You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

591 lines
22 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2007-2010 Øyvind Harboe *
  6. * oyvind.harboe@zylin.com *
  7. * *
  8. * Copyright (C) 2008 by Spencer Oliver *
  9. * spen@spen-soft.co.uk *
  10. * *
  11. * Copyright (C) 2011 by Broadcom Corporation *
  12. * Evan Hunter - ehunter@broadcom.com *
  13. * *
  14. * Copyright (C) ST-Ericsson SA 2011 *
  15. * michel.jaouen@stericsson.com : smp minimum support *
  16. * *
  17. * This program is free software; you can redistribute it and/or modify *
  18. * it under the terms of the GNU General Public License as published by *
  19. * the Free Software Foundation; either version 2 of the License, or *
  20. * (at your option) any later version. *
  21. * *
  22. * This program is distributed in the hope that it will be useful, *
  23. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  24. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  25. * GNU General Public License for more details. *
  26. * *
  27. * You should have received a copy of the GNU General Public License *
  28. * along with this program; if not, write to the *
  29. * Free Software Foundation, Inc., *
  30. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  31. ***************************************************************************/
  32. #ifndef TARGET_H
  33. #define TARGET_H
  34. struct reg;
  35. struct trace;
  36. struct command_context;
  37. struct breakpoint;
  38. struct watchpoint;
  39. struct mem_param;
  40. struct reg_param;
  41. struct target_list;
  42. /*
  43. * TARGET_UNKNOWN = 0: we don't know anything about the target yet
  44. * TARGET_RUNNING = 1: the target is executing user code
  45. * TARGET_HALTED = 2: the target is not executing code, and ready to talk to the
  46. * debugger. on an xscale it means that the debug handler is executing
  47. * TARGET_RESET = 3: the target is being held in reset (only a temporary state,
  48. * not sure how this is used with all the recent changes)
  49. * TARGET_DEBUG_RUNNING = 4: the target is running, but it is executing code on
  50. * behalf of the debugger (e.g. algorithm for flashing)
  51. *
  52. * also see: target_state_name();
  53. */
  54. enum target_state {
  55. TARGET_UNKNOWN = 0,
  56. TARGET_RUNNING = 1,
  57. TARGET_HALTED = 2,
  58. TARGET_RESET = 3,
  59. TARGET_DEBUG_RUNNING = 4,
  60. };
  61. enum nvp_assert {
  62. NVP_DEASSERT,
  63. NVP_ASSERT,
  64. };
  65. enum target_reset_mode {
  66. RESET_UNKNOWN = 0,
  67. RESET_RUN = 1, /* reset and let target run */
  68. RESET_HALT = 2, /* reset and halt target out of reset */
  69. RESET_INIT = 3, /* reset and halt target out of reset, then run init script */
  70. };
  71. enum target_debug_reason {
  72. DBG_REASON_DBGRQ = 0,
  73. DBG_REASON_BREAKPOINT = 1,
  74. DBG_REASON_WATCHPOINT = 2,
  75. DBG_REASON_WPTANDBKPT = 3,
  76. DBG_REASON_SINGLESTEP = 4,
  77. DBG_REASON_NOTHALTED = 5,
  78. DBG_REASON_UNDEFINED = 6
  79. };
  80. enum target_endianness {
  81. TARGET_ENDIAN_UNKNOWN = 0,
  82. TARGET_BIG_ENDIAN = 1, TARGET_LITTLE_ENDIAN = 2
  83. };
  84. struct working_area {
  85. uint32_t address;
  86. uint32_t size;
  87. bool free;
  88. uint8_t *backup;
  89. struct working_area **user;
  90. struct working_area *next;
  91. };
  92. struct gdb_service {
  93. struct target *target;
  94. /* field for smp display */
  95. /* element 0 coreid currently displayed ( 1 till n) */
  96. /* element 1 coreid to be displayed at next resume 1 till n 0 means resume
  97. * all cores core displayed */
  98. int32_t core[2];
  99. };
  100. /* target_type.h contains the full definition of struct target_type */
  101. struct target {
  102. struct target_type *type; /* target type definition (name, access functions) */
  103. const char *cmd_name; /* tcl Name of target */
  104. int target_number; /* DO NOT USE! field to be removed in 2010 */
  105. struct jtag_tap *tap; /* where on the jtag chain is this */
  106. int32_t coreid; /* which device on the TAP? */
  107. const char *variant; /* what variant of this chip is it? */
  108. /**
  109. * Indicates whether this target has been examined.
  110. *
  111. * Do @b not access this field directly, use target_was_examined()
  112. * or target_set_examined().
  113. */
  114. bool examined;
  115. /**
  116. * true if the target is currently running a downloaded
  117. * "algorithm" instead of arbitrary user code. OpenOCD code
  118. * invoking algorithms is trusted to maintain correctness of
  119. * any cached state (e.g. for flash status), which arbitrary
  120. * code will have no reason to know about.
  121. */
  122. bool running_alg;
  123. struct target_event_action *event_action;
  124. int reset_halt; /* attempt resetting the CPU into the halted mode? */
  125. uint32_t working_area; /* working area (initialised RAM). Evaluated
  126. * upon first allocation from virtual/physical address. */
  127. bool working_area_virt_spec; /* virtual address specified? */
  128. uint32_t working_area_virt; /* virtual address */
  129. bool working_area_phys_spec; /* virtual address specified? */
  130. uint32_t working_area_phys; /* physical address */
  131. uint32_t working_area_size; /* size in bytes */
  132. uint32_t backup_working_area; /* whether the content of the working area has to be preserved */
  133. struct working_area *working_areas;/* list of allocated working areas */
  134. enum target_debug_reason debug_reason;/* reason why the target entered debug state */
  135. enum target_endianness endianness; /* target endianness */
  136. /* also see: target_state_name() */
  137. enum target_state state; /* the current backend-state (running, halted, ...) */
  138. struct reg_cache *reg_cache; /* the first register cache of the target (core regs) */
  139. struct breakpoint *breakpoints; /* list of breakpoints */
  140. struct watchpoint *watchpoints; /* list of watchpoints */
  141. struct trace *trace_info; /* generic trace information */
  142. struct debug_msg_receiver *dbgmsg; /* list of debug message receivers */
  143. uint32_t dbg_msg_enabled; /* debug message status */
  144. void *arch_info; /* architecture specific information */
  145. struct target *next; /* next target in list */
  146. int display; /* display async info in telnet session. Do not display
  147. * lots of halted/resumed info when stepping in debugger. */
  148. bool halt_issued; /* did we transition to halted state? */
  149. long long halt_issued_time; /* Note time when halt was issued */
  150. bool dbgbase_set; /* By default the debug base is not set */
  151. uint32_t dbgbase; /* Really a Cortex-A specific option, but there is no
  152. * system in place to support target specific options
  153. * currently. */
  154. struct rtos *rtos; /* Instance of Real Time Operating System support */
  155. bool rtos_auto_detect; /* A flag that indicates that the RTOS has been specified as "auto"
  156. * and must be detected when symbols are offered */
  157. int smp; /* add some target attributes for smp support */
  158. struct target_list *head;
  159. /* the gdb service is there in case of smp, we have only one gdb server
  160. * for all smp target
  161. * the target attached to the gdb is changing dynamically by changing
  162. * gdb_service->target pointer */
  163. struct gdb_service *gdb_service;
  164. };
  165. struct target_list {
  166. struct target *target;
  167. struct target_list *next;
  168. };
  169. /** Returns the instance-specific name of the specified target. */
  170. static inline const char *target_name(struct target *target)
  171. {
  172. return target->cmd_name;
  173. }
  174. const char *debug_reason_name(struct target *t);
  175. enum target_event {
  176. /* allow GDB to do stuff before others handle the halted event,
  177. * this is in lieu of defining ordering of invocation of events,
  178. * which would be more complicated
  179. *
  180. * Telling GDB to halt does not mean that the target stopped running,
  181. * simply that we're dropping out of GDB's waiting for step or continue.
  182. *
  183. * This can be useful when e.g. detecting power dropout.
  184. */
  185. TARGET_EVENT_GDB_HALT,
  186. TARGET_EVENT_HALTED, /* target entered debug state from normal execution or reset */
  187. TARGET_EVENT_RESUMED, /* target resumed to normal execution */
  188. TARGET_EVENT_RESUME_START,
  189. TARGET_EVENT_RESUME_END,
  190. TARGET_EVENT_GDB_START, /* debugger started execution (step/run) */
  191. TARGET_EVENT_GDB_END, /* debugger stopped execution (step/run) */
  192. TARGET_EVENT_RESET_START,
  193. TARGET_EVENT_RESET_ASSERT_PRE,
  194. TARGET_EVENT_RESET_ASSERT, /* C code uses this instead of SRST */
  195. TARGET_EVENT_RESET_ASSERT_POST,
  196. TARGET_EVENT_RESET_DEASSERT_PRE,
  197. TARGET_EVENT_RESET_DEASSERT_POST,
  198. TARGET_EVENT_RESET_HALT_PRE,
  199. TARGET_EVENT_RESET_HALT_POST,
  200. TARGET_EVENT_RESET_WAIT_PRE,
  201. TARGET_EVENT_RESET_WAIT_POST,
  202. TARGET_EVENT_RESET_INIT,
  203. TARGET_EVENT_RESET_END,
  204. TARGET_EVENT_DEBUG_HALTED, /* target entered debug state, but was executing on behalf of the debugger */
  205. TARGET_EVENT_DEBUG_RESUMED, /* target resumed to execute on behalf of the debugger */
  206. TARGET_EVENT_EXAMINE_START,
  207. TARGET_EVENT_EXAMINE_END,
  208. TARGET_EVENT_GDB_ATTACH,
  209. TARGET_EVENT_GDB_DETACH,
  210. TARGET_EVENT_GDB_FLASH_ERASE_START,
  211. TARGET_EVENT_GDB_FLASH_ERASE_END,
  212. TARGET_EVENT_GDB_FLASH_WRITE_START,
  213. TARGET_EVENT_GDB_FLASH_WRITE_END,
  214. };
  215. struct target_event_action {
  216. enum target_event event;
  217. struct Jim_Interp *interp;
  218. struct Jim_Obj *body;
  219. int has_percent;
  220. struct target_event_action *next;
  221. };
  222. bool target_has_event_action(struct target *target, enum target_event event);
  223. struct target_event_callback {
  224. int (*callback)(struct target *target, enum target_event event, void *priv);
  225. void *priv;
  226. struct target_event_callback *next;
  227. };
  228. struct target_timer_callback {
  229. int (*callback)(void *priv);
  230. int time_ms;
  231. int periodic;
  232. struct timeval when;
  233. void *priv;
  234. struct target_timer_callback *next;
  235. };
  236. int target_register_commands(struct command_context *cmd_ctx);
  237. int target_examine(void);
  238. int target_register_event_callback(
  239. int (*callback)(struct target *target,
  240. enum target_event event, void *priv),
  241. void *priv);
  242. int target_unregister_event_callback(
  243. int (*callback)(struct target *target,
  244. enum target_event event, void *priv),
  245. void *priv);
  246. /* Poll the status of the target, detect any error conditions and report them.
  247. *
  248. * Also note that this fn will clear such error conditions, so a subsequent
  249. * invocation will then succeed.
  250. *
  251. * These error conditions can be "sticky" error conditions. E.g. writing
  252. * to memory could be implemented as an open loop and if memory writes
  253. * fails, then a note is made of it, the error is sticky, but the memory
  254. * write loop still runs to completion. This improves performance in the
  255. * normal case as there is no need to verify that every single write succeed,
  256. * yet it is possible to detect error conditions.
  257. */
  258. int target_poll(struct target *target);
  259. int target_resume(struct target *target, int current, uint32_t address,
  260. int handle_breakpoints, int debug_execution);
  261. int target_halt(struct target *target);
  262. int target_call_event_callbacks(struct target *target, enum target_event event);
  263. /**
  264. * The period is very approximate, the callback can happen much more often
  265. * or much more rarely than specified
  266. */
  267. int target_register_timer_callback(int (*callback)(void *priv),
  268. int time_ms, int periodic, void *priv);
  269. int target_call_timer_callbacks(void);
  270. /**
  271. * Invoke this to ensure that e.g. polling timer callbacks happen before
  272. * a synchronous command completes.
  273. */
  274. int target_call_timer_callbacks_now(void);
  275. struct target *get_current_target(struct command_context *cmd_ctx);
  276. struct target *get_target(const char *id);
  277. /**
  278. * Get the target type name.
  279. *
  280. * This routine is a wrapper for the target->type->name field.
  281. * Note that this is not an instance-specific name for his target.
  282. */
  283. const char *target_type_name(struct target *target);
  284. /**
  285. * Examine the specified @a target, letting it perform any
  286. * Initialisation that requires JTAG access.
  287. *
  288. * This routine is a wrapper for target->type->examine.
  289. */
  290. int target_examine_one(struct target *target);
  291. /** @returns @c true if target_set_examined() has been called. */
  292. static inline bool target_was_examined(struct target *target)
  293. {
  294. return target->examined;
  295. }
  296. /** Sets the @c examined flag for the given target. */
  297. /** Use in target->type->examine() after one-time setup is done. */
  298. static inline void target_set_examined(struct target *target)
  299. {
  300. target->examined = true;
  301. }
  302. /**
  303. * Add the @a breakpoint for @a target.
  304. *
  305. * This routine is a wrapper for target->type->add_breakpoint.
  306. */
  307. int target_add_breakpoint(struct target *target,
  308. struct breakpoint *breakpoint);
  309. /**
  310. * Add the @a ContextID breakpoint for @a target.
  311. *
  312. * This routine is a wrapper for target->type->add_context_breakpoint.
  313. */
  314. int target_add_context_breakpoint(struct target *target,
  315. struct breakpoint *breakpoint);
  316. /**
  317. * Add the @a ContextID & IVA breakpoint for @a target.
  318. *
  319. * This routine is a wrapper for target->type->add_hybrid_breakpoint.
  320. */
  321. int target_add_hybrid_breakpoint(struct target *target,
  322. struct breakpoint *breakpoint);
  323. /**
  324. * Remove the @a breakpoint for @a target.
  325. *
  326. * This routine is a wrapper for target->type->remove_breakpoint.
  327. */
  328. int target_remove_breakpoint(struct target *target,
  329. struct breakpoint *breakpoint);
  330. /**
  331. * Add the @a watchpoint for @a target.
  332. *
  333. * This routine is a wrapper for target->type->add_watchpoint.
  334. */
  335. int target_add_watchpoint(struct target *target,
  336. struct watchpoint *watchpoint);
  337. /**
  338. * Remove the @a watchpoint for @a target.
  339. *
  340. * This routine is a wrapper for target->type->remove_watchpoint.
  341. */
  342. int target_remove_watchpoint(struct target *target,
  343. struct watchpoint *watchpoint);
  344. /**
  345. * Obtain the registers for GDB.
  346. *
  347. * This routine is a wrapper for target->type->get_gdb_reg_list.
  348. */
  349. int target_get_gdb_reg_list(struct target *target,
  350. struct reg **reg_list[], int *reg_list_size);
  351. /**
  352. * Step the target.
  353. *
  354. * This routine is a wrapper for target->type->step.
  355. */
  356. int target_step(struct target *target,
  357. int current, uint32_t address, int handle_breakpoints);
  358. /**
  359. * Run an algorithm on the @a target given.
  360. *
  361. * This routine is a wrapper for target->type->run_algorithm.
  362. */
  363. int target_run_algorithm(struct target *target,
  364. int num_mem_params, struct mem_param *mem_params,
  365. int num_reg_params, struct reg_param *reg_param,
  366. uint32_t entry_point, uint32_t exit_point,
  367. int timeout_ms, void *arch_info);
  368. /**
  369. * Starts an algorithm in the background on the @a target given.
  370. *
  371. * This routine is a wrapper for target->type->start_algorithm.
  372. */
  373. int target_start_algorithm(struct target *target,
  374. int num_mem_params, struct mem_param *mem_params,
  375. int num_reg_params, struct reg_param *reg_params,
  376. uint32_t entry_point, uint32_t exit_point,
  377. void *arch_info);
  378. /**
  379. * Wait for an algorithm on the @a target given.
  380. *
  381. * This routine is a wrapper for target->type->wait_algorithm.
  382. */
  383. int target_wait_algorithm(struct target *target,
  384. int num_mem_params, struct mem_param *mem_params,
  385. int num_reg_params, struct reg_param *reg_params,
  386. uint32_t exit_point, int timeout_ms,
  387. void *arch_info);
  388. /**
  389. * This routine is a wrapper for asynchronous algorithms.
  390. *
  391. */
  392. int target_run_flash_async_algorithm(struct target *target,
  393. uint8_t *buffer, uint32_t count, int block_size,
  394. int num_mem_params, struct mem_param *mem_params,
  395. int num_reg_params, struct reg_param *reg_params,
  396. uint32_t buffer_start, uint32_t buffer_size,
  397. uint32_t entry_point, uint32_t exit_point,
  398. void *arch_info);
  399. /**
  400. * Read @a count items of @a size bytes from the memory of @a target at
  401. * the @a address given.
  402. *
  403. * This routine is a wrapper for target->type->read_memory.
  404. */
  405. int target_read_memory(struct target *target,
  406. uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
  407. /**
  408. * Write @a count items of @a size bytes to the memory of @a target at
  409. * the @a address given. @a address must be aligned to @a size
  410. * in target memory.
  411. *
  412. * The endianness is the same in the host and target memory for this
  413. * function.
  414. *
  415. * \todo TODO:
  416. * Really @a buffer should have been defined as "const void *" and
  417. * @a buffer should have been aligned to @a size in the host memory.
  418. *
  419. * This is not enforced via e.g. assert's today and e.g. the
  420. * target_write_buffer fn breaks this assumption.
  421. *
  422. * This routine is wrapper for target->type->write_memory.
  423. */
  424. int target_write_memory(struct target *target,
  425. uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
  426. /**
  427. * Write @a count items of 4 bytes to the memory of @a target at
  428. * the @a address given. Because it operates only on whole words,
  429. * this should be faster than target_write_memory().
  430. *
  431. * This routine is wrapper for target->type->bulk_write_memory.
  432. */
  433. int target_bulk_write_memory(struct target *target,
  434. uint32_t address, uint32_t count, const uint8_t *buffer);
  435. /*
  436. * Write to target memory using the virtual address.
  437. *
  438. * Note that this fn is used to implement software breakpoints. Targets
  439. * can implement support for software breakpoints to memory marked as read
  440. * only by making this fn write to ram even if it is read only(MMU or
  441. * MPUs).
  442. *
  443. * It is sufficient to implement for writing a single word(16 or 32 in
  444. * ARM32/16 bit case) to write the breakpoint to ram.
  445. *
  446. * The target should also take care of "other things" to make sure that
  447. * software breakpoints can be written using this function. E.g.
  448. * when there is a separate instruction and data cache, this fn must
  449. * make sure that the instruction cache is synced up to the potential
  450. * code change that can happen as a result of the memory write(typically
  451. * by invalidating the cache).
  452. *
  453. * The high level wrapper fn in target.c will break down this memory write
  454. * request to multiple write requests to the target driver to e.g. guarantee
  455. * that writing 4 bytes to an aligned address happens with a single 32 bit
  456. * write operation, thus making this fn suitable to e.g. write to special
  457. * peripheral registers which do not support byte operations.
  458. */
  459. int target_write_buffer(struct target *target,
  460. uint32_t address, uint32_t size, const uint8_t *buffer);
  461. int target_read_buffer(struct target *target,
  462. uint32_t address, uint32_t size, uint8_t *buffer);
  463. int target_checksum_memory(struct target *target,
  464. uint32_t address, uint32_t size, uint32_t *crc);
  465. int target_blank_check_memory(struct target *target,
  466. uint32_t address, uint32_t size, uint32_t *blank);
  467. int target_wait_state(struct target *target, enum target_state state, int ms);
  468. /** Return the *name* of this targets current state */
  469. const char *target_state_name(struct target *target);
  470. /* DANGER!!!!!
  471. *
  472. * if "area" passed in to target_alloc_working_area() points to a memory
  473. * location that goes out of scope (e.g. a pointer on the stack), then
  474. * the caller of target_alloc_working_area() is responsible for invoking
  475. * target_free_working_area() before "area" goes out of scope.
  476. *
  477. * target_free_all_working_areas() will NULL out the "area" pointer
  478. * upon resuming or resetting the CPU.
  479. *
  480. */
  481. int target_alloc_working_area(struct target *target,
  482. uint32_t size, struct working_area **area);
  483. /* Same as target_alloc_working_area, except that no error is logged
  484. * when ERROR_TARGET_RESOURCE_NOT_AVAILABLE is returned.
  485. *
  486. * This allows the calling code to *try* to allocate target memory
  487. * and have a fallback to another behaviour(slower?).
  488. */
  489. int target_alloc_working_area_try(struct target *target,
  490. uint32_t size, struct working_area **area);
  491. int target_free_working_area(struct target *target, struct working_area *area);
  492. void target_free_all_working_areas(struct target *target);
  493. uint32_t target_get_working_area_avail(struct target *target);
  494. extern struct target *all_targets;
  495. uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer);
  496. uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer);
  497. uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer);
  498. void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value);
  499. void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value);
  500. void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value);
  501. void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf);
  502. void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf);
  503. void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf);
  504. void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf);
  505. int target_read_u32(struct target *target, uint32_t address, uint32_t *value);
  506. int target_read_u16(struct target *target, uint32_t address, uint16_t *value);
  507. int target_read_u8(struct target *target, uint32_t address, uint8_t *value);
  508. int target_write_u32(struct target *target, uint32_t address, uint32_t value);
  509. int target_write_u16(struct target *target, uint32_t address, uint16_t value);
  510. int target_write_u8(struct target *target, uint32_t address, uint8_t value);
  511. /* Issues USER() statements with target state information */
  512. int target_arch_state(struct target *target);
  513. void target_handle_event(struct target *t, enum target_event e);
  514. #define ERROR_TARGET_INVALID (-300)
  515. #define ERROR_TARGET_INIT_FAILED (-301)
  516. #define ERROR_TARGET_TIMEOUT (-302)
  517. #define ERROR_TARGET_NOT_HALTED (-304)
  518. #define ERROR_TARGET_FAILURE (-305)
  519. #define ERROR_TARGET_UNALIGNED_ACCESS (-306)
  520. #define ERROR_TARGET_DATA_ABORT (-307)
  521. #define ERROR_TARGET_RESOURCE_NOT_AVAILABLE (-308)
  522. #define ERROR_TARGET_TRANSLATION_FAULT (-309)
  523. #define ERROR_TARGET_NOT_RUNNING (-310)
  524. #define ERROR_TARGET_NOT_EXAMINED (-311)
  525. extern bool get_target_reset_nag(void);
  526. #endif /* TARGET_H */