You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2644 lines
75 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 2 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, write to the *
  17. * Free Software Foundation, Inc., *
  18. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  19. ***************************************************************************/
  20. #ifdef HAVE_CONFIG_H
  21. #include "config.h"
  22. #endif
  23. #include "replacements.h"
  24. #include "embeddedice.h"
  25. #include "target.h"
  26. #include "target_request.h"
  27. #include "armv4_5.h"
  28. #include "arm_jtag.h"
  29. #include "jtag.h"
  30. #include "log.h"
  31. #include "arm7_9_common.h"
  32. #include "breakpoints.h"
  33. #include <stdlib.h>
  34. #include <string.h>
  35. #include <unistd.h>
  36. #include <sys/types.h>
  37. #include <sys/stat.h>
  38. #include <sys/time.h>
  39. #include <errno.h>
  40. int arm7_9_debug_entry(target_t *target);
  41. int arm7_9_enable_sw_bkpts(struct target_s *target);
  42. /* command handler forward declarations */
  43. int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  44. int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  45. int handle_arm7_9_read_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  46. int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  47. int handle_arm7_9_sw_bkpts_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  48. int handle_arm7_9_force_hw_bkpts_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  49. int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  50. int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  51. int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  52. int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
  53. int arm7_9_reinit_embeddedice(target_t *target)
  54. {
  55. armv4_5_common_t *armv4_5 = target->arch_info;
  56. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  57. breakpoint_t *breakpoint = target->breakpoints;
  58. arm7_9->wp_available = 2;
  59. arm7_9->wp0_used = 0;
  60. arm7_9->wp1_used = 0;
  61. /* mark all hardware breakpoints as unset */
  62. while (breakpoint)
  63. {
  64. if (breakpoint->type == BKPT_HARD)
  65. {
  66. breakpoint->set = 0;
  67. }
  68. breakpoint = breakpoint->next;
  69. }
  70. if (arm7_9->sw_bkpts_enabled && arm7_9->sw_bkpts_use_wp)
  71. {
  72. arm7_9->sw_bkpts_enabled = 0;
  73. arm7_9_enable_sw_bkpts(target);
  74. }
  75. arm7_9->reinit_embeddedice = 0;
  76. return ERROR_OK;
  77. }
  78. int arm7_9_jtag_callback(enum jtag_event event, void *priv)
  79. {
  80. target_t *target = priv;
  81. armv4_5_common_t *armv4_5 = target->arch_info;
  82. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  83. /* a test-logic reset occured
  84. * the EmbeddedICE registers have been reset
  85. * hardware breakpoints have been cleared
  86. */
  87. if (event == JTAG_TRST_ASSERTED)
  88. {
  89. arm7_9->reinit_embeddedice = 1;
  90. }
  91. return ERROR_OK;
  92. }
  93. int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p)
  94. {
  95. armv4_5_common_t *armv4_5 = target->arch_info;
  96. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  97. if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
  98. {
  99. return -1;
  100. }
  101. if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC)
  102. {
  103. return -1;
  104. }
  105. *armv4_5_p = armv4_5;
  106. *arm7_9_p = arm7_9;
  107. return ERROR_OK;
  108. }
  109. int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
  110. {
  111. armv4_5_common_t *armv4_5 = target->arch_info;
  112. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  113. if (target->state != TARGET_HALTED)
  114. {
  115. WARNING("target not halted");
  116. return ERROR_TARGET_NOT_HALTED;
  117. }
  118. if (arm7_9->force_hw_bkpts)
  119. breakpoint->type = BKPT_HARD;
  120. if (breakpoint->set)
  121. {
  122. WARNING("breakpoint already set");
  123. return ERROR_OK;
  124. }
  125. if (breakpoint->type == BKPT_HARD)
  126. {
  127. /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
  128. u32 mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
  129. if (!arm7_9->wp0_used)
  130. {
  131. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
  132. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
  133. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
  134. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
  135. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
  136. jtag_execute_queue();
  137. arm7_9->wp0_used = 1;
  138. breakpoint->set = 1;
  139. }
  140. else if (!arm7_9->wp1_used)
  141. {
  142. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
  143. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
  144. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
  145. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
  146. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
  147. jtag_execute_queue();
  148. arm7_9->wp1_used = 1;
  149. breakpoint->set = 2;
  150. }
  151. else
  152. {
  153. ERROR("BUG: no hardware comparator available");
  154. return ERROR_OK;
  155. }
  156. }
  157. else if (breakpoint->type == BKPT_SOFT)
  158. {
  159. if (breakpoint->length == 4)
  160. {
  161. u32 verify = 0xffffffff;
  162. /* keep the original instruction in target endianness */
  163. target->type->read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
  164. /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
  165. target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt);
  166. target->type->read_memory(target, breakpoint->address, 4, 1, (u8 *)&verify);
  167. if (verify != arm7_9->arm_bkpt)
  168. {
  169. ERROR("Unable to set 32 bit software breakpoint at address %08x", breakpoint->address);
  170. return ERROR_OK;
  171. }
  172. }
  173. else
  174. {
  175. u16 verify = 0xffff;
  176. /* keep the original instruction in target endianness */
  177. target->type->read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
  178. /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
  179. target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt);
  180. target->type->read_memory(target, breakpoint->address, 2, 1, (u8 *)&verify);
  181. if (verify != arm7_9->thumb_bkpt)
  182. {
  183. ERROR("Unable to set thumb software breakpoint at address %08x", breakpoint->address);
  184. return ERROR_OK;
  185. }
  186. }
  187. breakpoint->set = 1;
  188. }
  189. return ERROR_OK;
  190. }
  191. int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
  192. {
  193. armv4_5_common_t *armv4_5 = target->arch_info;
  194. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  195. if (target->state != TARGET_HALTED)
  196. {
  197. WARNING("target not halted");
  198. return ERROR_TARGET_NOT_HALTED;
  199. }
  200. if (!breakpoint->set)
  201. {
  202. WARNING("breakpoint not set");
  203. return ERROR_OK;
  204. }
  205. if (breakpoint->type == BKPT_HARD)
  206. {
  207. if (breakpoint->set == 1)
  208. {
  209. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
  210. jtag_execute_queue();
  211. arm7_9->wp0_used = 0;
  212. }
  213. else if (breakpoint->set == 2)
  214. {
  215. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
  216. jtag_execute_queue();
  217. arm7_9->wp1_used = 0;
  218. }
  219. breakpoint->set = 0;
  220. }
  221. else
  222. {
  223. /* restore original instruction (kept in target endianness) */
  224. if (breakpoint->length == 4)
  225. {
  226. u32 current_instr;
  227. /* check that user program as not modified breakpoint instruction */
  228. target->type->read_memory(target, breakpoint->address, 4, 1, (u8*)&current_instr);
  229. if (current_instr==arm7_9->arm_bkpt)
  230. target->type->write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
  231. }
  232. else
  233. {
  234. u16 current_instr;
  235. /* check that user program as not modified breakpoint instruction */
  236. target->type->read_memory(target, breakpoint->address, 2, 1, (u8*)&current_instr);
  237. if (current_instr==arm7_9->thumb_bkpt)
  238. target->type->write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
  239. }
  240. breakpoint->set = 0;
  241. }
  242. return ERROR_OK;
  243. }
  244. int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
  245. {
  246. armv4_5_common_t *armv4_5 = target->arch_info;
  247. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  248. if (target->state != TARGET_HALTED)
  249. {
  250. WARNING("target not halted");
  251. return ERROR_TARGET_NOT_HALTED;
  252. }
  253. if (arm7_9->force_hw_bkpts)
  254. {
  255. DEBUG("forcing use of hardware breakpoint at address 0x%8.8x", breakpoint->address);
  256. breakpoint->type = BKPT_HARD;
  257. }
  258. if ((breakpoint->type == BKPT_SOFT) && (arm7_9->sw_bkpts_enabled == 0))
  259. {
  260. INFO("sw breakpoint requested, but software breakpoints not enabled");
  261. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  262. }
  263. if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
  264. {
  265. INFO("no watchpoint unit available for hardware breakpoint");
  266. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  267. }
  268. if ((breakpoint->length != 2) && (breakpoint->length != 4))
  269. {
  270. INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
  271. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  272. }
  273. if (breakpoint->type == BKPT_HARD)
  274. arm7_9->wp_available--;
  275. return ERROR_OK;
  276. }
  277. int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
  278. {
  279. armv4_5_common_t *armv4_5 = target->arch_info;
  280. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  281. if (target->state != TARGET_HALTED)
  282. {
  283. WARNING("target not halted");
  284. return ERROR_TARGET_NOT_HALTED;
  285. }
  286. if (breakpoint->set)
  287. {
  288. arm7_9_unset_breakpoint(target, breakpoint);
  289. }
  290. if (breakpoint->type == BKPT_HARD)
  291. arm7_9->wp_available++;
  292. return ERROR_OK;
  293. }
  294. int arm7_9_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
  295. {
  296. armv4_5_common_t *armv4_5 = target->arch_info;
  297. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  298. int rw_mask = 1;
  299. u32 mask;
  300. mask = watchpoint->length - 1;
  301. if (target->state != TARGET_HALTED)
  302. {
  303. WARNING("target not halted");
  304. return ERROR_TARGET_NOT_HALTED;
  305. }
  306. if (watchpoint->rw == WPT_ACCESS)
  307. rw_mask = 0;
  308. else
  309. rw_mask = 1;
  310. if (!arm7_9->wp0_used)
  311. {
  312. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
  313. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
  314. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
  315. if( watchpoint->mask != 0xffffffffu )
  316. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
  317. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
  318. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
  319. jtag_execute_queue();
  320. watchpoint->set = 1;
  321. arm7_9->wp0_used = 2;
  322. }
  323. else if (!arm7_9->wp1_used)
  324. {
  325. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
  326. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
  327. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
  328. if( watchpoint->mask != 0xffffffffu )
  329. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
  330. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
  331. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
  332. jtag_execute_queue();
  333. watchpoint->set = 2;
  334. arm7_9->wp1_used = 2;
  335. }
  336. else
  337. {
  338. ERROR("BUG: no hardware comparator available");
  339. return ERROR_OK;
  340. }
  341. return ERROR_OK;
  342. }
  343. int arm7_9_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
  344. {
  345. armv4_5_common_t *armv4_5 = target->arch_info;
  346. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  347. if (target->state != TARGET_HALTED)
  348. {
  349. WARNING("target not halted");
  350. return ERROR_TARGET_NOT_HALTED;
  351. }
  352. if (!watchpoint->set)
  353. {
  354. WARNING("breakpoint not set");
  355. return ERROR_OK;
  356. }
  357. if (watchpoint->set == 1)
  358. {
  359. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
  360. jtag_execute_queue();
  361. arm7_9->wp0_used = 0;
  362. }
  363. else if (watchpoint->set == 2)
  364. {
  365. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
  366. jtag_execute_queue();
  367. arm7_9->wp1_used = 0;
  368. }
  369. watchpoint->set = 0;
  370. return ERROR_OK;
  371. }
  372. int arm7_9_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
  373. {
  374. armv4_5_common_t *armv4_5 = target->arch_info;
  375. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  376. if (target->state != TARGET_HALTED)
  377. {
  378. WARNING("target not halted");
  379. return ERROR_TARGET_NOT_HALTED;
  380. }
  381. if (arm7_9->wp_available < 1)
  382. {
  383. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  384. }
  385. if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
  386. {
  387. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  388. }
  389. arm7_9->wp_available--;
  390. return ERROR_OK;
  391. }
  392. int arm7_9_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
  393. {
  394. armv4_5_common_t *armv4_5 = target->arch_info;
  395. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  396. if (target->state != TARGET_HALTED)
  397. {
  398. WARNING("target not halted");
  399. return ERROR_TARGET_NOT_HALTED;
  400. }
  401. if (watchpoint->set)
  402. {
  403. arm7_9_unset_watchpoint(target, watchpoint);
  404. }
  405. arm7_9->wp_available++;
  406. return ERROR_OK;
  407. }
  408. int arm7_9_enable_sw_bkpts(struct target_s *target)
  409. {
  410. armv4_5_common_t *armv4_5 = target->arch_info;
  411. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  412. int retval;
  413. if (arm7_9->sw_bkpts_enabled)
  414. return ERROR_OK;
  415. if (arm7_9->wp_available < 1)
  416. {
  417. WARNING("can't enable sw breakpoints with no watchpoint unit available");
  418. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  419. }
  420. arm7_9->wp_available--;
  421. if (!arm7_9->wp0_used)
  422. {
  423. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
  424. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
  425. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
  426. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
  427. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
  428. arm7_9->sw_bkpts_enabled = 1;
  429. arm7_9->wp0_used = 3;
  430. }
  431. else if (!arm7_9->wp1_used)
  432. {
  433. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
  434. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
  435. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
  436. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
  437. embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
  438. arm7_9->sw_bkpts_enabled = 2;
  439. arm7_9->wp1_used = 3;
  440. }
  441. else
  442. {
  443. ERROR("BUG: both watchpoints used, but wp_available >= 1");
  444. exit(-1);
  445. }
  446. if ((retval = jtag_execute_queue()) != ERROR_OK)
  447. {
  448. ERROR("error writing EmbeddedICE registers to enable sw breakpoints");
  449. exit(-1);
  450. };
  451. return ERROR_OK;
  452. }
  453. int arm7_9_disable_sw_bkpts(struct target_s *target)
  454. {
  455. armv4_5_common_t *armv4_5 = target->arch_info;
  456. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  457. if (!arm7_9->sw_bkpts_enabled)
  458. return ERROR_OK;
  459. if (arm7_9->sw_bkpts_enabled == 1)
  460. {
  461. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
  462. arm7_9->sw_bkpts_enabled = 0;
  463. arm7_9->wp0_used = 0;
  464. arm7_9->wp_available++;
  465. }
  466. else if (arm7_9->sw_bkpts_enabled == 2)
  467. {
  468. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
  469. arm7_9->sw_bkpts_enabled = 0;
  470. arm7_9->wp1_used = 0;
  471. arm7_9->wp_available++;
  472. }
  473. return ERROR_OK;
  474. }
  475. int arm7_9_execute_sys_speed(struct target_s *target)
  476. {
  477. int timeout;
  478. int retval;
  479. armv4_5_common_t *armv4_5 = target->arch_info;
  480. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  481. arm_jtag_t *jtag_info = &arm7_9->jtag_info;
  482. reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
  483. /* set RESTART instruction */
  484. jtag_add_end_state(TAP_RTI);
  485. arm_jtag_set_instr(jtag_info, 0x4, NULL);
  486. for (timeout=0; timeout<50; timeout++)
  487. {
  488. /* read debug status register */
  489. embeddedice_read_reg(dbg_stat);
  490. if ((retval = jtag_execute_queue()) != ERROR_OK)
  491. return retval;
  492. if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
  493. && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
  494. break;
  495. usleep(100000);
  496. }
  497. if (timeout == 50)
  498. {
  499. ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %x", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
  500. return ERROR_TARGET_TIMEOUT;
  501. }
  502. return ERROR_OK;
  503. }
  504. int arm7_9_execute_fast_sys_speed(struct target_s *target)
  505. {
  506. static int set=0;
  507. static u8 check_value[4], check_mask[4];
  508. armv4_5_common_t *armv4_5 = target->arch_info;
  509. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  510. arm_jtag_t *jtag_info = &arm7_9->jtag_info;
  511. reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
  512. /* set RESTART instruction */
  513. jtag_add_end_state(TAP_RTI);
  514. arm_jtag_set_instr(jtag_info, 0x4, NULL);
  515. if (!set)
  516. {
  517. /* check for DBGACK and SYSCOMP set (others don't care) */
  518. /* NB! These are constants that must be available until after next jtag_execute() and
  519. we evaluate the values upon first execution in lieu of setting up these constants
  520. during early setup.
  521. */
  522. buf_set_u32(check_value, 0, 32, 0x9);
  523. buf_set_u32(check_mask, 0, 32, 0x9);
  524. set=1;
  525. }
  526. /* read debug status register */
  527. embeddedice_read_reg_w_check(dbg_stat, check_value, check_value);
  528. return ERROR_OK;
  529. }
  530. int arm7_9_target_request_data(target_t *target, u32 size, u8 *buffer)
  531. {
  532. armv4_5_common_t *armv4_5 = target->arch_info;
  533. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  534. arm_jtag_t *jtag_info = &arm7_9->jtag_info;
  535. u32 *data;
  536. int i;
  537. data = malloc(size * (sizeof(u32)));
  538. embeddedice_receive(jtag_info, data, size);
  539. for (i = 0; i < size; i++)
  540. {
  541. h_u32_to_le(buffer + (i * 4), data[i]);
  542. }
  543. free(data);
  544. return ERROR_OK;
  545. }
  546. int arm7_9_handle_target_request(void *priv)
  547. {
  548. target_t *target = priv;
  549. armv4_5_common_t *armv4_5 = target->arch_info;
  550. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  551. arm_jtag_t *jtag_info = &arm7_9->jtag_info;
  552. reg_t *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
  553. if (!target->dbg_msg_enabled)
  554. return ERROR_OK;
  555. if (target->state == TARGET_RUNNING)
  556. {
  557. /* read DCC control register */
  558. embeddedice_read_reg(dcc_control);
  559. jtag_execute_queue();
  560. /* check W bit */
  561. if (buf_get_u32(dcc_control->value, 1, 1) == 1)
  562. {
  563. u32 request;
  564. embeddedice_receive(jtag_info, &request, 1);
  565. target_request(target, request);
  566. }
  567. }
  568. return ERROR_OK;
  569. }
  570. int arm7_9_poll(target_t *target)
  571. {
  572. int retval;
  573. armv4_5_common_t *armv4_5 = target->arch_info;
  574. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  575. reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
  576. if (arm7_9->reinit_embeddedice)
  577. {
  578. arm7_9_reinit_embeddedice(target);
  579. }
  580. /* read debug status register */
  581. embeddedice_read_reg(dbg_stat);
  582. if ((retval = jtag_execute_queue()) != ERROR_OK)
  583. {
  584. return retval;
  585. }
  586. if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
  587. {
  588. DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));
  589. if (target->state == TARGET_UNKNOWN)
  590. {
  591. target->state = TARGET_RUNNING;
  592. WARNING("DBGACK set while target was in unknown state. Reset or initialize target.");
  593. }
  594. if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
  595. {
  596. target->state = TARGET_HALTED;
  597. if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
  598. return retval;
  599. target_call_event_callbacks(target, TARGET_EVENT_HALTED);
  600. }
  601. if (target->state == TARGET_DEBUG_RUNNING)
  602. {
  603. target->state = TARGET_HALTED;
  604. if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
  605. return retval;
  606. target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
  607. }
  608. if (target->state != TARGET_HALTED)
  609. {
  610. WARNING("DBGACK set, but the target did not end up in the halted stated %d", target->state);
  611. }
  612. }
  613. else
  614. {
  615. if (target->state != TARGET_DEBUG_RUNNING)
  616. target->state = TARGET_RUNNING;
  617. }
  618. return ERROR_OK;
  619. }
  620. int arm7_9_assert_reset(target_t *target)
  621. {
  622. int retval;
  623. DEBUG("target->state: %s", target_state_strings[target->state]);
  624. if (target->state == TARGET_HALTED || target->state == TARGET_UNKNOWN)
  625. {
  626. /* if the target wasn't running, there might be working areas allocated */
  627. target_free_all_working_areas(target);
  628. /* assert SRST and TRST */
  629. /* system would get ouf sync if we didn't reset test-logic, too */
  630. if ((retval = jtag_add_reset(1, 1)) != ERROR_OK)
  631. {
  632. if (retval == ERROR_JTAG_RESET_CANT_SRST)
  633. {
  634. WARNING("can't assert srst");
  635. return retval;
  636. }
  637. else
  638. {
  639. ERROR("unknown error");
  640. exit(-1);
  641. }
  642. }
  643. jtag_add_sleep(5000);
  644. if ((retval = jtag_add_reset(0, 1)) != ERROR_OK)
  645. {
  646. if (retval == ERROR_JTAG_RESET_WOULD_ASSERT_TRST)
  647. {
  648. retval = jtag_add_reset(1, 1);
  649. }
  650. }
  651. }
  652. else
  653. {
  654. if ((retval = jtag_add_reset(0, 1)) != ERROR_OK)
  655. {
  656. if (retval == ERROR_JTAG_RESET_WOULD_ASSERT_TRST)
  657. {
  658. retval = jtag_add_reset(1, 1);
  659. }
  660. if (retval == ERROR_JTAG_RESET_CANT_SRST)
  661. {
  662. WARNING("can't assert srst");
  663. return retval;
  664. }
  665. else if (retval != ERROR_OK)
  666. {
  667. ERROR("unknown error");
  668. exit(-1);
  669. }
  670. }
  671. }
  672. target->state = TARGET_RESET;
  673. jtag_add_sleep(50000);
  674. armv4_5_invalidate_core_regs(target);
  675. return ERROR_OK;
  676. }
  677. int arm7_9_deassert_reset(target_t *target)
  678. {
  679. DEBUG("target->state: %s", target_state_strings[target->state]);
  680. /* deassert reset lines */
  681. jtag_add_reset(0, 0);
  682. return ERROR_OK;
  683. }
  684. int arm7_9_clear_halt(target_t *target)
  685. {
  686. armv4_5_common_t *armv4_5 = target->arch_info;
  687. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  688. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  689. /* we used DBGRQ only if we didn't come out of reset */
  690. if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
  691. {
  692. /* program EmbeddedICE Debug Control Register to deassert DBGRQ
  693. */
  694. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
  695. embeddedice_store_reg(dbg_ctrl);
  696. }
  697. else
  698. {
  699. if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
  700. {
  701. /* if we came out of reset, and vector catch is supported, we used
  702. * vector catch to enter debug state
  703. * restore the register in that case
  704. */
  705. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
  706. }
  707. else
  708. {
  709. /* restore registers if watchpoint unit 0 was in use
  710. */
  711. if (arm7_9->wp0_used)
  712. {
  713. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
  714. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
  715. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
  716. }
  717. /* control value always has to be restored, as it was either disabled,
  718. * or enabled with possibly different bits
  719. */
  720. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
  721. }
  722. }
  723. return ERROR_OK;
  724. }
  725. int arm7_9_soft_reset_halt(struct target_s *target)
  726. {
  727. armv4_5_common_t *armv4_5 = target->arch_info;
  728. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  729. reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
  730. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  731. int i;
  732. if (target->state == TARGET_RUNNING)
  733. {
  734. target->type->halt(target);
  735. }
  736. while (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0)
  737. {
  738. embeddedice_read_reg(dbg_stat);
  739. jtag_execute_queue();
  740. }
  741. target->state = TARGET_HALTED;
  742. /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
  743. * ensure that DBGRQ is cleared
  744. */
  745. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
  746. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
  747. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
  748. embeddedice_store_reg(dbg_ctrl);
  749. arm7_9_clear_halt(target);
  750. /* if the target is in Thumb state, change to ARM state */
  751. if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
  752. {
  753. u32 r0_thumb, pc_thumb;
  754. DEBUG("target entered debug from Thumb state, changing to ARM");
  755. /* Entered debug from Thumb mode */
  756. armv4_5->core_state = ARMV4_5_STATE_THUMB;
  757. arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
  758. }
  759. /* all register content is now invalid */
  760. armv4_5_invalidate_core_regs(target);
  761. /* SVC, ARM state, IRQ and FIQ disabled */
  762. buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
  763. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
  764. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
  765. /* start fetching from 0x0 */
  766. buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
  767. armv4_5->core_cache->reg_list[15].dirty = 1;
  768. armv4_5->core_cache->reg_list[15].valid = 1;
  769. armv4_5->core_mode = ARMV4_5_MODE_SVC;
  770. armv4_5->core_state = ARMV4_5_STATE_ARM;
  771. /* reset registers */
  772. for (i = 0; i <= 14; i++)
  773. {
  774. buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
  775. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
  776. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
  777. }
  778. target_call_event_callbacks(target, TARGET_EVENT_HALTED);
  779. return ERROR_OK;
  780. }
  781. int arm7_9_prepare_reset_halt(target_t *target)
  782. {
  783. armv4_5_common_t *armv4_5 = target->arch_info;
  784. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  785. /* poll the target, and resume if it was currently halted */
  786. arm7_9_poll(target);
  787. if (target->state == TARGET_HALTED)
  788. {
  789. arm7_9_resume(target, 1, 0x0, 0, 1);
  790. }
  791. if (arm7_9->has_vector_catch)
  792. {
  793. /* program vector catch register to catch reset vector */
  794. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
  795. }
  796. else
  797. {
  798. /* program watchpoint unit to match on reset vector address */
  799. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
  800. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
  801. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x100);
  802. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xf7);
  803. }
  804. return ERROR_OK;
  805. }
  806. int arm7_9_halt(target_t *target)
  807. {
  808. armv4_5_common_t *armv4_5 = target->arch_info;
  809. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  810. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  811. DEBUG("target->state: %s", target_state_strings[target->state]);
  812. if (target->state == TARGET_HALTED)
  813. {
  814. WARNING("target was already halted");
  815. return ERROR_TARGET_ALREADY_HALTED;
  816. }
  817. if (target->state == TARGET_UNKNOWN)
  818. {
  819. WARNING("target was in unknown state when halt was requested");
  820. }
  821. if (target->state == TARGET_RESET)
  822. {
  823. if ((jtag_reset_config & RESET_SRST_PULLS_TRST) && jtag_srst)
  824. {
  825. ERROR("can't request a halt while in reset if nSRST pulls nTRST");
  826. return ERROR_TARGET_FAILURE;
  827. }
  828. else
  829. {
  830. /* we came here in a reset_halt or reset_init sequence
  831. * debug entry was already prepared in arm7_9_prepare_reset_halt()
  832. */
  833. target->debug_reason = DBG_REASON_DBGRQ;
  834. return ERROR_OK;
  835. }
  836. }
  837. if (arm7_9->use_dbgrq)
  838. {
  839. /* program EmbeddedICE Debug Control Register to assert DBGRQ
  840. */
  841. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
  842. embeddedice_store_reg(dbg_ctrl);
  843. }
  844. else
  845. {
  846. /* program watchpoint unit to match on any address
  847. */
  848. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
  849. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
  850. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x100);
  851. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xf7);
  852. }
  853. target->debug_reason = DBG_REASON_DBGRQ;
  854. return ERROR_OK;
  855. }
  856. int arm7_9_debug_entry(target_t *target)
  857. {
  858. int i;
  859. u32 context[16];
  860. u32* context_p[16];
  861. u32 r0_thumb, pc_thumb;
  862. u32 cpsr;
  863. int retval;
  864. /* get pointers to arch-specific information */
  865. armv4_5_common_t *armv4_5 = target->arch_info;
  866. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  867. reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
  868. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  869. #ifdef _DEBUG_ARM7_9_
  870. DEBUG("-");
  871. #endif
  872. if (arm7_9->pre_debug_entry)
  873. arm7_9->pre_debug_entry(target);
  874. /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
  875. * ensure that DBGRQ is cleared
  876. */
  877. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
  878. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
  879. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
  880. embeddedice_store_reg(dbg_ctrl);
  881. arm7_9_clear_halt(target);
  882. if ((retval = jtag_execute_queue()) != ERROR_OK)
  883. {
  884. switch (retval)
  885. {
  886. case ERROR_JTAG_QUEUE_FAILED:
  887. ERROR("JTAG queue failed while writing EmbeddedICE control register");
  888. exit(-1);
  889. break;
  890. default:
  891. break;
  892. }
  893. }
  894. if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
  895. return retval;
  896. if (target->state != TARGET_HALTED)
  897. {
  898. WARNING("target not halted");
  899. return ERROR_TARGET_NOT_HALTED;
  900. }
  901. /* if the target is in Thumb state, change to ARM state */
  902. if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
  903. {
  904. DEBUG("target entered debug from Thumb state");
  905. /* Entered debug from Thumb mode */
  906. armv4_5->core_state = ARMV4_5_STATE_THUMB;
  907. arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
  908. DEBUG("r0_thumb: 0x%8.8x, pc_thumb: 0x%8.8x", r0_thumb, pc_thumb);
  909. }
  910. else
  911. {
  912. DEBUG("target entered debug from ARM state");
  913. /* Entered debug from ARM mode */
  914. armv4_5->core_state = ARMV4_5_STATE_ARM;
  915. }
  916. for (i = 0; i < 16; i++)
  917. context_p[i] = &context[i];
  918. /* save core registers (r0 - r15 of current core mode) */
  919. arm7_9->read_core_regs(target, 0xffff, context_p);
  920. arm7_9->read_xpsr(target, &cpsr, 0);
  921. if ((retval = jtag_execute_queue()) != ERROR_OK)
  922. return retval;
  923. /* if the core has been executing in Thumb state, set the T bit */
  924. if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
  925. cpsr |= 0x20;
  926. buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
  927. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
  928. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
  929. armv4_5->core_mode = cpsr & 0x1f;
  930. if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
  931. {
  932. target->state = TARGET_UNKNOWN;
  933. ERROR("cpsr contains invalid mode value - communication failure");
  934. return ERROR_TARGET_FAILURE;
  935. }
  936. DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
  937. if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
  938. {
  939. DEBUG("thumb state, applying fixups");
  940. context[0] = r0_thumb;
  941. context[15] = pc_thumb;
  942. } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
  943. {
  944. /* adjust value stored by STM */
  945. context[15] -= 3 * 4;
  946. }
  947. if ((target->debug_reason == DBG_REASON_BREAKPOINT)
  948. || (target->debug_reason == DBG_REASON_SINGLESTEP)
  949. || (target->debug_reason == DBG_REASON_WATCHPOINT)
  950. || (target->debug_reason == DBG_REASON_WPTANDBKPT)
  951. || ((target->debug_reason == DBG_REASON_DBGRQ) && (arm7_9->use_dbgrq == 0)))
  952. context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
  953. else if (target->debug_reason == DBG_REASON_DBGRQ)
  954. context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
  955. else
  956. {
  957. ERROR("unknown debug reason: %i", target->debug_reason);
  958. }
  959. for (i=0; i<=15; i++)
  960. {
  961. DEBUG("r%i: 0x%8.8x", i, context[i]);
  962. buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
  963. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
  964. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
  965. }
  966. DEBUG("entered debug state at PC 0x%x", context[15]);
  967. /* exceptions other than USR & SYS have a saved program status register */
  968. if ((armv4_5_mode_to_number(armv4_5->core_mode) != ARMV4_5_MODE_USR) && (armv4_5_mode_to_number(armv4_5->core_mode) != ARMV4_5_MODE_SYS))
  969. {
  970. u32 spsr;
  971. arm7_9->read_xpsr(target, &spsr, 1);
  972. jtag_execute_queue();
  973. buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
  974. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
  975. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
  976. }
  977. /* r0 and r15 (pc) have to be restored later */
  978. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
  979. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
  980. if ((retval = jtag->execute_queue()) != ERROR_OK)
  981. return retval;
  982. if (arm7_9->post_debug_entry)
  983. arm7_9->post_debug_entry(target);
  984. return ERROR_OK;
  985. }
  986. int arm7_9_full_context(target_t *target)
  987. {
  988. int i;
  989. int retval;
  990. armv4_5_common_t *armv4_5 = target->arch_info;
  991. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  992. DEBUG("-");
  993. if (target->state != TARGET_HALTED)
  994. {
  995. WARNING("target not halted");
  996. return ERROR_TARGET_NOT_HALTED;
  997. }
  998. /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
  999. * SYS shares registers with User, so we don't touch SYS
  1000. */
  1001. for(i = 0; i < 6; i++)
  1002. {
  1003. u32 mask = 0;
  1004. u32* reg_p[16];
  1005. int j;
  1006. int valid = 1;
  1007. /* check if there are invalid registers in the current mode
  1008. */
  1009. for (j = 0; j <= 16; j++)
  1010. {
  1011. if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
  1012. valid = 0;
  1013. }
  1014. if (!valid)
  1015. {
  1016. u32 tmp_cpsr;
  1017. /* change processor mode (and mask T bit) */
  1018. tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
  1019. tmp_cpsr |= armv4_5_number_to_mode(i);
  1020. tmp_cpsr &= ~0x20;
  1021. arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
  1022. for (j = 0; j < 15; j++)
  1023. {
  1024. if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
  1025. {
  1026. reg_p[j] = (u32*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
  1027. mask |= 1 << j;
  1028. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
  1029. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
  1030. }
  1031. }
  1032. /* if only the PSR is invalid, mask is all zeroes */
  1033. if (mask)
  1034. arm7_9->read_core_regs(target, mask, reg_p);
  1035. /* check if the PSR has to be read */
  1036. if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
  1037. {
  1038. arm7_9->read_xpsr(target, (u32*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
  1039. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
  1040. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
  1041. }
  1042. }
  1043. }
  1044. /* restore processor mode (mask T bit) */
  1045. arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
  1046. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1047. {
  1048. ERROR("JTAG failure");
  1049. exit(-1);
  1050. }
  1051. return ERROR_OK;
  1052. }
  1053. int arm7_9_restore_context(target_t *target)
  1054. {
  1055. armv4_5_common_t *armv4_5 = target->arch_info;
  1056. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1057. reg_t *reg;
  1058. armv4_5_core_reg_t *reg_arch_info;
  1059. enum armv4_5_mode current_mode = armv4_5->core_mode;
  1060. int i, j;
  1061. int dirty;
  1062. int mode_change;
  1063. DEBUG("-");
  1064. if (target->state != TARGET_HALTED)
  1065. {
  1066. WARNING("target not halted");
  1067. return ERROR_TARGET_NOT_HALTED;
  1068. }
  1069. if (arm7_9->pre_restore_context)
  1070. arm7_9->pre_restore_context(target);
  1071. /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
  1072. * SYS shares registers with User, so we don't touch SYS
  1073. */
  1074. for (i = 0; i < 6; i++)
  1075. {
  1076. DEBUG("examining %s mode", armv4_5_mode_strings[i]);
  1077. dirty = 0;
  1078. mode_change = 0;
  1079. /* check if there are dirty registers in the current mode
  1080. */
  1081. for (j = 0; j <= 16; j++)
  1082. {
  1083. reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
  1084. reg_arch_info = reg->arch_info;
  1085. if (reg->dirty == 1)
  1086. {
  1087. if (reg->valid == 1)
  1088. {
  1089. dirty = 1;
  1090. DEBUG("examining dirty reg: %s", reg->name);
  1091. if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
  1092. && (reg_arch_info->mode != current_mode)
  1093. && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
  1094. && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
  1095. {
  1096. mode_change = 1;
  1097. DEBUG("require mode change");
  1098. }
  1099. }
  1100. else
  1101. {
  1102. ERROR("BUG: dirty register '%s', but no valid data", reg->name);
  1103. }
  1104. }
  1105. }
  1106. if (dirty)
  1107. {
  1108. u32 mask = 0x0;
  1109. int num_regs = 0;
  1110. u32 regs[16];
  1111. if (mode_change)
  1112. {
  1113. u32 tmp_cpsr;
  1114. /* change processor mode (mask T bit) */
  1115. tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
  1116. tmp_cpsr |= armv4_5_number_to_mode(i);
  1117. tmp_cpsr &= ~0x20;
  1118. arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
  1119. current_mode = armv4_5_number_to_mode(i);
  1120. }
  1121. for (j = 0; j <= 14; j++)
  1122. {
  1123. reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
  1124. reg_arch_info = reg->arch_info;
  1125. if (reg->dirty == 1)
  1126. {
  1127. regs[j] = buf_get_u32(reg->value, 0, 32);
  1128. mask |= 1 << j;
  1129. num_regs++;
  1130. reg->dirty = 0;
  1131. reg->valid = 1;
  1132. DEBUG("writing register %i of mode %s with value 0x%8.8x", j, armv4_5_mode_strings[i], regs[j]);
  1133. }
  1134. }
  1135. if (mask)
  1136. {
  1137. arm7_9->write_core_regs(target, mask, regs);
  1138. }
  1139. reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
  1140. reg_arch_info = reg->arch_info;
  1141. if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
  1142. {
  1143. DEBUG("writing SPSR of mode %i with value 0x%8.8x", i, buf_get_u32(reg->value, 0, 32));
  1144. arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
  1145. }
  1146. }
  1147. }
  1148. if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
  1149. {
  1150. /* restore processor mode (mask T bit) */
  1151. u32 tmp_cpsr;
  1152. tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
  1153. tmp_cpsr |= armv4_5_number_to_mode(i);
  1154. tmp_cpsr &= ~0x20;
  1155. DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", tmp_cpsr);
  1156. arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
  1157. }
  1158. else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
  1159. {
  1160. /* CPSR has been changed, full restore necessary (mask T bit) */
  1161. DEBUG("writing cpsr with value 0x%8.8x", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
  1162. arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
  1163. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
  1164. armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
  1165. }
  1166. /* restore PC */
  1167. DEBUG("writing PC with value 0x%8.8x", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
  1168. arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
  1169. armv4_5->core_cache->reg_list[15].dirty = 0;
  1170. if (arm7_9->post_restore_context)
  1171. arm7_9->post_restore_context(target);
  1172. return ERROR_OK;
  1173. }
  1174. int arm7_9_restart_core(struct target_s *target)
  1175. {
  1176. armv4_5_common_t *armv4_5 = target->arch_info;
  1177. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1178. arm_jtag_t *jtag_info = &arm7_9->jtag_info;
  1179. /* set RESTART instruction */
  1180. jtag_add_end_state(TAP_RTI);
  1181. arm_jtag_set_instr(jtag_info, 0x4, NULL);
  1182. jtag_add_runtest(1, TAP_RTI);
  1183. if ((jtag_execute_queue()) != ERROR_OK)
  1184. {
  1185. exit(-1);
  1186. }
  1187. return ERROR_OK;
  1188. }
  1189. void arm7_9_enable_watchpoints(struct target_s *target)
  1190. {
  1191. watchpoint_t *watchpoint = target->watchpoints;
  1192. while (watchpoint)
  1193. {
  1194. if (watchpoint->set == 0)
  1195. arm7_9_set_watchpoint(target, watchpoint);
  1196. watchpoint = watchpoint->next;
  1197. }
  1198. }
  1199. void arm7_9_enable_breakpoints(struct target_s *target)
  1200. {
  1201. breakpoint_t *breakpoint = target->breakpoints;
  1202. /* set any pending breakpoints */
  1203. while (breakpoint)
  1204. {
  1205. if (breakpoint->set == 0)
  1206. arm7_9_set_breakpoint(target, breakpoint);
  1207. breakpoint = breakpoint->next;
  1208. }
  1209. }
  1210. void arm7_9_disable_bkpts_and_wpts(struct target_s *target)
  1211. {
  1212. breakpoint_t *breakpoint = target->breakpoints;
  1213. watchpoint_t *watchpoint = target->watchpoints;
  1214. /* set any pending breakpoints */
  1215. while (breakpoint)
  1216. {
  1217. if (breakpoint->set != 0)
  1218. arm7_9_unset_breakpoint(target, breakpoint);
  1219. breakpoint = breakpoint->next;
  1220. }
  1221. while (watchpoint)
  1222. {
  1223. if (watchpoint->set != 0)
  1224. arm7_9_unset_watchpoint(target, watchpoint);
  1225. watchpoint = watchpoint->next;
  1226. }
  1227. }
  1228. int arm7_9_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
  1229. {
  1230. armv4_5_common_t *armv4_5 = target->arch_info;
  1231. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1232. breakpoint_t *breakpoint = target->breakpoints;
  1233. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  1234. int err;
  1235. DEBUG("-");
  1236. if (target->state != TARGET_HALTED)
  1237. {
  1238. WARNING("target not halted");
  1239. return ERROR_TARGET_NOT_HALTED;
  1240. }
  1241. if (!debug_execution)
  1242. {
  1243. target_free_all_working_areas(target);
  1244. }
  1245. /* current = 1: continue on current pc, otherwise continue at <address> */
  1246. if (!current)
  1247. buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
  1248. /* the front-end may request us not to handle breakpoints */
  1249. if (handle_breakpoints)
  1250. {
  1251. if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
  1252. {
  1253. DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
  1254. arm7_9_unset_breakpoint(target, breakpoint);
  1255. DEBUG("enable single-step");
  1256. arm7_9->enable_single_step(target);
  1257. target->debug_reason = DBG_REASON_SINGLESTEP;
  1258. arm7_9_restore_context(target);
  1259. if (armv4_5->core_state == ARMV4_5_STATE_ARM)
  1260. arm7_9->branch_resume(target);
  1261. else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
  1262. {
  1263. arm7_9->branch_resume_thumb(target);
  1264. }
  1265. else
  1266. {
  1267. ERROR("unhandled core state");
  1268. exit(-1);
  1269. }
  1270. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
  1271. embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
  1272. err = arm7_9_execute_sys_speed(target);
  1273. DEBUG("disable single-step");
  1274. arm7_9->disable_single_step(target);
  1275. if (err != ERROR_OK)
  1276. {
  1277. arm7_9_set_breakpoint(target, breakpoint);
  1278. target->state = TARGET_UNKNOWN;
  1279. return err;
  1280. }
  1281. arm7_9_debug_entry(target);
  1282. DEBUG("new PC after step: 0x%8.8x", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
  1283. DEBUG("set breakpoint at 0x%8.8x", breakpoint->address);
  1284. arm7_9_set_breakpoint(target, breakpoint);
  1285. }
  1286. }
  1287. /* enable any pending breakpoints and watchpoints */
  1288. arm7_9_enable_breakpoints(target);
  1289. arm7_9_enable_watchpoints(target);
  1290. arm7_9_restore_context(target);
  1291. if (armv4_5->core_state == ARMV4_5_STATE_ARM)
  1292. {
  1293. arm7_9->branch_resume(target);
  1294. }
  1295. else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
  1296. {
  1297. arm7_9->branch_resume_thumb(target);
  1298. }
  1299. else
  1300. {
  1301. ERROR("unhandled core state");
  1302. exit(-1);
  1303. }
  1304. /* deassert DBGACK and INTDIS */
  1305. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
  1306. /* INTDIS only when we really resume, not during debug execution */
  1307. if (!debug_execution)
  1308. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
  1309. embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
  1310. arm7_9_restart_core(target);
  1311. target->debug_reason = DBG_REASON_NOTHALTED;
  1312. if (!debug_execution)
  1313. {
  1314. /* registers are now invalid */
  1315. armv4_5_invalidate_core_regs(target);
  1316. target->state = TARGET_RUNNING;
  1317. target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
  1318. }
  1319. else
  1320. {
  1321. target->state = TARGET_DEBUG_RUNNING;
  1322. target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
  1323. }
  1324. DEBUG("target resumed");
  1325. return ERROR_OK;
  1326. }
  1327. void arm7_9_enable_eice_step(target_t *target)
  1328. {
  1329. armv4_5_common_t *armv4_5 = target->arch_info;
  1330. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1331. /* setup an inverse breakpoint on the current PC
  1332. * - comparator 1 matches the current address
  1333. * - rangeout from comparator 1 is connected to comparator 0 rangein
  1334. * - comparator 0 matches any address, as long as rangein is low */
  1335. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
  1336. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
  1337. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x100);
  1338. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0x77);
  1339. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
  1340. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
  1341. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
  1342. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
  1343. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xf7);
  1344. }
  1345. void arm7_9_disable_eice_step(target_t *target)
  1346. {
  1347. armv4_5_common_t *armv4_5 = target->arch_info;
  1348. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1349. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
  1350. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
  1351. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
  1352. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
  1353. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
  1354. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
  1355. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
  1356. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
  1357. embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
  1358. }
  1359. int arm7_9_step(struct target_s *target, int current, u32 address, int handle_breakpoints)
  1360. {
  1361. armv4_5_common_t *armv4_5 = target->arch_info;
  1362. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1363. breakpoint_t *breakpoint = NULL;
  1364. int err;
  1365. if (target->state != TARGET_HALTED)
  1366. {
  1367. WARNING("target not halted");
  1368. return ERROR_TARGET_NOT_HALTED;
  1369. }
  1370. /* current = 1: continue on current pc, otherwise continue at <address> */
  1371. if (!current)
  1372. buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
  1373. /* the front-end may request us not to handle breakpoints */
  1374. if (handle_breakpoints)
  1375. if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
  1376. arm7_9_unset_breakpoint(target, breakpoint);
  1377. target->debug_reason = DBG_REASON_SINGLESTEP;
  1378. arm7_9_restore_context(target);
  1379. arm7_9->enable_single_step(target);
  1380. if (armv4_5->core_state == ARMV4_5_STATE_ARM)
  1381. {
  1382. arm7_9->branch_resume(target);
  1383. }
  1384. else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
  1385. {
  1386. arm7_9->branch_resume_thumb(target);
  1387. }
  1388. else
  1389. {
  1390. ERROR("unhandled core state");
  1391. exit(-1);
  1392. }
  1393. target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
  1394. err = arm7_9_execute_sys_speed(target);
  1395. arm7_9->disable_single_step(target);
  1396. /* registers are now invalid */
  1397. armv4_5_invalidate_core_regs(target);
  1398. if (err != ERROR_OK)
  1399. {
  1400. target->state = TARGET_UNKNOWN;
  1401. } else {
  1402. arm7_9_debug_entry(target);
  1403. target_call_event_callbacks(target, TARGET_EVENT_HALTED);
  1404. DEBUG("target stepped");
  1405. }
  1406. if (breakpoint)
  1407. arm7_9_set_breakpoint(target, breakpoint);
  1408. return err;
  1409. }
  1410. int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode)
  1411. {
  1412. u32* reg_p[16];
  1413. u32 value;
  1414. int retval;
  1415. armv4_5_common_t *armv4_5 = target->arch_info;
  1416. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1417. enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
  1418. if ((num < 0) || (num > 16))
  1419. return ERROR_INVALID_ARGUMENTS;
  1420. if ((mode != ARMV4_5_MODE_ANY)
  1421. && (mode != armv4_5->core_mode)
  1422. && (reg_mode != ARMV4_5_MODE_ANY))
  1423. {
  1424. u32 tmp_cpsr;
  1425. /* change processor mode (mask T bit) */
  1426. tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
  1427. tmp_cpsr |= mode;
  1428. tmp_cpsr &= ~0x20;
  1429. arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
  1430. }
  1431. if ((num >= 0) && (num <= 15))
  1432. {
  1433. /* read a normal core register */
  1434. reg_p[num] = &value;
  1435. arm7_9->read_core_regs(target, 1 << num, reg_p);
  1436. }
  1437. else
  1438. {
  1439. /* read a program status register
  1440. * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
  1441. */
  1442. armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
  1443. int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
  1444. arm7_9->read_xpsr(target, &value, spsr);
  1445. }
  1446. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1447. {
  1448. ERROR("JTAG failure");
  1449. exit(-1);
  1450. }
  1451. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
  1452. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
  1453. buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
  1454. if ((mode != ARMV4_5_MODE_ANY)
  1455. && (mode != armv4_5->core_mode)
  1456. && (reg_mode != ARMV4_5_MODE_ANY)) {
  1457. /* restore processor mode (mask T bit) */
  1458. arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
  1459. }
  1460. return ERROR_OK;
  1461. }
  1462. int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, u32 value)
  1463. {
  1464. u32 reg[16];
  1465. int retval;
  1466. armv4_5_common_t *armv4_5 = target->arch_info;
  1467. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1468. enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
  1469. if ((num < 0) || (num > 16))
  1470. return ERROR_INVALID_ARGUMENTS;
  1471. if ((mode != ARMV4_5_MODE_ANY)
  1472. && (mode != armv4_5->core_mode)
  1473. && (reg_mode != ARMV4_5_MODE_ANY)) {
  1474. u32 tmp_cpsr;
  1475. /* change processor mode (mask T bit) */
  1476. tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
  1477. tmp_cpsr |= mode;
  1478. tmp_cpsr &= ~0x20;
  1479. arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
  1480. }
  1481. if ((num >= 0) && (num <= 15))
  1482. {
  1483. /* write a normal core register */
  1484. reg[num] = value;
  1485. arm7_9->write_core_regs(target, 1 << num, reg);
  1486. }
  1487. else
  1488. {
  1489. /* write a program status register
  1490. * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
  1491. */
  1492. armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
  1493. int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
  1494. /* if we're writing the CPSR, mask the T bit */
  1495. if (!spsr)
  1496. value &= ~0x20;
  1497. arm7_9->write_xpsr(target, value, spsr);
  1498. }
  1499. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
  1500. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
  1501. if ((mode != ARMV4_5_MODE_ANY)
  1502. && (mode != armv4_5->core_mode)
  1503. && (reg_mode != ARMV4_5_MODE_ANY)) {
  1504. /* restore processor mode (mask T bit) */
  1505. arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
  1506. }
  1507. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1508. {
  1509. ERROR("JTAG failure");
  1510. exit(-1);
  1511. }
  1512. return ERROR_OK;
  1513. }
  1514. int arm7_9_read_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
  1515. {
  1516. armv4_5_common_t *armv4_5 = target->arch_info;
  1517. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1518. u32 reg[16];
  1519. int num_accesses = 0;
  1520. int thisrun_accesses;
  1521. int i;
  1522. u32 cpsr;
  1523. int retval;
  1524. int last_reg = 0;
  1525. DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
  1526. if (target->state != TARGET_HALTED)
  1527. {
  1528. WARNING("target not halted");
  1529. return ERROR_TARGET_NOT_HALTED;
  1530. }
  1531. /* sanitize arguments */
  1532. if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
  1533. return ERROR_INVALID_ARGUMENTS;
  1534. if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
  1535. return ERROR_TARGET_UNALIGNED_ACCESS;
  1536. /* load the base register with the address of the first word */
  1537. reg[0] = address;
  1538. arm7_9->write_core_regs(target, 0x1, reg);
  1539. switch (size)
  1540. {
  1541. case 4:
  1542. while (num_accesses < count)
  1543. {
  1544. u32 reg_list;
  1545. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1546. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1547. if (last_reg <= thisrun_accesses)
  1548. last_reg = thisrun_accesses;
  1549. arm7_9->load_word_regs(target, reg_list);
  1550. /* fast memory reads are only safe when the target is running
  1551. * from a sufficiently high clock (32 kHz is usually too slow)
  1552. */
  1553. if (arm7_9->fast_memory_access)
  1554. arm7_9_execute_fast_sys_speed(target);
  1555. else
  1556. arm7_9_execute_sys_speed(target);
  1557. arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
  1558. /* advance buffer, count number of accesses */
  1559. buffer += thisrun_accesses * 4;
  1560. num_accesses += thisrun_accesses;
  1561. }
  1562. break;
  1563. case 2:
  1564. while (num_accesses < count)
  1565. {
  1566. u32 reg_list;
  1567. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1568. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1569. for (i = 1; i <= thisrun_accesses; i++)
  1570. {
  1571. if (i > last_reg)
  1572. last_reg = i;
  1573. arm7_9->load_hword_reg(target, i);
  1574. /* fast memory reads are only safe when the target is running
  1575. * from a sufficiently high clock (32 kHz is usually too slow)
  1576. */
  1577. if (arm7_9->fast_memory_access)
  1578. arm7_9_execute_fast_sys_speed(target);
  1579. else
  1580. arm7_9_execute_sys_speed(target);
  1581. }
  1582. arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
  1583. /* advance buffer, count number of accesses */
  1584. buffer += thisrun_accesses * 2;
  1585. num_accesses += thisrun_accesses;
  1586. }
  1587. break;
  1588. case 1:
  1589. while (num_accesses < count)
  1590. {
  1591. u32 reg_list;
  1592. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1593. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1594. for (i = 1; i <= thisrun_accesses; i++)
  1595. {
  1596. if (i > last_reg)
  1597. last_reg = i;
  1598. arm7_9->load_byte_reg(target, i);
  1599. /* fast memory reads are only safe when the target is running
  1600. * from a sufficiently high clock (32 kHz is usually too slow)
  1601. */
  1602. if (arm7_9->fast_memory_access)
  1603. arm7_9_execute_fast_sys_speed(target);
  1604. else
  1605. arm7_9_execute_sys_speed(target);
  1606. }
  1607. arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
  1608. /* advance buffer, count number of accesses */
  1609. buffer += thisrun_accesses * 1;
  1610. num_accesses += thisrun_accesses;
  1611. }
  1612. break;
  1613. default:
  1614. ERROR("BUG: we shouldn't get here");
  1615. exit(-1);
  1616. break;
  1617. }
  1618. for (i=0; i<=last_reg; i++)
  1619. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
  1620. arm7_9->read_xpsr(target, &cpsr, 0);
  1621. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1622. {
  1623. ERROR("JTAG error while reading cpsr");
  1624. return ERROR_TARGET_DATA_ABORT;
  1625. }
  1626. if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
  1627. {
  1628. WARNING("memory read caused data abort (address: 0x%8.8x, size: 0x%x, count: 0x%x)", address, size, count);
  1629. arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
  1630. return ERROR_TARGET_DATA_ABORT;
  1631. }
  1632. return ERROR_OK;
  1633. }
  1634. int arm7_9_write_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
  1635. {
  1636. armv4_5_common_t *armv4_5 = target->arch_info;
  1637. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1638. reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
  1639. u32 reg[16];
  1640. int num_accesses = 0;
  1641. int thisrun_accesses;
  1642. int i;
  1643. u32 cpsr;
  1644. int retval;
  1645. int last_reg = 0;
  1646. #ifdef _DEBUG_ARM7_9_
  1647. DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
  1648. #endif
  1649. if (target->state != TARGET_HALTED)
  1650. {
  1651. WARNING("target not halted");
  1652. return ERROR_TARGET_NOT_HALTED;
  1653. }
  1654. /* sanitize arguments */
  1655. if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
  1656. return ERROR_INVALID_ARGUMENTS;
  1657. if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
  1658. return ERROR_TARGET_UNALIGNED_ACCESS;
  1659. /* load the base register with the address of the first word */
  1660. reg[0] = address;
  1661. arm7_9->write_core_regs(target, 0x1, reg);
  1662. /* Clear DBGACK, to make sure memory fetches work as expected */
  1663. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
  1664. embeddedice_store_reg(dbg_ctrl);
  1665. switch (size)
  1666. {
  1667. case 4:
  1668. while (num_accesses < count)
  1669. {
  1670. u32 reg_list;
  1671. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1672. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1673. for (i = 1; i <= thisrun_accesses; i++)
  1674. {
  1675. if (i > last_reg)
  1676. last_reg = i;
  1677. reg[i] = target_buffer_get_u32(target, buffer);
  1678. buffer += 4;
  1679. }
  1680. arm7_9->write_core_regs(target, reg_list, reg);
  1681. arm7_9->store_word_regs(target, reg_list);
  1682. /* fast memory writes are only safe when the target is running
  1683. * from a sufficiently high clock (32 kHz is usually too slow)
  1684. */
  1685. if (arm7_9->fast_memory_access)
  1686. arm7_9_execute_fast_sys_speed(target);
  1687. else
  1688. arm7_9_execute_sys_speed(target);
  1689. num_accesses += thisrun_accesses;
  1690. }
  1691. break;
  1692. case 2:
  1693. while (num_accesses < count)
  1694. {
  1695. u32 reg_list;
  1696. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1697. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1698. for (i = 1; i <= thisrun_accesses; i++)
  1699. {
  1700. if (i > last_reg)
  1701. last_reg = i;
  1702. reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
  1703. buffer += 2;
  1704. }
  1705. arm7_9->write_core_regs(target, reg_list, reg);
  1706. for (i = 1; i <= thisrun_accesses; i++)
  1707. {
  1708. arm7_9->store_hword_reg(target, i);
  1709. /* fast memory writes are only safe when the target is running
  1710. * from a sufficiently high clock (32 kHz is usually too slow)
  1711. */
  1712. if (arm7_9->fast_memory_access)
  1713. arm7_9_execute_fast_sys_speed(target);
  1714. else
  1715. arm7_9_execute_sys_speed(target);
  1716. }
  1717. num_accesses += thisrun_accesses;
  1718. }
  1719. break;
  1720. case 1:
  1721. while (num_accesses < count)
  1722. {
  1723. u32 reg_list;
  1724. thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
  1725. reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
  1726. for (i = 1; i <= thisrun_accesses; i++)
  1727. {
  1728. if (i > last_reg)
  1729. last_reg = i;
  1730. reg[i] = *buffer++ & 0xff;
  1731. }
  1732. arm7_9->write_core_regs(target, reg_list, reg);
  1733. for (i = 1; i <= thisrun_accesses; i++)
  1734. {
  1735. arm7_9->store_byte_reg(target, i);
  1736. /* fast memory writes are only safe when the target is running
  1737. * from a sufficiently high clock (32 kHz is usually too slow)
  1738. */
  1739. if (arm7_9->fast_memory_access)
  1740. arm7_9_execute_fast_sys_speed(target);
  1741. else
  1742. arm7_9_execute_sys_speed(target);
  1743. }
  1744. num_accesses += thisrun_accesses;
  1745. }
  1746. break;
  1747. default:
  1748. ERROR("BUG: we shouldn't get here");
  1749. exit(-1);
  1750. break;
  1751. }
  1752. /* Re-Set DBGACK */
  1753. buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
  1754. embeddedice_store_reg(dbg_ctrl);
  1755. for (i=0; i<=last_reg; i++)
  1756. ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
  1757. arm7_9->read_xpsr(target, &cpsr, 0);
  1758. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1759. {
  1760. ERROR("JTAG error while reading cpsr");
  1761. return ERROR_TARGET_DATA_ABORT;
  1762. }
  1763. if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
  1764. {
  1765. WARNING("memory write caused data abort (address: 0x%8.8x, size: 0x%x, count: 0x%x)", address, size, count);
  1766. arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
  1767. return ERROR_TARGET_DATA_ABORT;
  1768. }
  1769. return ERROR_OK;
  1770. }
  1771. int arm7_9_bulk_write_memory(target_t *target, u32 address, u32 count, u8 *buffer)
  1772. {
  1773. armv4_5_common_t *armv4_5 = target->arch_info;
  1774. arm7_9_common_t *arm7_9 = armv4_5->arch_info;
  1775. enum armv4_5_state core_state = armv4_5->core_state;
  1776. u32 r0 = buf_get_u32(armv4_5->core_cache->reg_list[0].value, 0, 32);
  1777. u32 r1 = buf_get_u32(armv4_5->core_cache->reg_list[1].value, 0, 32);
  1778. u32 pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
  1779. int i;
  1780. u32 dcc_code[] =
  1781. {
  1782. /* MRC TST BNE MRC STR B */
  1783. 0xee101e10, 0xe3110001, 0x0afffffc, 0xee111e10, 0xe4801004, 0xeafffff9
  1784. };
  1785. if (!arm7_9->dcc_downloads)
  1786. return target->type->write_memory(target, address, 4, count, buffer);
  1787. /* regrab previously allocated working_area, or allocate a new one */
  1788. if (!arm7_9->dcc_working_area)
  1789. {
  1790. u8 dcc_code_buf[6 * 4];
  1791. /* make sure we have a working area */
  1792. if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
  1793. {
  1794. INFO("no working area available, falling back to memory writes");
  1795. return target->type->write_memory(target, address, 4, count, buffer);
  1796. }
  1797. /* copy target instructions to target endianness */
  1798. for (i = 0; i < 6; i++)
  1799. {
  1800. target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
  1801. }
  1802. /* write DCC code to working area */
  1803. target->type->write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf);
  1804. }
  1805. buf_set_u32(armv4_5->core_cache->reg_list[0].value, 0, 32, address);
  1806. armv4_5->core_cache->reg_list[0].valid = 1;
  1807. armv4_5->core_cache->reg_list[0].dirty = 1;
  1808. armv4_5->core_state = ARMV4_5_STATE_ARM;
  1809. arm7_9_resume(target, 0, arm7_9->dcc_working_area->address, 1, 1);
  1810. for (i = 0; i < count; i++)
  1811. {
  1812. embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], target_buffer_get_u32(target, buffer));
  1813. buffer += 4;
  1814. }
  1815. target->type->halt(target);
  1816. while (target->state != TARGET_HALTED)
  1817. target->type->poll(target);
  1818. /* restore target state */
  1819. buf_set_u32(armv4_5->core_cache->reg_list[0].value, 0, 32, r0);
  1820. armv4_5->core_cache->reg_list[0].valid = 1;
  1821. armv4_5->core_cache->reg_list[0].dirty = 1;
  1822. buf_set_u32(armv4_5->core_cache->reg_list[1].value, 0, 32, r1);
  1823. armv4_5->core_cache->reg_list[1].valid = 1;
  1824. armv4_5->core_cache->reg_list[1].dirty = 1;
  1825. buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, pc);
  1826. armv4_5->core_cache->reg_list[15].valid = 1;
  1827. armv4_5->core_cache->reg_list[15].dirty = 1;
  1828. armv4_5->core_state = core_state;
  1829. return ERROR_OK;
  1830. }
  1831. int arm7_9_checksum_memory(struct target_s *target, u32 address, u32 count, u32* checksum)
  1832. {
  1833. working_area_t *crc_algorithm;
  1834. armv4_5_algorithm_t armv4_5_info;
  1835. reg_param_t reg_params[2];
  1836. int retval;
  1837. u32 arm7_9_crc_code[] = {
  1838. 0xE1A02000, /* mov r2, r0 */
  1839. 0xE3E00000, /* mov r0, #0xffffffff */
  1840. 0xE1A03001, /* mov r3, r1 */
  1841. 0xE3A04000, /* mov r4, #0 */
  1842. 0xEA00000B, /* b ncomp */
  1843. /* nbyte: */
  1844. 0xE7D21004, /* ldrb r1, [r2, r4] */
  1845. 0xE59F7030, /* ldr r7, CRC32XOR */
  1846. 0xE0200C01, /* eor r0, r0, r1, asl 24 */
  1847. 0xE3A05000, /* mov r5, #0 */
  1848. /* loop: */
  1849. 0xE3500000, /* cmp r0, #0 */
  1850. 0xE1A06080, /* mov r6, r0, asl #1 */
  1851. 0xE2855001, /* add r5, r5, #1 */
  1852. 0xE1A00006, /* mov r0, r6 */
  1853. 0xB0260007, /* eorlt r0, r6, r7 */
  1854. 0xE3550008, /* cmp r5, #8 */
  1855. 0x1AFFFFF8, /* bne loop */
  1856. 0xE2844001, /* add r4, r4, #1 */
  1857. /* ncomp: */
  1858. 0xE1540003, /* cmp r4, r3 */
  1859. 0x1AFFFFF1, /* bne nbyte */
  1860. /* end: */
  1861. 0xEAFFFFFE, /* b end */
  1862. 0x04C11DB7 /* CRC32XOR: .word 0x04C11DB7 */
  1863. };
  1864. int i;
  1865. if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK)
  1866. {
  1867. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1868. }
  1869. /* convert flash writing code into a buffer in target endianness */
  1870. for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(u32)); i++)
  1871. target_write_u32(target, crc_algorithm->address + i*sizeof(u32), arm7_9_crc_code[i]);
  1872. armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
  1873. armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
  1874. armv4_5_info.core_state = ARMV4_5_STATE_ARM;
  1875. init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
  1876. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  1877. buf_set_u32(reg_params[0].value, 0, 32, address);
  1878. buf_set_u32(reg_params[1].value, 0, 32, count);
  1879. if ((retval = target->type->run_algorithm(target, 0, NULL, 2, reg_params,
  1880. crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), 20000, &armv4_5_info)) != ERROR_OK)
  1881. {
  1882. ERROR("error executing arm7_9 crc algorithm");
  1883. destroy_reg_param(&reg_params[0]);
  1884. destroy_reg_param(&reg_params[1]);
  1885. target_free_working_area(target, crc_algorithm);
  1886. return retval;
  1887. }
  1888. *checksum = buf_get_u32(reg_params[0].value, 0, 32);
  1889. destroy_reg_param(&reg_params[0]);
  1890. destroy_reg_param(&reg_params[1]);
  1891. target_free_working_area(target, crc_algorithm);
  1892. return ERROR_OK;
  1893. }
  1894. int arm7_9_register_commands(struct command_context_s *cmd_ctx)
  1895. {
  1896. command_t *arm7_9_cmd;
  1897. arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands");
  1898. register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register <value> <not cpsr|spsr>");
  1899. register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register <8bit immediate> <rotate> <not cpsr|spsr>");
  1900. register_command(cmd_ctx, arm7_9_cmd, "write_core_reg", handle_arm7_9_write_core_reg_command, COMMAND_EXEC, "write core register <num> <mode> <value>");
  1901. register_command(cmd_ctx, arm7_9_cmd, "sw_bkpts", handle_arm7_9_sw_bkpts_command, COMMAND_EXEC, "support for software breakpoints <enable|disable>");
  1902. register_command(cmd_ctx, arm7_9_cmd, "force_hw_bkpts", handle_arm7_9_force_hw_bkpts_command, COMMAND_EXEC, "use hardware breakpoints for all breakpoints (disables sw breakpoint support) <enable|disable>");
  1903. register_command(cmd_ctx, arm7_9_cmd, "dbgrq", handle_arm7_9_dbgrq_command,
  1904. COMMAND_ANY, "use EmbeddedICE dbgrq instead of breakpoint for target halt requests <enable|disable>");
  1905. register_command(cmd_ctx, arm7_9_cmd, "fast_writes", handle_arm7_9_fast_memory_access_command,
  1906. COMMAND_ANY, "(deprecated, see: arm7_9 fast_memory_access)");
  1907. register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access", handle_arm7_9_fast_memory_access_command,
  1908. COMMAND_ANY, "use fast memory accesses instead of slower but potentially unsafe slow accesses <enable|disable>");
  1909. register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads", handle_arm7_9_dcc_downloads_command,
  1910. COMMAND_ANY, "use DCC downloads for larger memory writes <enable|disable>");
  1911. armv4_5_register_commands(cmd_ctx);
  1912. etm_register_commands(cmd_ctx);
  1913. return ERROR_OK;
  1914. }
  1915. int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1916. {
  1917. u32 value;
  1918. int spsr;
  1919. int retval;
  1920. target_t *target = get_current_target(cmd_ctx);
  1921. armv4_5_common_t *armv4_5;
  1922. arm7_9_common_t *arm7_9;
  1923. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  1924. {
  1925. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  1926. return ERROR_OK;
  1927. }
  1928. if (target->state != TARGET_HALTED)
  1929. {
  1930. command_print(cmd_ctx, "can't write registers while running");
  1931. return ERROR_OK;
  1932. }
  1933. if (argc < 2)
  1934. {
  1935. command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr|spsr>");
  1936. return ERROR_OK;
  1937. }
  1938. value = strtoul(args[0], NULL, 0);
  1939. spsr = strtol(args[1], NULL, 0);
  1940. /* if we're writing the CPSR, mask the T bit */
  1941. if (!spsr)
  1942. value &= ~0x20;
  1943. arm7_9->write_xpsr(target, value, spsr);
  1944. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1945. {
  1946. ERROR("JTAG error while writing to xpsr");
  1947. exit(-1);
  1948. }
  1949. return ERROR_OK;
  1950. }
  1951. int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1952. {
  1953. u32 value;
  1954. int rotate;
  1955. int spsr;
  1956. int retval;
  1957. target_t *target = get_current_target(cmd_ctx);
  1958. armv4_5_common_t *armv4_5;
  1959. arm7_9_common_t *arm7_9;
  1960. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  1961. {
  1962. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  1963. return ERROR_OK;
  1964. }
  1965. if (target->state != TARGET_HALTED)
  1966. {
  1967. command_print(cmd_ctx, "can't write registers while running");
  1968. return ERROR_OK;
  1969. }
  1970. if (argc < 3)
  1971. {
  1972. command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr|spsr>");
  1973. return ERROR_OK;
  1974. }
  1975. value = strtoul(args[0], NULL, 0);
  1976. rotate = strtol(args[1], NULL, 0);
  1977. spsr = strtol(args[2], NULL, 0);
  1978. arm7_9->write_xpsr_im8(target, value, rotate, spsr);
  1979. if ((retval = jtag_execute_queue()) != ERROR_OK)
  1980. {
  1981. ERROR("JTAG error while writing 8-bit immediate to xpsr");
  1982. exit(-1);
  1983. }
  1984. return ERROR_OK;
  1985. }
  1986. int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  1987. {
  1988. u32 value;
  1989. u32 mode;
  1990. int num;
  1991. target_t *target = get_current_target(cmd_ctx);
  1992. armv4_5_common_t *armv4_5;
  1993. arm7_9_common_t *arm7_9;
  1994. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  1995. {
  1996. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  1997. return ERROR_OK;
  1998. }
  1999. if (target->state != TARGET_HALTED)
  2000. {
  2001. command_print(cmd_ctx, "can't write registers while running");
  2002. return ERROR_OK;
  2003. }
  2004. if (argc < 3)
  2005. {
  2006. command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
  2007. return ERROR_OK;
  2008. }
  2009. num = strtol(args[0], NULL, 0);
  2010. mode = strtoul(args[1], NULL, 0);
  2011. value = strtoul(args[2], NULL, 0);
  2012. arm7_9_write_core_reg(target, num, mode, value);
  2013. return ERROR_OK;
  2014. }
  2015. int handle_arm7_9_sw_bkpts_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  2016. {
  2017. target_t *target = get_current_target(cmd_ctx);
  2018. armv4_5_common_t *armv4_5;
  2019. arm7_9_common_t *arm7_9;
  2020. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  2021. {
  2022. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  2023. return ERROR_OK;
  2024. }
  2025. if (argc == 0)
  2026. {
  2027. command_print(cmd_ctx, "software breakpoints %s", (arm7_9->sw_bkpts_enabled) ? "enabled" : "disabled");
  2028. return ERROR_OK;
  2029. }
  2030. if (strcmp("enable", args[0]) == 0)
  2031. {
  2032. if (arm7_9->sw_bkpts_use_wp)
  2033. {
  2034. arm7_9_enable_sw_bkpts(target);
  2035. }
  2036. else
  2037. {
  2038. arm7_9->sw_bkpts_enabled = 1;
  2039. }
  2040. }
  2041. else if (strcmp("disable", args[0]) == 0)
  2042. {
  2043. if (arm7_9->sw_bkpts_use_wp)
  2044. {
  2045. arm7_9_disable_sw_bkpts(target);
  2046. }
  2047. else
  2048. {
  2049. arm7_9->sw_bkpts_enabled = 0;
  2050. }
  2051. }
  2052. else
  2053. {
  2054. command_print(cmd_ctx, "usage: arm7_9 sw_bkpts <enable|disable>");
  2055. }
  2056. command_print(cmd_ctx, "software breakpoints %s", (arm7_9->sw_bkpts_enabled) ? "enabled" : "disabled");
  2057. return ERROR_OK;
  2058. }
  2059. int handle_arm7_9_force_hw_bkpts_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  2060. {
  2061. target_t *target = get_current_target(cmd_ctx);
  2062. armv4_5_common_t *armv4_5;
  2063. arm7_9_common_t *arm7_9;
  2064. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  2065. {
  2066. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  2067. return ERROR_OK;
  2068. }
  2069. if ((argc >= 1) && (strcmp("enable", args[0]) == 0))
  2070. {
  2071. arm7_9->force_hw_bkpts = 1;
  2072. if (arm7_9->sw_bkpts_use_wp)
  2073. {
  2074. arm7_9_disable_sw_bkpts(target);
  2075. }
  2076. }
  2077. else if ((argc >= 1) && (strcmp("disable", args[0]) == 0))
  2078. {
  2079. arm7_9->force_hw_bkpts = 0;
  2080. }
  2081. else
  2082. {
  2083. command_print(cmd_ctx, "usage: arm7_9 force_hw_bkpts <enable|disable>");
  2084. }
  2085. command_print(cmd_ctx, "force hardware breakpoints %s", (arm7_9->force_hw_bkpts) ? "enabled" : "disabled");
  2086. return ERROR_OK;
  2087. }
  2088. int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  2089. {
  2090. target_t *target = get_current_target(cmd_ctx);
  2091. armv4_5_common_t *armv4_5;
  2092. arm7_9_common_t *arm7_9;
  2093. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  2094. {
  2095. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  2096. return ERROR_OK;
  2097. }
  2098. if (argc > 0)
  2099. {
  2100. if (strcmp("enable", args[0]) == 0)
  2101. {
  2102. arm7_9->use_dbgrq = 1;
  2103. }
  2104. else if (strcmp("disable", args[0]) == 0)
  2105. {
  2106. arm7_9->use_dbgrq = 0;
  2107. }
  2108. else
  2109. {
  2110. command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable|disable>");
  2111. }
  2112. }
  2113. command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
  2114. return ERROR_OK;
  2115. }
  2116. int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  2117. {
  2118. target_t *target = get_current_target(cmd_ctx);
  2119. armv4_5_common_t *armv4_5;
  2120. arm7_9_common_t *arm7_9;
  2121. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  2122. {
  2123. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  2124. return ERROR_OK;
  2125. }
  2126. if (argc > 0)
  2127. {
  2128. if (strcmp("enable", args[0]) == 0)
  2129. {
  2130. arm7_9->fast_memory_access = 1;
  2131. }
  2132. else if (strcmp("disable", args[0]) == 0)
  2133. {
  2134. arm7_9->fast_memory_access = 0;
  2135. }
  2136. else
  2137. {
  2138. command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable|disable>");
  2139. }
  2140. }
  2141. command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
  2142. return ERROR_OK;
  2143. }
  2144. int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
  2145. {
  2146. target_t *target = get_current_target(cmd_ctx);
  2147. armv4_5_common_t *armv4_5;
  2148. arm7_9_common_t *arm7_9;
  2149. if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
  2150. {
  2151. command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
  2152. return ERROR_OK;
  2153. }
  2154. if (argc > 0)
  2155. {
  2156. if (strcmp("enable", args[0]) == 0)
  2157. {
  2158. arm7_9->dcc_downloads = 1;
  2159. }
  2160. else if (strcmp("disable", args[0]) == 0)
  2161. {
  2162. arm7_9->dcc_downloads = 0;
  2163. }
  2164. else
  2165. {
  2166. command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable|disable>");
  2167. }
  2168. }
  2169. command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
  2170. return ERROR_OK;
  2171. }
  2172. int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
  2173. {
  2174. armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;
  2175. arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
  2176. arm_jtag_setup_connection(&arm7_9->jtag_info);
  2177. arm7_9->wp_available = 2;
  2178. arm7_9->wp0_used = 0;
  2179. arm7_9->wp1_used = 0;
  2180. arm7_9->force_hw_bkpts = 0;
  2181. arm7_9->use_dbgrq = 0;
  2182. arm7_9->etm_ctx = NULL;
  2183. arm7_9->has_single_step = 0;
  2184. arm7_9->has_monitor_mode = 0;
  2185. arm7_9->has_vector_catch = 0;
  2186. arm7_9->reinit_embeddedice = 0;
  2187. arm7_9->debug_entry_from_reset = 0;
  2188. arm7_9->dcc_working_area = NULL;
  2189. arm7_9->fast_memory_access = 0;
  2190. arm7_9->dcc_downloads = 0;
  2191. jtag_register_event_callback(arm7_9_jtag_callback, target);
  2192. armv4_5->arch_info = arm7_9;
  2193. armv4_5->read_core_reg = arm7_9_read_core_reg;
  2194. armv4_5->write_core_reg = arm7_9_write_core_reg;
  2195. armv4_5->full_context = arm7_9_full_context;
  2196. armv4_5_init_arch_info(target, armv4_5);
  2197. target_register_timer_callback(arm7_9_handle_target_request, 1, 1, target);
  2198. return ERROR_OK;
  2199. }