You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1612 lines
43 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2008 by Spencer Oliver *
  6. * spen@spen-soft.co.uk *
  7. * *
  8. * Copyright (C) 2011 by Andreas Fritiofson *
  9. * andreas.fritiofson@gmail.com *
  10. *
  11. * This program is free software; you can redistribute it and/or modify *
  12. * it under the terms of the GNU General Public License as published by *
  13. * the Free Software Foundation; either version 2 of the License, or *
  14. * (at your option) any later version. *
  15. * *
  16. * This program is distributed in the hope that it will be useful, *
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  19. * GNU General Public License for more details. *
  20. * *
  21. * You should have received a copy of the GNU General Public License *
  22. * along with this program. If not, see <http://www.gnu.org/licenses/>. *
  23. ***************************************************************************/
  24. #ifdef HAVE_CONFIG_H
  25. #include "config.h"
  26. #endif
  27. #include "imp.h"
  28. #include <helper/binarybuffer.h>
  29. #include <target/algorithm.h>
  30. #include <target/armv7m.h>
  31. /* stm32x register locations */
  32. #define FLASH_REG_BASE_B0 0x40022000
  33. #define FLASH_REG_BASE_B1 0x40022040
  34. #define STM32_FLASH_ACR 0x00
  35. #define STM32_FLASH_KEYR 0x04
  36. #define STM32_FLASH_OPTKEYR 0x08
  37. #define STM32_FLASH_SR 0x0C
  38. #define STM32_FLASH_CR 0x10
  39. #define STM32_FLASH_AR 0x14
  40. #define STM32_FLASH_OBR 0x1C
  41. #define STM32_FLASH_WRPR 0x20
  42. /* TODO: Check if code using these really should be hard coded to bank 0.
  43. * There are valid cases, on dual flash devices the protection of the
  44. * second bank is done on the bank0 reg's. */
  45. #define STM32_FLASH_ACR_B0 0x40022000
  46. #define STM32_FLASH_KEYR_B0 0x40022004
  47. #define STM32_FLASH_OPTKEYR_B0 0x40022008
  48. #define STM32_FLASH_SR_B0 0x4002200C
  49. #define STM32_FLASH_CR_B0 0x40022010
  50. #define STM32_FLASH_AR_B0 0x40022014
  51. #define STM32_FLASH_OBR_B0 0x4002201C
  52. #define STM32_FLASH_WRPR_B0 0x40022020
  53. /* option byte location */
  54. #define STM32_OB_RDP 0x1FFFF800
  55. #define STM32_OB_USER 0x1FFFF802
  56. #define STM32_OB_DATA0 0x1FFFF804
  57. #define STM32_OB_DATA1 0x1FFFF806
  58. #define STM32_OB_WRP0 0x1FFFF808
  59. #define STM32_OB_WRP1 0x1FFFF80A
  60. #define STM32_OB_WRP2 0x1FFFF80C
  61. #define STM32_OB_WRP3 0x1FFFF80E
  62. /* FLASH_CR register bits */
  63. #define FLASH_PG (1 << 0)
  64. #define FLASH_PER (1 << 1)
  65. #define FLASH_MER (1 << 2)
  66. #define FLASH_OPTPG (1 << 4)
  67. #define FLASH_OPTER (1 << 5)
  68. #define FLASH_STRT (1 << 6)
  69. #define FLASH_LOCK (1 << 7)
  70. #define FLASH_OPTWRE (1 << 9)
  71. #define FLASH_OBL_LAUNCH (1 << 13) /* except stm32f1x series */
  72. /* FLASH_SR register bits */
  73. #define FLASH_BSY (1 << 0)
  74. #define FLASH_PGERR (1 << 2)
  75. #define FLASH_WRPRTERR (1 << 4)
  76. #define FLASH_EOP (1 << 5)
  77. /* STM32_FLASH_OBR bit definitions (reading) */
  78. #define OPT_ERROR 0
  79. #define OPT_READOUT 1
  80. #define OPT_RDWDGSW 2
  81. #define OPT_RDRSTSTOP 3
  82. #define OPT_RDRSTSTDBY 4
  83. #define OPT_BFB2 5 /* dual flash bank only */
  84. /* register unlock keys */
  85. #define KEY1 0x45670123
  86. #define KEY2 0xCDEF89AB
  87. /* timeout values */
  88. #define FLASH_WRITE_TIMEOUT 10
  89. #define FLASH_ERASE_TIMEOUT 100
  90. struct stm32x_options {
  91. uint8_t rdp;
  92. uint8_t user;
  93. uint16_t data;
  94. uint32_t protection;
  95. };
  96. struct stm32x_flash_bank {
  97. struct stm32x_options option_bytes;
  98. int ppage_size;
  99. bool probed;
  100. bool has_dual_banks;
  101. /* used to access dual flash bank stm32xl */
  102. bool can_load_options;
  103. uint32_t register_base;
  104. uint8_t default_rdp;
  105. int user_data_offset;
  106. int option_offset;
  107. uint32_t user_bank_size;
  108. };
  109. static int stm32x_mass_erase(struct flash_bank *bank);
  110. static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
  111. static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
  112. uint32_t address, uint32_t count);
  113. /* flash bank stm32x <base> <size> 0 0 <target#>
  114. */
  115. FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
  116. {
  117. struct stm32x_flash_bank *stm32x_info;
  118. if (CMD_ARGC < 6)
  119. return ERROR_COMMAND_SYNTAX_ERROR;
  120. stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
  121. bank->driver_priv = stm32x_info;
  122. stm32x_info->probed = false;
  123. stm32x_info->has_dual_banks = false;
  124. stm32x_info->can_load_options = false;
  125. stm32x_info->register_base = FLASH_REG_BASE_B0;
  126. stm32x_info->user_bank_size = bank->size;
  127. return ERROR_OK;
  128. }
  129. static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
  130. {
  131. struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
  132. return reg + stm32x_info->register_base;
  133. }
  134. static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
  135. {
  136. struct target *target = bank->target;
  137. return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
  138. }
  139. static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
  140. {
  141. struct target *target = bank->target;
  142. uint32_t status;
  143. int retval = ERROR_OK;
  144. /* wait for busy to clear */
  145. for (;;) {
  146. retval = stm32x_get_flash_status(bank, &status);
  147. if (retval != ERROR_OK)
  148. return retval;
  149. LOG_DEBUG("status: 0x%" PRIx32 "", status);
  150. if ((status & FLASH_BSY) == 0)
  151. break;
  152. if (timeout-- <= 0) {
  153. LOG_ERROR("timed out waiting for flash");
  154. return ERROR_FAIL;
  155. }
  156. alive_sleep(1);
  157. }
  158. if (status & FLASH_WRPRTERR) {
  159. LOG_ERROR("stm32x device protected");
  160. retval = ERROR_FAIL;
  161. }
  162. if (status & FLASH_PGERR) {
  163. LOG_ERROR("stm32x device programming failed");
  164. retval = ERROR_FAIL;
  165. }
  166. /* Clear but report errors */
  167. if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
  168. /* If this operation fails, we ignore it and report the original
  169. * retval
  170. */
  171. target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
  172. FLASH_WRPRTERR | FLASH_PGERR);
  173. }
  174. return retval;
  175. }
  176. static int stm32x_check_operation_supported(struct flash_bank *bank)
  177. {
  178. struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
  179. /* if we have a dual flash bank device then
  180. * we need to perform option byte stuff on bank0 only */
  181. if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
  182. LOG_ERROR("Option byte operations must use bank 0");
  183. return ERROR_FLASH_OPERATION_FAILED;
  184. }
  185. return ERROR_OK;
  186. }
  187. static int stm32x_read_options(struct flash_bank *bank)
  188. {
  189. struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
  190. struct target *target = bank->target;
  191. uint32_t option_bytes;
  192. int retval;
  193. /* read user and read protection option bytes, user data option bytes */
  194. retval = target_read_u32(target, STM32_FLASH_OBR_B0, &option_bytes);
  195. if (retval != ERROR_OK)
  196. return retval;
  197. stm32x_info->option_bytes.rdp = (option_bytes & (1 << OPT_READOUT)) ? 0 : stm32x_info->default_rdp;
  198. stm32x_info->option_bytes.user = (option_bytes >> stm32x_info->option_offset >> 2) & 0xff;
  199. stm32x_info->option_bytes.data = (option_bytes >> stm32x_info->user_data_offset) & 0xffff;
  200. /* read write protection option bytes */
  201. retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &stm32x_info->option_bytes.protection);
  202. if (retval != ERROR_OK)
  203. return retval;
  204. return ERROR_OK;
  205. }
  206. static int stm32x_erase_options(struct flash_bank *bank)
  207. {
  208. struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
  209. struct target *target = bank->target;
  210. /* read current options */
  211. stm32x_read_options(bank);
  212. /* unlock flash registers */
  213. int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
  214. if (retval != ERROR_OK)
  215. return retval;
  216. retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
  217. if (retval != ERROR_OK)
  218. return retval;
  219. /* unlock option flash registers */
  220. retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
  221. if (retval != ERROR_OK)
  222. return retval;
  223. retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
  224. if (retval != ERROR_OK)
  225. return retval;
  226. /* erase option bytes */
  227. retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
  228. if (retval != ERROR_OK)
  229. return retval;
  230. retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
  231. if (retval != ERROR_OK)
  232. return retval;
  233. retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
  234. if (retval != ERROR_OK)
  235. return retval;
  236. /* clear read protection option byte
  237. * this will also force a device unlock if set */
  238. stm32x_info->option_bytes.rdp = stm32x_info->default_rdp;
  239. return ERROR_OK;
  240. }
  241. static int stm32x_write_options(struct flash_bank *bank)
  242. {
  243. struct stm32x_flash_bank *stm32x_info = NULL;
  244. struct target *target = bank->target;
  245. stm32x_info = bank->driver_priv;
  246. /* unlock flash registers */
  247. int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
  248. if (retval != ERROR_OK)
  249. return retval;
  250. retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
  251. if (retval != ERROR_OK)
  252. return retval;
  253. /* unlock option flash registers */
  254. retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
  255. if (retval != ERROR_OK)
  256. return retval;
  257. retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
  258. if (retval != ERROR_OK)
  259. return retval;
  260. /* program option bytes */
  261. retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
  262. if (retval != ERROR_OK)
  263. return retval;
  264. uint8_t opt_bytes[16];
  265. target_buffer_set_u16(target, opt_bytes, stm32x_info->option_bytes.rdp);
  266. target_buffer_set_u16(target, opt_bytes + 2, stm32x_info->option_bytes.user);
  267. target_buffer_set_u16(target, opt_bytes + 4, stm32x_info->option_bytes.data & 0xff);
  268. target_buffer_set_u16(target, opt_bytes + 6, (stm32x_info->option_bytes.data >> 8) & 0xff);
  269. target_buffer_set_u16(target, opt_bytes + 8, stm32x_info->option_bytes.protection & 0xff);
  270. target_buffer_set_u16(target, opt_bytes + 10, (stm32x_info->option_bytes.protection >> 8) & 0xff);
  271. target_buffer_set_u16(target, opt_bytes + 12, (stm32x_info->option_bytes.protection >> 16) & 0xff);
  272. target_buffer_set_u16(target, opt_bytes + 14, (stm32x_info->option_bytes.protection >> 24) & 0xff);
  273. retval = stm32x_write_block(bank, opt_bytes, STM32_OB_RDP, sizeof(opt_bytes) / 2);
  274. if (retval != ERROR_OK) {
  275. if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
  276. LOG_ERROR("working area required to erase options bytes");
  277. return retval;
  278. }
  279. retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
  280. if (retval != ERROR_OK)
  281. return retval;
  282. return ERROR_OK;
  283. }
  284. static int stm32x_protect_check(struct flash_bank *bank)
  285. {
  286. struct target *target = bank->target;
  287. uint32_t protection;
  288. int retval = stm32x_check_operation_supported(bank);
  289. if (ERROR_OK != retval)
  290. return retval;
  291. /* medium density - each bit refers to a 4 sector protection block
  292. * high density - each bit refers to a 2 sector protection block
  293. * bit 31 refers to all remaining sectors in a bank */
  294. retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
  295. if (retval != ERROR_OK)
  296. return retval;
  297. for (unsigned int i = 0; i < bank->num_prot_blocks; i++)
  298. bank->prot_blocks[i].is_protected = (protection & (1 << i)) ? 0 : 1;
  299. return ERROR_OK;
  300. }
  301. static int stm32x_erase(struct flash_bank *bank, unsigned int first,
  302. unsigned int last)
  303. {
  304. struct target *target = bank->target;
  305. if (bank->target->state != TARGET_HALTED) {
  306. LOG_ERROR("Target not halted");
  307. return ERROR_TARGET_NOT_HALTED;
  308. }
  309. if ((first == 0) && (last == (bank->num_sectors - 1)))
  310. return stm32x_mass_erase(bank);
  311. /* unlock flash registers */
  312. int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
  313. if (retval != ERROR_OK)
  314. return retval;
  315. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
  316. if (retval != ERROR_OK)
  317. return retval;
  318. for (unsigned int i = first; i <= last; i++) {
  319. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
  320. if (retval != ERROR_OK)
  321. return retval;
  322. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
  323. bank->base + bank->sectors[i].offset);
  324. if (retval != ERROR_OK)
  325. return retval;
  326. retval = target_write_u32(target,
  327. stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
  328. if (retval != ERROR_OK)
  329. return retval;
  330. retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
  331. if (retval != ERROR_OK)
  332. return retval;
  333. bank->sectors[i].is_erased = 1;
  334. }
  335. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
  336. if (retval != ERROR_OK)
  337. return retval;
  338. return ERROR_OK;
  339. }
  340. static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
  341. unsigned int last)
  342. {
  343. struct target *target = bank->target;
  344. struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
  345. if (target->state != TARGET_HALTED) {
  346. LOG_ERROR("Target not halted");
  347. return ERROR_TARGET_NOT_HALTED;
  348. }
  349. int retval = stm32x_check_operation_supported(bank);
  350. if (retval != ERROR_OK)
  351. return retval;
  352. retval = stm32x_erase_options(bank);
  353. if (retval != ERROR_OK) {
  354. LOG_ERROR("stm32x failed to erase options");
  355. return retval;
  356. }
  357. for (unsigned int i = first; i <= last; i++) {
  358. if (set)
  359. stm32x_info->option_bytes.protection &= ~(1 << i);
  360. else
  361. stm32x_info->option_bytes.protection |= (1 << i);
  362. }
  363. return stm32x_write_options(bank);
  364. }
  365. static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
  366. uint32_t address, uint32_t count)
  367. {
  368. struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
  369. struct target *target = bank->target;
  370. uint32_t buffer_size = 16384;
  371. struct working_area *write_algorithm;
  372. struct working_area *source;
  373. struct reg_param reg_params[5];
  374. struct armv7m_algorithm armv7m_info;
  375. int retval = ERROR_OK;
  376. static const uint8_t stm32x_flash_write_code[] = {
  377. #include "../../../contrib/loaders/flash/stm32/stm32f1x.inc"
  378. };
  379. /* flash write code */
  380. if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
  381. &write_algorithm) != ERROR_OK) {
  382. LOG_WARNING("no working area available, can't do block memory writes");
  383. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  384. }
  385. retval = target_write_buffer(target, write_algorithm->address,
  386. sizeof(stm32x_flash_write_code), stm32x_flash_write_code);
  387. if (retval != ERROR_OK) {
  388. target_free_working_area(target, write_algorithm);
  389. return retval;
  390. }
  391. /* memory buffer */
  392. while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
  393. buffer_size /= 2;
  394. buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
  395. if (buffer_size <= 256) {
  396. /* we already allocated the writing code, but failed to get a
  397. * buffer, free the algorithm */
  398. target_free_working_area(target, write_algorithm);
  399. LOG_WARNING("no large enough working area available, can't do block memory writes");
  400. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  401. }
  402. }
  403. init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
  404. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
  405. init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
  406. init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
  407. init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
  408. buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
  409. buf_set_u32(reg_params[1].value, 0, 32, count);
  410. buf_set_u32(reg_params[2].value, 0, 32, source->address);
  411. buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
  412. buf_set_u32(reg_params[4].value, 0, 32, address);
  413. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  414. armv7m_info.core_mode = ARM_MODE_THREAD;
  415. retval = target_run_flash_async_algorithm(target, buffer, count, 2,
  416. 0, NULL,
  417. 5, reg_params,
  418. source->address, source->size,
  419. write_algorithm->address, 0,
  420. &armv7m_info);
  421. if (retval == ERROR_FLASH_OPERATION_FAILED) {
  422. LOG_ERROR("flash write failed at address 0x%"PRIx32,
  423. buf_get_u32(reg_params[4].value, 0, 32));
  424. if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
  425. LOG_ERROR("flash memory not erased before writing");
  426. /* Clear but report errors */
  427. target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR);
  428. }
  429. if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
  430. LOG_ERROR("flash memory write protected");
  431. /* Clear but report errors */
  432. target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR);
  433. }
  434. }
  435. target_free_working_area(target, source);
  436. target_free_working_area(target, write_algorithm);
  437. destroy_reg_param(&reg_params[0]);
  438. destroy_reg_param(&reg_params[1]);
  439. destroy_reg_param(&reg_params[2]);
  440. destroy_reg_param(&reg_params[3]);
  441. destroy_reg_param(&reg_params[4]);
  442. return retval;
  443. }
  444. static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
  445. uint32_t offset, uint32_t count)
  446. {
  447. struct target *target = bank->target;
  448. uint8_t *new_buffer = NULL;
  449. if (bank->target->state != TARGET_HALTED) {
  450. LOG_ERROR("Target not halted");
  451. return ERROR_TARGET_NOT_HALTED;
  452. }
  453. if (offset & 0x1) {
  454. LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
  455. return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
  456. }
  457. /* If there's an odd number of bytes, the data has to be padded. Duplicate
  458. * the buffer and use the normal code path with a single block write since
  459. * it's probably cheaper than to special case the last odd write using
  460. * discrete accesses. */
  461. if (count & 1) {
  462. new_buffer = malloc(count + 1);
  463. if (new_buffer == NULL) {
  464. LOG_ERROR("odd number of bytes to write and no memory for padding buffer");
  465. return ERROR_FAIL;
  466. }
  467. LOG_INFO("odd number of bytes to write, padding with 0xff");
  468. buffer = memcpy(new_buffer, buffer, count);
  469. new_buffer[count++] = 0xff;
  470. }
  471. uint32_t words_remaining = count / 2;
  472. int retval, retval2;
  473. /* unlock flash registers */
  474. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
  475. if (retval != ERROR_OK)
  476. goto cleanup;
  477. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
  478. if (retval != ERROR_OK)
  479. goto cleanup;
  480. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
  481. if (retval != ERROR_OK)
  482. goto cleanup;
  483. /* try using a block write */
  484. retval = stm32x_write_block(bank, buffer, bank->base + offset, words_remaining);
  485. if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
  486. /* if block write failed (no sufficient working area),
  487. * we use normal (slow) single halfword accesses */
  488. LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
  489. while (words_remaining > 0) {
  490. uint16_t value;
  491. memcpy(&value, buffer, sizeof(uint16_t));
  492. retval = target_write_u16(target, bank->base + offset, value);
  493. if (retval != ERROR_OK)
  494. goto reset_pg_and_lock;
  495. retval = stm32x_wait_status_busy(bank, 5);
  496. if (retval != ERROR_OK)
  497. goto reset_pg_and_lock;
  498. words_remaining--;
  499. buffer += 2;
  500. offset += 2;
  501. }
  502. }
  503. reset_pg_and_lock:
  504. retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
  505. if (retval == ERROR_OK)
  506. retval = retval2;
  507. cleanup:
  508. free(new_buffer);
  509. return retval;
  510. }
  511. static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
  512. {
  513. /* This check the device CPUID core register to detect
  514. * the M0 from the M3 devices. */
  515. struct target *target = bank->target;
  516. uint32_t cpuid, device_id_register = 0;
  517. /* Get the CPUID from the ARM Core
  518. * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
  519. int retval = target_read_u32(target, 0xE000ED00, &cpuid);
  520. if (retval != ERROR_OK)
  521. return retval;
  522. if (((cpuid >> 4) & 0xFFF) == 0xC20) {
  523. /* 0xC20 is M0 devices */
  524. device_id_register = 0x40015800;
  525. } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
  526. /* 0xC23 is M3 devices */
  527. device_id_register = 0xE0042000;
  528. } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
  529. /* 0xC24 is M4 devices */
  530. device_id_register = 0xE0042000;
  531. } else {
  532. LOG_ERROR("Cannot identify target as a stm32x");
  533. return ERROR_FAIL;
  534. }
  535. /* read stm32 device id register */
  536. retval = target_read_u32(target, device_id_register, device_id);
  537. if (retval != ERROR_OK)
  538. return retval;
  539. return retval;
  540. }
  541. static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
  542. {
  543. struct target *target = bank->target;
  544. uint32_t cpuid, flash_size_reg;
  545. int retval = target_read_u32(target, 0xE000ED00, &cpuid);
  546. if (retval != ERROR_OK)
  547. return retval;
  548. if (((cpuid >> 4) & 0xFFF) == 0xC20) {
  549. /* 0xC20 is M0 devices */
  550. flash_size_reg = 0x1FFFF7CC;
  551. } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
  552. /* 0xC23 is M3 devices */
  553. flash_size_reg = 0x1FFFF7E0;
  554. } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
  555. /* 0xC24 is M4 devices */
  556. flash_size_reg = 0x1FFFF7CC;
  557. } else {
  558. LOG_ERROR("Cannot identify target as a stm32x");
  559. return ERROR_FAIL;
  560. }
  561. retval = target_read_u16(target, flash_size_reg, flash_size_in_kb);
  562. if (retval != ERROR_OK)
  563. return retval;
  564. return retval;
  565. }
  566. static int stm32x_probe(struct flash_bank *bank)
  567. {
  568. struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
  569. uint16_t flash_size_in_kb;
  570. uint16_t max_flash_size_in_kb;
  571. uint32_t dbgmcu_idcode;
  572. int page_size;
  573. uint32_t base_address = 0x08000000;
  574. stm32x_info->probed = false;
  575. stm32x_info->register_base = FLASH_REG_BASE_B0;
  576. stm32x_info->user_data_offset = 10;
  577. stm32x_info->option_offset = 0;
  578. /* default factory read protection level 0 */
  579. stm32x_info->default_rdp = 0xA5;
  580. /* read stm32 device id register */
  581. int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
  582. if (retval != ERROR_OK)
  583. return retval;
  584. LOG_INFO("device id = 0x%08" PRIx32 "", dbgmcu_idcode);
  585. uint16_t device_id = dbgmcu_idcode & 0xfff;
  586. uint16_t rev_id = dbgmcu_idcode >> 16;
  587. /* set page size, protection granularity and max flash size depending on family */
  588. switch (device_id) {
  589. case 0x440: /* stm32f05x */
  590. page_size = 1024;
  591. stm32x_info->ppage_size = 4;
  592. max_flash_size_in_kb = 64;
  593. stm32x_info->user_data_offset = 16;
  594. stm32x_info->option_offset = 6;
  595. stm32x_info->default_rdp = 0xAA;
  596. stm32x_info->can_load_options = true;
  597. break;
  598. case 0x444: /* stm32f03x */
  599. case 0x445: /* stm32f04x */
  600. page_size = 1024;
  601. stm32x_info->ppage_size = 4;
  602. max_flash_size_in_kb = 32;
  603. stm32x_info->user_data_offset = 16;
  604. stm32x_info->option_offset = 6;
  605. stm32x_info->default_rdp = 0xAA;
  606. stm32x_info->can_load_options = true;
  607. break;
  608. case 0x448: /* stm32f07x */
  609. page_size = 2048;
  610. stm32x_info->ppage_size = 4;
  611. max_flash_size_in_kb = 128;
  612. stm32x_info->user_data_offset = 16;
  613. stm32x_info->option_offset = 6;
  614. stm32x_info->default_rdp = 0xAA;
  615. stm32x_info->can_load_options = true;
  616. break;
  617. case 0x442: /* stm32f09x */
  618. page_size = 2048;
  619. stm32x_info->ppage_size = 4;
  620. max_flash_size_in_kb = 256;
  621. stm32x_info->user_data_offset = 16;
  622. stm32x_info->option_offset = 6;
  623. stm32x_info->default_rdp = 0xAA;
  624. stm32x_info->can_load_options = true;
  625. break;
  626. case 0x410: /* stm32f1x medium-density */
  627. page_size = 1024;
  628. stm32x_info->ppage_size = 4;
  629. max_flash_size_in_kb = 128;
  630. /* GigaDevice GD32F1x0 & GD32F3x0 series devices share DEV_ID
  631. with STM32F101/2/3 medium-density line,
  632. however they use a REV_ID different from any STM32 device.
  633. The main difference is another offset of user option bits
  634. (like WDG_SW, nRST_STOP, nRST_STDBY) in option byte register
  635. (FLASH_OBR/FMC_OBSTAT 0x4002201C).
  636. This caused problems e.g. during flash block programming
  637. because of unexpected active hardware watchog. */
  638. switch (rev_id) {
  639. case 0x1303: /* gd32f1x0 */
  640. stm32x_info->user_data_offset = 16;
  641. stm32x_info->option_offset = 6;
  642. max_flash_size_in_kb = 64;
  643. break;
  644. case 0x1704: /* gd32f3x0 */
  645. stm32x_info->user_data_offset = 16;
  646. stm32x_info->option_offset = 6;
  647. break;
  648. }
  649. break;
  650. case 0x412: /* stm32f1x low-density */
  651. page_size = 1024;
  652. stm32x_info->ppage_size = 4;
  653. max_flash_size_in_kb = 32;
  654. break;
  655. case 0x414: /* stm32f1x high-density */
  656. page_size = 2048;
  657. stm32x_info->ppage_size = 2;
  658. max_flash_size_in_kb = 512;
  659. break;
  660. case 0x418: /* stm32f1x connectivity */
  661. page_size = 2048;
  662. stm32x_info->ppage_size = 2;
  663. max_flash_size_in_kb = 256;
  664. break;
  665. case 0x430: /* stm32f1 XL-density (dual flash banks) */
  666. page_size = 2048;
  667. stm32x_info->ppage_size = 2;
  668. max_flash_size_in_kb = 1024;
  669. stm32x_info->has_dual_banks = true;
  670. break;
  671. case 0x420: /* stm32f100xx low- and medium-density value line */
  672. page_size = 1024;
  673. stm32x_info->ppage_size = 4;
  674. max_flash_size_in_kb = 128;
  675. break;
  676. case 0x428: /* stm32f100xx high-density value line */
  677. page_size = 2048;
  678. stm32x_info->ppage_size = 4;
  679. max_flash_size_in_kb = 512;
  680. break;
  681. case 0x422: /* stm32f302/3xb/c */
  682. page_size = 2048;
  683. stm32x_info->ppage_size = 2;
  684. max_flash_size_in_kb = 256;
  685. stm32x_info->user_data_offset = 16;
  686. stm32x_info->option_offset = 6;
  687. stm32x_info->default_rdp = 0xAA;
  688. stm32x_info->can_load_options = true;
  689. break;
  690. case 0x446: /* stm32f303xD/E */
  691. page_size = 2048;
  692. stm32x_info->ppage_size = 2;
  693. max_flash_size_in_kb = 512;
  694. stm32x_info->user_data_offset = 16;
  695. stm32x_info->option_offset = 6;
  696. stm32x_info->default_rdp = 0xAA;
  697. stm32x_info->can_load_options = true;
  698. break;
  699. case 0x432: /* stm32f37x */
  700. page_size = 2048;
  701. stm32x_info->ppage_size = 2;
  702. max_flash_size_in_kb = 256;
  703. stm32x_info->user_data_offset = 16;
  704. stm32x_info->option_offset = 6;
  705. stm32x_info->default_rdp = 0xAA;
  706. stm32x_info->can_load_options = true;
  707. break;
  708. case 0x438: /* stm32f33x */
  709. case 0x439: /* stm32f302x6/8 */
  710. page_size = 2048;
  711. stm32x_info->ppage_size = 2;
  712. max_flash_size_in_kb = 64;
  713. stm32x_info->user_data_offset = 16;
  714. stm32x_info->option_offset = 6;
  715. stm32x_info->default_rdp = 0xAA;
  716. stm32x_info->can_load_options = true;
  717. break;
  718. default:
  719. LOG_WARNING("Cannot identify target as a STM32 family.");
  720. return ERROR_FAIL;
  721. }
  722. /* get flash size from target. */
  723. retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
  724. /* failed reading flash size or flash size invalid (early silicon),
  725. * default to max target family */
  726. if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
  727. LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
  728. max_flash_size_in_kb);
  729. flash_size_in_kb = max_flash_size_in_kb;
  730. }
  731. if (stm32x_info->has_dual_banks) {
  732. /* split reported size into matching bank */
  733. if (bank->base != 0x08080000) {
  734. /* bank 0 will be fixed 512k */
  735. flash_size_in_kb = 512;
  736. } else {
  737. flash_size_in_kb -= 512;
  738. /* bank1 also uses a register offset */
  739. stm32x_info->register_base = FLASH_REG_BASE_B1;
  740. base_address = 0x08080000;
  741. }
  742. }
  743. /* if the user sets the size manually then ignore the probed value
  744. * this allows us to work around devices that have a invalid flash size register value */
  745. if (stm32x_info->user_bank_size) {
  746. LOG_INFO("ignoring flash probed value, using configured bank size");
  747. flash_size_in_kb = stm32x_info->user_bank_size / 1024;
  748. }
  749. LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
  750. /* did we assign flash size? */
  751. assert(flash_size_in_kb != 0xffff);
  752. /* calculate numbers of pages */
  753. int num_pages = flash_size_in_kb * 1024 / page_size;
  754. /* check that calculation result makes sense */
  755. assert(num_pages > 0);
  756. free(bank->sectors);
  757. bank->sectors = NULL;
  758. free(bank->prot_blocks);
  759. bank->prot_blocks = NULL;
  760. bank->base = base_address;
  761. bank->size = (num_pages * page_size);
  762. bank->num_sectors = num_pages;
  763. bank->sectors = alloc_block_array(0, page_size, num_pages);
  764. if (!bank->sectors)
  765. return ERROR_FAIL;
  766. /* calculate number of write protection blocks */
  767. int num_prot_blocks = num_pages / stm32x_info->ppage_size;
  768. if (num_prot_blocks > 32)
  769. num_prot_blocks = 32;
  770. bank->num_prot_blocks = num_prot_blocks;
  771. bank->prot_blocks = alloc_block_array(0, stm32x_info->ppage_size * page_size, num_prot_blocks);
  772. if (!bank->prot_blocks)
  773. return ERROR_FAIL;
  774. if (num_prot_blocks == 32)
  775. bank->prot_blocks[31].size = (num_pages - (31 * stm32x_info->ppage_size)) * page_size;
  776. stm32x_info->probed = true;
  777. return ERROR_OK;
  778. }
  779. static int stm32x_auto_probe(struct flash_bank *bank)
  780. {
  781. struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
  782. if (stm32x_info->probed)
  783. return ERROR_OK;
  784. return stm32x_probe(bank);
  785. }
  786. #if 0
  787. COMMAND_HANDLER(stm32x_handle_part_id_command)
  788. {
  789. return ERROR_OK;
  790. }
  791. #endif
  792. static const char *get_stm32f0_revision(uint16_t rev_id)
  793. {
  794. const char *rev_str = NULL;
  795. switch (rev_id) {
  796. case 0x1000:
  797. rev_str = "1.0";
  798. break;
  799. case 0x2000:
  800. rev_str = "2.0";
  801. break;
  802. }
  803. return rev_str;
  804. }
  805. static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
  806. {
  807. uint32_t dbgmcu_idcode;
  808. /* read stm32 device id register */
  809. int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
  810. if (retval != ERROR_OK)
  811. return retval;
  812. uint16_t device_id = dbgmcu_idcode & 0xfff;
  813. uint16_t rev_id = dbgmcu_idcode >> 16;
  814. const char *device_str;
  815. const char *rev_str = NULL;
  816. switch (device_id) {
  817. case 0x410:
  818. device_str = "STM32F10x (Medium Density)";
  819. switch (rev_id) {
  820. case 0x0000:
  821. rev_str = "A";
  822. break;
  823. case 0x1303: /* gd32f1x0 */
  824. device_str = "GD32F1x0";
  825. break;
  826. case 0x1704: /* gd32f3x0 */
  827. device_str = "GD32F3x0";
  828. break;
  829. case 0x2000:
  830. rev_str = "B";
  831. break;
  832. case 0x2001:
  833. rev_str = "Z";
  834. break;
  835. case 0x2003:
  836. rev_str = "Y";
  837. break;
  838. }
  839. break;
  840. case 0x412:
  841. device_str = "STM32F10x (Low Density)";
  842. switch (rev_id) {
  843. case 0x1000:
  844. rev_str = "A";
  845. break;
  846. }
  847. break;
  848. case 0x414:
  849. device_str = "STM32F10x (High Density)";
  850. switch (rev_id) {
  851. case 0x1000:
  852. rev_str = "A";
  853. break;
  854. case 0x1001:
  855. rev_str = "Z";
  856. break;
  857. case 0x1003:
  858. rev_str = "Y";
  859. break;
  860. }
  861. break;
  862. case 0x418:
  863. device_str = "STM32F10x (Connectivity)";
  864. switch (rev_id) {
  865. case 0x1000:
  866. rev_str = "A";
  867. break;
  868. case 0x1001:
  869. rev_str = "Z";
  870. break;
  871. }
  872. break;
  873. case 0x420:
  874. device_str = "STM32F100 (Low/Medium Density)";
  875. switch (rev_id) {
  876. case 0x1000:
  877. rev_str = "A";
  878. break;
  879. case 0x1001:
  880. rev_str = "Z";
  881. break;
  882. }
  883. break;
  884. case 0x422:
  885. device_str = "STM32F302xB/C";
  886. switch (rev_id) {
  887. case 0x1000:
  888. rev_str = "A";
  889. break;
  890. case 0x1001:
  891. rev_str = "Z";
  892. break;
  893. case 0x1003:
  894. rev_str = "Y";
  895. break;
  896. case 0x2000:
  897. rev_str = "B";
  898. break;
  899. }
  900. break;
  901. case 0x428:
  902. device_str = "STM32F100 (High Density)";
  903. switch (rev_id) {
  904. case 0x1000:
  905. rev_str = "A";
  906. break;
  907. case 0x1001:
  908. rev_str = "Z";
  909. break;
  910. }
  911. break;
  912. case 0x430:
  913. device_str = "STM32F10x (XL Density)";
  914. switch (rev_id) {
  915. case 0x1000:
  916. rev_str = "A";
  917. break;
  918. }
  919. break;
  920. case 0x432:
  921. device_str = "STM32F37x";
  922. switch (rev_id) {
  923. case 0x1000:
  924. rev_str = "A";
  925. break;
  926. case 0x2000:
  927. rev_str = "B";
  928. break;
  929. }
  930. break;
  931. case 0x438:
  932. device_str = "STM32F33x";
  933. switch (rev_id) {
  934. case 0x1000:
  935. rev_str = "A";
  936. break;
  937. }
  938. break;
  939. case 0x439:
  940. device_str = "STM32F302x6/8";
  941. switch (rev_id) {
  942. case 0x1000:
  943. rev_str = "A";
  944. break;
  945. case 0x1001:
  946. rev_str = "Z";
  947. break;
  948. }
  949. break;
  950. case 0x444:
  951. device_str = "STM32F03x";
  952. rev_str = get_stm32f0_revision(rev_id);
  953. break;
  954. case 0x440:
  955. device_str = "STM32F05x";
  956. rev_str = get_stm32f0_revision(rev_id);
  957. break;
  958. case 0x445:
  959. device_str = "STM32F04x";
  960. rev_str = get_stm32f0_revision(rev_id);
  961. break;
  962. case 0x446:
  963. device_str = "STM32F303xD/E";
  964. switch (rev_id) {
  965. case 0x1000:
  966. rev_str = "A";
  967. break;
  968. }
  969. break;
  970. case 0x448:
  971. device_str = "STM32F07x";
  972. rev_str = get_stm32f0_revision(rev_id);
  973. break;
  974. case 0x442:
  975. device_str = "STM32F09x";
  976. rev_str = get_stm32f0_revision(rev_id);
  977. break;
  978. default:
  979. snprintf(buf, buf_size, "Cannot identify target as a STM32F0/1/3\n");
  980. return ERROR_FAIL;
  981. }
  982. if (rev_str != NULL)
  983. snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str);
  984. else
  985. snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
  986. return ERROR_OK;
  987. }
  988. COMMAND_HANDLER(stm32x_handle_lock_command)
  989. {
  990. struct target *target = NULL;
  991. struct stm32x_flash_bank *stm32x_info = NULL;
  992. if (CMD_ARGC < 1)
  993. return ERROR_COMMAND_SYNTAX_ERROR;
  994. struct flash_bank *bank;
  995. int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
  996. if (ERROR_OK != retval)
  997. return retval;
  998. stm32x_info = bank->driver_priv;
  999. target = bank->target;
  1000. if (target->state != TARGET_HALTED) {
  1001. LOG_ERROR("Target not halted");
  1002. return ERROR_TARGET_NOT_HALTED;
  1003. }
  1004. retval = stm32x_check_operation_supported(bank);
  1005. if (ERROR_OK != retval)
  1006. return retval;
  1007. if (stm32x_erase_options(bank) != ERROR_OK) {
  1008. command_print(CMD, "stm32x failed to erase options");
  1009. return ERROR_OK;
  1010. }
  1011. /* set readout protection */
  1012. stm32x_info->option_bytes.rdp = 0;
  1013. if (stm32x_write_options(bank) != ERROR_OK) {
  1014. command_print(CMD, "stm32x failed to lock device");
  1015. return ERROR_OK;
  1016. }
  1017. command_print(CMD, "stm32x locked");
  1018. return ERROR_OK;
  1019. }
  1020. COMMAND_HANDLER(stm32x_handle_unlock_command)
  1021. {
  1022. struct target *target = NULL;
  1023. if (CMD_ARGC < 1)
  1024. return ERROR_COMMAND_SYNTAX_ERROR;
  1025. struct flash_bank *bank;
  1026. int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
  1027. if (ERROR_OK != retval)
  1028. return retval;
  1029. target = bank->target;
  1030. if (target->state != TARGET_HALTED) {
  1031. LOG_ERROR("Target not halted");
  1032. return ERROR_TARGET_NOT_HALTED;
  1033. }
  1034. retval = stm32x_check_operation_supported(bank);
  1035. if (ERROR_OK != retval)
  1036. return retval;
  1037. if (stm32x_erase_options(bank) != ERROR_OK) {
  1038. command_print(CMD, "stm32x failed to erase options");
  1039. return ERROR_OK;
  1040. }
  1041. if (stm32x_write_options(bank) != ERROR_OK) {
  1042. command_print(CMD, "stm32x failed to unlock device");
  1043. return ERROR_OK;
  1044. }
  1045. command_print(CMD, "stm32x unlocked.\n"
  1046. "INFO: a reset or power cycle is required "
  1047. "for the new settings to take effect.");
  1048. return ERROR_OK;
  1049. }
  1050. COMMAND_HANDLER(stm32x_handle_options_read_command)
  1051. {
  1052. uint32_t optionbyte, protection;
  1053. struct target *target = NULL;
  1054. struct stm32x_flash_bank *stm32x_info = NULL;
  1055. if (CMD_ARGC < 1)
  1056. return ERROR_COMMAND_SYNTAX_ERROR;
  1057. struct flash_bank *bank;
  1058. int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
  1059. if (ERROR_OK != retval)
  1060. return retval;
  1061. stm32x_info = bank->driver_priv;
  1062. target = bank->target;
  1063. if (target->state != TARGET_HALTED) {
  1064. LOG_ERROR("Target not halted");
  1065. return ERROR_TARGET_NOT_HALTED;
  1066. }
  1067. retval = stm32x_check_operation_supported(bank);
  1068. if (ERROR_OK != retval)
  1069. return retval;
  1070. retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
  1071. if (retval != ERROR_OK)
  1072. return retval;
  1073. uint16_t user_data = optionbyte >> stm32x_info->user_data_offset;
  1074. retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
  1075. if (retval != ERROR_OK)
  1076. return retval;
  1077. if (optionbyte & (1 << OPT_ERROR))
  1078. command_print(CMD, "option byte complement error");
  1079. command_print(CMD, "option byte register = 0x%" PRIx32 "", optionbyte);
  1080. command_print(CMD, "write protection register = 0x%" PRIx32 "", protection);
  1081. command_print(CMD, "read protection: %s",
  1082. (optionbyte & (1 << OPT_READOUT)) ? "on" : "off");
  1083. /* user option bytes are offset depending on variant */
  1084. optionbyte >>= stm32x_info->option_offset;
  1085. command_print(CMD, "watchdog: %sware",
  1086. (optionbyte & (1 << OPT_RDWDGSW)) ? "soft" : "hard");
  1087. command_print(CMD, "stop mode: %sreset generated upon entry",
  1088. (optionbyte & (1 << OPT_RDRSTSTOP)) ? "no " : "");
  1089. command_print(CMD, "standby mode: %sreset generated upon entry",
  1090. (optionbyte & (1 << OPT_RDRSTSTDBY)) ? "no " : "");
  1091. if (stm32x_info->has_dual_banks)
  1092. command_print(CMD, "boot: bank %d", (optionbyte & (1 << OPT_BFB2)) ? 0 : 1);
  1093. command_print(CMD, "user data = 0x%02" PRIx16 "", user_data);
  1094. return ERROR_OK;
  1095. }
  1096. COMMAND_HANDLER(stm32x_handle_options_write_command)
  1097. {
  1098. struct target *target = NULL;
  1099. struct stm32x_flash_bank *stm32x_info = NULL;
  1100. uint8_t optionbyte;
  1101. uint16_t useropt;
  1102. if (CMD_ARGC < 2)
  1103. return ERROR_COMMAND_SYNTAX_ERROR;
  1104. struct flash_bank *bank;
  1105. int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
  1106. if (ERROR_OK != retval)
  1107. return retval;
  1108. stm32x_info = bank->driver_priv;
  1109. target = bank->target;
  1110. if (target->state != TARGET_HALTED) {
  1111. LOG_ERROR("Target not halted");
  1112. return ERROR_TARGET_NOT_HALTED;
  1113. }
  1114. retval = stm32x_check_operation_supported(bank);
  1115. if (ERROR_OK != retval)
  1116. return retval;
  1117. retval = stm32x_read_options(bank);
  1118. if (ERROR_OK != retval)
  1119. return retval;
  1120. /* start with current options */
  1121. optionbyte = stm32x_info->option_bytes.user;
  1122. useropt = stm32x_info->option_bytes.data;
  1123. /* skip over flash bank */
  1124. CMD_ARGC--;
  1125. CMD_ARGV++;
  1126. while (CMD_ARGC) {
  1127. if (strcmp("SWWDG", CMD_ARGV[0]) == 0)
  1128. optionbyte |= (1 << 0);
  1129. else if (strcmp("HWWDG", CMD_ARGV[0]) == 0)
  1130. optionbyte &= ~(1 << 0);
  1131. else if (strcmp("NORSTSTOP", CMD_ARGV[0]) == 0)
  1132. optionbyte |= (1 << 1);
  1133. else if (strcmp("RSTSTOP", CMD_ARGV[0]) == 0)
  1134. optionbyte &= ~(1 << 1);
  1135. else if (strcmp("NORSTSTNDBY", CMD_ARGV[0]) == 0)
  1136. optionbyte |= (1 << 2);
  1137. else if (strcmp("RSTSTNDBY", CMD_ARGV[0]) == 0)
  1138. optionbyte &= ~(1 << 2);
  1139. else if (strcmp("USEROPT", CMD_ARGV[0]) == 0) {
  1140. if (CMD_ARGC < 2)
  1141. return ERROR_COMMAND_SYNTAX_ERROR;
  1142. COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], useropt);
  1143. CMD_ARGC--;
  1144. CMD_ARGV++;
  1145. } else if (stm32x_info->has_dual_banks) {
  1146. if (strcmp("BOOT0", CMD_ARGV[0]) == 0)
  1147. optionbyte |= (1 << 3);
  1148. else if (strcmp("BOOT1", CMD_ARGV[0]) == 0)
  1149. optionbyte &= ~(1 << 3);
  1150. else
  1151. return ERROR_COMMAND_SYNTAX_ERROR;
  1152. } else
  1153. return ERROR_COMMAND_SYNTAX_ERROR;
  1154. CMD_ARGC--;
  1155. CMD_ARGV++;
  1156. }
  1157. if (stm32x_erase_options(bank) != ERROR_OK) {
  1158. command_print(CMD, "stm32x failed to erase options");
  1159. return ERROR_OK;
  1160. }
  1161. stm32x_info->option_bytes.user = optionbyte;
  1162. stm32x_info->option_bytes.data = useropt;
  1163. if (stm32x_write_options(bank) != ERROR_OK) {
  1164. command_print(CMD, "stm32x failed to write options");
  1165. return ERROR_OK;
  1166. }
  1167. command_print(CMD, "stm32x write options complete.\n"
  1168. "INFO: %spower cycle is required "
  1169. "for the new settings to take effect.",
  1170. stm32x_info->can_load_options
  1171. ? "'stm32f1x options_load' command or " : "");
  1172. return ERROR_OK;
  1173. }
  1174. COMMAND_HANDLER(stm32x_handle_options_load_command)
  1175. {
  1176. if (CMD_ARGC < 1)
  1177. return ERROR_COMMAND_SYNTAX_ERROR;
  1178. struct flash_bank *bank;
  1179. int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
  1180. if (ERROR_OK != retval)
  1181. return retval;
  1182. struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
  1183. if (!stm32x_info->can_load_options) {
  1184. LOG_ERROR("Command not applicable to stm32f1x devices - power cycle is "
  1185. "required instead.");
  1186. return ERROR_FAIL;
  1187. }
  1188. struct target *target = bank->target;
  1189. if (target->state != TARGET_HALTED) {
  1190. LOG_ERROR("Target not halted");
  1191. return ERROR_TARGET_NOT_HALTED;
  1192. }
  1193. retval = stm32x_check_operation_supported(bank);
  1194. if (ERROR_OK != retval)
  1195. return retval;
  1196. /* unlock option flash registers */
  1197. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
  1198. if (retval != ERROR_OK)
  1199. return retval;
  1200. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
  1201. if (retval != ERROR_OK)
  1202. return retval;
  1203. /* force re-load of option bytes - generates software reset */
  1204. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBL_LAUNCH);
  1205. if (retval != ERROR_OK)
  1206. return retval;
  1207. return ERROR_OK;
  1208. }
  1209. static int stm32x_mass_erase(struct flash_bank *bank)
  1210. {
  1211. struct target *target = bank->target;
  1212. if (target->state != TARGET_HALTED) {
  1213. LOG_ERROR("Target not halted");
  1214. return ERROR_TARGET_NOT_HALTED;
  1215. }
  1216. /* unlock option flash registers */
  1217. int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
  1218. if (retval != ERROR_OK)
  1219. return retval;
  1220. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
  1221. if (retval != ERROR_OK)
  1222. return retval;
  1223. /* mass erase flash memory */
  1224. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
  1225. if (retval != ERROR_OK)
  1226. return retval;
  1227. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
  1228. FLASH_MER | FLASH_STRT);
  1229. if (retval != ERROR_OK)
  1230. return retval;
  1231. retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
  1232. if (retval != ERROR_OK)
  1233. return retval;
  1234. retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
  1235. if (retval != ERROR_OK)
  1236. return retval;
  1237. return ERROR_OK;
  1238. }
  1239. COMMAND_HANDLER(stm32x_handle_mass_erase_command)
  1240. {
  1241. if (CMD_ARGC < 1)
  1242. return ERROR_COMMAND_SYNTAX_ERROR;
  1243. struct flash_bank *bank;
  1244. int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
  1245. if (ERROR_OK != retval)
  1246. return retval;
  1247. retval = stm32x_mass_erase(bank);
  1248. if (retval == ERROR_OK) {
  1249. /* set all sectors as erased */
  1250. for (unsigned int i = 0; i < bank->num_sectors; i++)
  1251. bank->sectors[i].is_erased = 1;
  1252. command_print(CMD, "stm32x mass erase complete");
  1253. } else
  1254. command_print(CMD, "stm32x mass erase failed");
  1255. return retval;
  1256. }
  1257. static const struct command_registration stm32x_exec_command_handlers[] = {
  1258. {
  1259. .name = "lock",
  1260. .handler = stm32x_handle_lock_command,
  1261. .mode = COMMAND_EXEC,
  1262. .usage = "bank_id",
  1263. .help = "Lock entire flash device.",
  1264. },
  1265. {
  1266. .name = "unlock",
  1267. .handler = stm32x_handle_unlock_command,
  1268. .mode = COMMAND_EXEC,
  1269. .usage = "bank_id",
  1270. .help = "Unlock entire protected flash device.",
  1271. },
  1272. {
  1273. .name = "mass_erase",
  1274. .handler = stm32x_handle_mass_erase_command,
  1275. .mode = COMMAND_EXEC,
  1276. .usage = "bank_id",
  1277. .help = "Erase entire flash device.",
  1278. },
  1279. {
  1280. .name = "options_read",
  1281. .handler = stm32x_handle_options_read_command,
  1282. .mode = COMMAND_EXEC,
  1283. .usage = "bank_id",
  1284. .help = "Read and display device option bytes.",
  1285. },
  1286. {
  1287. .name = "options_write",
  1288. .handler = stm32x_handle_options_write_command,
  1289. .mode = COMMAND_EXEC,
  1290. .usage = "bank_id ('SWWDG'|'HWWDG') "
  1291. "('RSTSTNDBY'|'NORSTSTNDBY') "
  1292. "('RSTSTOP'|'NORSTSTOP') ('USEROPT' user_data)",
  1293. .help = "Replace bits in device option bytes.",
  1294. },
  1295. {
  1296. .name = "options_load",
  1297. .handler = stm32x_handle_options_load_command,
  1298. .mode = COMMAND_EXEC,
  1299. .usage = "bank_id",
  1300. .help = "Force re-load of device option bytes.",
  1301. },
  1302. COMMAND_REGISTRATION_DONE
  1303. };
  1304. static const struct command_registration stm32x_command_handlers[] = {
  1305. {
  1306. .name = "stm32f1x",
  1307. .mode = COMMAND_ANY,
  1308. .help = "stm32f1x flash command group",
  1309. .usage = "",
  1310. .chain = stm32x_exec_command_handlers,
  1311. },
  1312. COMMAND_REGISTRATION_DONE
  1313. };
  1314. const struct flash_driver stm32f1x_flash = {
  1315. .name = "stm32f1x",
  1316. .commands = stm32x_command_handlers,
  1317. .flash_bank_command = stm32x_flash_bank_command,
  1318. .erase = stm32x_erase,
  1319. .protect = stm32x_protect,
  1320. .write = stm32x_write,
  1321. .read = default_flash_read,
  1322. .probe = stm32x_probe,
  1323. .auto_probe = stm32x_auto_probe,
  1324. .erase_check = default_flash_blank_check,
  1325. .protect_check = stm32x_protect_check,
  1326. .info = get_stm32x_info,
  1327. .free_driver_priv = default_flash_free_driver_priv,
  1328. };