You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2310 lines
63 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2011 by Rodrigo L. Rosa *
  3. * rodrigorosa.LG@gmail.com *
  4. * *
  5. * Based on dsp563xx_once.h written by Mathias Kuester *
  6. * mkdorg@users.sourceforge.net *
  7. * *
  8. * This program is free software; you can redistribute it and/or modify *
  9. * it under the terms of the GNU General Public License as published by *
  10. * the Free Software Foundation; either version 2 of the License, or *
  11. * (at your option) any later version. *
  12. * *
  13. * This program is distributed in the hope that it will be useful, *
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  16. * GNU General Public License for more details. *
  17. * *
  18. * You should have received a copy of the GNU General Public License *
  19. * along with this program; if not, write to the *
  20. * Free Software Foundation, Inc., *
  21. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  22. ***************************************************************************/
  23. #ifdef HAVE_CONFIG_H
  24. #include "config.h"
  25. #endif
  26. #include "target.h"
  27. #include "target_type.h"
  28. #include "dsp5680xx.h"
  29. struct dsp5680xx_common dsp5680xx_context;
  30. #define _E "DSP5680XX_ERROR:%d\nAt:%s:%d:%s"
  31. #define err_check(r, c, m) if (r != ERROR_OK) {LOG_ERROR(_E, c, __func__, __LINE__, m); return r; }
  32. #define err_check_propagate(retval) if (retval != ERROR_OK) return retval;
  33. #define DEBUG_MSG "Debug mode be enabled to read mem."
  34. #define DEBUG_FAIL { err_check(ERROR_FAIL, DSP5680XX_ERROR_NOT_IN_DEBUG, DEBUG_MSG) }
  35. #define CHECK_DBG if (!dsp5680xx_context.debug_mode_enabled) DEBUG_FAIL
  36. #define HALT_MSG "Target must be halted."
  37. #define HALT_FAIL { err_check(ERROR_FAIL, DSP5680XX_ERROR_TARGET_RUNNING, HALT_MSG) }
  38. #define CHECK_HALT(target) if (target->state != TARGET_HALTED) HALT_FAIL
  39. #define check_halt_and_debug(target) { CHECK_HALT(target); CHECK_DBG; }
  40. int dsp5680xx_execute_queue(void)
  41. {
  42. int retval;
  43. retval = jtag_execute_queue();
  44. return retval;
  45. }
  46. /**
  47. * Reset state machine
  48. */
  49. static int reset_jtag(void)
  50. {
  51. int retval;
  52. tap_state_t states[2];
  53. const char *cp = "RESET";
  54. states[0] = tap_state_by_name(cp);
  55. retval = jtag_add_statemove(states[0]);
  56. err_check_propagate(retval);
  57. retval = jtag_execute_queue();
  58. err_check_propagate(retval);
  59. jtag_add_pathmove(0, states + 1);
  60. retval = jtag_execute_queue();
  61. return retval;
  62. }
  63. static int dsp5680xx_drscan(struct target *target, uint8_t *d_in,
  64. uint8_t *d_out, int len)
  65. {
  66. /* -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
  67. *
  68. *Inputs:
  69. * - d_in: This is the data that will be shifted into the JTAG DR reg.
  70. * - d_out: The data that will be shifted out of the JTAG DR reg will stored here
  71. * - len: Length of the data to be shifted to JTAG DR.
  72. *
  73. *Note: If d_out == NULL, discard incoming bits.
  74. *
  75. *-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
  76. */
  77. int retval = ERROR_OK;
  78. if (NULL == target->tap) {
  79. retval = ERROR_FAIL;
  80. err_check(retval, DSP5680XX_ERROR_JTAG_INVALID_TAP,
  81. "Invalid tap");
  82. }
  83. if (len > 32) {
  84. retval = ERROR_FAIL;
  85. err_check(retval, DSP5680XX_ERROR_JTAG_DR_LEN_OVERFLOW,
  86. "dr_len overflow, maxium is 32");
  87. }
  88. /* TODO what values of len are valid for jtag_add_plain_dr_scan? */
  89. /* can i send as many bits as i want? */
  90. /* is the casting necessary? */
  91. jtag_add_plain_dr_scan(len, d_in, d_out, TAP_IDLE);
  92. if (dsp5680xx_context.flush) {
  93. retval = dsp5680xx_execute_queue();
  94. err_check(retval, DSP5680XX_ERROR_JTAG_DRSCAN,
  95. "drscan failed!");
  96. }
  97. if (d_out != NULL)
  98. LOG_DEBUG("Data read (%d bits): 0x%04X", len, *d_out);
  99. else
  100. LOG_DEBUG("Data read was discarded.");
  101. return retval;
  102. }
  103. /**
  104. * Test func
  105. *
  106. * @param target
  107. * @param d_in This is the data that will be shifted into the JTAG IR reg.
  108. * @param d_out The data that will be shifted out of the JTAG IR reg will be stored here.
  109. * @apram ir_len Length of the data to be shifted to JTAG IR.
  110. *
  111. */
  112. static int dsp5680xx_irscan(struct target *target, uint32_t *d_in,
  113. uint32_t *d_out, uint8_t ir_len)
  114. {
  115. int retval = ERROR_OK;
  116. uint16_t tap_ir_len = DSP5680XX_JTAG_MASTER_TAP_IRLEN;
  117. if (NULL == target->tap) {
  118. retval = ERROR_FAIL;
  119. err_check(retval, DSP5680XX_ERROR_JTAG_INVALID_TAP,
  120. "Invalid tap");
  121. }
  122. if (ir_len != target->tap->ir_length) {
  123. if (target->tap->enabled) {
  124. retval = ERROR_FAIL;
  125. err_check(retval, DSP5680XX_ERROR_INVALID_IR_LEN,
  126. "Invalid irlen");
  127. } else {
  128. struct jtag_tap *t =
  129. jtag_tap_by_string("dsp568013.chp");
  130. if ((t == NULL)
  131. || ((t->enabled) && (ir_len != tap_ir_len))) {
  132. retval = ERROR_FAIL;
  133. err_check(retval,
  134. DSP5680XX_ERROR_INVALID_IR_LEN,
  135. "Invalid irlen");
  136. }
  137. }
  138. }
  139. jtag_add_plain_ir_scan(ir_len, (uint8_t *) d_in, (uint8_t *) d_out,
  140. TAP_IDLE);
  141. if (dsp5680xx_context.flush) {
  142. retval = dsp5680xx_execute_queue();
  143. err_check(retval, DSP5680XX_ERROR_JTAG_IRSCAN,
  144. "irscan failed!");
  145. }
  146. return retval;
  147. }
  148. static int dsp5680xx_jtag_status(struct target *target, uint8_t *status)
  149. {
  150. uint32_t read_from_ir;
  151. uint32_t instr;
  152. int retval;
  153. instr = JTAG_INSTR_ENABLE_ONCE;
  154. retval =
  155. dsp5680xx_irscan(target, &instr, &read_from_ir,
  156. DSP5680XX_JTAG_CORE_TAP_IRLEN);
  157. err_check_propagate(retval);
  158. if (status != NULL)
  159. *status = (uint8_t) read_from_ir;
  160. return ERROR_OK;
  161. }
  162. static int jtag_data_read(struct target *target, uint8_t *data_read,
  163. int num_bits)
  164. {
  165. uint32_t bogus_instr = 0;
  166. int retval =
  167. dsp5680xx_drscan(target, (uint8_t *) &bogus_instr, data_read,
  168. num_bits);
  169. LOG_DEBUG("Data read (%d bits): 0x%04X", num_bits, *data_read);
  170. /** TODO remove this or move to jtagio? */
  171. return retval;
  172. }
  173. #define jtag_data_read8(target, data_read) jtag_data_read(target, data_read, 8)
  174. #define jtag_data_read16(target, data_read) jtag_data_read(target, data_read, 16)
  175. #define jtag_data_read32(target, data_read) jtag_data_read(target, data_read, 32)
  176. static uint32_t data_read_dummy;
  177. static int jtag_data_write(struct target *target, uint32_t instr, int num_bits,
  178. uint32_t *data_read)
  179. {
  180. int retval;
  181. retval =
  182. dsp5680xx_drscan(target, (uint8_t *) &instr,
  183. (uint8_t *) &data_read_dummy, num_bits);
  184. err_check_propagate(retval);
  185. if (data_read != NULL)
  186. *data_read = data_read_dummy;
  187. return retval;
  188. }
  189. #define jtag_data_write8(target, instr, data_read) jtag_data_write(target, instr, 8, data_read)
  190. #define jtag_data_write16(target, instr, data_read) jtag_data_write(target, instr, 16, data_read)
  191. #define jtag_data_write24(target, instr, data_read) jtag_data_write(target, instr, 24, data_read)
  192. #define jtag_data_write32(target, instr, data_read) jtag_data_write(target, instr, 32, data_read)
  193. /**
  194. * Executes EOnCE instruction.
  195. *
  196. * @param target
  197. * @param instr Instruction to execute.
  198. * @param rw
  199. * @param go
  200. * @param ex
  201. * @param eonce_status Value read from the EOnCE status register.
  202. *
  203. * @return
  204. */
  205. static int eonce_instruction_exec_single(struct target *target, uint8_t instr,
  206. uint8_t rw, uint8_t go, uint8_t ex,
  207. uint8_t *eonce_status)
  208. {
  209. int retval;
  210. uint32_t dr_out_tmp;
  211. uint8_t instr_with_flags = instr | (rw << 7) | (go << 6) | (ex << 5);
  212. retval = jtag_data_write(target, instr_with_flags, 8, &dr_out_tmp);
  213. err_check_propagate(retval);
  214. if (eonce_status != NULL)
  215. *eonce_status = (uint8_t) dr_out_tmp;
  216. return retval;
  217. }
  218. /* wrappers for multi opcode instructions */
  219. #define dsp5680xx_exe_1(target, oc1, oc2, oc3) dsp5680xx_exe1(target, oc1)
  220. #define dsp5680xx_exe_2(target, oc1, oc2, oc3) dsp5680xx_exe2(target, oc1, oc2)
  221. #define dsp5680xx_exe_3(target, oc1, oc2, oc3) dsp5680xx_exe3(target, oc1, oc2, oc3)
  222. #define dsp5680xx_exe_generic(t, words, oc1, oc2, oc3) dsp5680xx_exe_##words(t, oc1, oc2, oc3)
  223. /* Executes one word DSP instruction */
  224. static int dsp5680xx_exe1(struct target *target, uint16_t opcode)
  225. {
  226. int retval;
  227. retval = eonce_instruction_exec_single(target, 0x04, 0, 1, 0, NULL);
  228. err_check_propagate(retval);
  229. retval = jtag_data_write16(target, opcode, NULL);
  230. err_check_propagate(retval);
  231. return retval;
  232. }
  233. /* Executes two word DSP instruction */
  234. static int dsp5680xx_exe2(struct target *target, uint16_t opcode1,
  235. uint16_t opcode2)
  236. {
  237. int retval;
  238. retval = eonce_instruction_exec_single(target, 0x04, 0, 0, 0, NULL);
  239. err_check_propagate(retval);
  240. retval = jtag_data_write16(target, opcode1, NULL);
  241. err_check_propagate(retval);
  242. retval = eonce_instruction_exec_single(target, 0x04, 0, 1, 0, NULL);
  243. err_check_propagate(retval);
  244. retval = jtag_data_write16(target, opcode2, NULL);
  245. err_check_propagate(retval);
  246. return retval;
  247. }
  248. /* Executes three word DSP instruction */
  249. static int dsp5680xx_exe3(struct target *target, uint16_t opcode1,
  250. uint16_t opcode2, uint16_t opcode3)
  251. {
  252. int retval;
  253. retval = eonce_instruction_exec_single(target, 0x04, 0, 0, 0, NULL);
  254. err_check_propagate(retval);
  255. retval = jtag_data_write16(target, opcode1, NULL);
  256. err_check_propagate(retval);
  257. retval = eonce_instruction_exec_single(target, 0x04, 0, 0, 0, NULL);
  258. err_check_propagate(retval);
  259. retval = jtag_data_write16(target, opcode2, NULL);
  260. err_check_propagate(retval);
  261. retval = eonce_instruction_exec_single(target, 0x04, 0, 1, 0, NULL);
  262. err_check_propagate(retval);
  263. retval = jtag_data_write16(target, opcode3, NULL);
  264. err_check_propagate(retval);
  265. return retval;
  266. }
  267. /*
  268. *--------------- Real-time data exchange ---------------
  269. * The EOnCE Transmit (OTX) and Receive (ORX) registers are data memory mapped, each with an upper
  270. * and lower 16 bit word.
  271. * Transmit and receive directions are defined from the core’s perspective.
  272. * The core writes to the Transmit register and reads the Receive register, and the host through
  273. * JTAG writes to the Receive register and reads the Transmit register.
  274. * Both registers have a combined data memory mapped OTXRXSR which provides indication when
  275. * each may be accessed.
  276. * ref: eonce_rev.1.0_0208081.pdf@36
  277. */
  278. /* writes data into upper ORx register of the target */
  279. static int core_tx_upper_data(struct target *target, uint16_t data,
  280. uint32_t *eonce_status_low)
  281. {
  282. int retval;
  283. retval =
  284. eonce_instruction_exec_single(target, DSP5680XX_ONCE_ORX1, 0, 0, 0,
  285. NULL);
  286. err_check_propagate(retval);
  287. retval = jtag_data_write16(target, data, eonce_status_low);
  288. err_check_propagate(retval);
  289. return retval;
  290. }
  291. /* writes data into lower ORx register of the target */
  292. #define CMD1 eonce_instruction_exec_single(target, DSP5680XX_ONCE_ORX, 0, 0, 0, NULL);
  293. #define CMD2 jtag_data_write16((t, data)
  294. #define core_tx_lower_data(t, data) PT1\ PT2
  295. /**
  296. *
  297. * @param target
  298. * @param data_read: Returns the data read from the upper OTX register via JTAG.
  299. * @return: Returns an error code (see error code documentation)
  300. */
  301. static int core_rx_upper_data(struct target *target, uint8_t *data_read)
  302. {
  303. int retval;
  304. retval =
  305. eonce_instruction_exec_single(target, DSP5680XX_ONCE_OTX1, 1, 0, 0,
  306. NULL);
  307. err_check_propagate(retval);
  308. retval = jtag_data_read16(target, data_read);
  309. err_check_propagate(retval);
  310. return retval;
  311. }
  312. /**
  313. *
  314. * @param target
  315. * @param data_read: Returns the data read from the lower OTX register via JTAG.
  316. * @return: Returns an error code (see error code documentation)
  317. */
  318. static int core_rx_lower_data(struct target *target, uint8_t *data_read)
  319. {
  320. int retval;
  321. retval =
  322. eonce_instruction_exec_single(target, DSP5680XX_ONCE_OTX, 1, 0, 0,
  323. NULL);
  324. err_check_propagate(retval);
  325. retval = jtag_data_read16(target, data_read);
  326. err_check_propagate(retval);
  327. return retval;
  328. }
  329. /*
  330. *-- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- --
  331. *-- -- -- -- --- -- -- -Core Instructions- -- -- -- --- -- -- -- --- --
  332. *-- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- --
  333. */
  334. #define exe(a, b, c, d, e) dsp5680xx_exe_generic(a, b, c, d, e)
  335. /* move.l #value, r0 */
  336. #define core_move_long_to_r0(target, value) exe(target, 3, 0xe418, value&0xffff, value>>16)
  337. /* move.l #value, n */
  338. #define core_move_long_to_n(target, value) exe(target, 3, 0xe41e, value&0xffff, value>>16)
  339. /* move x:(r0), y0 */
  340. #define core_move_at_r0_to_y0(target) exe(target, 1, 0xF514, 0, 0)
  341. /* move x:(r0), y1 */
  342. #define core_move_at_r0_to_y1(target) exe(target, 1, 0xF714, 0, 0)
  343. /* move.l x:(r0), y */
  344. #define core_move_long_at_r0_y(target) exe(target, 1, 0xF734, 0, 0)
  345. /* move y0, x:(r0) */
  346. #define core_move_y0_at_r0(target) exe(target, 1, 0xd514, 0, 0)
  347. /* bfclr #value, x:(r0) */
  348. #define eonce_bfclr_at_r0(target, value) exe(target, 2, 0x8040, value, 0)
  349. /* move #value, y0 */
  350. #define core_move_value_to_y0(target, value) exe(target, 2, 0x8745, value, 0)
  351. /* move.w y0, x:(r0)+ */
  352. #define core_move_y0_at_r0_inc(target) exe(target, 1, 0xd500, 0, 0)
  353. /* move.w y0, p:(r0)+ */
  354. #define core_move_y0_at_pr0_inc(target) exe(target, 1, 0x8560, 0, 0)
  355. /* move.w p:(r0)+, y0 */
  356. #define core_move_at_pr0_inc_to_y0(target) exe(target, 1, 0x8568, 0, 0)
  357. /* move.w p:(r0)+, y1 */
  358. #define core_move_at_pr0_inc_to_y1(target) exe(target, 1, 0x8768, 0, 0)
  359. /* move.l #value, r2 */
  360. #define core_move_long_to_r2(target, value) exe(target, 3, 0xe41A, value&0xffff, value>>16)
  361. /* move y0, x:(r2) */
  362. #define core_move_y0_at_r2(target) exe(target, 1, 0xd516, 0, 0)
  363. /* move.w #<value>, x:(r2) */
  364. #define core_move_value_at_r2(target, value) exe(target, 2, 0x8642, value, 0)
  365. /* move.w #<value>, x:(r0) */
  366. #define core_move_value_at_r0(target, value) exe(target, 2, 0x8640, value, 0)
  367. /* move.w #<value>, x:(R2+<disp>) */
  368. #define core_move_value_at_r2_disp(target, value, disp) exe(target, 3, 0x8646, value, disp)
  369. /* move.w x:(r2), Y0 */
  370. #define core_move_at_r2_to_y0(target) exe(target, 1, 0xF516, 0, 0)
  371. /* move.w p:(r2)+, y0 */
  372. #define core_move_at_pr2_inc_to_y0(target) exe(target, 1, 0x856A, 0, 0)
  373. /* move.l #value, r3 */
  374. #define core_move_long_to_r1(target, value) exe(target, 3, 0xE419, value&0xffff, value>>16)
  375. /* move.l #value, r3 */
  376. #define core_move_long_to_r3(target, value) exe(target, 3, 0xE41B, value&0xffff, value>>16)
  377. /* move.w y0, p:(r3)+ */
  378. #define core_move_y0_at_pr3_inc(target) exe(target, 1, 0x8563, 0, 0)
  379. /* move.w y0, x:(r3) */
  380. #define core_move_y0_at_r3(target) exe(target, 1, 0xD503, 0, 0)
  381. /* move.l #value, r4 */
  382. #define core_move_long_to_r4(target, value) exe(target, 3, 0xE41C, value&0xffff, value>>16)
  383. /* move pc, r4 */
  384. #define core_move_pc_to_r4(target) exe(target, 1, 0xE716, 0, 0)
  385. /* move.l r4, y */
  386. #define core_move_r4_to_y(target) exe(target, 1, 0xe764, 0, 0)
  387. /* move.w p:(r0)+, y0 */
  388. #define core_move_at_pr0_inc_to_y0(target) exe(target, 1, 0x8568, 0, 0)
  389. /* move.w x:(r0)+, y0 */
  390. #define core_move_at_r0_inc_to_y0(target) exe(target, 1, 0xf500, 0, 0)
  391. /* move x:(r0), y0 */
  392. #define core_move_at_r0_y0(target) exe(target, 1, 0xF514, 0, 0)
  393. /* nop */
  394. #define eonce_nop(target) exe(target, 1, 0xe700, 0, 0)
  395. /* move.w x:(R2+<disp>), Y0 */
  396. #define core_move_at_r2_disp_to_y0(target, disp) exe(target, 2, 0xF542, disp, 0)
  397. /* move.w y1, x:(r2) */
  398. #define core_move_y1_at_r2(target) exe(target, 1, 0xd716, 0, 0)
  399. /* move.w y1, x:(r0) */
  400. #define core_move_y1_at_r0(target) exe(target, 1, 0xd714, 0, 0)
  401. /* move.bp y0, x:(r0)+ */
  402. #define core_move_byte_y0_at_r0(target) exe(target, 1, 0xd5a0, 0, 0)
  403. /* move.w y1, p:(r0)+ */
  404. #define core_move_y1_at_pr0_inc(target) exe(target, 1, 0x8760, 0, 0)
  405. /* move.w y1, x:(r0)+ */
  406. #define core_move_y1_at_r0_inc(target) exe(target, 1, 0xD700, 0, 0)
  407. /* move.l #value, y */
  408. #define core_move_long_to_y(target, value) exe(target, 3, 0xe417, value&0xffff, value>>16)
  409. static int core_move_value_to_pc(struct target *target, uint32_t value)
  410. {
  411. check_halt_and_debug(target);
  412. int retval;
  413. retval =
  414. dsp5680xx_exe_generic(target, 3, 0xE71E, value & 0xffff,
  415. value >> 16);
  416. err_check_propagate(retval);
  417. return retval;
  418. }
  419. static int eonce_load_TX_RX_to_r0(struct target *target)
  420. {
  421. int retval;
  422. retval =
  423. core_move_long_to_r0(target,
  424. ((MC568013_EONCE_TX_RX_ADDR) +
  425. (MC568013_EONCE_OBASE_ADDR << 16)));
  426. return retval;
  427. }
  428. static int core_load_TX_RX_high_addr_to_r0(struct target *target)
  429. {
  430. int retval = 0;
  431. retval =
  432. core_move_long_to_r0(target,
  433. ((MC568013_EONCE_TX1_RX1_HIGH_ADDR) +
  434. (MC568013_EONCE_OBASE_ADDR << 16)));
  435. return retval;
  436. }
  437. static int dsp5680xx_read_core_reg(struct target *target, uint8_t reg_addr,
  438. uint16_t *data_read)
  439. {
  440. /* TODO implement a general version of this which matches what openocd uses. */
  441. int retval;
  442. uint32_t dummy_data_to_shift_into_dr;
  443. retval = eonce_instruction_exec_single(target, reg_addr, 1, 0, 0, NULL);
  444. err_check_propagate(retval);
  445. retval =
  446. dsp5680xx_drscan(target, (uint8_t *) &dummy_data_to_shift_into_dr,
  447. (uint8_t *) data_read, 8);
  448. err_check_propagate(retval);
  449. LOG_DEBUG("Reg. data: 0x%02X.", *data_read);
  450. return retval;
  451. }
  452. static int eonce_read_status_reg(struct target *target, uint16_t *data)
  453. {
  454. int retval;
  455. retval = dsp5680xx_read_core_reg(target, DSP5680XX_ONCE_OSR, data);
  456. err_check_propagate(retval);
  457. return retval;
  458. }
  459. /**
  460. * Takes the core out of debug mode.
  461. *
  462. * @param target
  463. * @param eonce_status Data read from the EOnCE status register.
  464. *
  465. * @return
  466. */
  467. static int eonce_exit_debug_mode(struct target *target, uint8_t *eonce_status)
  468. {
  469. int retval;
  470. retval =
  471. eonce_instruction_exec_single(target, 0x1F, 0, 0, 1, eonce_status);
  472. err_check_propagate(retval);
  473. return retval;
  474. }
  475. static int switch_tap(struct target *target, struct jtag_tap *master_tap,
  476. struct jtag_tap *core_tap)
  477. {
  478. int retval = ERROR_OK;
  479. uint32_t instr;
  480. uint32_t ir_out; /* not used, just to make jtag happy. */
  481. if (master_tap == NULL) {
  482. master_tap = jtag_tap_by_string("dsp568013.chp");
  483. if (master_tap == NULL) {
  484. retval = ERROR_FAIL;
  485. const char *msg = "Failed to get master tap.";
  486. err_check(retval, DSP5680XX_ERROR_JTAG_TAP_FIND_MASTER,
  487. msg);
  488. }
  489. }
  490. if (core_tap == NULL) {
  491. core_tap = jtag_tap_by_string("dsp568013.cpu");
  492. if (core_tap == NULL) {
  493. retval = ERROR_FAIL;
  494. err_check(retval, DSP5680XX_ERROR_JTAG_TAP_FIND_CORE,
  495. "Failed to get core tap.");
  496. }
  497. }
  498. if (!(((int)master_tap->enabled) ^ ((int)core_tap->enabled))) {
  499. LOG_WARNING
  500. ("Master:%d\nCore:%d\nOnly 1 should be enabled.\n",
  501. (int)master_tap->enabled, (int)core_tap->enabled);
  502. }
  503. if (master_tap->enabled) {
  504. instr = 0x5;
  505. retval =
  506. dsp5680xx_irscan(target, &instr, &ir_out,
  507. DSP5680XX_JTAG_MASTER_TAP_IRLEN);
  508. err_check_propagate(retval);
  509. instr = 0x2;
  510. retval =
  511. dsp5680xx_drscan(target, (uint8_t *) &instr,
  512. (uint8_t *) &ir_out, 4);
  513. err_check_propagate(retval);
  514. core_tap->enabled = true;
  515. master_tap->enabled = false;
  516. } else {
  517. instr = 0x08;
  518. retval =
  519. dsp5680xx_irscan(target, &instr, &ir_out,
  520. DSP5680XX_JTAG_CORE_TAP_IRLEN);
  521. err_check_propagate(retval);
  522. instr = 0x1;
  523. retval =
  524. dsp5680xx_drscan(target, (uint8_t *) &instr,
  525. (uint8_t *) &ir_out, 4);
  526. err_check_propagate(retval);
  527. core_tap->enabled = false;
  528. master_tap->enabled = true;
  529. }
  530. return retval;
  531. }
  532. /**
  533. * Puts the core into debug mode, enabling the EOnCE module.
  534. * This will not always work, eonce_enter_debug_mode executes much
  535. * more complicated routine, which is guaranteed to work, but requires
  536. * a reset. This will complicate comm with the flash module, since
  537. * after a reset clock divisors must be set again.
  538. * This implementation works most of the time, and is not accesible to the
  539. * user.
  540. *
  541. * @param target
  542. * @param eonce_status Data read from the EOnCE status register.
  543. *
  544. * @return
  545. */
  546. static int eonce_enter_debug_mode_without_reset(struct target *target,
  547. uint16_t *eonce_status)
  548. {
  549. int retval;
  550. uint32_t instr = JTAG_INSTR_DEBUG_REQUEST;
  551. uint32_t ir_out; /* not used, just to make jtag happy.*/
  552. /* Debug request #1 */
  553. retval =
  554. dsp5680xx_irscan(target, &instr, &ir_out,
  555. DSP5680XX_JTAG_CORE_TAP_IRLEN);
  556. err_check_propagate(retval);
  557. /* Enable EOnCE module */
  558. instr = JTAG_INSTR_ENABLE_ONCE;
  559. /* Two rounds of jtag 0x6 (enable eonce) to enable EOnCE. */
  560. retval =
  561. dsp5680xx_irscan(target, &instr, &ir_out,
  562. DSP5680XX_JTAG_CORE_TAP_IRLEN);
  563. err_check_propagate(retval);
  564. retval =
  565. dsp5680xx_irscan(target, &instr, &ir_out,
  566. DSP5680XX_JTAG_CORE_TAP_IRLEN);
  567. err_check_propagate(retval);
  568. if ((ir_out & JTAG_STATUS_MASK) == JTAG_STATUS_DEBUG)
  569. target->state = TARGET_HALTED;
  570. else {
  571. retval = ERROR_FAIL;
  572. err_check_propagate(retval);
  573. }
  574. /* Verify that debug mode is enabled */
  575. uint16_t data_read_from_dr;
  576. retval = eonce_read_status_reg(target, &data_read_from_dr);
  577. err_check_propagate(retval);
  578. if ((data_read_from_dr & 0x30) == 0x30) {
  579. LOG_DEBUG("EOnCE successfully entered debug mode.");
  580. dsp5680xx_context.debug_mode_enabled = true;
  581. retval = ERROR_OK;
  582. } else {
  583. dsp5680xx_context.debug_mode_enabled = false;
  584. retval = ERROR_TARGET_FAILURE;
  585. /**
  586. *No error msg here, since there is still hope with full halting sequence
  587. */
  588. err_check_propagate(retval);
  589. }
  590. if (eonce_status != NULL)
  591. *eonce_status = data_read_from_dr;
  592. return retval;
  593. }
  594. /**
  595. * Puts the core into debug mode, enabling the EOnCE module.
  596. *
  597. * @param target
  598. * @param eonce_status Data read from the EOnCE status register.
  599. *
  600. * @return
  601. */
  602. static int eonce_enter_debug_mode(struct target *target,
  603. uint16_t *eonce_status)
  604. {
  605. int retval = ERROR_OK;
  606. uint32_t instr = JTAG_INSTR_DEBUG_REQUEST;
  607. uint32_t ir_out; /* not used, just to make jtag happy. */
  608. uint16_t instr_16;
  609. uint16_t read_16;
  610. /* First try the easy way */
  611. retval = eonce_enter_debug_mode_without_reset(target, eonce_status);
  612. if (retval == ERROR_OK)
  613. return retval;
  614. struct jtag_tap *tap_chp;
  615. struct jtag_tap *tap_cpu;
  616. tap_chp = jtag_tap_by_string("dsp568013.chp");
  617. if (tap_chp == NULL) {
  618. retval = ERROR_FAIL;
  619. err_check(retval, DSP5680XX_ERROR_JTAG_TAP_FIND_MASTER,
  620. "Failed to get master tap.");
  621. }
  622. tap_cpu = jtag_tap_by_string("dsp568013.cpu");
  623. if (tap_cpu == NULL) {
  624. retval = ERROR_FAIL;
  625. err_check(retval, DSP5680XX_ERROR_JTAG_TAP_FIND_CORE,
  626. "Failed to get master tap.");
  627. }
  628. /* Enable master tap */
  629. tap_chp->enabled = true;
  630. tap_cpu->enabled = false;
  631. instr = MASTER_TAP_CMD_IDCODE;
  632. retval =
  633. dsp5680xx_irscan(target, &instr, &ir_out,
  634. DSP5680XX_JTAG_MASTER_TAP_IRLEN);
  635. err_check_propagate(retval);
  636. jtag_add_sleep(TIME_DIV_FREESCALE * 100 * 1000);
  637. /* Enable EOnCE module */
  638. jtag_add_reset(0, 1);
  639. jtag_add_sleep(TIME_DIV_FREESCALE * 200 * 1000);
  640. instr = 0x0606ffff; /* This was selected experimentally. */
  641. retval =
  642. dsp5680xx_drscan(target, (uint8_t *) &instr, (uint8_t *) &ir_out,
  643. 32);
  644. err_check_propagate(retval);
  645. /* ir_out now hold tap idcode */
  646. /* Enable core tap */
  647. tap_chp->enabled = true;
  648. retval = switch_tap(target, tap_chp, tap_cpu);
  649. err_check_propagate(retval);
  650. instr = JTAG_INSTR_ENABLE_ONCE;
  651. /* Two rounds of jtag 0x6 (enable eonce) to enable EOnCE. */
  652. retval =
  653. dsp5680xx_irscan(target, &instr, &ir_out,
  654. DSP5680XX_JTAG_CORE_TAP_IRLEN);
  655. err_check_propagate(retval);
  656. instr = JTAG_INSTR_DEBUG_REQUEST;
  657. retval =
  658. dsp5680xx_irscan(target, &instr, &ir_out,
  659. DSP5680XX_JTAG_CORE_TAP_IRLEN);
  660. err_check_propagate(retval);
  661. instr_16 = 0x1;
  662. retval =
  663. dsp5680xx_drscan(target, (uint8_t *) &instr_16,
  664. (uint8_t *) &read_16, 8);
  665. err_check_propagate(retval);
  666. instr_16 = 0x20;
  667. retval =
  668. dsp5680xx_drscan(target, (uint8_t *) &instr_16,
  669. (uint8_t *) &read_16, 8);
  670. err_check_propagate(retval);
  671. jtag_add_sleep(TIME_DIV_FREESCALE * 100 * 1000);
  672. jtag_add_reset(0, 0);
  673. jtag_add_sleep(TIME_DIV_FREESCALE * 300 * 1000);
  674. instr = JTAG_INSTR_ENABLE_ONCE;
  675. /* Two rounds of jtag 0x6 (enable eonce) to enable EOnCE. */
  676. for (int i = 0; i < 3; i++) {
  677. retval =
  678. dsp5680xx_irscan(target, &instr, &ir_out,
  679. DSP5680XX_JTAG_CORE_TAP_IRLEN);
  680. err_check_propagate(retval);
  681. }
  682. if ((ir_out & JTAG_STATUS_MASK) == JTAG_STATUS_DEBUG)
  683. target->state = TARGET_HALTED;
  684. else {
  685. retval = ERROR_FAIL;
  686. err_check(retval, DSP5680XX_ERROR_HALT,
  687. "Failed to halt target.");
  688. }
  689. for (int i = 0; i < 3; i++) {
  690. instr_16 = 0x86;
  691. dsp5680xx_drscan(target, (uint8_t *) &instr_16,
  692. (uint8_t *) &read_16, 16);
  693. instr_16 = 0xff;
  694. dsp5680xx_drscan(target, (uint8_t *) &instr_16,
  695. (uint8_t *) &read_16, 16);
  696. }
  697. /* Verify that debug mode is enabled */
  698. uint16_t data_read_from_dr;
  699. retval = eonce_read_status_reg(target, &data_read_from_dr);
  700. err_check_propagate(retval);
  701. if ((data_read_from_dr & 0x30) == 0x30) {
  702. LOG_DEBUG("EOnCE successfully entered debug mode.");
  703. dsp5680xx_context.debug_mode_enabled = true;
  704. retval = ERROR_OK;
  705. } else {
  706. const char *msg = "Failed to set EOnCE module to debug mode";
  707. retval = ERROR_TARGET_FAILURE;
  708. err_check(retval, DSP5680XX_ERROR_ENTER_DEBUG_MODE, msg);
  709. }
  710. if (eonce_status != NULL)
  711. *eonce_status = data_read_from_dr;
  712. return retval;
  713. }
  714. /**
  715. * Reads the current value of the program counter and stores it.
  716. *
  717. * @param target
  718. *
  719. * @return
  720. */
  721. static int eonce_pc_store(struct target *target)
  722. {
  723. uint8_t tmp[2];
  724. int retval;
  725. retval = core_move_pc_to_r4(target);
  726. err_check_propagate(retval);
  727. retval = core_move_r4_to_y(target);
  728. err_check_propagate(retval);
  729. retval = eonce_load_TX_RX_to_r0(target);
  730. err_check_propagate(retval);
  731. retval = core_move_y0_at_r0(target);
  732. err_check_propagate(retval);
  733. retval = core_rx_lower_data(target, tmp);
  734. err_check_propagate(retval);
  735. LOG_USER("PC value: 0x%X%X\n", tmp[1], tmp[0]);
  736. dsp5680xx_context.stored_pc = (tmp[0] | (tmp[1] << 8));
  737. return ERROR_OK;
  738. }
  739. static int dsp5680xx_target_create(struct target *target, Jim_Interp *interp)
  740. {
  741. struct dsp5680xx_common *dsp5680xx =
  742. calloc(1, sizeof(struct dsp5680xx_common));
  743. target->arch_info = dsp5680xx;
  744. return ERROR_OK;
  745. }
  746. static int dsp5680xx_init_target(struct command_context *cmd_ctx,
  747. struct target *target)
  748. {
  749. dsp5680xx_context.stored_pc = 0;
  750. dsp5680xx_context.flush = 1;
  751. dsp5680xx_context.debug_mode_enabled = false;
  752. LOG_DEBUG("target initiated!");
  753. /* TODO core tap must be enabled before running these commands, currently
  754. * this is done in the .cfg tcl script. */
  755. return ERROR_OK;
  756. }
  757. static int dsp5680xx_arch_state(struct target *target)
  758. {
  759. LOG_USER("%s not implemented yet.", __func__);
  760. return ERROR_OK;
  761. }
  762. int dsp5680xx_target_status(struct target *target, uint8_t *jtag_st,
  763. uint16_t *eonce_st)
  764. {
  765. return target->state;
  766. }
  767. static int dsp5680xx_assert_reset(struct target *target)
  768. {
  769. target->state = TARGET_RESET;
  770. return ERROR_OK;
  771. }
  772. static int dsp5680xx_deassert_reset(struct target *target)
  773. {
  774. target->state = TARGET_RUNNING;
  775. return ERROR_OK;
  776. }
  777. static int dsp5680xx_halt(struct target *target)
  778. {
  779. int retval;
  780. uint16_t eonce_status = 0xbeef;
  781. if ((target->state == TARGET_HALTED)
  782. && (dsp5680xx_context.debug_mode_enabled)) {
  783. LOG_USER("Target already halted and in debug mode.");
  784. return ERROR_OK;
  785. } else {
  786. if (target->state == TARGET_HALTED)
  787. LOG_USER
  788. ("Target already halted, re attempting to enter debug mode.");
  789. }
  790. retval = eonce_enter_debug_mode(target, &eonce_status);
  791. err_check_propagate(retval);
  792. retval = eonce_pc_store(target);
  793. err_check_propagate(retval);
  794. if (dsp5680xx_context.debug_mode_enabled) {
  795. retval = eonce_pc_store(target);
  796. err_check_propagate(retval);
  797. }
  798. return retval;
  799. }
  800. static int dsp5680xx_poll(struct target *target)
  801. {
  802. int retval;
  803. uint8_t jtag_status;
  804. uint8_t eonce_status;
  805. uint16_t read_tmp;
  806. retval = dsp5680xx_jtag_status(target, &jtag_status);
  807. err_check_propagate(retval);
  808. if (jtag_status == JTAG_STATUS_DEBUG)
  809. if (target->state != TARGET_HALTED) {
  810. retval = eonce_enter_debug_mode(target, &read_tmp);
  811. err_check_propagate(retval);
  812. eonce_status = (uint8_t) read_tmp;
  813. if ((eonce_status & EONCE_STAT_MASK) !=
  814. DSP5680XX_ONCE_OSCR_DEBUG_M) {
  815. const char *msg =
  816. "%s: Failed to put EOnCE in debug mode.Flash locked?...";
  817. LOG_WARNING(msg, __func__);
  818. return ERROR_TARGET_FAILURE;
  819. } else {
  820. target->state = TARGET_HALTED;
  821. return ERROR_OK;
  822. }
  823. }
  824. if (jtag_status == JTAG_STATUS_NORMAL) {
  825. if (target->state == TARGET_RESET) {
  826. retval = dsp5680xx_halt(target);
  827. err_check_propagate(retval);
  828. retval = eonce_exit_debug_mode(target, &eonce_status);
  829. err_check_propagate(retval);
  830. if ((eonce_status & EONCE_STAT_MASK) !=
  831. DSP5680XX_ONCE_OSCR_NORMAL_M) {
  832. const char *msg =
  833. "%s: JTAG running, but EOnCE run failed.Try resetting..";
  834. LOG_WARNING(msg, __func__);
  835. return ERROR_TARGET_FAILURE;
  836. } else {
  837. target->state = TARGET_RUNNING;
  838. return ERROR_OK;
  839. }
  840. }
  841. if (target->state != TARGET_RUNNING) {
  842. retval = eonce_read_status_reg(target, &read_tmp);
  843. err_check_propagate(retval);
  844. eonce_status = (uint8_t) read_tmp;
  845. if ((eonce_status & EONCE_STAT_MASK) !=
  846. DSP5680XX_ONCE_OSCR_NORMAL_M) {
  847. LOG_WARNING
  848. ("Inconsistent target status. Restart!");
  849. return ERROR_TARGET_FAILURE;
  850. }
  851. }
  852. target->state = TARGET_RUNNING;
  853. return ERROR_OK;
  854. }
  855. if (jtag_status == JTAG_STATUS_DEAD) {
  856. LOG_ERROR
  857. ("%s: Cannot communicate with JTAG. Check connection...",
  858. __func__);
  859. target->state = TARGET_UNKNOWN;
  860. return ERROR_TARGET_FAILURE;
  861. };
  862. if (target->state == TARGET_UNKNOWN) {
  863. LOG_ERROR("%s: Target status invalid - communication failure",
  864. __func__);
  865. return ERROR_TARGET_FAILURE;
  866. };
  867. return ERROR_OK;
  868. }
  869. static int dsp5680xx_resume(struct target *target, int current,
  870. uint32_t address, int hb, int d)
  871. {
  872. if (target->state == TARGET_RUNNING) {
  873. LOG_USER("Target already running.");
  874. return ERROR_OK;
  875. }
  876. int retval;
  877. uint8_t eonce_status;
  878. uint8_t jtag_status;
  879. if (dsp5680xx_context.debug_mode_enabled) {
  880. if (!current) {
  881. retval = core_move_value_to_pc(target, address);
  882. err_check_propagate(retval);
  883. }
  884. int retry = 20;
  885. while (retry-- > 1) {
  886. retval = eonce_exit_debug_mode(target, &eonce_status);
  887. err_check_propagate(retval);
  888. if (eonce_status == DSP5680XX_ONCE_OSCR_NORMAL_M)
  889. break;
  890. }
  891. if (retry == 0) {
  892. retval = ERROR_TARGET_FAILURE;
  893. err_check(retval, DSP5680XX_ERROR_EXIT_DEBUG_MODE,
  894. "Failed to exit debug mode...");
  895. } else {
  896. target->state = TARGET_RUNNING;
  897. dsp5680xx_context.debug_mode_enabled = false;
  898. }
  899. LOG_DEBUG("EOnCE status: 0x%02X.", eonce_status);
  900. } else {
  901. /*
  902. * If debug mode was not enabled but target was halted, then it is most likely that
  903. * access to eonce registers is locked.
  904. * Reset target to make it run again.
  905. */
  906. jtag_add_reset(0, 1);
  907. jtag_add_sleep(TIME_DIV_FREESCALE * 200 * 1000);
  908. retval = reset_jtag();
  909. err_check(retval, DSP5680XX_ERROR_JTAG_RESET,
  910. "Failed to reset JTAG state machine");
  911. jtag_add_sleep(TIME_DIV_FREESCALE * 100 * 1000);
  912. jtag_add_reset(0, 0);
  913. jtag_add_sleep(TIME_DIV_FREESCALE * 300 * 1000);
  914. retval = dsp5680xx_jtag_status(target, &jtag_status);
  915. err_check_propagate(retval);
  916. if ((jtag_status & JTAG_STATUS_MASK) == JTAG_STATUS_NORMAL) {
  917. target->state = TARGET_RUNNING;
  918. dsp5680xx_context.debug_mode_enabled = false;
  919. } else {
  920. retval = ERROR_TARGET_FAILURE;
  921. err_check(retval, DSP5680XX_ERROR_RESUME,
  922. "Failed to resume target");
  923. }
  924. }
  925. return ERROR_OK;
  926. }
  927. /**
  928. * The value of @address determines if it corresponds to P: (program) or X: (dat) memory.
  929. * If the address is over 0x200000 then it is considered X: memory, and @pmem = 0.
  930. * The special case of 0xFFXXXX is not modified, since it allows to read out the
  931. * memory mapped EOnCE registers.
  932. *
  933. * @param address
  934. * @param pmem
  935. *
  936. * @return
  937. */
  938. static int dsp5680xx_convert_address(uint32_t *address, int *pmem)
  939. {
  940. /*
  941. * Distinguish data memory (x) from program memory (p) by the address.
  942. * Addresses over S_FILE_DATA_OFFSET are considered (x) memory.
  943. */
  944. if (*address >= S_FILE_DATA_OFFSET) {
  945. *pmem = 0;
  946. if (((*address) & 0xff0000) != 0xff0000)
  947. *address -= S_FILE_DATA_OFFSET;
  948. }
  949. return ERROR_OK;
  950. }
  951. static int dsp5680xx_read_16_single(struct target *t, uint32_t a,
  952. uint8_t *data_read, int r_pmem)
  953. {
  954. struct target *target = t;
  955. uint32_t address = a;
  956. int retval;
  957. retval = core_move_long_to_r0(target, address);
  958. err_check_propagate(retval);
  959. if (r_pmem)
  960. retval = core_move_at_pr0_inc_to_y0(target);
  961. else
  962. retval = core_move_at_r0_to_y0(target);
  963. err_check_propagate(retval);
  964. retval = eonce_load_TX_RX_to_r0(target);
  965. err_check_propagate(retval);
  966. retval = core_move_y0_at_r0(target);
  967. err_check_propagate(retval);
  968. /* at this point the data i want is at the reg eonce can read */
  969. retval = core_rx_lower_data(target, data_read);
  970. err_check_propagate(retval);
  971. LOG_DEBUG("%s:Data read from 0x%06X: 0x%02X%02X", __func__, address,
  972. data_read[1], data_read[0]);
  973. return retval;
  974. }
  975. static int dsp5680xx_read_32_single(struct target *t, uint32_t a,
  976. uint8_t *data_read, int r_pmem)
  977. {
  978. struct target *target = t;
  979. uint32_t address = a;
  980. int retval;
  981. address = (address & 0xFFFFF);
  982. /* Get data to an intermediate register */
  983. retval = core_move_long_to_r0(target, address);
  984. err_check_propagate(retval);
  985. if (r_pmem) {
  986. retval = core_move_at_pr0_inc_to_y0(target);
  987. err_check_propagate(retval);
  988. retval = core_move_at_pr0_inc_to_y1(target);
  989. err_check_propagate(retval);
  990. } else {
  991. retval = core_move_at_r0_inc_to_y0(target);
  992. err_check_propagate(retval);
  993. retval = core_move_at_r0_to_y1(target);
  994. err_check_propagate(retval);
  995. }
  996. /* Get lower part of data to TX/RX */
  997. retval = eonce_load_TX_RX_to_r0(target);
  998. err_check_propagate(retval);
  999. retval = core_move_y0_at_r0_inc(target); /* This also load TX/RX high to r0 */
  1000. err_check_propagate(retval);
  1001. /* Get upper part of data to TX/RX */
  1002. retval = core_move_y1_at_r0(target);
  1003. err_check_propagate(retval);
  1004. /* at this point the data i want is at the reg eonce can read */
  1005. retval = core_rx_lower_data(target, data_read);
  1006. err_check_propagate(retval);
  1007. retval = core_rx_upper_data(target, data_read + 2);
  1008. err_check_propagate(retval);
  1009. return retval;
  1010. }
  1011. static int dsp5680xx_read(struct target *t, uint32_t a, unsigned size,
  1012. unsigned count, uint8_t *buf)
  1013. {
  1014. struct target *target = t;
  1015. uint32_t address = a;
  1016. uint8_t *buffer = buf;
  1017. check_halt_and_debug(target);
  1018. int retval = ERROR_OK;
  1019. int pmem = 1;
  1020. retval = dsp5680xx_convert_address(&address, &pmem);
  1021. err_check_propagate(retval);
  1022. dsp5680xx_context.flush = 0;
  1023. int counter = FLUSH_COUNT_READ_WRITE;
  1024. for (unsigned i = 0; i < count; i++) {
  1025. if (--counter == 0) {
  1026. dsp5680xx_context.flush = 1;
  1027. counter = FLUSH_COUNT_READ_WRITE;
  1028. }
  1029. switch (size) {
  1030. case 1:
  1031. if (!(i % 2))
  1032. retval =
  1033. dsp5680xx_read_16_single(target,
  1034. address + i / 2,
  1035. buffer + i, pmem);
  1036. break;
  1037. case 2:
  1038. retval =
  1039. dsp5680xx_read_16_single(target, address + i,
  1040. buffer + 2 * i, pmem);
  1041. break;
  1042. case 4:
  1043. retval =
  1044. dsp5680xx_read_32_single(target, address + 2 * i,
  1045. buffer + 4 * i, pmem);
  1046. break;
  1047. default:
  1048. LOG_USER("%s: Invalid read size.", __func__);
  1049. break;
  1050. }
  1051. err_check_propagate(retval);
  1052. dsp5680xx_context.flush = 0;
  1053. }
  1054. dsp5680xx_context.flush = 1;
  1055. retval = dsp5680xx_execute_queue();
  1056. err_check_propagate(retval);
  1057. return retval;
  1058. }
  1059. static int dsp5680xx_write_16_single(struct target *t, uint32_t a,
  1060. uint16_t data, uint8_t w_pmem)
  1061. {
  1062. struct target *target = t;
  1063. uint32_t address = a;
  1064. int retval = 0;
  1065. retval = core_move_long_to_r0(target, address);
  1066. err_check_propagate(retval);
  1067. if (w_pmem) {
  1068. retval = core_move_value_to_y0(target, data);
  1069. err_check_propagate(retval);
  1070. retval = core_move_y0_at_pr0_inc(target);
  1071. err_check_propagate(retval);
  1072. } else {
  1073. retval = core_move_value_at_r0(target, data);
  1074. err_check_propagate(retval);
  1075. }
  1076. return retval;
  1077. }
  1078. static int dsp5680xx_write_32_single(struct target *t, uint32_t a,
  1079. uint32_t data, int w_pmem)
  1080. {
  1081. struct target *target = t;
  1082. uint32_t address = a;
  1083. int retval = ERROR_OK;
  1084. retval = core_move_long_to_r0(target, address);
  1085. err_check_propagate(retval);
  1086. retval = core_move_long_to_y(target, data);
  1087. err_check_propagate(retval);
  1088. if (w_pmem)
  1089. retval = core_move_y0_at_pr0_inc(target);
  1090. else
  1091. retval = core_move_y0_at_r0_inc(target);
  1092. err_check_propagate(retval);
  1093. if (w_pmem)
  1094. retval = core_move_y1_at_pr0_inc(target);
  1095. else
  1096. retval = core_move_y1_at_r0_inc(target);
  1097. err_check_propagate(retval);
  1098. return retval;
  1099. }
  1100. static int dsp5680xx_write_8(struct target *t, uint32_t a, uint32_t c,
  1101. const uint8_t *d, int pmem)
  1102. {
  1103. struct target *target = t;
  1104. uint32_t address = a;
  1105. uint32_t count = c;
  1106. const uint8_t *data = d;
  1107. int retval = 0;
  1108. uint16_t data_16;
  1109. uint32_t iter;
  1110. int counter = FLUSH_COUNT_READ_WRITE;
  1111. for (iter = 0; iter < count / 2; iter++) {
  1112. if (--counter == 0) {
  1113. dsp5680xx_context.flush = 1;
  1114. counter = FLUSH_COUNT_READ_WRITE;
  1115. }
  1116. data_16 = (data[2 * iter] | (data[2 * iter + 1] << 8));
  1117. retval =
  1118. dsp5680xx_write_16_single(target, address + iter, data_16,
  1119. pmem);
  1120. if (retval != ERROR_OK) {
  1121. LOG_ERROR("%s: Could not write to p:0x%04X", __func__,
  1122. address);
  1123. dsp5680xx_context.flush = 1;
  1124. return retval;
  1125. }
  1126. dsp5680xx_context.flush = 0;
  1127. }
  1128. dsp5680xx_context.flush = 1;
  1129. /* Only one byte left, let's not overwrite the other byte (mem is 16bit) */
  1130. /* Need to retrieve the part we do not want to overwrite. */
  1131. uint16_t data_old;
  1132. if ((count == 1) || (count % 2)) {
  1133. retval =
  1134. dsp5680xx_read(target, address + iter, 1, 1,
  1135. (uint8_t *) &data_old);
  1136. err_check_propagate(retval);
  1137. if (count == 1)
  1138. data_old = (((data_old & 0xff) << 8) | data[0]); /* preserve upper byte */
  1139. else
  1140. data_old =
  1141. (((data_old & 0xff) << 8) | data[2 * iter + 1]);
  1142. retval =
  1143. dsp5680xx_write_16_single(target, address + iter, data_old,
  1144. pmem);
  1145. err_check_propagate(retval);
  1146. }
  1147. return retval;
  1148. }
  1149. static int dsp5680xx_write_16(struct target *t, uint32_t a, uint32_t c,
  1150. const uint8_t *d, int pmem)
  1151. {
  1152. struct target *target = t;
  1153. uint32_t address = a;
  1154. uint32_t count = c;
  1155. const uint8_t *data = d;
  1156. int retval = ERROR_OK;
  1157. uint32_t iter;
  1158. int counter = FLUSH_COUNT_READ_WRITE;
  1159. for (iter = 0; iter < count; iter++) {
  1160. if (--counter == 0) {
  1161. dsp5680xx_context.flush = 1;
  1162. counter = FLUSH_COUNT_READ_WRITE;
  1163. }
  1164. retval =
  1165. dsp5680xx_write_16_single(target, address + iter,
  1166. data[iter], pmem);
  1167. if (retval != ERROR_OK) {
  1168. LOG_ERROR("%s: Could not write to p:0x%04X", __func__,
  1169. address);
  1170. dsp5680xx_context.flush = 1;
  1171. return retval;
  1172. }
  1173. dsp5680xx_context.flush = 0;
  1174. }
  1175. dsp5680xx_context.flush = 1;
  1176. return retval;
  1177. }
  1178. static int dsp5680xx_write_32(struct target *t, uint32_t a, uint32_t c,
  1179. const uint8_t *d, int pmem)
  1180. {
  1181. struct target *target = t;
  1182. uint32_t address = a;
  1183. uint32_t count = c;
  1184. const uint8_t *data = d;
  1185. int retval = ERROR_OK;
  1186. uint32_t iter;
  1187. int counter = FLUSH_COUNT_READ_WRITE;
  1188. for (iter = 0; iter < count; iter++) {
  1189. if (--counter == 0) {
  1190. dsp5680xx_context.flush = 1;
  1191. counter = FLUSH_COUNT_READ_WRITE;
  1192. }
  1193. retval =
  1194. dsp5680xx_write_32_single(target, address + (iter << 1),
  1195. data[iter], pmem);
  1196. if (retval != ERROR_OK) {
  1197. LOG_ERROR("%s: Could not write to p:0x%04X", __func__,
  1198. address);
  1199. dsp5680xx_context.flush = 1;
  1200. return retval;
  1201. }
  1202. dsp5680xx_context.flush = 0;
  1203. }
  1204. dsp5680xx_context.flush = 1;
  1205. return retval;
  1206. }
  1207. /**
  1208. * Writes @buffer to memory.
  1209. * The parameter @address determines whether @buffer should be written to
  1210. * P: (program) memory or X: (dat) memory.
  1211. *
  1212. * @param target
  1213. * @param address
  1214. * @param size Bytes (1), Half words (2), Words (4).
  1215. * @param count In bytes.
  1216. * @param buffer
  1217. *
  1218. * @return
  1219. */
  1220. static int dsp5680xx_write(struct target *t, uint32_t a, uint32_t s, uint32_t c,
  1221. const uint8_t *b)
  1222. {
  1223. /* TODO Cannot write 32bit to odd address, will write 0x12345678 as 0x5678 0x0012 */
  1224. struct target *target = t;
  1225. uint32_t address = a;
  1226. uint32_t count = c;
  1227. uint8_t const *buffer = b;
  1228. uint32_t size = s;
  1229. check_halt_and_debug(target);
  1230. int retval = 0;
  1231. int p_mem = 1;
  1232. retval = dsp5680xx_convert_address(&address, &p_mem);
  1233. err_check_propagate(retval);
  1234. switch (size) {
  1235. case 1:
  1236. retval =
  1237. dsp5680xx_write_8(target, address, count, buffer, p_mem);
  1238. break;
  1239. case 2:
  1240. retval =
  1241. dsp5680xx_write_16(target, address, count, buffer, p_mem);
  1242. break;
  1243. case 4:
  1244. retval =
  1245. dsp5680xx_write_32(target, address, count, buffer, p_mem);
  1246. break;
  1247. default:
  1248. retval = ERROR_TARGET_DATA_ABORT;
  1249. err_check(retval, DSP5680XX_ERROR_INVALID_DATA_SIZE_UNIT,
  1250. "Invalid data size.");
  1251. break;
  1252. }
  1253. return retval;
  1254. }
  1255. static int dsp5680xx_bulk_write_memory(struct target *t, uint32_t a,
  1256. uint32_t al, const uint8_t *b)
  1257. {
  1258. LOG_ERROR("Not implemented yet.");
  1259. return ERROR_FAIL;
  1260. }
  1261. static int dsp5680xx_write_buffer(struct target *t, uint32_t a, uint32_t size,
  1262. const uint8_t *b)
  1263. {
  1264. check_halt_and_debug(t);
  1265. return dsp5680xx_write(t, a, 1, size, b);
  1266. }
  1267. /**
  1268. * This function is called by verify_image, it is used to read data from memory.
  1269. *
  1270. * @param target
  1271. * @param address Word addressing.
  1272. * @param size In bytes.
  1273. * @param buffer
  1274. *
  1275. * @return
  1276. */
  1277. static int dsp5680xx_read_buffer(struct target *t, uint32_t a, uint32_t size,
  1278. uint8_t *buf)
  1279. {
  1280. check_halt_and_debug(t);
  1281. /* The "/2" solves the byte/word addressing issue.*/
  1282. return dsp5680xx_read(t, a, 2, size / 2, buf);
  1283. }
  1284. /**
  1285. * This function is not implemented.
  1286. * It returns an error in order to get OpenOCD to do read out the data
  1287. * and calculate the CRC, or try a binary comparison.
  1288. *
  1289. * @param target
  1290. * @param address Start address of the image.
  1291. * @param size In bytes.
  1292. * @param checksum
  1293. *
  1294. * @return
  1295. */
  1296. static int dsp5680xx_checksum_memory(struct target *t, uint32_t a, uint32_t s,
  1297. uint32_t *checksum)
  1298. {
  1299. return ERROR_FAIL;
  1300. }
  1301. /**
  1302. * Calculates a signature over @word_count words in the data from @buff16.
  1303. * The algorithm used is the same the FM uses, so the @return may be used to compare
  1304. * with the one generated by the FM module, and check if flashing was successful.
  1305. * This algorithm is based on the perl script available from the Freescale website at FAQ 25630.
  1306. *
  1307. * @param buff16
  1308. * @param word_count
  1309. *
  1310. * @return
  1311. */
  1312. static int perl_crc(uint8_t *buff8, uint32_t word_count)
  1313. {
  1314. uint16_t checksum = 0xffff;
  1315. uint16_t data, fbmisr;
  1316. uint32_t i;
  1317. for (i = 0; i < word_count; i++) {
  1318. data = (buff8[2 * i] | (buff8[2 * i + 1] << 8));
  1319. fbmisr =
  1320. (checksum & 2) >> 1 ^ (checksum & 4) >> 2 ^ (checksum & 16)
  1321. >> 4 ^ (checksum & 0x8000) >> 15;
  1322. checksum = (data ^ ((checksum << 1) | fbmisr));
  1323. }
  1324. i--;
  1325. for (; !(i & 0x80000000); i--) {
  1326. data = (buff8[2 * i] | (buff8[2 * i + 1] << 8));
  1327. fbmisr =
  1328. (checksum & 2) >> 1 ^ (checksum & 4) >> 2 ^ (checksum & 16)
  1329. >> 4 ^ (checksum & 0x8000) >> 15;
  1330. checksum = (data ^ ((checksum << 1) | fbmisr));
  1331. }
  1332. return checksum;
  1333. }
  1334. /**
  1335. * Resets the SIM. (System Integration Modul).
  1336. *
  1337. * @param target
  1338. *
  1339. * @return
  1340. */
  1341. int dsp5680xx_f_SIM_reset(struct target *target)
  1342. {
  1343. int retval = ERROR_OK;
  1344. uint16_t sim_cmd = SIM_CMD_RESET;
  1345. uint32_t sim_addr;
  1346. if (strcmp(target->tap->chip, "dsp568013") == 0) {
  1347. sim_addr = MC568013_SIM_BASE_ADDR + S_FILE_DATA_OFFSET;
  1348. retval =
  1349. dsp5680xx_write(target, sim_addr, 1, 2,
  1350. (const uint8_t *)&sim_cmd);
  1351. err_check_propagate(retval);
  1352. }
  1353. return retval;
  1354. }
  1355. /**
  1356. * Halts the core and resets the SIM. (System Integration Modul).
  1357. *
  1358. * @param target
  1359. *
  1360. * @return
  1361. */
  1362. static int dsp5680xx_soft_reset_halt(struct target *target)
  1363. {
  1364. /* TODO is this what this function is expected to do...? */
  1365. int retval;
  1366. retval = dsp5680xx_halt(target);
  1367. err_check_propagate(retval);
  1368. retval = dsp5680xx_f_SIM_reset(target);
  1369. err_check_propagate(retval);
  1370. return retval;
  1371. }
  1372. int dsp5680xx_f_protect_check(struct target *target, uint16_t *protected)
  1373. {
  1374. int retval;
  1375. check_halt_and_debug(target);
  1376. if (protected == NULL) {
  1377. const char *msg = "NULL pointer not valid.";
  1378. err_check(ERROR_FAIL,
  1379. DSP5680XX_ERROR_PROTECT_CHECK_INVALID_ARGS, msg);
  1380. }
  1381. retval =
  1382. dsp5680xx_read_16_single(target, HFM_BASE_ADDR | HFM_PROT,
  1383. (uint8_t *) protected, 0);
  1384. err_check_propagate(retval);
  1385. return retval;
  1386. }
  1387. /**
  1388. * Executes a command on the FM module.
  1389. * Some commands use the parameters @address and @data, others ignore them.
  1390. *
  1391. * @param target
  1392. * @param command Command to execute.
  1393. * @param address Command parameter.
  1394. * @param data Command parameter.
  1395. * @param hfm_ustat FM status register.
  1396. * @param pmem Address is P: (program) memory (@pmem == 1) or X: (dat) memory (@pmem == 0)
  1397. *
  1398. * @return
  1399. */
  1400. static int dsp5680xx_f_ex(struct target *t, uint16_t c, uint32_t a, uint32_t d,
  1401. uint16_t *h, int p)
  1402. {
  1403. struct target *target = t;
  1404. uint32_t command = c;
  1405. uint32_t address = a;
  1406. uint32_t data = d;
  1407. uint16_t *hfm_ustat = h;
  1408. int pmem = p;
  1409. int retval;
  1410. retval = core_load_TX_RX_high_addr_to_r0(target);
  1411. err_check_propagate(retval);
  1412. retval = core_move_long_to_r2(target, HFM_BASE_ADDR);
  1413. err_check_propagate(retval);
  1414. uint8_t i[2];
  1415. int watchdog = 100;
  1416. do {
  1417. retval = core_move_at_r2_disp_to_y0(target, HFM_USTAT); /* read HMF_USTAT */
  1418. err_check_propagate(retval);
  1419. retval = core_move_y0_at_r0(target);
  1420. err_check_propagate(retval);
  1421. retval = core_rx_upper_data(target, i);
  1422. err_check_propagate(retval);
  1423. if ((watchdog--) == 1) {
  1424. retval = ERROR_TARGET_FAILURE;
  1425. const char *msg =
  1426. "Timed out waiting for FM to finish old command.";
  1427. err_check(retval, DSP5680XX_ERROR_FM_BUSY, msg);
  1428. }
  1429. } while (!(i[0] & 0x40)); /* wait until current command is complete */
  1430. dsp5680xx_context.flush = 0;
  1431. /* write to HFM_CNFG (lock=0,select bank) - flash_desc.bank&0x03, 0x01 == 0x00, 0x01 ??? */
  1432. retval = core_move_value_at_r2_disp(target, 0x00, HFM_CNFG);
  1433. err_check_propagate(retval);
  1434. /* write to HMF_USTAT, clear PVIOL, ACCERR &BLANK bits */
  1435. retval = core_move_value_at_r2_disp(target, 0x04, HFM_USTAT);
  1436. err_check_propagate(retval);
  1437. /* clear only one bit at a time */
  1438. retval = core_move_value_at_r2_disp(target, 0x10, HFM_USTAT);
  1439. err_check_propagate(retval);
  1440. retval = core_move_value_at_r2_disp(target, 0x20, HFM_USTAT);
  1441. err_check_propagate(retval);
  1442. /* write to HMF_PROT, clear protection */
  1443. retval = core_move_value_at_r2_disp(target, 0x00, HFM_PROT);
  1444. err_check_propagate(retval);
  1445. /* write to HMF_PROTB, clear protection */
  1446. retval = core_move_value_at_r2_disp(target, 0x00, HFM_PROTB);
  1447. err_check_propagate(retval);
  1448. retval = core_move_value_to_y0(target, data);
  1449. err_check_propagate(retval);
  1450. /* write to the flash block */
  1451. retval = core_move_long_to_r3(target, address);
  1452. err_check_propagate(retval);
  1453. if (pmem) {
  1454. retval = core_move_y0_at_pr3_inc(target);
  1455. err_check_propagate(retval);
  1456. } else {
  1457. retval = core_move_y0_at_r3(target);
  1458. err_check_propagate(retval);
  1459. }
  1460. /* write command to the HFM_CMD reg */
  1461. retval = core_move_value_at_r2_disp(target, command, HFM_CMD);
  1462. err_check_propagate(retval);
  1463. /* start the command */
  1464. retval = core_move_value_at_r2_disp(target, 0x80, HFM_USTAT);
  1465. err_check_propagate(retval);
  1466. dsp5680xx_context.flush = 1;
  1467. retval = dsp5680xx_execute_queue();
  1468. err_check_propagate(retval);
  1469. watchdog = 100;
  1470. do {
  1471. /* read HMF_USTAT */
  1472. retval = core_move_at_r2_disp_to_y0(target, HFM_USTAT);
  1473. err_check_propagate(retval);
  1474. retval = core_move_y0_at_r0(target);
  1475. err_check_propagate(retval);
  1476. retval = core_rx_upper_data(target, i);
  1477. err_check_propagate(retval);
  1478. if ((watchdog--) == 1) {
  1479. retval = ERROR_TARGET_FAILURE;
  1480. err_check(retval, DSP5680XX_ERROR_FM_CMD_TIMED_OUT,
  1481. "FM execution did not finish.");
  1482. }
  1483. } while (!(i[0] & 0x40)); /* wait until the command is complete */
  1484. *hfm_ustat = ((i[0] << 8) | (i[1]));
  1485. if (i[0] & HFM_USTAT_MASK_PVIOL_ACCER) {
  1486. retval = ERROR_TARGET_FAILURE;
  1487. const char *msg =
  1488. "pviol and/or accer bits set. HFM command execution error";
  1489. err_check(retval, DSP5680XX_ERROR_FM_EXEC, msg);
  1490. }
  1491. return ERROR_OK;
  1492. }
  1493. /**
  1494. * Prior to the execution of any Flash module command, the Flash module Clock Divider (CLKDIV) register must be initialized. The values of this register determine the speed of the internal Flash Clock (FCLK). FCLK must be in the range of 150kHz ≤ FCLK ≤ 200kHz for proper operation of the Flash module. (Running FCLK too slowly wears out the module, while running it too fast under programs Flash leading to bit errors.)
  1495. *
  1496. * @param target
  1497. *
  1498. * @return
  1499. */
  1500. static int set_fm_ck_div(struct target *target)
  1501. {
  1502. uint8_t i[2];
  1503. int retval;
  1504. retval = core_move_long_to_r2(target, HFM_BASE_ADDR);
  1505. err_check_propagate(retval);
  1506. retval = core_load_TX_RX_high_addr_to_r0(target);
  1507. err_check_propagate(retval);
  1508. /* read HFM_CLKD */
  1509. retval = core_move_at_r2_to_y0(target);
  1510. err_check_propagate(retval);
  1511. retval = core_move_y0_at_r0(target);
  1512. err_check_propagate(retval);
  1513. retval = core_rx_upper_data(target, i);
  1514. err_check_propagate(retval);
  1515. unsigned int hfm_at_wrong_value = 0;
  1516. if ((i[0] & 0x7f) != HFM_CLK_DEFAULT) {
  1517. LOG_DEBUG("HFM CLK divisor contained incorrect value (0x%02X).",
  1518. i[0] & 0x7f);
  1519. hfm_at_wrong_value = 1;
  1520. } else {
  1521. LOG_DEBUG
  1522. ("HFM CLK divisor was already set to correct value (0x%02X).",
  1523. i[0] & 0x7f);
  1524. return ERROR_OK;
  1525. }
  1526. /* write HFM_CLKD */
  1527. retval = core_move_value_at_r2(target, HFM_CLK_DEFAULT);
  1528. err_check_propagate(retval);
  1529. /* verify HFM_CLKD */
  1530. retval = core_move_at_r2_to_y0(target);
  1531. err_check_propagate(retval);
  1532. retval = core_move_y0_at_r0(target);
  1533. err_check_propagate(retval);
  1534. retval = core_rx_upper_data(target, i);
  1535. err_check_propagate(retval);
  1536. if (i[0] != (0x80 | (HFM_CLK_DEFAULT & 0x7f))) {
  1537. retval = ERROR_TARGET_FAILURE;
  1538. err_check(retval, DSP5680XX_ERROR_FM_SET_CLK,
  1539. "Unable to set HFM CLK divisor.");
  1540. }
  1541. if (hfm_at_wrong_value)
  1542. LOG_DEBUG("HFM CLK divisor set to 0x%02x.", i[0] & 0x7f);
  1543. return ERROR_OK;
  1544. }
  1545. /**
  1546. * Executes the FM calculate signature command. The FM will calculate over the data from @address to @address + @words -1. The result is written to a register, then read out by this function and returned in @signature. The value @signature may be compared to the the one returned by perl_crc to verify the flash was written correctly.
  1547. *
  1548. * @param target
  1549. * @param address Start of flash array where the signature should be calculated.
  1550. * @param words Number of words over which the signature should be calculated.
  1551. * @param signature Value calculated by the FM.
  1552. *
  1553. * @return
  1554. */
  1555. static int dsp5680xx_f_signature(struct target *t, uint32_t a, uint32_t words,
  1556. uint16_t *signature)
  1557. {
  1558. struct target *target = t;
  1559. uint32_t address = a;
  1560. int retval;
  1561. uint16_t hfm_ustat;
  1562. if (!dsp5680xx_context.debug_mode_enabled) {
  1563. retval = eonce_enter_debug_mode_without_reset(target, NULL);
  1564. /*
  1565. * Generate error here, since it is not done in eonce_enter_debug_mode_without_reset
  1566. */
  1567. err_check(retval, DSP5680XX_ERROR_HALT,
  1568. "Failed to halt target.");
  1569. }
  1570. retval =
  1571. dsp5680xx_f_ex(target, HFM_CALCULATE_DATA_SIGNATURE, address, words,
  1572. &hfm_ustat, 1);
  1573. err_check_propagate(retval);
  1574. retval =
  1575. dsp5680xx_read_16_single(target, HFM_BASE_ADDR | HFM_DATA,
  1576. (uint8_t *) signature, 0);
  1577. return retval;
  1578. }
  1579. int dsp5680xx_f_erase_check(struct target *target, uint8_t *erased,
  1580. uint32_t sector)
  1581. {
  1582. int retval;
  1583. uint16_t hfm_ustat;
  1584. uint32_t tmp;
  1585. if (!dsp5680xx_context.debug_mode_enabled) {
  1586. retval = dsp5680xx_halt(target);
  1587. err_check_propagate(retval);
  1588. }
  1589. retval = set_fm_ck_div(target);
  1590. err_check_propagate(retval);
  1591. /*
  1592. * Check if chip is already erased.
  1593. */
  1594. tmp = HFM_FLASH_BASE_ADDR + sector * HFM_SECTOR_SIZE / 2;
  1595. retval =
  1596. dsp5680xx_f_ex(target, HFM_ERASE_VERIFY, tmp, 0, &hfm_ustat, 1);
  1597. err_check_propagate(retval);
  1598. if (erased != NULL)
  1599. *erased = (uint8_t) (hfm_ustat & HFM_USTAT_MASK_BLANK);
  1600. return retval;
  1601. }
  1602. /**
  1603. * Executes the FM page erase command.
  1604. *
  1605. * @param target
  1606. * @param sector Page to erase.
  1607. * @param hfm_ustat FM module status register.
  1608. *
  1609. * @return
  1610. */
  1611. static int erase_sector(struct target *target, int sector, uint16_t *hfm_ustat)
  1612. {
  1613. int retval;
  1614. uint32_t tmp = HFM_FLASH_BASE_ADDR + sector * HFM_SECTOR_SIZE / 2;
  1615. retval = dsp5680xx_f_ex(target, HFM_PAGE_ERASE, tmp, 0, hfm_ustat, 1);
  1616. err_check_propagate(retval);
  1617. return retval;
  1618. }
  1619. /**
  1620. * Executes the FM mass erase command. Erases the flash array completely.
  1621. *
  1622. * @param target
  1623. * @param hfm_ustat FM module status register.
  1624. *
  1625. * @return
  1626. */
  1627. static int mass_erase(struct target *target, uint16_t *hfm_ustat)
  1628. {
  1629. int retval;
  1630. retval = dsp5680xx_f_ex(target, HFM_MASS_ERASE, 0, 0, hfm_ustat, 1);
  1631. return retval;
  1632. }
  1633. int dsp5680xx_f_erase(struct target *target, int first, int last)
  1634. {
  1635. int retval;
  1636. if (!dsp5680xx_context.debug_mode_enabled) {
  1637. retval = dsp5680xx_halt(target);
  1638. err_check_propagate(retval);
  1639. }
  1640. /*
  1641. * Reset SIM
  1642. *
  1643. */
  1644. retval = dsp5680xx_f_SIM_reset(target);
  1645. err_check_propagate(retval);
  1646. /*
  1647. * Set hfmdiv
  1648. *
  1649. */
  1650. retval = set_fm_ck_div(target);
  1651. err_check_propagate(retval);
  1652. uint16_t hfm_ustat;
  1653. int do_mass_erase = ((!(first | last))
  1654. || ((first == 0)
  1655. && (last == (HFM_SECTOR_COUNT - 1))));
  1656. if (do_mass_erase) {
  1657. /* Mass erase */
  1658. retval = mass_erase(target, &hfm_ustat);
  1659. err_check_propagate(retval);
  1660. } else {
  1661. for (int i = first; i <= last; i++) {
  1662. retval = erase_sector(target, i, &hfm_ustat);
  1663. err_check_propagate(retval);
  1664. }
  1665. }
  1666. return ERROR_OK;
  1667. }
  1668. /*
  1669. * Algorithm for programming normal p: flash
  1670. * Follow state machine from "56F801x Peripheral Reference Manual"@163.
  1671. * Registers to set up before calling:
  1672. * r0: TX/RX high address.
  1673. * r2: FM module base address.
  1674. * r3: Destination address in flash.
  1675. *
  1676. * hfm_wait: // wait for buffer empty
  1677. * brclr #0x80, x:(r2+0x13), hfm_wait
  1678. * rx_check: // wait for input buffer full
  1679. * brclr #0x01, x:(r0-2), rx_check
  1680. * move.w x:(r0), y0 // read from Rx buffer
  1681. * move.w y0, p:(r3)+
  1682. * move.w #0x20, x:(r2+0x14) // write PGM command
  1683. * move.w #0x80, x:(r2+0x13) // start the command
  1684. * move.w X:(R2+0x13), A // Read USTAT register
  1685. * brclr #0x20, A, accerr_check // protection violation check
  1686. * bfset #0x20, X:(R2+0x13) // clear pviol
  1687. * bra hfm_wait
  1688. * accerr_check:
  1689. * brclr #0x10, A, hfm_wait // access error check
  1690. * bfset #0x10, X:(R2+0x13) // clear accerr
  1691. * bra hfm_wait // loop
  1692. * 0x00000000 0x8A460013807D brclr #0x80, X:(R2+0x13),*+0
  1693. * 0x00000003 0xE700 nop
  1694. * 0x00000004 0xE700 nop
  1695. * 0x00000005 0x8A44FFFE017B brclr #1, X:(R0-2),*-2
  1696. * 0x00000008 0xE700 nop
  1697. * 0x00000009 0xF514 move.w X:(R0), Y0
  1698. * 0x0000000A 0x8563 move.w Y0, P:(R3)+
  1699. * 0x0000000B 0x864600200014 move.w #32, X:(R2+0x14)
  1700. * 0x0000000E 0x864600800013 move.w #128, X:(R2+0x13)
  1701. * 0x00000011 0xF0420013 move.w X:(R2+0x13), A
  1702. * 0x00000013 0x8B402004 brclr #0x20, A,*+6
  1703. * 0x00000015 0x824600130020 bfset #0x20, X:(R2+0x13)
  1704. * 0x00000018 0xA967 bra *-24
  1705. * 0x00000019 0x8B401065 brclr #0x10, A,*-25
  1706. * 0x0000001B 0x824600130010 bfset #0x10, X:(R2+0x13)
  1707. * 0x0000001E 0xA961 bra *-30
  1708. */
  1709. const uint16_t pgm_write_pflash[] = { 0x8A46, 0x0013, 0x807D, 0xE700,
  1710. 0xE700, 0x8A44, 0xFFFE, 0x017B,
  1711. 0xE700, 0xF514, 0x8563, 0x8646,
  1712. 0x0020, 0x0014, 0x8646, 0x0080,
  1713. 0x0013, 0xF042, 0x0013, 0x8B40,
  1714. 0x2004, 0x8246, 0x0013, 0x0020,
  1715. 0xA967, 0x8B40, 0x1065, 0x8246,
  1716. 0x0013, 0x0010, 0xA961
  1717. };
  1718. const uint32_t pgm_write_pflash_length = 31;
  1719. int dsp5680xx_f_wr(struct target *t, uint8_t *b, uint32_t a, uint32_t count,
  1720. int is_flash_lock)
  1721. {
  1722. struct target *target = t;
  1723. uint32_t address = a;
  1724. uint8_t *buffer = b;
  1725. int retval = ERROR_OK;
  1726. if (!dsp5680xx_context.debug_mode_enabled) {
  1727. retval = eonce_enter_debug_mode(target, NULL);
  1728. err_check_propagate(retval);
  1729. }
  1730. /*
  1731. * Download the pgm that flashes.
  1732. *
  1733. */
  1734. const uint32_t len = pgm_write_pflash_length;
  1735. uint32_t ram_addr = 0x8700;
  1736. /*
  1737. * This seems to be a safe address.
  1738. * This one is the one used by codewarrior in 56801x_flash.cfg
  1739. */
  1740. if (!is_flash_lock) {
  1741. retval =
  1742. dsp5680xx_write(target, ram_addr, 1, len * 2,
  1743. (uint8_t *) pgm_write_pflash);
  1744. err_check_propagate(retval);
  1745. retval = dsp5680xx_execute_queue();
  1746. err_check_propagate(retval);
  1747. }
  1748. /*
  1749. * Set hfmdiv
  1750. *
  1751. */
  1752. retval = set_fm_ck_div(target);
  1753. err_check_propagate(retval);
  1754. /*
  1755. * Setup registers needed by pgm_write_pflash
  1756. *
  1757. */
  1758. dsp5680xx_context.flush = 0;
  1759. retval = core_move_long_to_r3(target, address); /* Destination address to r3 */
  1760. err_check_propagate(retval);
  1761. core_load_TX_RX_high_addr_to_r0(target); /* TX/RX reg address to r0 */
  1762. err_check_propagate(retval);
  1763. retval = core_move_long_to_r2(target, HFM_BASE_ADDR); /* FM base address to r2 */
  1764. err_check_propagate(retval);
  1765. /*
  1766. * Run flashing program.
  1767. *
  1768. */
  1769. /* write to HFM_CNFG (lock=0, select bank) */
  1770. retval = core_move_value_at_r2_disp(target, 0x00, HFM_CNFG);
  1771. err_check_propagate(retval);
  1772. /* write to HMF_USTAT, clear PVIOL, ACCERR &BLANK bits */
  1773. retval = core_move_value_at_r2_disp(target, 0x04, HFM_USTAT);
  1774. err_check_propagate(retval);
  1775. /* clear only one bit at a time */
  1776. retval = core_move_value_at_r2_disp(target, 0x10, HFM_USTAT);
  1777. err_check_propagate(retval);
  1778. retval = core_move_value_at_r2_disp(target, 0x20, HFM_USTAT);
  1779. err_check_propagate(retval);
  1780. /* write to HMF_PROT, clear protection */
  1781. retval = core_move_value_at_r2_disp(target, 0x00, HFM_PROT);
  1782. err_check_propagate(retval);
  1783. /* write to HMF_PROTB, clear protection */
  1784. retval = core_move_value_at_r2_disp(target, 0x00, HFM_PROTB);
  1785. err_check_propagate(retval);
  1786. if (count % 2) {
  1787. /* TODO implement handling of odd number of words. */
  1788. retval = ERROR_FAIL;
  1789. const char *msg = "Cannot handle odd number of words.";
  1790. err_check(retval, DSP5680XX_ERROR_FLASHING_INVALID_WORD_COUNT,
  1791. msg);
  1792. }
  1793. dsp5680xx_context.flush = 1;
  1794. retval = dsp5680xx_execute_queue();
  1795. err_check_propagate(retval);
  1796. uint32_t drscan_data;
  1797. uint16_t tmp = (buffer[0] | (buffer[1] << 8));
  1798. retval = core_tx_upper_data(target, tmp, &drscan_data);
  1799. err_check_propagate(retval);
  1800. retval = dsp5680xx_resume(target, 0, ram_addr, 0, 0);
  1801. err_check_propagate(retval);
  1802. int counter = FLUSH_COUNT_FLASH;
  1803. dsp5680xx_context.flush = 0;
  1804. uint32_t i;
  1805. for (i = 1; (i < count / 2) && (i < HFM_SIZE_WORDS); i++) {
  1806. if (--counter == 0) {
  1807. dsp5680xx_context.flush = 1;
  1808. counter = FLUSH_COUNT_FLASH;
  1809. }
  1810. tmp = (buffer[2 * i] | (buffer[2 * i + 1] << 8));
  1811. retval = core_tx_upper_data(target, tmp, &drscan_data);
  1812. if (retval != ERROR_OK) {
  1813. dsp5680xx_context.flush = 1;
  1814. err_check_propagate(retval);
  1815. }
  1816. dsp5680xx_context.flush = 0;
  1817. }
  1818. dsp5680xx_context.flush = 1;
  1819. if (!is_flash_lock) {
  1820. /*
  1821. *Verify flash (skip when exec lock sequence)
  1822. *
  1823. */
  1824. uint16_t signature;
  1825. uint16_t pc_crc;
  1826. retval = dsp5680xx_f_signature(target, address, i, &signature);
  1827. err_check_propagate(retval);
  1828. pc_crc = perl_crc(buffer, i);
  1829. if (pc_crc != signature) {
  1830. retval = ERROR_FAIL;
  1831. const char *msg =
  1832. "Flashed data failed CRC check, flash again!";
  1833. err_check(retval, DSP5680XX_ERROR_FLASHING_CRC, msg);
  1834. }
  1835. }
  1836. return retval;
  1837. }
  1838. int dsp5680xx_f_unlock(struct target *target)
  1839. {
  1840. int retval = ERROR_OK;
  1841. uint16_t eonce_status;
  1842. uint32_t instr;
  1843. uint32_t ir_out;
  1844. struct jtag_tap *tap_chp;
  1845. struct jtag_tap *tap_cpu;
  1846. tap_chp = jtag_tap_by_string("dsp568013.chp");
  1847. if (tap_chp == NULL) {
  1848. retval = ERROR_FAIL;
  1849. err_check(retval, DSP5680XX_ERROR_JTAG_TAP_ENABLE_MASTER,
  1850. "Failed to get master tap.");
  1851. }
  1852. tap_cpu = jtag_tap_by_string("dsp568013.cpu");
  1853. if (tap_cpu == NULL) {
  1854. retval = ERROR_FAIL;
  1855. err_check(retval, DSP5680XX_ERROR_JTAG_TAP_ENABLE_CORE,
  1856. "Failed to get master tap.");
  1857. }
  1858. retval = eonce_enter_debug_mode_without_reset(target, &eonce_status);
  1859. if (retval == ERROR_OK)
  1860. LOG_WARNING("Memory was not locked.");
  1861. jtag_add_reset(0, 1);
  1862. jtag_add_sleep(TIME_DIV_FREESCALE * 200 * 1000);
  1863. retval = reset_jtag();
  1864. err_check(retval, DSP5680XX_ERROR_JTAG_RESET,
  1865. "Failed to reset JTAG state machine");
  1866. jtag_add_sleep(150);
  1867. /* Enable core tap */
  1868. tap_chp->enabled = true;
  1869. retval = switch_tap(target, tap_chp, tap_cpu);
  1870. err_check_propagate(retval);
  1871. instr = JTAG_INSTR_DEBUG_REQUEST;
  1872. retval =
  1873. dsp5680xx_irscan(target, &instr, &ir_out,
  1874. DSP5680XX_JTAG_CORE_TAP_IRLEN);
  1875. err_check_propagate(retval);
  1876. jtag_add_sleep(TIME_DIV_FREESCALE * 100 * 1000);
  1877. jtag_add_reset(0, 0);
  1878. jtag_add_sleep(TIME_DIV_FREESCALE * 300 * 1000);
  1879. /* Enable master tap */
  1880. tap_chp->enabled = false;
  1881. retval = switch_tap(target, tap_chp, tap_cpu);
  1882. err_check_propagate(retval);
  1883. /* Execute mass erase to unlock */
  1884. instr = MASTER_TAP_CMD_FLASH_ERASE;
  1885. retval =
  1886. dsp5680xx_irscan(target, &instr, &ir_out,
  1887. DSP5680XX_JTAG_MASTER_TAP_IRLEN);
  1888. err_check_propagate(retval);
  1889. instr = HFM_CLK_DEFAULT;
  1890. retval = dsp5680xx_drscan(target, (uint8_t *) &instr, (uint8_t *) &ir_out, 16);
  1891. err_check_propagate(retval);
  1892. jtag_add_sleep(TIME_DIV_FREESCALE * 150 * 1000);
  1893. jtag_add_reset(0, 1);
  1894. jtag_add_sleep(TIME_DIV_FREESCALE * 200 * 1000);
  1895. retval = reset_jtag();
  1896. err_check(retval, DSP5680XX_ERROR_JTAG_RESET,
  1897. "Failed to reset JTAG state machine");
  1898. jtag_add_sleep(150);
  1899. instr = 0x0606ffff;
  1900. retval = dsp5680xx_drscan(target, (uint8_t *) &instr, (uint8_t *) &ir_out,
  1901. 32);
  1902. err_check_propagate(retval);
  1903. /* enable core tap */
  1904. instr = 0x5;
  1905. retval =
  1906. dsp5680xx_irscan(target, &instr, &ir_out,
  1907. DSP5680XX_JTAG_MASTER_TAP_IRLEN);
  1908. err_check_propagate(retval);
  1909. instr = 0x2;
  1910. retval = dsp5680xx_drscan(target, (uint8_t *) &instr, (uint8_t *) &ir_out,
  1911. 4);
  1912. err_check_propagate(retval);
  1913. tap_cpu->enabled = true;
  1914. tap_chp->enabled = false;
  1915. target->state = TARGET_RUNNING;
  1916. dsp5680xx_context.debug_mode_enabled = false;
  1917. return retval;
  1918. }
  1919. int dsp5680xx_f_lock(struct target *target)
  1920. {
  1921. int retval;
  1922. struct jtag_tap *tap_chp;
  1923. struct jtag_tap *tap_cpu;
  1924. uint16_t lock_word[] = { HFM_LOCK_FLASH };
  1925. retval = dsp5680xx_f_wr(target, (uint8_t *) (lock_word), HFM_LOCK_ADDR_L, 2, 1);
  1926. err_check_propagate(retval);
  1927. jtag_add_reset(0, 1);
  1928. jtag_add_sleep(TIME_DIV_FREESCALE * 200 * 1000);
  1929. retval = reset_jtag();
  1930. err_check(retval, DSP5680XX_ERROR_JTAG_RESET,
  1931. "Failed to reset JTAG state machine");
  1932. jtag_add_sleep(TIME_DIV_FREESCALE * 100 * 1000);
  1933. jtag_add_reset(0, 0);
  1934. jtag_add_sleep(TIME_DIV_FREESCALE * 300 * 1000);
  1935. tap_chp = jtag_tap_by_string("dsp568013.chp");
  1936. if (tap_chp == NULL) {
  1937. retval = ERROR_FAIL;
  1938. err_check(retval, DSP5680XX_ERROR_JTAG_TAP_ENABLE_MASTER,
  1939. "Failed to get master tap.");
  1940. }
  1941. tap_cpu = jtag_tap_by_string("dsp568013.cpu");
  1942. if (tap_cpu == NULL) {
  1943. retval = ERROR_FAIL;
  1944. err_check(retval, DSP5680XX_ERROR_JTAG_TAP_ENABLE_CORE,
  1945. "Failed to get master tap.");
  1946. }
  1947. target->state = TARGET_RUNNING;
  1948. dsp5680xx_context.debug_mode_enabled = false;
  1949. tap_cpu->enabled = false;
  1950. tap_chp->enabled = true;
  1951. retval = switch_tap(target, tap_chp, tap_cpu);
  1952. return retval;
  1953. }
  1954. static int dsp5680xx_step(struct target *target, int current, uint32_t address,
  1955. int handle_breakpoints)
  1956. {
  1957. err_check(ERROR_FAIL, DSP5680XX_ERROR_NOT_IMPLEMENTED_STEP,
  1958. "Not implemented yet.");
  1959. }
  1960. /** Holds methods for dsp5680xx targets. */
  1961. struct target_type dsp5680xx_target = {
  1962. .name = "dsp5680xx",
  1963. .poll = dsp5680xx_poll,
  1964. .arch_state = dsp5680xx_arch_state,
  1965. .target_request_data = NULL,
  1966. .halt = dsp5680xx_halt,
  1967. .resume = dsp5680xx_resume,
  1968. .step = dsp5680xx_step,
  1969. .write_buffer = dsp5680xx_write_buffer,
  1970. .read_buffer = dsp5680xx_read_buffer,
  1971. .assert_reset = dsp5680xx_assert_reset,
  1972. .deassert_reset = dsp5680xx_deassert_reset,
  1973. .soft_reset_halt = dsp5680xx_soft_reset_halt,
  1974. .read_memory = dsp5680xx_read,
  1975. .write_memory = dsp5680xx_write,
  1976. .bulk_write_memory = dsp5680xx_bulk_write_memory,
  1977. .checksum_memory = dsp5680xx_checksum_memory,
  1978. .target_create = dsp5680xx_target_create,
  1979. .init_target = dsp5680xx_init_target,
  1980. };