erase_address} <@var{address}> <@var{length}>
  1852. @cindex flash erase_address
  1853. @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
  1854. @subsection flash write_bank
  1855. @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
  1856. @cindex flash write_bank
  1857. @anchor{flash write_bank}
  1858. @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
  1859. <@option{offset}> bytes from the beginning of the bank.
  1860. @subsection flash write_image
  1861. @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
  1862. @cindex flash write_image
  1863. @anchor{flash write_image}
  1864. @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
  1865. [@var{offset}] can be specified and the file [@var{type}] can be specified
  1866. explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
  1867. (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
  1868. if the @option{erase} parameter is given.
  1869. @subsection flash protect
  1870. @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
  1871. @cindex flash protect
  1872. @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
  1873. <@var{last}> of @option{flash bank} <@var{num}>.
  1874. @subsection mFlash commands
  1875. @cindex mFlash commands
  1876. @itemize @bullet
  1877. @item @b{mflash probe}
  1878. @cindex mflash probe
  1879. Probe mflash.
  1880. @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
  1881. @cindex mflash write
  1882. Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
  1883. <@var{offset}> bytes from the beginning of the bank.
  1884. @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
  1885. @cindex mflash dump
  1886. Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
  1887. to a <@var{file}>.
  1888. @end itemize
  1889. @section flash bank command
  1890. The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
  1891. @example
  1892. @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
  1893. <@var{bus_width}> <@var{target}> [@var{driver_options ...}]
  1894. @end example
  1895. @cindex flash bank
  1896. @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
  1897. and <@var{bus_width}> bytes using the selected flash <driver>.
  1898. @subsection External Flash - cfi options
  1899. @cindex cfi options
  1900. CFI flashes are external flash chips - often they are connected to a
  1901. specific chip select on the CPU. By default, at hard reset, most
  1902. CPUs have the ablity to ``boot'' from some flash chip - typically
  1903. attached to the CPU's CS0 pin.
  1904. For other chip selects: OpenOCD does not know how to configure, or
  1905. access a specific chip select. Instead you, the human, might need to
  1906. configure additional chip selects via other commands (like: mww) , or
  1907. perhaps configure a GPIO pin that controls the ``write protect'' pin
  1908. on the flash chip.
  1909. @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
  1910. <@var{target}> [@var{jedec_probe}|@var{x16_as_x8}]
  1911. @*CFI flashes require the name or number of the target they're connected to
  1912. as an additional
  1913. argument. The CFI driver makes use of a working area (specified for the target)
  1914. to significantly speed up operation.
  1915. @var{chip_width} and @var{bus_width} are specified in bytes.
  1916. The @var{jedec_probe} option is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types.
  1917. @var{x16_as_x8} ???
  1918. @subsection Internal Flash (Microcontrollers)
  1919. @subsubsection lpc2000 options
  1920. @cindex lpc2000 options
  1921. @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target}> <@var{variant}>
  1922. <@var{clock}> [@var{calc_checksum}]
  1923. @*LPC flashes don't require the chip and bus width to be specified. Additional
  1924. parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
  1925. or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx),
  1926. the name or number of the target this flash belongs to (first is 0),
  1927. the frequency at which the core
  1928. is currently running (in kHz - must be an integral number), and the optional keyword
  1929. @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
  1930. vector table.
  1931. @subsubsection at91sam7 options
  1932. @cindex at91sam7 options
  1933. @b{flash bank at91sam7} 0 0 0 0 <@var{target}>
  1934. @*AT91SAM7 flashes only require the @var{target}, all other values are looked up after
  1935. reading the chip-id and type.
  1936. @subsubsection str7 options
  1937. @cindex str7 options
  1938. @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target}> <@var{variant}>
  1939. @*variant can be either STR71x, STR73x or STR75x.
  1940. @subsubsection str9 options
  1941. @cindex str9 options
  1942. @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target}>
  1943. @*The str9 needs the flash controller to be configured prior to Flash programming, e.g.
  1944. @example
  1945. str9x flash_config 0 4 2 0 0x80000
  1946. @end example
  1947. This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
  1948. @subsubsection str9 options (str9xpec driver)
  1949. @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target}>
  1950. @*Before using the flash commands the turbo mode must be enabled using str9xpec
  1951. @option{enable_turbo} <@var{num>.}
  1952. Only use this driver for locking/unlocking the device or configuring the option bytes.
  1953. Use the standard str9 driver for programming. @xref{STR9 specific commands}.
  1954. @subsubsection Stellaris (LM3Sxxx) options
  1955. @cindex Stellaris (LM3Sxxx) options
  1956. @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target}>
  1957. @*Stellaris flash plugin only require the @var{target}.
  1958. @subsubsection stm32x options
  1959. @cindex stm32x options
  1960. @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target}>
  1961. @*stm32x flash plugin only require the @var{target}.
  1962. @subsubsection aduc702x options
  1963. @cindex aduc702x options
  1964. @b{flash bank aduc702x} 0 0 0 0 <@var{target}>
  1965. @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target} argument (all devices in this family have the same memory layout).
  1966. @subsection mFlash Configuration
  1967. @cindex mFlash Configuration
  1968. @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
  1969. <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target}>
  1970. @cindex mflash bank
  1971. @*Configures a mflash for <@var{soc}> host bank at
  1972. <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
  1973. order. Pin number format is dependent on host GPIO calling convention.
  1974. If WP or DPD pin was not used, write -1. Currently, mflash bank
  1975. support s3c2440 and pxa270.
  1976. (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
  1977. @example
  1978. mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
  1979. @end example
  1980. (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
  1981. @example
  1982. mflash bank pxa270 0x08000000 2 2 43 -1 51 0
  1983. @end example
  1984. @section Microcontroller specific Flash Commands
  1985. @subsection AT91SAM7 specific commands
  1986. @cindex AT91SAM7 specific commands
  1987. The flash configuration is deduced from the chip identification register. The flash
  1988. controller handles erases automatically on a page (128/265 byte) basis, so erase is
  1989. not necessary for flash programming. AT91SAM7 processors with less than 512K flash
  1990. only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
  1991. that can be erased separatly. Only an EraseAll command is supported by the controller
  1992. for each flash plane and this is called with
  1993. @itemize @bullet
  1994. @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
  1995. @*bulk erase flash planes first_plane to last_plane.
  1996. @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
  1997. @cindex at91sam7 gpnvm
  1998. @*set or clear a gpnvm bit for the processor
  1999. @end itemize
  2000. @subsection STR9 specific commands
  2001. @cindex STR9 specific commands
  2002. @anchor{STR9 specific commands}
  2003. These are flash specific commands when using the str9xpec driver.
  2004. @itemize @bullet
  2005. @item @b{str9xpec enable_turbo} <@var{num}>
  2006. @cindex str9xpec enable_turbo
  2007. @*enable turbo mode, will simply remove the str9 from the chain and talk
  2008. directly to the embedded flash controller.
  2009. @item @b{str9xpec disable_turbo} <@var{num}>
  2010. @cindex str9xpec disable_turbo
  2011. @*restore the str9 into JTAG chain.
  2012. @item @b{str9xpec lock} <@var{num}>
  2013. @cindex str9xpec lock
  2014. @*lock str9 device. The str9 will only respond to an unlock command that will
  2015. erase the device.
  2016. @item @b{str9xpec unlock} <@var{num}>
  2017. @cindex str9xpec unlock
  2018. @*unlock str9 device.
  2019. @item @b{str9xpec options_read} <@var{num}>
  2020. @cindex str9xpec options_read
  2021. @*read str9 option bytes.
  2022. @item @b{str9xpec options_write} <@var{num}>
  2023. @cindex str9xpec options_write
  2024. @*write str9 option bytes.
  2025. @end itemize
  2026. Note: Before using the str9xpec driver here is some background info to help
  2027. you better understand how the drivers works. OpenOCD has two flash drivers for
  2028. the str9.
  2029. @enumerate
  2030. @item
  2031. Standard driver @option{str9x} programmed via the str9 core. Normally used for
  2032. flash programming as it is faster than the @option{str9xpec} driver.
  2033. @item
  2034. Direct programming @option{str9xpec} using the flash controller. This is an
  2035. ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
  2036. core does not need to be running to program using this flash driver. Typical use
  2037. for this driver is locking/unlocking the target and programming the option bytes.
  2038. @end enumerate
  2039. Before we run any commands using the @option{str9xpec} driver we must first disable
  2040. the str9 core. This example assumes the @option{str9xpec} driver has been
  2041. configured for flash bank 0.
  2042. @example
  2043. # assert srst, we do not want core running
  2044. # while accessing str9xpec flash driver
  2045. jtag_reset 0 1
  2046. # turn off target polling
  2047. poll off
  2048. # disable str9 core
  2049. str9xpec enable_turbo 0
  2050. # read option bytes
  2051. str9xpec options_read 0
  2052. # re-enable str9 core
  2053. str9xpec disable_turbo 0
  2054. poll on
  2055. reset halt
  2056. @end example
  2057. The above example will read the str9 option bytes.
  2058. When performing a unlock remember that you will not be able to halt the str9 - it
  2059. has been locked. Halting the core is not required for the @option{str9xpec} driver
  2060. as mentioned above, just issue the commands above manually or from a telnet prompt.
  2061. @subsection STR9 configuration
  2062. @cindex STR9 configuration
  2063. @itemize @bullet
  2064. @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
  2065. <@var{BBADR}> <@var{NBBADR}>
  2066. @cindex str9x flash_config
  2067. @*Configure str9 flash controller.
  2068. @example
  2069. e.g. str9x flash_config 0 4 2 0 0x80000
  2070. This will setup
  2071. BBSR - Boot Bank Size register
  2072. NBBSR - Non Boot Bank Size register
  2073. BBADR - Boot Bank Start Address register
  2074. NBBADR - Boot Bank Start Address register
  2075. @end example
  2076. @end itemize
  2077. @subsection STR9 option byte configuration
  2078. @cindex STR9 option byte configuration
  2079. @itemize @bullet
  2080. @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
  2081. @cindex str9xpec options_cmap
  2082. @*configure str9 boot bank.
  2083. @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
  2084. @cindex str9xpec options_lvdthd
  2085. @*configure str9 lvd threshold.
  2086. @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
  2087. @cindex str9xpec options_lvdsel
  2088. @*configure str9 lvd source.
  2089. @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
  2090. @cindex str9xpec options_lvdwarn
  2091. @*configure str9 lvd reset warning source.
  2092. @end itemize
  2093. @subsection STM32x specific commands
  2094. @cindex STM32x specific commands
  2095. These are flash specific commands when using the stm32x driver.
  2096. @itemize @bullet
  2097. @item @b{stm32x lock} <@var{num}>
  2098. @cindex stm32x lock
  2099. @*lock stm32 device.
  2100. @item @b{stm32x unlock} <@var{num}>
  2101. @cindex stm32x unlock
  2102. @*unlock stm32 device.
  2103. @item @b{stm32x options_read} <@var{num}>
  2104. @cindex stm32x options_read
  2105. @*read stm32 option bytes.
  2106. @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
  2107. <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
  2108. @cindex stm32x options_write
  2109. @*write stm32 option bytes.
  2110. @item @b{stm32x mass_erase} <@var{num}>
  2111. @cindex stm32x mass_erase
  2112. @*mass erase flash memory.
  2113. @end itemize
  2114. @subsection Stellaris specific commands
  2115. @cindex Stellaris specific commands
  2116. These are flash specific commands when using the Stellaris driver.
  2117. @itemize @bullet
  2118. @item @b{stellaris mass_erase} <@var{num}>
  2119. @cindex stellaris mass_erase
  2120. @*mass erase flash memory.
  2121. @end itemize
  2122. @node General Commands
  2123. @chapter General Commands
  2124. @cindex commands
  2125. The commands documented in this chapter here are common commands that
  2126. you, as a human, may want to type and see the output of. Configuration type
  2127. commands are documented elsewhere.
  2128. Intent:
  2129. @itemize @bullet
  2130. @item @b{Source Of Commands}
  2131. @* OpenOCD commands can occur in a configuration script (discussed
  2132. elsewhere) or typed manually by a human or supplied programatically,
  2133. or via one of several TCP/IP Ports.
  2134. @item @b{From the human}
  2135. @* A human should interact with the telnet interface (default port: 4444,
  2136. or via GDB, default port 3333)
  2137. To issue commands from within a GDB session, use the @option{monitor}
  2138. command, e.g. use @option{monitor poll} to issue the @option{poll}
  2139. command. All output is relayed through the GDB session.
  2140. @item @b{Machine Interface}
  2141. The Tcl interface's intent is to be a machine interface. The default Tcl
  2142. port is 5555.
  2143. @end itemize
  2144. @section Daemon Commands
  2145. @subsection sleep [@var{msec}]
  2146. @cindex sleep
  2147. @*Wait for n milliseconds before resuming. Useful in connection with script files
  2148. (@var{script} command and @var{target_script} configuration).
  2149. @subsection shutdown
  2150. @cindex shutdown
  2151. @*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other).
  2152. @subsection debug_level [@var{n}]
  2153. @cindex debug_level
  2154. @anchor{debug_level}
  2155. @*Display or adjust debug level to n<0-3>
  2156. @subsection fast [@var{enable|disable}]
  2157. @cindex fast
  2158. @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
  2159. downloads and fast memory access will work if the JTAG interface isn't too fast and
  2160. the core doesn't run at a too low frequency. Note that this option only changes the default
  2161. and that the indvidual options, like DCC memory downloads, can be enabled and disabled
  2162. individually.
  2163. The target specific "dangerous" optimisation tweaking options may come and go
  2164. as more robust and user friendly ways are found to ensure maximum throughput
  2165. and robustness with a minimum of configuration.
  2166. Typically the "fast enable" is specified first on the command line:
  2167. @example
  2168. openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
  2169. @end example
  2170. @subsection echo <@var{message}>
  2171. @cindex echo
  2172. @*Output message to stdio. e.g. echo "Programming - please wait"
  2173. @subsection log_output <@var{file}>
  2174. @cindex log_output
  2175. @*Redirect logging to <file> (default: stderr)
  2176. @subsection script <@var{file}>
  2177. @cindex script
  2178. @*Execute commands from <file>
  2179. See also: ``source [find FILENAME]''
  2180. @section Target state handling
  2181. @subsection power <@var{on}|@var{off}>
  2182. @cindex reg
  2183. @*Turn power switch to target on/off.
  2184. No arguments: print status.
  2185. Not all interfaces support this.
  2186. @subsection reg [@option{#}|@option{name}] [value]
  2187. @cindex reg
  2188. @*Access a single register by its number[@option{#}] or by its [@option{name}].
  2189. No arguments: list all available registers for the current target.
  2190. Number or name argument: display a register.
  2191. Number or name and value arguments: set register value.
  2192. @subsection poll [@option{on}|@option{off}]
  2193. @cindex poll
  2194. @*Poll the target for its current state. If the target is in debug mode, architecture
  2195. specific information about the current state is printed. An optional parameter
  2196. allows continuous polling to be enabled and disabled.
  2197. @subsection halt [@option{ms}]
  2198. @cindex halt
  2199. @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
  2200. Default [@option{ms}] is 5 seconds if no arg given.
  2201. Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
  2202. will stop OpenOCD from waiting.
  2203. @subsection wait_halt [@option{ms}]
  2204. @cindex wait_halt
  2205. @*Wait for the target to enter debug mode. Optional [@option{ms}] is
  2206. a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
  2207. arg is given.
  2208. @subsection resume [@var{address}]
  2209. @cindex resume
  2210. @*Resume the target at its current code position, or at an optional address.
  2211. OpenOCD will wait 5 seconds for the target to resume.
  2212. @subsection step [@var{address}]
  2213. @cindex step
  2214. @*Single-step the target at its current code position, or at an optional address.
  2215. @subsection reset [@option{run}|@option{halt}|@option{init}]
  2216. @cindex reset
  2217. @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
  2218. With no arguments a "reset run" is executed
  2219. @itemize @minus
  2220. @item @b{run}
  2221. @cindex reset run
  2222. @*Let the target run.
  2223. @item @b{halt}
  2224. @cindex reset halt
  2225. @*Immediately halt the target (works only with certain configurations).
  2226. @item @b{init}
  2227. @cindex reset init
  2228. @*Immediately halt the target, and execute the reset script (works only with certain
  2229. configurations)
  2230. @end itemize
  2231. @subsection soft_reset_halt
  2232. @cindex reset
  2233. @*Requesting target halt and executing a soft reset. This is often used
  2234. when a target cannot be reset and halted. The target, after reset is
  2235. released begins to execute code. OpenOCD attempts to stop the CPU and
  2236. then sets the program counter back to the reset vector. Unfortunately
  2237. the code that was executed may have left the hardware in an unknown
  2238. state.
  2239. @section Memory access commands
  2240. @subsection meminfo
  2241. display available RAM memory.
  2242. @subsection Memory peek/poke type commands
  2243. These commands allow accesses of a specific size to the memory
  2244. system. Often these are used to configure the current target in some
  2245. special way. For example - one may need to write certian values to the
  2246. SDRAM controller to enable SDRAM.
  2247. @enumerate
  2248. @item To change the current target see the ``targets'' (plural) command
  2249. @item In system level scripts these commands are deprecated, please use the TARGET object versions.
  2250. @end enumerate
  2251. @itemize @bullet
  2252. @item @b{mdw} <@var{addr}> [@var{count}]
  2253. @cindex mdw
  2254. @*display memory words (32bit)
  2255. @item @b{mdh} <@var{addr}> [@var{count}]
  2256. @cindex mdh
  2257. @*display memory half-words (16bit)
  2258. @item @b{mdb} <@var{addr}> [@var{count}]
  2259. @cindex mdb
  2260. @*display memory bytes (8bit)
  2261. @item @b{mww} <@var{addr}> <@var{value}>
  2262. @cindex mww
  2263. @*write memory word (32bit)
  2264. @item @b{mwh} <@var{addr}> <@var{value}>
  2265. @cindex mwh
  2266. @*write memory half-word (16bit)
  2267. @item @b{mwb} <@var{addr}> <@var{value}>
  2268. @cindex mwb
  2269. @*write memory byte (8bit)
  2270. @end itemize
  2271. @section Image loading commands
  2272. @subsection load_image
  2273. @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2274. @cindex load_image
  2275. @anchor{load_image}
  2276. @*Load image <@var{file}> to target memory at <@var{address}>
  2277. @subsection fast_load_image
  2278. @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2279. @cindex fast_load_image
  2280. @anchor{fast_load_image}
  2281. @*Normally you should be using @b{load_image} or GDB load. However, for
  2282. testing purposes or when I/O overhead is significant(OpenOCD running on an embedded
  2283. host), storing the image in memory and uploading the image to the target
  2284. can be a way to upload e.g. multiple debug sessions when the binary does not change.
  2285. Arguments are the same as @b{load_image}, but the image is stored in OpenOCD host
  2286. memory, i.e. does not affect target. This approach is also useful when profiling
  2287. target programming performance as I/O and target programming can easily be profiled
  2288. separately.
  2289. @subsection fast_load
  2290. @b{fast_load}
  2291. @cindex fast_image
  2292. @anchor{fast_image}
  2293. @*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image.
  2294. @subsection dump_image
  2295. @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
  2296. @cindex dump_image
  2297. @anchor{dump_image}
  2298. @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
  2299. (binary) <@var{file}>.
  2300. @subsection verify_image
  2301. @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2302. @cindex verify_image
  2303. @*Verify <@var{file}> against target memory starting at <@var{address}>.
  2304. This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
  2305. @section Breakpoint commands
  2306. @cindex Breakpoint commands
  2307. @itemize @bullet
  2308. @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
  2309. @cindex bp
  2310. @*set breakpoint <address> <length> [hw]
  2311. @item @b{rbp} <@var{addr}>
  2312. @cindex rbp
  2313. @*remove breakpoint <adress>
  2314. @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
  2315. @cindex wp
  2316. @*set watchpoint <address> <length> <r/w/a> [value] [mask]
  2317. @item @b{rwp} <@var{addr}>
  2318. @cindex rwp
  2319. @*remove watchpoint <adress>
  2320. @end itemize
  2321. @section Misc Commands
  2322. @cindex Other Target Commands
  2323. @itemize
  2324. @item @b{profile} <@var{seconds}> <@var{gmon.out}>
  2325. Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling.
  2326. @end itemize
  2327. @section Target Specific Commands
  2328. @cindex Target Specific Commands
  2329. @page
  2330. @section Architecture Specific Commands
  2331. @cindex Architecture Specific Commands
  2332. @subsection ARMV4/5 specific commands
  2333. @cindex ARMV4/5 specific commands
  2334. These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
  2335. or Intel XScale (XScale isn't supported yet).
  2336. @itemize @bullet
  2337. @item @b{armv4_5 reg}
  2338. @cindex armv4_5 reg
  2339. @*Display a list of all banked core registers, fetching the current value from every
  2340. core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
  2341. register value.
  2342. @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
  2343. @cindex armv4_5 core_mode
  2344. @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
  2345. The target is resumed in the currently set @option{core_mode}.
  2346. @end itemize
  2347. @subsection ARM7/9 specific commands
  2348. @cindex ARM7/9 specific commands
  2349. These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
  2350. ARM920T or ARM926EJ-S.
  2351. @itemize @bullet
  2352. @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
  2353. @cindex arm7_9 dbgrq
  2354. @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
  2355. safe for all but ARM7TDMI--S cores (like Philips LPC).
  2356. @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
  2357. @cindex arm7_9 fast_memory_access
  2358. @anchor{arm7_9 fast_memory_access}
  2359. @*Allow OpenOCD to read and write memory without checking completion of
  2360. the operation. This provides a huge speed increase, especially with USB JTAG
  2361. cables (FT2232), but might be unsafe if used with targets running at very low
  2362. speeds, like the 32kHz startup clock of an AT91RM9200.
  2363. @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
  2364. @cindex arm7_9 dcc_downloads
  2365. @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
  2366. amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
  2367. unsafe, especially with targets running at very low speeds. This command was introduced
  2368. with OpenOCD rev. 60, and requires a few bytes of working area.
  2369. @end itemize
  2370. @subsection ARM720T specific commands
  2371. @cindex ARM720T specific commands
  2372. @itemize @bullet
  2373. @item @b{arm720t cp15} <@var{num}> [@var{value}]
  2374. @cindex arm720t cp15
  2375. @*display/modify cp15 register <@option{num}> [@option{value}].
  2376. @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
  2377. @cindex arm720t md<bhw>_phys
  2378. @*Display memory at physical address addr.
  2379. @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
  2380. @cindex arm720t mw<bhw>_phys
  2381. @*Write memory at physical address addr.
  2382. @item @b{arm720t virt2phys} <@var{va}>
  2383. @cindex arm720t virt2phys
  2384. @*Translate a virtual address to a physical address.
  2385. @end itemize
  2386. @subsection ARM9TDMI specific commands
  2387. @cindex ARM9TDMI specific commands
  2388. @itemize @bullet
  2389. @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
  2390. @cindex arm9tdmi vector_catch
  2391. @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
  2392. @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
  2393. @option{irq} @option{fiq}.
  2394. Can also be used on other ARM9 based cores such as ARM966, ARM920T and ARM926EJ-S.
  2395. @end itemize
  2396. @subsection ARM966E specific commands
  2397. @cindex ARM966E specific commands
  2398. @itemize @bullet
  2399. @item @b{arm966e cp15} <@var{num}> [@var{value}]
  2400. @cindex arm966e cp15
  2401. @*display/modify cp15 register <@option{num}> [@option{value}].
  2402. @end itemize
  2403. @subsection ARM920T specific commands
  2404. @cindex ARM920T specific commands
  2405. @itemize @bullet
  2406. @item @b{arm920t cp15} <@var{num}> [@var{value}]
  2407. @cindex arm920t cp15
  2408. @*display/modify cp15 register <@option{num}> [@option{value}].
  2409. @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
  2410. @cindex arm920t cp15i
  2411. @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
  2412. @item @b{arm920t cache_info}
  2413. @cindex arm920t cache_info
  2414. @*Print information about the caches found. This allows to see whether your target
  2415. is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
  2416. @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
  2417. @cindex arm920t md<bhw>_phys
  2418. @*Display memory at physical address addr.
  2419. @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
  2420. @cindex arm920t mw<bhw>_phys
  2421. @*Write memory at physical address addr.
  2422. @item @b{arm920t read_cache} <@var{filename}>
  2423. @cindex arm920t read_cache
  2424. @*Dump the content of ICache and DCache to a file.
  2425. @item @b{arm920t read_mmu} <@var{filename}>
  2426. @cindex arm920t read_mmu
  2427. @*Dump the content of the ITLB and DTLB to a file.
  2428. @item @b{arm920t virt2phys} <@var{va}>
  2429. @cindex arm920t virt2phys
  2430. @*Translate a virtual address to a physical address.
  2431. @end itemize
  2432. @subsection ARM926EJ-S specific commands
  2433. @cindex ARM926EJ-S specific commands
  2434. @itemize @bullet
  2435. @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
  2436. @cindex arm926ejs cp15
  2437. @*display/modify cp15 register <@option{num}> [@option{value}].
  2438. @item @b{arm926ejs cache_info}
  2439. @cindex arm926ejs cache_info
  2440. @*Print information about the caches found.
  2441. @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
  2442. @cindex arm926ejs md<bhw>_phys
  2443. @*Display memory at physical address addr.
  2444. @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
  2445. @cindex arm926ejs mw<bhw>_phys
  2446. @*Write memory at physical address addr.
  2447. @item @b{arm926ejs virt2phys} <@var{va}>
  2448. @cindex arm926ejs virt2phys
  2449. @*Translate a virtual address to a physical address.
  2450. @end itemize
  2451. @subsection CORTEX_M3 specific commands
  2452. @cindex CORTEX_M3 specific commands
  2453. @itemize @bullet
  2454. @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
  2455. @cindex cortex_m3 maskisr
  2456. @*Enable masking (disabling) interrupts during target step/resume.
  2457. @end itemize
  2458. @page
  2459. @section Debug commands
  2460. @cindex Debug commands
  2461. The following commands give direct access to the core, and are most likely
  2462. only useful while debugging OpenOCD.
  2463. @itemize @bullet
  2464. @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
  2465. @cindex arm7_9 write_xpsr
  2466. @*Immediately write either the current program status register (CPSR) or the saved
  2467. program status register (SPSR), without changing the register cache (as displayed
  2468. by the @option{reg} and @option{armv4_5 reg} commands).
  2469. @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
  2470. <@var{0=cpsr},@var{1=spsr}>
  2471. @cindex arm7_9 write_xpsr_im8
  2472. @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
  2473. operation (similar to @option{write_xpsr}).
  2474. @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
  2475. @cindex arm7_9 write_core_reg
  2476. @*Write a core register, without changing the register cache (as displayed by the
  2477. @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
  2478. encoding of the [M4:M0] bits of the PSR.
  2479. @end itemize
  2480. @section Target Requests
  2481. @cindex Target Requests
  2482. OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
  2483. See libdcc in the contrib dir for more details.
  2484. @itemize @bullet
  2485. @item @b{target_request debugmsgs} <@var{enable}|@var{disable}|@var{charmsg}>
  2486. @cindex target_request debugmsgs
  2487. @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running. @var{charmsg} receives messages if Linux kernel ``Kernel low-level debugging via EmbeddedICE DCC channel'' option is enabled.
  2488. @end itemize
  2489. @node JTAG Commands
  2490. @chapter JTAG Commands
  2491. @cindex JTAG Commands
  2492. Generally most people will not use the bulk of these commands. They
  2493. are mostly used by the OpenOCD developers or those who need to
  2494. directly manipulate the JTAG taps.
  2495. In general these commands control JTAG taps at a very low level. For
  2496. example if you need to control a JTAG Route Controller (i.e.: the
  2497. OMAP3530 on the Beagle Board has one) you might use these commands in
  2498. a script or an event procedure.
  2499. @section Commands
  2500. @cindex Commands
  2501. @itemize @bullet
  2502. @item @b{scan_chain}
  2503. @cindex scan_chain
  2504. @*Print current scan chain configuration.
  2505. @item @b{jtag_reset} <@var{trst}> <@var{srst}>
  2506. @cindex jtag_reset
  2507. @*Toggle reset lines.
  2508. @item @b{endstate} <@var{tap_state}>
  2509. @cindex endstate
  2510. @*Finish JTAG operations in <@var{tap_state}>.
  2511. @item @b{runtest} <@var{num_cycles}>
  2512. @cindex runtest
  2513. @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
  2514. @item @b{statemove} [@var{tap_state}]
  2515. @cindex statemove
  2516. @*Move to current endstate or [@var{tap_state}]
  2517. @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  2518. @cindex irscan
  2519. @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  2520. @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
  2521. @cindex drscan
  2522. @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
  2523. @item @b{verify_ircapture} <@option{enable}|@option{disable}>
  2524. @cindex verify_ircapture
  2525. @*Verify value captured during Capture-IR. Default is enabled.
  2526. @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  2527. @cindex var
  2528. @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  2529. @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
  2530. @cindex field
  2531. Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
  2532. @end itemize
  2533. @section Tap states
  2534. @cindex Tap states
  2535. Available tap_states are:
  2536. @itemize @bullet
  2537. @item @b{RESET}
  2538. @cindex RESET
  2539. @item @b{IDLE}
  2540. @cindex IDLE
  2541. @item @b{DRSELECT}
  2542. @cindex DRSELECT
  2543. @item @b{DRCAPTURE}
  2544. @cindex DRCAPTURE
  2545. @item @b{DRSHIFT}
  2546. @cindex DRSHIFT
  2547. @item @b{DREXIT1}
  2548. @cindex DREXIT1
  2549. @item @b{DRPAUSE}
  2550. @cindex DRPAUSE
  2551. @item @b{DREXIT2}
  2552. @cindex DREXIT2
  2553. @item @b{DRUPDATE}
  2554. @cindex DRUPDATE
  2555. @item @b{IRSELECT}
  2556. @cindex IRSELECT
  2557. @item @b{IRCAPTURE}
  2558. @cindex IRCAPTURE
  2559. @item @b{IRSHIFT}
  2560. @cindex IRSHIFT
  2561. @item @b{IREXIT1}
  2562. @cindex IREXIT1
  2563. @item @b{IRPAUSE}
  2564. @cindex IRPAUSE
  2565. @item @b{IREXIT2}
  2566. @cindex IREXIT2
  2567. @item @b{IRUPDATE}
  2568. @cindex IRUPDATE
  2569. @end itemize
  2570. @node TFTP
  2571. @chapter TFTP
  2572. @cindex TFTP
  2573. If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can
  2574. be used to access files on PCs (either the developer's PC or some other PC).
  2575. The way this works on the ZY1000 is to prefix a filename by
  2576. "/tftp/ip/" and append the TFTP path on the TFTP
  2577. server (tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
  2578. load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
  2579. if the file was hosted on the embedded host.
  2580. In order to achieve decent performance, you must choose a TFTP server
  2581. that supports a packet size bigger than the default packet size (512 bytes). There
  2582. are numerous TFTP servers out there (free and commercial) and you will have to do
  2583. a bit of googling to find something that fits your requirements.
  2584. @node Sample Scripts
  2585. @chapter Sample Scripts
  2586. @cindex scripts
  2587. This page shows how to use the Target Library.
  2588. The configuration script can be divided into the following sections:
  2589. @itemize @bullet
  2590. @item Daemon configuration
  2591. @item Interface
  2592. @item JTAG scan chain
  2593. @item Target configuration
  2594. @item Flash configuration
  2595. @end itemize
  2596. Detailed information about each section can be found at OpenOCD configuration.
  2597. @section AT91R40008 example
  2598. @cindex AT91R40008 example
  2599. To start OpenOCD with a target script for the AT91R40008 CPU and reset
  2600. the CPU upon startup of the OpenOCD daemon.
  2601. @example
  2602. openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
  2603. @end example
  2604. @node GDB and OpenOCD
  2605. @chapter GDB and OpenOCD
  2606. @cindex GDB and OpenOCD
  2607. OpenOCD complies with the remote gdbserver protocol, and as such can be used
  2608. to debug remote targets.
  2609. @section Connecting to GDB
  2610. @cindex Connecting to GDB
  2611. @anchor{Connecting to GDB}
  2612. Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
  2613. instance GDB 6.3 has a known bug that produces bogus memory access
  2614. errors, which has since been fixed: look up 1836 in
  2615. @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
  2616. @*OpenOCD can communicate with GDB in two ways:
  2617. @enumerate
  2618. @item
  2619. A socket (TCP/IP) connection is typically started as follows:
  2620. @example
  2621. target remote localhost:3333
  2622. @end example
  2623. This would cause GDB to connect to the gdbserver on the local pc using port 3333.
  2624. @item
  2625. A pipe connection is typically started as follows:
  2626. @example
  2627. target remote | openocd --pipe
  2628. @end example
  2629. This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
  2630. Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
  2631. session.
  2632. @end enumerate
  2633. @*To see a list of available OpenOCD commands type @option{monitor help} on the
  2634. GDB command line.
  2635. OpenOCD supports the gdb @option{qSupported} packet, this enables information
  2636. to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes
  2637. packet size and the device's memory map.
  2638. Previous versions of OpenOCD required the following GDB options to increase
  2639. the packet size and speed up GDB communication:
  2640. @example
  2641. set remote memory-write-packet-size 1024
  2642. set remote memory-write-packet-size fixed
  2643. set remote memory-read-packet-size 1024
  2644. set remote memory-read-packet-size fixed
  2645. @end example
  2646. This is now handled in the @option{qSupported} PacketSize and should not be required.
  2647. @section Programming using GDB
  2648. @cindex Programming using GDB
  2649. By default the target memory map is sent to GDB. This can be disabled by
  2650. the following OpenOCD configuration option:
  2651. @example
  2652. gdb_memory_map disable
  2653. @end example
  2654. For this to function correctly a valid flash configuration must also be set
  2655. in OpenOCD. For faster performance you should also configure a valid
  2656. working area.
  2657. Informing GDB of the memory map of the target will enable GDB to protect any
  2658. flash areas of the target and use hardware breakpoints by default. This means
  2659. that the OpenOCD option @option{gdb_breakpoint_override} is not required when
  2660. using a memory map. @xref{gdb_breakpoint_override}.
  2661. To view the configured memory map in GDB, use the GDB command @option{info mem}
  2662. All other unassigned addresses within GDB are treated as RAM.
  2663. GDB 6.8 and higher set any memory area not in the memory map as inaccessible.
  2664. This can be changed to the old behaviour by using the following GDB command
  2665. @example
  2666. set mem inaccessible-by-default off
  2667. @end example
  2668. If @option{gdb_flash_program enable} is also used, GDB will be able to
  2669. program any flash memory using the vFlash interface.
  2670. GDB will look at the target memory map when a load command is given, if any
  2671. areas to be programmed lie within the target flash area the vFlash packets
  2672. will be used.
  2673. If the target needs configuring before GDB programming, an event
  2674. script can be executed:
  2675. @example
  2676. $_TARGETNAME configure -event EVENTNAME BODY
  2677. @end example
  2678. To verify any flash programming the GDB command @option{compare-sections}
  2679. can be used.
  2680. @node Tcl Scripting API
  2681. @chapter Tcl Scripting API
  2682. @cindex Tcl Scripting API
  2683. @cindex Tcl scripts
  2684. @section API rules
  2685. The commands are stateless. E.g. the telnet command line has a concept
  2686. of currently active target, the Tcl API proc's take this sort of state
  2687. information as an argument to each proc.
  2688. There are three main types of return values: single value, name value
  2689. pair list and lists.
  2690. Name value pair. The proc 'foo' below returns a name/value pair
  2691. list.
  2692. @verbatim
  2693. > set foo(me) Duane
  2694. > set foo(you) Oyvind
  2695. > set foo(mouse) Micky
  2696. > set foo(duck) Donald
  2697. If one does this:
  2698. > set foo
  2699. The result is:
  2700. me Duane you Oyvind mouse Micky duck Donald
  2701. Thus, to get the names of the associative array is easy:
  2702. foreach { name value } [set foo] {
  2703. puts "Name: $name, Value: $value"
  2704. }
  2705. @end verbatim
  2706. Lists returned must be relatively small. Otherwise a range
  2707. should be passed in to the proc in question.
  2708. @section Internal low-level Commands
  2709. By low-level, the intent is a human would not directly use these commands.
  2710. Low-level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks
  2711. is the low level API upon which "flash banks" is implemented.
  2712. @itemize @bullet
  2713. @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
  2714. Read memory and return as a Tcl array for script processing
  2715. @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
  2716. Convert a Tcl array to memory locations and write the values
  2717. @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
  2718. Return information about the flash banks
  2719. @end itemize
  2720. OpenOCD commands can consist of two words, e.g. "flash banks". The
  2721. startup.tcl "unknown" proc will translate this into a Tcl proc
  2722. called "flash_banks".
  2723. @section OpenOCD specific Global Variables
  2724. @subsection HostOS
  2725. Real Tcl has ::tcl_platform(), and platform::identify, and many other
  2726. variables. JimTCL, as implemented in OpenOCD creates $HostOS which
  2727. holds one of the following values:
  2728. @itemize @bullet
  2729. @item @b{winxx} Built using Microsoft Visual Studio
  2730. @item @b{linux} Linux is the underlying operating sytem
  2731. @item @b{darwin} Darwin (mac-os) is the underlying operating sytem.
  2732. @item @b{cygwin} Running under Cygwin
  2733. @item @b{mingw32} Running under MingW32
  2734. @item @b{other} Unknown, none of the above.
  2735. @end itemize
  2736. Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
  2737. @node Upgrading
  2738. @chapter Deprecated/Removed Commands
  2739. @cindex Deprecated/Removed Commands
  2740. Certain OpenOCD commands have been deprecated/removed during the various revisions.
  2741. @itemize @bullet
  2742. @item @b{arm7_9 fast_writes}
  2743. @cindex arm7_9 fast_writes
  2744. @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
  2745. @item @b{arm7_9 force_hw_bkpts}
  2746. @cindex arm7_9 force_hw_bkpts
  2747. @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
  2748. for flash if the GDB memory map has been set up(default when flash is declared in
  2749. target configuration). @xref{gdb_breakpoint_override}.
  2750. @item @b{arm7_9 sw_bkpts}
  2751. @cindex arm7_9 sw_bkpts
  2752. @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
  2753. @item @b{daemon_startup}
  2754. @cindex daemon_startup
  2755. @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
  2756. the end of your config script will give the same behaviour as using @option{daemon_startup reset}
  2757. and @option{target cortex_m3 little reset_halt 0}.
  2758. @item @b{dump_binary}
  2759. @cindex dump_binary
  2760. @*use @option{dump_image} command with same args. @xref{dump_image}.
  2761. @item @b{flash erase}
  2762. @cindex flash erase
  2763. @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
  2764. @item @b{flash write}
  2765. @cindex flash write
  2766. @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
  2767. @item @b{flash write_binary}
  2768. @cindex flash write_binary
  2769. @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
  2770. @item @b{flash auto_erase}
  2771. @cindex flash auto_erase
  2772. @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
  2773. @item @b{load_binary}
  2774. @cindex load_binary
  2775. @*use @option{load_image} command with same args. @xref{load_image}.
  2776. @item @b{run_and_halt_time}
  2777. @cindex run_and_halt_time
  2778. @*This command has been removed for simpler reset behaviour, it can be simulated with the
  2779. following commands:
  2780. @smallexample
  2781. reset run
  2782. sleep 100
  2783. halt
  2784. @end smallexample
  2785. @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
  2786. @cindex target
  2787. @*use the create subcommand of @option{target}.
  2788. @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
  2789. @cindex target_script
  2790. @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
  2791. @item @b{working_area}
  2792. @cindex working_area
  2793. @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
  2794. @end itemize
  2795. @node FAQ
  2796. @chapter FAQ
  2797. @cindex faq
  2798. @enumerate
  2799. @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
  2800. @cindex RTCK
  2801. @cindex adaptive clocking
  2802. @*
  2803. In digital circuit design it is often refered to as ``clock
  2804. synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
  2805. operating at some speed, your target is operating at another. The two
  2806. clocks are not synchronised, they are ``asynchronous''
  2807. In order for the two to work together they must be synchronised. Otherwise
  2808. the two systems will get out of sync with each other and nothing will
  2809. work. There are 2 basic options:
  2810. @enumerate
  2811. @item
  2812. Use a special circuit.
  2813. @item
  2814. One clock must be some multiple slower than the other.
  2815. @end enumerate
  2816. @b{Does this really matter?} For some chips and some situations, this
  2817. is a non-issue (i.e.: A 500MHz ARM926) but for others - for example some
  2818. Atmel SAM7 and SAM9 chips start operation from reset at 32kHz -
  2819. program/enable the oscillators and eventually the main clock. It is in
  2820. those critical times you must slow the JTAG clock to sometimes 1 to
  2821. 4kHz.
  2822. Imagine debugging a 500MHz ARM926 hand held battery powered device
  2823. that ``deep sleeps'' at 32kHz between every keystroke. It can be
  2824. painful.
  2825. @b{Solution #1 - A special circuit}
  2826. In order to make use of this, your JTAG dongle must support the RTCK
  2827. feature. Not all dongles support this - keep reading!
  2828. The RTCK signal often found in some ARM chips is used to help with
  2829. this problem. ARM has a good description of the problem described at
  2830. this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
  2831. 28/nov/2008]. Link title: ``How does the JTAG synchronisation logic
  2832. work? / how does adaptive clocking work?''.
  2833. The nice thing about adaptive clocking is that ``battery powered hand
  2834. held device example'' - the adaptiveness works perfectly all the
  2835. time. One can set a break point or halt the system in the deep power
  2836. down code, slow step out until the system speeds up.
  2837. @b{Solution #2 - Always works - but may be slower}
  2838. Often this is a perfectly acceptable solution.
  2839. In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
  2840. the target clock speed. But what that ``magic division'' is varies
  2841. depending on the chips on your board. @b{ARM rule of thumb} Most ARM
  2842. based systems require an 8:1 division. @b{Xilinx rule of thumb} is
  2843. 1/12 the clock speed.
  2844. Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
  2845. You can still debug the 'low power' situations - you just need to
  2846. manually adjust the clock speed at every step. While painful and
  2847. tedious, it is not always practical.
  2848. It is however easy to ``code your way around it'' - i.e.: Cheat a little,
  2849. have a special debug mode in your application that does a ``high power
  2850. sleep''. If you are careful - 98% of your problems can be debugged
  2851. this way.
  2852. To set the JTAG frequency use the command:
  2853. @example
  2854. # Example: 1.234MHz
  2855. jtag_khz 1234
  2856. @end example
  2857. @item @b{Win32 Pathnames} Why don't backslashes work in Windows paths?
  2858. OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
  2859. around Windows filenames.
  2860. @example
  2861. > echo \a
  2862. > echo @{\a@}
  2863. \a
  2864. > echo "\a"
  2865. >
  2866. @end example
  2867. @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
  2868. Make sure you have Cygwin installed, or at least a version of OpenOCD that
  2869. claims to come with all the necessary DLLs. When using Cygwin, try launching
  2870. OpenOCD from the Cygwin shell.
  2871. @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
  2872. Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
  2873. arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
  2874. GDB issues software breakpoints when a normal breakpoint is requested, or to implement
  2875. source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T,
  2876. software breakpoints consume one of the two available hardware breakpoints.
  2877. @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random.
  2878. Make sure the core frequency specified in the @option{flash lpc2000} line matches the
  2879. clock at the time you're programming the flash. If you've specified the crystal's
  2880. frequency, make sure the PLL is disabled. If you've specified the full core speed
  2881. (e.g. 60MHz), make sure the PLL is enabled.
  2882. @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
  2883. I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
  2884. out while waiting for end of scan, rtck was disabled".
  2885. Make sure your PC's parallel port operates in EPP mode. You might have to try several
  2886. settings in your PC BIOS (ECP, EPP, and different versions of those).
  2887. @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
  2888. I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
  2889. memory read caused data abort".
  2890. The errors are non-fatal, and are the result of GDB trying to trace stack frames
  2891. beyond the last valid frame. It might be possible to prevent this by setting up
  2892. a proper "initial" stack frame, if you happen to know what exactly has to
  2893. be done, feel free to add this here.
  2894. @b{Simple:} In your startup code - push 8 registers of zeros onto the
  2895. stack before calling main(). What GDB is doing is ``climbing'' the run
  2896. time stack by reading various values on the stack using the standard
  2897. call frame for the target. GDB keeps going - until one of 2 things
  2898. happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
  2899. stackframes have been processed. By pushing zeros on the stack, GDB
  2900. gracefully stops.
  2901. @b{Debugging Interrupt Service Routines} - In your ISR before you call
  2902. your C code, do the same - artifically push some zeros onto the stack,
  2903. remember to pop them off when the ISR is done.
  2904. @b{Also note:} If you have a multi-threaded operating system, they
  2905. often do not @b{in the intrest of saving memory} waste these few
  2906. bytes. Painful...
  2907. @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
  2908. "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
  2909. This warning doesn't indicate any serious problem, as long as you don't want to
  2910. debug your core right out of reset. Your .cfg file specified @option{jtag_reset
  2911. trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
  2912. your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
  2913. independently. With this setup, it's not possible to halt the core right out of
  2914. reset, everything else should work fine.
  2915. @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
  2916. toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
  2917. unstable. When single-stepping over large blocks of code, GDB and OpenOCD
  2918. quit with an error message. Is there a stability issue with OpenOCD?
  2919. No, this is not a stability issue concerning OpenOCD. Most users have solved
  2920. this issue by simply using a self-powered USB hub, which they connect their
  2921. Amontec JTAGkey to. Apparently, some computers do not provide a USB power
  2922. supply stable enough for the Amontec JTAGkey to be operated.
  2923. @b{Laptops running on battery have this problem too...}
  2924. @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
  2925. following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
  2926. 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
  2927. What does that mean and what might be the reason for this?
  2928. First of all, the reason might be the USB power supply. Try using a self-powered
  2929. hub instead of a direct connection to your computer. Secondly, the error code 4
  2930. corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
  2931. chip ran into some sort of error - this points us to a USB problem.
  2932. @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
  2933. error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
  2934. What does that mean and what might be the reason for this?
  2935. Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
  2936. has closed the connection to OpenOCD. This might be a GDB issue.
  2937. @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
  2938. are described, there is a parameter for specifying the clock frequency
  2939. for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
  2940. 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
  2941. specified in kilohertz. However, I do have a quartz crystal of a
  2942. frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
  2943. i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
  2944. clock frequency?
  2945. No. The clock frequency specified here must be given as an integral number.
  2946. However, this clock frequency is used by the In-Application-Programming (IAP)
  2947. routines of the LPC2000 family only, which seems to be very tolerant concerning
  2948. the given clock frequency, so a slight difference between the specified clock
  2949. frequency and the actual clock frequency will not cause any trouble.
  2950. @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
  2951. Well, yes and no. Commands can be given in arbitrary order, yet the
  2952. devices listed for the JTAG scan chain must be given in the right
  2953. order (jtag newdevice), with the device closest to the TDO-Pin being
  2954. listed first. In general, whenever objects of the same type exist
  2955. which require an index number, then these objects must be given in the
  2956. right order (jtag newtap, targets and flash banks - a target
  2957. references a jtag newtap and a flash bank references a target).
  2958. You can use the ``scan_chain'' command to verify and display the tap order.
  2959. @item @b{JTAG Tap Order} JTAG tap order - command order
  2960. Many newer devices have multiple JTAG taps. For example: ST
  2961. Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
  2962. ``Cortex-M3'' tap. Example: The STM32 reference manual, Document ID:
  2963. RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
  2964. connected to the boundary scan tap, which then connects to the
  2965. Cortex-M3 tap, which then connects to the TDO pin.
  2966. Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then
  2967. (2) The boundary scan tap. If your board includes an additional JTAG
  2968. chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
  2969. place it before or after the STM32 chip in the chain. For example:
  2970. @itemize @bullet
  2971. @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
  2972. @item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input)
  2973. @item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin
  2974. @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
  2975. @item Xilinx TDO Pin -> OpenOCD TDO (input)
  2976. @end itemize
  2977. The ``jtag device'' commands would thus be in the order shown below. Note:
  2978. @itemize @bullet
  2979. @item jtag newtap Xilinx tap -irlen ...
  2980. @item jtag newtap stm32 cpu -irlen ...
  2981. @item jtag newtap stm32 bs -irlen ...
  2982. @item # Create the debug target and say where it is
  2983. @item target create stm32.cpu -chain-position stm32.cpu ...
  2984. @end itemize
  2985. @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
  2986. log file, I can see these error messages: Error: arm7_9_common.c:561
  2987. arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
  2988. TODO.
  2989. @end enumerate
  2990. @node Tcl Crash Course
  2991. @chapter Tcl Crash Course
  2992. @cindex Tcl
  2993. Not everyone knows Tcl - this is not intended to be a replacement for
  2994. learning Tcl, the intent of this chapter is to give you some idea of
  2995. how the Tcl scripts work.
  2996. This chapter is written with two audiences in mind. (1) OpenOCD users
  2997. who need to understand a bit more of how JIM-Tcl works so they can do
  2998. something useful, and (2) those that want to add a new command to
  2999. OpenOCD.
  3000. @section Tcl Rule #1
  3001. There is a famous joke, it goes like this:
  3002. @enumerate
  3003. @item Rule #1: The wife is always correct
  3004. @item Rule #2: If you think otherwise, See Rule #1
  3005. @end enumerate
  3006. The Tcl equal is this:
  3007. @enumerate
  3008. @item Rule #1: Everything is a string
  3009. @item Rule #2: If you think otherwise, See Rule #1
  3010. @end enumerate
  3011. As in the famous joke, the consequences of Rule #1 are profound. Once
  3012. you understand Rule #1, you will understand Tcl.
  3013. @section Tcl Rule #1b
  3014. There is a second pair of rules.
  3015. @enumerate
  3016. @item Rule #1: Control flow does not exist. Only commands
  3017. @* For example: the classic FOR loop or IF statement is not a control
  3018. flow item, they are commands, there is no such thing as control flow
  3019. in Tcl.
  3020. @item Rule #2: If you think otherwise, See Rule #1
  3021. @* Actually what happens is this: There are commands that by
  3022. convention, act like control flow key words in other languages. One of
  3023. those commands is the word ``for'', another command is ``if''.
  3024. @end enumerate
  3025. @section Per Rule #1 - All Results are strings
  3026. Every Tcl command results in a string. The word ``result'' is used
  3027. deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
  3028. Everything is a string}
  3029. @section Tcl Quoting Operators
  3030. In life of a Tcl script, there are two important periods of time, the
  3031. difference is subtle.
  3032. @enumerate
  3033. @item Parse Time
  3034. @item Evaluation Time
  3035. @end enumerate
  3036. The two key items here are how ``quoted things'' work in Tcl. Tcl has
  3037. three primary quoting constructs, the [square-brackets] the
  3038. @{curly-braces@} and ``double-quotes''
  3039. By now you should know $VARIABLES always start with a $DOLLAR
  3040. sign. BTW: To set a variable, you actually use the command ``set'', as
  3041. in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
  3042. = 1'' statement, but without the equal sign.
  3043. @itemize @bullet
  3044. @item @b{[square-brackets]}
  3045. @* @b{[square-brackets]} are command substitutions. It operates much
  3046. like Unix Shell `back-ticks`. The result of a [square-bracket]
  3047. operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
  3048. string}. These two statements are roughly identical:
  3049. @example
  3050. # bash example
  3051. X=`date`
  3052. echo "The Date is: $X"
  3053. # Tcl example
  3054. set X [date]
  3055. puts "The Date is: $X"
  3056. @end example
  3057. @item @b{``double-quoted-things''}
  3058. @* @b{``double-quoted-things''} are just simply quoted
  3059. text. $VARIABLES and [square-brackets] are expanded in place - the
  3060. result however is exactly 1 string. @i{Remember Rule #1 - Everything
  3061. is a string}
  3062. @example
  3063. set x "Dinner"
  3064. puts "It is now \"[date]\", $x is in 1 hour"
  3065. @end example
  3066. @item @b{@{Curly-Braces@}}
  3067. @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
  3068. parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
  3069. 'single-quote' operators in BASH shell scripts, with the added
  3070. feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is
  3071. nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
  3072. 28/nov/2008, Jim/OpenOCD does not have a date command.
  3073. @end itemize
  3074. @section Consequences of Rule 1/2/3/4
  3075. The consequences of Rule 1 are profound.
  3076. @subsection Tokenisation & Execution.
  3077. Of course, whitespace, blank lines and #comment lines are handled in
  3078. the normal way.
  3079. As a script is parsed, each (multi) line in the script file is
  3080. tokenised and according to the quoting rules. After tokenisation, that
  3081. line is immedatly executed.
  3082. Multi line statements end with one or more ``still-open''
  3083. @{curly-braces@} which - eventually - closes a few lines later.
  3084. @subsection Command Execution
  3085. Remember earlier: There are no ``control flow''
  3086. statements in Tcl. Instead there are COMMANDS that simply act like
  3087. control flow operators.
  3088. Commands are executed like this:
  3089. @enumerate
  3090. @item Parse the next line into (argc) and (argv[]).
  3091. @item Look up (argv[0]) in a table and call its function.
  3092. @item Repeat until End Of File.
  3093. @end enumerate
  3094. It sort of works like this:
  3095. @example
  3096. for(;;)@{
  3097. ReadAndParse( &argc, &argv );
  3098. cmdPtr = LookupCommand( argv[0] );
  3099. (*cmdPtr->Execute)( argc, argv );
  3100. @}
  3101. @end example
  3102. When the command ``proc'' is parsed (which creates a procedure
  3103. function) it gets 3 parameters on the command line. @b{1} the name of
  3104. the proc (function), @b{2} the list of parameters, and @b{3} the body
  3105. of the function. Not the choice of words: LIST and BODY. The PROC
  3106. command stores these items in a table somewhere so it can be found by
  3107. ``LookupCommand()''
  3108. @subsection The FOR command
  3109. The most interesting command to look at is the FOR command. In Tcl,
  3110. the FOR command is normally implemented in C. Remember, FOR is a
  3111. command just like any other command.
  3112. When the ascii text containing the FOR command is parsed, the parser
  3113. produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
  3114. are:
  3115. @enumerate 0
  3116. @item The ascii text 'for'
  3117. @item The start text
  3118. @item The test expression
  3119. @item The next text
  3120. @item The body text
  3121. @end enumerate
  3122. Sort of reminds you of ``main( int argc, char **argv )'' does it not?
  3123. Remember @i{Rule #1 - Everything is a string.} The key point is this:
  3124. Often many of those parameters are in @{curly-braces@} - thus the
  3125. variables inside are not expanded or replaced until later.
  3126. Remember that every Tcl command looks like the classic ``main( argc,
  3127. argv )'' function in C. In JimTCL - they actually look like this:
  3128. @example
  3129. int
  3130. MyCommand( Jim_Interp *interp,
  3131. int *argc,
  3132. Jim_Obj * const *argvs );
  3133. @end example
  3134. Real Tcl is nearly identical. Although the newer versions have
  3135. introduced a byte-code parser and intepreter, but at the core, it
  3136. still operates in the same basic way.
  3137. @subsection FOR command implementation
  3138. To understand Tcl it is perhaps most helpful to see the FOR
  3139. command. Remember, it is a COMMAND not a control flow structure.
  3140. In Tcl there are two underlying C helper functions.
  3141. Remember Rule #1 - You are a string.
  3142. The @b{first} helper parses and executes commands found in an ascii
  3143. string. Commands can be seperated by semicolons, or newlines. While
  3144. parsing, variables are expanded via the quoting rules.
  3145. The @b{second} helper evaluates an ascii string as a numerical
  3146. expression and returns a value.
  3147. Here is an example of how the @b{FOR} command could be
  3148. implemented. The pseudo code below does not show error handling.
  3149. @example
  3150. void Execute_AsciiString( void *interp, const char *string );
  3151. int Evaluate_AsciiExpression( void *interp, const char *string );
  3152. int
  3153. MyForCommand( void *interp,
  3154. int argc,
  3155. char **argv )
  3156. @{
  3157. if( argc != 5 )@{
  3158. SetResult( interp, "WRONG number of parameters");
  3159. return ERROR;
  3160. @}
  3161. // argv[0] = the ascii string just like C
  3162. // Execute the start statement.
  3163. Execute_AsciiString( interp, argv[1] );
  3164. // Top of loop test
  3165. for(;;)@{
  3166. i = Evaluate_AsciiExpression(interp, argv[2]);
  3167. if( i == 0 )
  3168. break;
  3169. // Execute the body
  3170. Execute_AsciiString( interp, argv[3] );
  3171. // Execute the LOOP part
  3172. Execute_AsciiString( interp, argv[4] );
  3173. @}
  3174. // Return no error
  3175. SetResult( interp, "" );
  3176. return SUCCESS;
  3177. @}
  3178. @end example
  3179. Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
  3180. in the same basic way.
  3181. @section OpenOCD Tcl Usage
  3182. @subsection source and find commands
  3183. @b{Where:} In many configuration files
  3184. @* Example: @b{ source [find FILENAME] }
  3185. @*Remember the parsing rules
  3186. @enumerate
  3187. @item The FIND command is in square brackets.
  3188. @* The FIND command is executed with the parameter FILENAME. It should
  3189. find the full path to the named file. The RESULT is a string, which is
  3190. substituted on the orginal command line.
  3191. @item The command source is executed with the resulting filename.
  3192. @* SOURCE reads a file and executes as a script.
  3193. @end enumerate
  3194. @subsection format command
  3195. @b{Where:} Generally occurs in numerous places.
  3196. @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like
  3197. @b{sprintf()}.
  3198. @b{Example}
  3199. @example
  3200. set x 6
  3201. set y 7
  3202. puts [format "The answer: %d" [expr $x * $y]]
  3203. @end example
  3204. @enumerate
  3205. @item The SET command creates 2 variables, X and Y.
  3206. @item The double [nested] EXPR command performs math
  3207. @* The EXPR command produces numerical result as a string.
  3208. @* Refer to Rule #1
  3209. @item The format command is executed, producing a single string
  3210. @* Refer to Rule #1.
  3211. @item The PUTS command outputs the text.
  3212. @end enumerate
  3213. @subsection Body or Inlined Text
  3214. @b{Where:} Various TARGET scripts.
  3215. @example
  3216. #1 Good
  3217. proc someproc @{@} @{
  3218. ... multiple lines of stuff ...
  3219. @}
  3220. $_TARGETNAME configure -event FOO someproc
  3221. #2 Good - no variables
  3222. $_TARGETNAME confgure -event foo "this ; that;"
  3223. #3 Good Curly Braces
  3224. $_TARGETNAME configure -event FOO @{
  3225. puts "Time: [date]"
  3226. @}
  3227. #4 DANGER DANGER DANGER
  3228. $_TARGETNAME configure -event foo "puts \"Time: [date]\""
  3229. @end example
  3230. @enumerate
  3231. @item The $_TARGETNAME is an OpenOCD variable convention.
  3232. @*@b{$_TARGETNAME} represents the last target created, the value changes
  3233. each time a new target is created. Remember the parsing rules. When
  3234. the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
  3235. the name of the target which happens to be a TARGET (object)
  3236. command.
  3237. @item The 2nd parameter to the @option{-event} parameter is a TCBODY
  3238. @*There are 4 examples:
  3239. @enumerate
  3240. @item The TCLBODY is a simple string that happens to be a proc name
  3241. @item The TCLBODY is several simple commands seperated by semicolons
  3242. @item The TCLBODY is a multi-line @{curly-brace@} quoted string
  3243. @item The TCLBODY is a string with variables that get expanded.
  3244. @end enumerate
  3245. In the end, when the target event FOO occurs the TCLBODY is
  3246. evaluated. Method @b{#1} and @b{#2} are functionally identical. For
  3247. Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
  3248. Remember the parsing rules. In case #3, @{curly-braces@} mean the
  3249. $VARS and [square-brackets] are expanded later, when the EVENT occurs,
  3250. and the text is evaluated. In case #4, they are replaced before the
  3251. ``Target Object Command'' is executed. This occurs at the same time
  3252. $_TARGETNAME is replaced. In case #4 the date will never
  3253. change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
  3254. Jim/OpenOCD does not have a date command@}
  3255. @end enumerate
  3256. @subsection Global Variables
  3257. @b{Where:} You might discover this when writing your own procs @* In
  3258. simple terms: Inside a PROC, if you need to access a global variable
  3259. you must say so. See also ``upvar''. Example:
  3260. @example
  3261. proc myproc @{ @} @{
  3262. set y 0 #Local variable Y
  3263. global x #Global variable X
  3264. puts [format "X=%d, Y=%d" $x $y]
  3265. @}
  3266. @end example
  3267. @section Other Tcl Hacks
  3268. @b{Dynamic variable creation}
  3269. @example
  3270. # Dynamically create a bunch of variables.
  3271. for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
  3272. # Create var name
  3273. set vn [format "BIT%d" $x]
  3274. # Make it a global
  3275. global $vn
  3276. # Set it.
  3277. set $vn [expr (1 << $x)]
  3278. @}
  3279. @end example
  3280. @b{Dynamic proc/command creation}
  3281. @example
  3282. # One "X" function - 5 uart functions.
  3283. foreach who @{A B C D E@}
  3284. proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
  3285. @}
  3286. @end example
  3287. @node Target Library
  3288. @chapter Target Library
  3289. @cindex Target Library
  3290. OpenOCD comes with a target configuration script library. These scripts can be
  3291. used as-is or serve as a starting point.
  3292. The target library is published together with the OpenOCD executable and
  3293. the path to the target library is in the OpenOCD script search path.
  3294. Similarly there are example scripts for configuring the JTAG interface.
  3295. The command line below uses the example parport configuration script
  3296. that ship with OpenOCD, then configures the str710.cfg target and
  3297. finally issues the init and reset commands. The communication speed
  3298. is set to 10kHz for reset and 8MHz for post reset.
  3299. @example
  3300. openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
  3301. @end example
  3302. To list the target scripts available:
  3303. @example
  3304. $ ls /usr/local/lib/openocd/target
  3305. arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
  3306. at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
  3307. at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
  3308. at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
  3309. @end example
  3310. @include fdl.texi
  3311. @node OpenOCD Index
  3312. @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
  3313. @comment case issue with ``Index.html'' and ``index.html''
  3314. @comment Occurs when creating ``--html --no-split'' output
  3315. @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
  3316. @unnumbered OpenOCD Index
  3317. @printindex cp
  3318. @bye