You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3655 lines
128 KiB

  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename openocd.info
  4. @settitle Open On-Chip Debugger (OpenOCD)
  5. @dircategory Development
  6. @direntry
  7. @paragraphindent 0
  8. * OpenOCD: (openocd). Open On-Chip Debugger.
  9. @end direntry
  10. @c %**end of header
  11. @include version.texi
  12. @copying
  13. @itemize @bullet
  14. @item Copyright @copyright{} 2008 The OpenOCD Project
  15. @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
  16. @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
  17. @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
  18. @end itemize
  19. @quotation
  20. Permission is granted to copy, distribute and/or modify this document
  21. under the terms of the GNU Free Documentation License, Version 1.2 or
  22. any later version published by the Free Software Foundation; with no
  23. Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
  24. Texts. A copy of the license is included in the section entitled ``GNU
  25. Free Documentation License''.
  26. @end quotation
  27. @end copying
  28. @titlepage
  29. @title Open On-Chip Debugger (OpenOCD)
  30. @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
  31. @subtitle @value{UPDATED}
  32. @page
  33. @vskip 0pt plus 1filll
  34. @insertcopying
  35. @end titlepage
  36. @summarycontents
  37. @contents
  38. @node Top, About, , (dir)
  39. @top OpenOCD
  40. This manual documents edition @value{EDITION} of the Open On-Chip Debugger
  41. (OpenOCD) version @value{VERSION}, @value{UPDATED}.
  42. @insertcopying
  43. @menu
  44. * About:: About OpenOCD.
  45. * Developers:: OpenOCD developers
  46. * Building:: Building OpenOCD
  47. * JTAG Hardware Dongles:: JTAG Hardware Dongles
  48. * Running:: Running OpenOCD
  49. * Simple Configuration Files:: Simple Configuration Files
  50. * Config File Guidelines:: Config File Guidelines
  51. * About JIM-Tcl:: About JIM-Tcl
  52. * Daemon Configuration:: Daemon Configuration
  53. * Interface - Dongle Configuration:: Interface - Dongle Configuration
  54. * Reset Configuration:: Reset Configuration
  55. * Tap Creation:: Tap Creation
  56. * Target Configuration:: Target Configuration
  57. * Flash Configuration:: Flash Configuration
  58. * General Commands:: General Commands
  59. * JTAG Commands:: JTAG Commands
  60. * Sample Scripts:: Sample Target Scripts
  61. * TFTP:: TFTP
  62. * GDB and OpenOCD:: Using GDB and OpenOCD
  63. * TCL scripting API:: Tcl scripting API
  64. * Upgrading:: Deprecated/Removed Commands
  65. * Target library:: Target library
  66. * FAQ:: Frequently Asked Questions
  67. * TCL Crash Course:: TCL Crash Course
  68. * License:: GNU Free Documentation License
  69. @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
  70. @comment case issue with ``Index.html'' and ``index.html''
  71. @comment Occurs when creating ``--html --no-split'' output
  72. @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
  73. * OpenOCD Index:: Main index.
  74. @end menu
  75. @node About
  76. @unnumbered About
  77. @cindex about
  78. The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
  79. in-system programming and boundary-scan testing for embedded target
  80. devices.
  81. @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
  82. with the JTAG (IEEE 1149.1) complient taps on your target board.
  83. @b{Dongles:} OpenOCD currently many types of hardware dongles: USB
  84. Based, Parallel Port Based, and other standalone boxes that run
  85. OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
  86. @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920t,
  87. ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
  88. Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
  89. debugged via the GDB Protocol.
  90. @b{Flash Programing:} Flash writing is supported for external CFI
  91. compatible flashes (Intel and AMD/Spansion command set) and several
  92. internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
  93. STM32x). Preliminary support for using the LPC3180's NAND flash
  94. controller is included.
  95. @node Developers
  96. @chapter Developers
  97. @cindex developers
  98. OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
  99. University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
  100. Others interested in improving the state of free and open debug and testing technology
  101. are welcome to participate.
  102. Other developers have contributed support for additional targets and flashes as well
  103. as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
  104. The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
  105. @node Building
  106. @chapter Building
  107. @cindex building OpenOCD
  108. If you are interested in getting actual work done rather than building
  109. OpenOCD, then check if your interface supplier provides binaries for
  110. you. Chances are that that binary is from some SVN version that is more
  111. stable than SVN trunk where bleeding edge development takes place.
  112. You can download the current SVN version with SVN client of your choice from the
  113. following repositories:
  114. (@uref{svn://svn.berlios.de/openocd/trunk})
  115. or
  116. (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
  117. Using the SVN command line client, you can use the following command to fetch the
  118. latest version (make sure there is no (non-svn) directory called "openocd" in the
  119. current directory):
  120. @example
  121. svn checkout svn://svn.berlios.de/openocd/trunk openocd
  122. @end example
  123. Building OpenOCD requires a recent version of the GNU autotools.
  124. On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
  125. you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
  126. other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
  127. paths, resulting in obscure dependency errors (This is an observation I've gathered
  128. from the logs of one user - correct me if I'm wrong).
  129. You further need the appropriate driver files, if you want to build support for
  130. a FTDI FT2232 based interface:
  131. @itemize @bullet
  132. @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
  133. @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
  134. @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
  135. homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
  136. @end itemize
  137. libftdi is supported under windows. Versions earlier than 0.13 will require patching.
  138. see contrib/libftdi for more details.
  139. In general, the D2XX driver provides superior performance (several times as fast),
  140. but has the draw-back of being binary-only - though that isn't that bad, as it isn't
  141. a kernel module, only a user space library.
  142. To build OpenOCD (on both Linux and Cygwin), use the following commands:
  143. @example
  144. ./bootstrap
  145. @end example
  146. Bootstrap generates the configure script, and prepares building on your system.
  147. @example
  148. ./configure
  149. @end example
  150. Configure generates the Makefiles used to build OpenOCD.
  151. @example
  152. make
  153. @end example
  154. Make builds OpenOCD, and places the final executable in ./src/.
  155. The configure script takes several options, specifying which JTAG interfaces
  156. should be included:
  157. @itemize @bullet
  158. @item
  159. @option{--enable-parport}
  160. @item
  161. @option{--enable-parport_ppdev}
  162. @item
  163. @option{--enable-parport_giveio}
  164. @item
  165. @option{--enable-amtjtagaccel}
  166. @item
  167. @option{--enable-ft2232_ftd2xx}
  168. @footnote{Using the latest D2XX drivers from FTDI and following their installation
  169. instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
  170. build properly.}
  171. @item
  172. @option{--enable-ft2232_libftdi}
  173. @item
  174. @option{--with-ftd2xx=/path/to/d2xx/}
  175. @item
  176. @option{--enable-gw16012}
  177. @item
  178. @option{--enable-usbprog}
  179. @item
  180. @option{--enable-presto_libftdi}
  181. @item
  182. @option{--enable-presto_ftd2xx}
  183. @item
  184. @option{--enable-jlink}
  185. @end itemize
  186. If you want to access the parallel port using the PPDEV interface you have to specify
  187. both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
  188. the @option{--enable-parport_ppdev} option actually is an option to the parport driver
  189. (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
  190. Cygwin users have to specify the location of the FTDI D2XX package. This should be an
  191. absolute path containing no spaces.
  192. Linux users should copy the various parts of the D2XX package to the appropriate
  193. locations, i.e. /usr/include, /usr/lib.
  194. Miscellaneous configure options
  195. @itemize @bullet
  196. @item
  197. @option{--enable-gccwarnings} - enable extra gcc warnings during build
  198. @end itemize
  199. @node JTAG Hardware Dongles
  200. @chapter JTAG Hardware Dongles
  201. @cindex dongles
  202. @cindex ftdi
  203. @cindex wiggler
  204. @cindex zy1000
  205. @cindex printer port
  206. @cindex usb adapter
  207. @cindex rtck
  208. Defined: @b{dongle}: A small device that plugins into a computer and serves as
  209. an adapter .... [snip]
  210. In the OpenOCD case, this generally refers to @b{a small adapater} one
  211. attaches to your computer via USB or the Parallel Printer Port. The
  212. execption being the Zylin ZY1000 which is a small box you attach via
  213. an ethernet cable.
  214. @section Choosing a Dongle
  215. There are three things you should keep in mind when choosing a dongle.
  216. @enumerate
  217. @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
  218. @item @b{Connection} Printer Ports - Does your computer have one?
  219. @item @b{Connection} Is that long printer bit-bang cable practical?
  220. @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
  221. @end enumerate
  222. @section Stand alone Systems
  223. @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
  224. dongle, but a standalone box.
  225. @section USB FT2232 Based
  226. There are many USB jtag dongles on the market, many of them are based
  227. on a chip from ``Future Technology Devices International'' (FTDI)
  228. known as the FTDI FT2232.
  229. See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
  230. As of 28/Nov/2008, the following are supported:
  231. @itemize @bullet
  232. @item @b{usbjtag}
  233. @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
  234. @item @b{jtagkey}
  235. @* See: @url{http://www.amontec.com/jtagkey.shtml}
  236. @item @b{oocdlink}
  237. @* See: @url{http://www.oocdlink.com} By Joern Kaipf
  238. @item @b{signalyzer}
  239. @* See: @url{http://www.signalyzer.com}
  240. @item @b{evb_lm3s811}
  241. @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
  242. @item @b{olimex-jtag}
  243. @* See: @url{http://www.olimex.com}
  244. @item @b{flyswatter}
  245. @* See: @url{http://www.tincantools.com}
  246. @item @b{turtelizer2}
  247. @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
  248. @item @b{comstick}
  249. @* Link: @url{http://www.hitex.com/index.php?id=383}
  250. @item @b{stm32stick}
  251. @* Link @url{http://www.hitex.com/stm32-stick}
  252. @item @b{axm0432_jtag}
  253. @* Axiom AXM-0432 Link @url{http://www.axman.com}
  254. @end itemize
  255. @section USB JLINK based
  256. There are several OEM versions of the Segger @b{JLINK} adapter. It is
  257. an example of a micro controller based JTAG adapter, it uses an
  258. AT91SAM764 internally.
  259. @itemize @bullet
  260. @item @b{ATMEL SAMICE} Only works with ATMEL chips!
  261. @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
  262. @item @b{SEGGER JLINK}
  263. @* Link: @url{http://www.segger.com/jlink.html}
  264. @item @b{IAR J-Link}
  265. @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
  266. @end itemize
  267. @section USB Other
  268. @itemize @bullet
  269. @item @b{USBprog}
  270. @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
  271. @item @b{USB - Presto}
  272. @* Link: @url{http://tools.asix.net/prg_presto.htm}
  273. @end itemize
  274. @section IBM PC Parallel Printer Port Based
  275. The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
  276. and the MacGraigor Wiggler. There are many clones and variations of
  277. these on the market.
  278. @itemize @bullet
  279. @item @b{Wiggler} - There are many clones of this.
  280. @* Link: @url{http://www.macraigor.com/wiggler.htm}
  281. @item @b{DLC5} - From XILINX - There are many clones of this
  282. @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
  283. produced, PDF schematics are easily found and it is easy to make.
  284. @item @b{Amontec - JTAG Accelerator}
  285. @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
  286. @item @b{GW16402}
  287. @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
  288. @item @b{Wiggler2}
  289. @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
  290. @item @b{Wiggler_ntrst_inverted}
  291. @* Yet another variation - See the source code, src/jtag/parport.c
  292. @item @b{old_amt_wiggler}
  293. @* Unknown - probably not on the market today
  294. @item @b{arm-jtag}
  295. @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
  296. @item @b{chameleon}
  297. @* Link: @url{http://www.amontec.com/chameleon.shtml}
  298. @item @b{Triton}
  299. @* Unknown.
  300. @item @b{Lattice}
  301. @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
  302. @item @b{flashlink}
  303. @* From ST Microsystems, link:
  304. @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
  305. Title: FlashLINK JTAG programing cable for PSD and uPSD
  306. @end itemize
  307. @section Other...
  308. @itemize @bullet
  309. @item @b{ep93xx}
  310. @* An EP93xx based linux machine using the GPIO pins directly.
  311. @item @b{at91rm9200}
  312. @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
  313. @end itemize
  314. @node Running
  315. @chapter Running
  316. @cindex running OpenOCD
  317. @cindex --configfile
  318. @cindex --debug_level
  319. @cindex --logfile
  320. @cindex --search
  321. The @option{--help} option shows:
  322. @verbatim
  323. bash$ openocd --help
  324. --help | -h display this help
  325. --version | -v display OpenOCD version
  326. --file | -f use configuration file <name>
  327. --search | -s dir to search for config files and scripts
  328. --debug | -d set debug level <0-3>
  329. --log_output | -l redirect log output to file <name>
  330. --command | -c run <command>
  331. --pipe | -p use pipes when talking to gdb
  332. @end verbatim
  333. By default OpenOCD reads the file configuration file ``openocd.cfg''
  334. in the current directory. To specify a different (or multiple)
  335. configuration file, you can use the ``-f'' option. For example:
  336. @example
  337. openocd -f config1.cfg -f config2.cfg -f config3.cfg
  338. @end example
  339. Once started, OpenOCD runs as a daemon, waiting for connections from
  340. clients (Telnet, GDB, Other).
  341. If you are having problems, you can enable internal debug messages via
  342. the ``-d'' option.
  343. Also it is possible to interleave commands w/config scripts using the
  344. @option{-c} command line switch.
  345. To enable debug output (when reporting problems or working on OpenOCD
  346. itself), use the @option{-d} command line switch. This sets the
  347. @option{debug_level} to "3", outputting the most information,
  348. including debug messages. The default setting is "2", outputting only
  349. informational messages, warnings and errors. You can also change this
  350. setting from within a telnet or gdb session using @option{debug_level
  351. <n>} @xref{debug_level}.
  352. You can redirect all output from the daemon to a file using the
  353. @option{-l <logfile>} switch.
  354. Search paths for config/script files can be added to OpenOCD by using
  355. the @option{-s <search>} switch. The current directory and the OpenOCD
  356. target library is in the search path by default.
  357. For details on the @option{-p} option. @xref{Connecting to GDB}.
  358. Option @option{-p} is not currently supported under native win32.
  359. Note! OpenOCD will launch the GDB & telnet server even if it can not
  360. establish a connection with the target. In general, it is possible for
  361. the JTAG controller to be unresponsive until the target is set up
  362. correctly via e.g. GDB monitor commands in a GDB init script.
  363. @node Simple Configuration Files
  364. @chapter Simple Configuration Files
  365. @cindex configuration
  366. @section Outline
  367. There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
  368. @enumerate
  369. @item A small openocd.cfg file which ``sources'' other configuration files
  370. @item A monolithic openocd.cfg file
  371. @item Many -f filename options on the command line
  372. @item Your Mixed Solution
  373. @end enumerate
  374. @section Small configuration file method
  375. This is the prefered method, it is simple and is works well for many
  376. people. The developers of OpenOCD would encourage you to use this
  377. method. If you create a new configuration please email new
  378. configurations to the development list.
  379. Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
  380. @example
  381. source [find interface/signalyzer.cfg]
  382. # Change the default telnet port...
  383. telnet_port 4444
  384. # GDB connects here
  385. gdb_port 3333
  386. # GDB can also flash my flash!
  387. gdb_memory_map enable
  388. gdb_flash_program enable
  389. source [find target/sam7x256.cfg]
  390. @end example
  391. There are many example configuration scripts you can work with. You
  392. should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
  393. should find:
  394. @enumerate
  395. @item @b{board} - eval board level configurations
  396. @item @b{interface} - specific dongle configurations
  397. @item @b{target} - the target chips
  398. @item @b{tcl} - helper scripts
  399. @item @b{xscale} - things specific to the xscale.
  400. @end enumerate
  401. Look first in the ``boards'' area, then the ``targets'' area. Often a board
  402. configuration is a good example to work from.
  403. @section Many -f filename options
  404. Some believe this is a wonderful solution, others find it painful.
  405. You can use a series of ``-f filename'' options on the command line,
  406. OpenOCD will read each filename in sequence, for example:
  407. @example
  408. openocd -f file1.cfg -f file2.cfg -f file2.cfg
  409. @end example
  410. You can also intermix various commands with the ``-c'' command line
  411. option.
  412. @section Monolithic file
  413. The ``Monolithic File'' dispenses with all ``source'' statements and
  414. puts everything in one self contained (monolithic) file. This is not
  415. encouraged.
  416. Please try to ``source'' various files or use the multiple -f
  417. technique.
  418. @section Advice for you
  419. Often, one uses a ``mixed approach''. Where possible, please try to
  420. ``source'' common things, and if needed cut/paste parts of the
  421. standard distribution configuration files as needed.
  422. @b{REMEMBER:} The ``important parts'' of your configuration file are:
  423. @enumerate
  424. @item @b{Interface} - Defines the dongle
  425. @item @b{Taps} - Defines the JTAG Taps
  426. @item @b{GDB Targets} - What GDB talks to
  427. @item @b{Flash Programing} - Very Helpful
  428. @end enumerate
  429. Some key things you should look at and understand are:
  430. @enumerate
  431. @item The RESET configuration of your debug environment as a hole
  432. @item Is there a ``work area'' that OpenOCD can use?
  433. @* For ARM - work areas mean up to 10x faster downloads.
  434. @item For MMU/MPU based ARM chips (ie: ARM9 and later) will that work area still be available?
  435. @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
  436. @end enumerate
  437. @node Config File Guidelines
  438. @chapter Config File Guidelines
  439. This section/chapter is aimed at developers and integrators of
  440. OpenOCD. These are guidelines for creating new boards and new target
  441. configurations as of 28/Nov/2008.
  442. However, you the user of OpenOCD should be some what familiar with
  443. this section as it should help explain some of the internals of what
  444. you might be looking at.
  445. The user should find under @t{$(INSTALLDIR)/lib/openocd} the
  446. following directories:
  447. @itemize @bullet
  448. @item @b{interface}
  449. @*Think JTAG Dongle. Files that configure the jtag dongle go here.
  450. @item @b{board}
  451. @* Thing Circuit Board, PWA, PCB, they go by many names. Board files
  452. contain initialization items that are specific to a board - for
  453. example: The SDRAM initialization sequence for the board, or the type
  454. of external flash and what address it is found at. Any initialization
  455. sequence to enable that external flash or sdram should be found in the
  456. board file. Boards may also contain multiple targets, ie: Two cpus, or
  457. a CPU and an FPGA or CPLD.
  458. @item @b{target}
  459. @* Think CHIP. The ``target'' directory represents a jtag tap (or
  460. chip) OpenOCD should control, not a board. Two common types of targets
  461. are ARM chips and FPGA or CPLD chips.
  462. @end itemize
  463. @b{If needed...} The user in their ``openocd.cfg'' file or the board
  464. file might override a specific feature in any of the above files by
  465. setting a variable or two before sourcing the target file. Or adding
  466. various commands specific to their situation.
  467. @section Interface Config Files
  468. The user should be able to source one of these files via a command like this:
  469. @example
  470. source [find interface/FOOBAR.cfg]
  471. Or:
  472. openocd -f interface/FOOBAR.cfg
  473. @end example
  474. A preconfigured interface file should exist for every interface in use
  475. today, that said, perhaps some interfaces have only been used by the
  476. sole developer who created it.
  477. @b{FIXME/NOTE:} We need to add support for a variable like TCL variable
  478. tcl_platform(platform), it should be called jim_platform (because it
  479. is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
  480. ``cygwin'' or ``mingw''
  481. Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
  482. @section Board Config Files
  483. @b{Note: BOARD directory NEW as of 28/nov/2008}
  484. The user should be able to source one of these files via a command like this:
  485. @example
  486. source [find board/FOOBAR.cfg]
  487. Or:
  488. openocd -f board/FOOBAR.cfg
  489. @end example
  490. The board file should contain one or more @t{source [find
  491. target/FOO.cfg]} statements along with any board specific things.
  492. In summery the board files should contain (if present)
  493. @enumerate
  494. @item External flash configuration (ie: the flash on CS0)
  495. @item SDRAM configuration (size, speed, etc)
  496. @item Board specific IO configuration (ie: GPIO pins might disable a 2nd flash)
  497. @item Multiple TARGET source statements
  498. @item All things that are not ``inside a chip''
  499. @item Things inside a chip go in a 'target' file
  500. @end enumerate
  501. @section Target Config Files
  502. The user should be able to source one of these files via a command like this:
  503. @example
  504. source [find target/FOOBAR.cfg]
  505. Or:
  506. openocd -f target/FOOBAR.cfg
  507. @end example
  508. In summery the target files should contain
  509. @enumerate
  510. @item Set Defaults
  511. @item Create Taps
  512. @item Reset Configuration
  513. @item Work Areas
  514. @item CPU/Chip/CPU-Core Specific features
  515. @item OnChip Flash
  516. @end enumerate
  517. @subsection Important variable names
  518. By default, the end user should never need to set these
  519. variables. However, if the user needs to override a setting they only
  520. need to set the variable in a simple way.
  521. @itemize @bullet
  522. @item @b{CHIPNAME}
  523. @* This gives a name to the overall chip, and is used as part of the
  524. tap identifier dotted name.
  525. @item @b{ENDIAN}
  526. @* By default little - unless the chip or board is not normally used that way.
  527. @item @b{CPUTAPID}
  528. @* When OpenOCD examines the JTAG chain, it will attempt to identify
  529. every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
  530. to verify the tap id number verses configuration file and may issue an
  531. error or warning like this. The hope is this will help pin point
  532. problem OpenOCD configurations.
  533. @example
  534. Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
  535. Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
  536. Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
  537. Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
  538. @end example
  539. @item @b{_TARGETNAME}
  540. @* By convention, this variable is created by the target configuration
  541. script. The board configuration file may make use of this variable to
  542. configure things like a ``reset init'' script, or other things
  543. specific to that board and that target.
  544. If the chip has 2 targets, use the names @b{_TARGETNAME0},
  545. @b{_TARGETNAME1}, ... etc.
  546. @b{Remember:} The ``board file'' may include multiple targets.
  547. At no time should the name ``target0'' (the default target name if
  548. none was specified) be used. The name ``target0'' is a hard coded name
  549. - the next target on the board will be some other number.
  550. The user (or board file) should reasonably be able to:
  551. @example
  552. source [find target/FOO.cfg]
  553. $_TARGETNAME configure ... FOO specific parameters
  554. source [find target/BAR.cfg]
  555. $_TARGETNAME configure ... BAR specific parameters
  556. @end example
  557. @end itemize
  558. @subsection TCL Variables Guide Line
  559. The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
  560. Thus the rule we follow in OpenOCD is this: Variables that begin with
  561. a leading underscore are temporal in nature, and can be modified and
  562. used at will within a ?TARGET? configuration file
  563. @b{EXAMPLE:} The user should be able to do this:
  564. @example
  565. # Board has 3 chips,
  566. # PXA270 #1 network side, big endian
  567. # PXA270 #2 video side, little endian
  568. # Xilinx Glue logic
  569. set CHIPNAME network
  570. set ENDIAN big
  571. source [find target/pxa270.cfg]
  572. # variable: _TARGETNAME = network.cpu
  573. # other commands can refer to the "network.cpu" tap.
  574. $_TARGETNAME configure .... params for this cpu..
  575. set ENDIAN little
  576. set CHIPNAME video
  577. source [find target/pxa270.cfg]
  578. # variable: _TARGETNAME = video.cpu
  579. # other commands can refer to the "video.cpu" tap.
  580. $_TARGETNAME configure .... params for this cpu..
  581. unset ENDIAN
  582. set CHIPNAME xilinx
  583. source [find target/spartan3.cfg]
  584. # Since $_TARGETNAME is temporal..
  585. # these names still work!
  586. network.cpu configure ... params
  587. video.cpu configure ... params
  588. @end example
  589. @subsection Default Value Boiler Plate Code
  590. All target configuration files should start with this (or a modified form)
  591. @example
  592. # SIMPLE example
  593. if @{ [info exists CHIPNAME] @} @{
  594. set _CHIPNAME $CHIPNAME
  595. @} else @{
  596. set _CHIPNAME sam7x256
  597. @}
  598. if @{ [info exists ENDIAN] @} @{
  599. set _ENDIAN $ENDIAN
  600. @} else @{
  601. set _ENDIAN little
  602. @}
  603. if @{ [info exists CPUTAPID ] @} @{
  604. set _CPUTAPID $CPUTAPID
  605. @} else @{
  606. set _CPUTAPID 0x3f0f0f0f
  607. @}
  608. @end example
  609. @subsection Creating Taps
  610. After the ``defaults'' are choosen, [see above], the taps are created.
  611. @b{SIMPLE example:} such as an Atmel AT91SAM7X256
  612. @example
  613. # for an ARM7TDMI.
  614. set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
  615. jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
  616. @end example
  617. @b{COMPLEX example:}
  618. This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
  619. @enumerate
  620. @item @b{Unform tap names} - See: Tap Naming Convention
  621. @item @b{_TARGETNAME} is created at the end where used.
  622. @end enumerate
  623. @example
  624. if @{ [info exists FLASHTAPID ] @} @{
  625. set _FLASHTAPID $FLASHTAPID
  626. @} else @{
  627. set _FLASHTAPID 0x25966041
  628. @}
  629. jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
  630. if @{ [info exists CPUTAPID ] @} @{
  631. set _CPUTAPID $CPUTAPID
  632. @} else @{
  633. set _CPUTAPID 0x25966041
  634. @}
  635. jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
  636. if @{ [info exists BSTAPID ] @} @{
  637. set _BSTAPID $BSTAPID
  638. @} else @{
  639. set _BSTAPID 0x1457f041
  640. @}
  641. jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
  642. set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
  643. @end example
  644. @b{Tap Naming Convention}
  645. See the command ``jtag newtap'' for detail, but in breif the names you should use are:
  646. @itemize @bullet
  647. @item @b{tap}
  648. @item @b{cpu}
  649. @item @b{flash}
  650. @item @b{bs}
  651. @item @b{jrc}
  652. @item @b{unknownN} - it happens :-(
  653. @end itemize
  654. @subsection Reset Configuration
  655. Some chips have specific ways the TRST and SRST signals are
  656. managed. If these are @b{CHIP SPECIFIC} they go here, if they are
  657. @b{BOARD SPECIFIC} they go in the board file.
  658. @subsection Work Areas
  659. Work areas are small RAM areas used by OpenOCD to speed up downloads,
  660. and to download small snippits of code to program flash chips.
  661. If the chip includes an form of ``on-chip-ram'' - and many do - define
  662. a reasonable work area and use the ``backup'' option.
  663. @b{PROBLEMS:} On more complex chips, this ``work area'' may become
  664. inaccessable if/when the application code enables or disables the MMU.
  665. @subsection ARM Core Specific Hacks
  666. If the chip has a DCC, enable it. If the chip is an arm9 with some
  667. special high speed download - enable it.
  668. If the chip has an ARM ``vector catch'' feature - by defeault enable
  669. it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
  670. user is really writing a handler for those situations - they can
  671. easily disable it. Experiance has shown the ``vector catch'' is
  672. helpful - for common programing errors.
  673. If present, the MMU, the MPU and the CACHE should be disabled.
  674. @subsection Internal Flash Configuration
  675. This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
  676. @b{Never ever} in the ``target configuration file'' define any type of
  677. flash that is external to the chip. (For example the BOOT flash on
  678. Chip Select 0). The BOOT flash information goes in a board file - not
  679. the TARGET (chip) file.
  680. Examples:
  681. @itemize @bullet
  682. @item at91sam7x256 - has 256K flash YES enable it.
  683. @item str912 - has flash internal YES enable it.
  684. @item imx27 - uses boot flash on CS0 - it goes in the board file.
  685. @item pxa270 - again - CS0 flash - it goes in the board file.
  686. @end itemize
  687. @node About JIM-Tcl
  688. @chapter About JIM-Tcl
  689. @cindex JIM Tcl
  690. @cindex tcl
  691. OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
  692. learn more about JIM here: @url{http://jim.berlios.de}
  693. @itemize @bullet
  694. @item @b{JIM vrs TCL}
  695. @* JIM-TCL is a stripped down version of the well known Tcl language,
  696. which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
  697. fewer features. JIM-Tcl is a single .C file and a single .H file and
  698. impliments the basic TCL command set along. In contrast: Tcl 8.6 is a
  699. 4.2MEG zip file containing 1540 files.
  700. @item @b{Missing Features}
  701. @* Our practice has been: Add/clone the Real TCL feature if/when
  702. needed. We welcome JIM Tcl improvements, not bloat.
  703. @item @b{Scripts}
  704. @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
  705. command interpretor today (28/nov/2008) is a mixture of (newer)
  706. JIM-Tcl commands, and (older) the orginal command interpretor.
  707. @item @b{Commands}
  708. @* At the OpenOCD telnet command line (or via the GDB mon command) one
  709. can type a Tcl for() loop, set variables, etc.
  710. @item @b{Historical Note}
  711. @* JIM-Tcl was introduced to OpenOCD in Spring 2008.
  712. @item @b{Need a Crash Course In TCL?}
  713. @* See: @xref{TCL Crash Course}.
  714. @end itemize
  715. @node Daemon Configuration
  716. @chapter Daemon Configuration
  717. The commands here are commonly found in the openocd.cfg file and are
  718. used to specify what TCP/IP ports are used, and how GDB should be
  719. supported.
  720. @section init
  721. @cindex init
  722. This command terminates the configuration stage and
  723. enters the normal command mode. This can be useful to add commands to
  724. the startup scripts and commands such as resetting the target,
  725. programming flash, etc. To reset the CPU upon startup, add "init" and
  726. "reset" at the end of the config script or at the end of the OpenOCD
  727. command line using the @option{-c} command line switch.
  728. If this command does not appear in any startup/configuration file
  729. OpenOCD executes the command for you after processing all
  730. configuration files and/or command line options.
  731. @b{NOTE:} This command normally occurs at or near the end of your
  732. openocd.cfg file to force OpenOCD to ``initialize'' and make the
  733. targets ready. For example: If your openocd.cfg file needs to
  734. read/write memory on your target - the init command must occur before
  735. the memory read/write commands.
  736. @section TCP/IP Ports
  737. @itemize @bullet
  738. @item @b{telnet_port} <@var{number}>
  739. @cindex telnet_port
  740. @*Intended for a human. Port on which to listen for incoming telnet connections.
  741. @item @b{tcl_port} <@var{number}>
  742. @cindex tcl_port
  743. @*Intended as a machine interface. Port on which to listen for
  744. incoming TCL syntax. This port is intended as a simplified RPC
  745. connection that can be used by clients to issue commands and get the
  746. output from the TCL engine.
  747. @item @b{gdb_port} <@var{number}>
  748. @cindex gdb_port
  749. @*First port on which to listen for incoming GDB connections. The GDB port for the
  750. first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
  751. @end itemize
  752. @section GDB Items
  753. @itemize @bullet
  754. @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
  755. @cindex gdb_breakpoint_override
  756. @anchor{gdb_breakpoint_override}
  757. @*Force breakpoint type for gdb 'break' commands.
  758. The raison d'etre for this option is to support GDB GUI's without
  759. a hard/soft breakpoint concept where the default OpenOCD and
  760. GDB behaviour is not sufficient. Note that GDB will use hardware
  761. breakpoints if the memory map has been set up for flash regions.
  762. This option replaces older arm7_9 target commands that addressed
  763. the same issue.
  764. @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
  765. @cindex gdb_detach
  766. @*Configures what OpenOCD will do when gdb detaches from the daeman.
  767. Default behaviour is <@var{resume}>
  768. @item @b{gdb_memory_map} <@var{enable|disable}>
  769. @cindex gdb_memory_map
  770. @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
  771. requested. gdb will then know when to set hardware breakpoints, and program flash
  772. using the gdb load command. @option{gdb_flash_program enable} will also need enabling
  773. for flash programming to work.
  774. Default behaviour is <@var{enable}>
  775. @xref{gdb_flash_program}.
  776. @item @b{gdb_flash_program} <@var{enable|disable}>
  777. @cindex gdb_flash_program
  778. @anchor{gdb_flash_program}
  779. @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
  780. vFlash packet is received.
  781. Default behaviour is <@var{enable}>
  782. @comment END GDB Items
  783. @end itemize
  784. @node Interface - Dongle Configuration
  785. @chapter Interface - Dongle Configuration
  786. Interface commands are normally found in an interface configuration
  787. file which is sourced by your openocd.cfg file. These commands tell
  788. OpenOCD what type of JTAG dongle you have and how to talk to it.
  789. @section Simple Complete Interface Examples
  790. @b{A Turtelizer FT2232 Based JTAG Dongle}
  791. @verbatim
  792. #interface
  793. interface ft2232
  794. ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
  795. ft2232_layout turtelizer2
  796. ft2232_vid_pid 0x0403 0xbdc8
  797. @end verbatim
  798. @b{A SEGGER Jlink}
  799. @verbatim
  800. # jlink interface
  801. interface jlink
  802. @end verbatim
  803. @b{Parallel Port}
  804. @verbatim
  805. interface parport
  806. parport_port 0xc8b8
  807. parport_cable wiggler
  808. jtag_speed 0
  809. @end verbatim
  810. @section Interface Conmmand
  811. The interface command tells OpenOCD what type of jtag dongle you are
  812. using. Depending upon the type of dongle, you may need to have one or
  813. more additional commands.
  814. @itemize @bullet
  815. @item @b{interface} <@var{name}>
  816. @cindex interface
  817. @*Use the interface driver <@var{name}> to connect to the
  818. target. Currently supported interfaces are
  819. @itemize @minus
  820. @item @b{parport}
  821. @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
  822. @item @b{amt_jtagaccel}
  823. @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
  824. mode parallel port
  825. @item @b{ft2232}
  826. @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
  827. FTD2XX driver. The FTD2XX is superior in performance, but not available on every
  828. platform. The libftdi uses libusb, and should be portable to all systems that provide
  829. libusb.
  830. @item @b{ep93xx}
  831. @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
  832. @item @b{presto}
  833. @* ASIX PRESTO USB JTAG programmer.
  834. @item @b{usbprog}
  835. @* usbprog is a freely programmable USB adapter.
  836. @item @b{gw16012}
  837. @* Gateworks GW16012 JTAG programmer.
  838. @item @b{jlink}
  839. @* Segger jlink usb adapter
  840. @comment - End parameters
  841. @end itemize
  842. @comment - End Interface
  843. @end itemize
  844. @subsection parport options
  845. @itemize @bullet
  846. @item @b{parport_port} <@var{number}>
  847. @cindex parport_port
  848. @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
  849. the @file{/dev/parport} device
  850. When using PPDEV to access the parallel port, use the number of the parallel port:
  851. @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
  852. you may encounter a problem.
  853. @item @b{parport_cable} <@var{name}>
  854. @cindex parport_cable
  855. @*The layout of the parallel port cable used to connect to the target.
  856. Currently supported cables are
  857. @itemize @minus
  858. @item @b{wiggler}
  859. @cindex wiggler
  860. The original Wiggler layout, also supported by several clones, such
  861. as the Olimex ARM-JTAG
  862. @item @b{wiggler2}
  863. @cindex wiggler2
  864. Same as original wiggler except an led is fitted on D5.
  865. @item @b{wiggler_ntrst_inverted}
  866. @cindex wiggler_ntrst_inverted
  867. Same as original wiggler except TRST is inverted.
  868. @item @b{old_amt_wiggler}
  869. @cindex old_amt_wiggler
  870. The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
  871. version available from the website uses the original Wiggler layout ('@var{wiggler}')
  872. @item @b{chameleon}
  873. @cindex chameleon
  874. The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
  875. program the Chameleon itself, not a connected target.
  876. @item @b{dlc5}
  877. @cindex dlc5
  878. The Xilinx Parallel cable III.
  879. @item @b{triton}
  880. @cindex triton
  881. The parallel port adapter found on the 'Karo Triton 1 Development Board'.
  882. This is also the layout used by the HollyGates design
  883. (see @uref{http://www.lartmaker.nl/projects/jtag/}).
  884. @item @b{flashlink}
  885. @cindex flashlink
  886. The ST Parallel cable.
  887. @item @b{arm-jtag}
  888. @cindex arm-jtag
  889. Same as original wiggler except SRST and TRST connections reversed and
  890. TRST is also inverted.
  891. @item @b{altium}
  892. @cindex altium
  893. Altium Universal JTAG cable.
  894. @end itemize
  895. @item @b{parport_write_on_exit} <@var{on}|@var{off}>
  896. @cindex parport_write_on_exit
  897. @*This will configure the parallel driver to write a known value to the parallel
  898. interface on exiting OpenOCD
  899. @end itemize
  900. @subsection amt_jtagaccel options
  901. @itemize @bullet
  902. @item @b{parport_port} <@var{number}>
  903. @cindex parport_port
  904. @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
  905. @file{/dev/parport} device
  906. @end itemize
  907. @subsection ft2232 options
  908. @itemize @bullet
  909. @item @b{ft2232_device_desc} <@var{description}>
  910. @cindex ft2232_device_desc
  911. @*The USB device description of the FTDI FT2232 device. If not
  912. specified, the FTDI default value is used. This setting is only valid
  913. if compiled with FTD2XX support.
  914. @b{TODO:} Confirm the following: On windows the name needs to end with
  915. a ``space A''? Or not? It has to do with the FTD2xx driver. When must
  916. this be added and when must it not be added? Why can't the code in the
  917. interface or in OpenOCD automatically add this if needed? -- Duane.
  918. @item @b{ft2232_serial} <@var{serial-number}>
  919. @cindex ft2232_serial
  920. @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
  921. values are used.
  922. @item @b{ft2232_layout} <@var{name}>
  923. @cindex ft2232_layout
  924. @*The layout of the FT2232 GPIO signals used to control output-enables and reset
  925. signals. Valid layouts are
  926. @itemize @minus
  927. @item @b{usbjtag}
  928. "USBJTAG-1" layout described in the original OpenOCD diploma thesis
  929. @item @b{jtagkey}
  930. Amontec JTAGkey and JTAGkey-tiny
  931. @item @b{signalyzer}
  932. Signalyzer
  933. @item @b{olimex-jtag}
  934. Olimex ARM-USB-OCD
  935. @item @b{m5960}
  936. American Microsystems M5960
  937. @item @b{evb_lm3s811}
  938. Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
  939. SRST signals on external connector
  940. @item @b{comstick}
  941. Hitex STR9 comstick
  942. @item @b{stm32stick}
  943. Hitex STM32 Performance Stick
  944. @item @b{flyswatter}
  945. Tin Can Tools Flyswatter
  946. @item @b{turtelizer2}
  947. egnite Software turtelizer2
  948. @item @b{oocdlink}
  949. OOCDLink
  950. @item @b{axm0432_jtag}
  951. Axiom AXM-0432
  952. @end itemize
  953. @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
  954. @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
  955. default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
  956. @example
  957. ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
  958. @end example
  959. @item @b{ft2232_latency} <@var{ms}>
  960. @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
  961. ft2232_read() fails to return the expected number of bytes. This can be caused by
  962. USB communication delays and has proved hard to reproduce and debug. Setting the
  963. FT2232 latency timer to a larger value increases delays for short USB packages but it
  964. also reduces the risk of timeouts before receiving the expected number of bytes.
  965. The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
  966. @end itemize
  967. @subsection ep93xx options
  968. @cindex ep93xx options
  969. Currently, there are no options available for the ep93xx interface.
  970. @section JTAG Speed
  971. @itemize @bullet
  972. @item @b{jtag_khz} <@var{reset speed kHz}>
  973. @cindex jtag_khz
  974. It is debatable if this command belongs here - or in a board
  975. configuration file. In fact, in some situations the jtag speed is
  976. changed during the target initialization process (ie: (1) slow at
  977. reset, (2) program the cpu clocks, (3) run fast)
  978. Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
  979. Not all interfaces support ``rtck''. If the interface device can not
  980. support the rate asked for, or can not translate from kHz to
  981. jtag_speed, then an error is returned.
  982. Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
  983. especially true for synthesized cores (-S). Also see RTCK.
  984. @b{NOTE: Script writers} If the target chip requires/uses RTCK -
  985. please use the command: 'jtag_rclk FREQ'. This TCL proc (in
  986. startup.tcl) attempts to enable RTCK, if that fails it falls back to
  987. the specified frequency.
  988. @example
  989. # Fall back to 3mhz if RCLK is not supported
  990. jtag_rclk 3000
  991. @end example
  992. @item @b{DEPRICATED} @b{jtag_speed} - please use jtag_khz above.
  993. @cindex jtag_speed
  994. @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
  995. speed. The actual effect of this option depends on the JTAG interface used.
  996. The speed used during reset can be adjusted using setting jtag_speed during
  997. pre_reset and post_reset events.
  998. @itemize @minus
  999. @item wiggler: maximum speed / @var{number}
  1000. @item ft2232: 6MHz / (@var{number}+1)
  1001. @item amt jtagaccel: 8 / 2**@var{number}
  1002. @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
  1003. @comment end speed list.
  1004. @end itemize
  1005. @comment END command list
  1006. @end itemize
  1007. @node Reset Configuration
  1008. @chapter Reset Configuration
  1009. @cindex reset configuration
  1010. Every system configuration may require a different reset
  1011. configuration. This can also be quite confusing. Please see the
  1012. various board files for example.
  1013. @section jtag_nsrst_delay <@var{ms}>
  1014. @cindex jtag_nsrst_delay
  1015. @*How long (in milliseconds) OpenOCD should wait after deasserting
  1016. nSRST before starting new JTAG operations.
  1017. @section jtag_ntrst_delay <@var{ms}>
  1018. @cindex jtag_ntrst_delay
  1019. @*Same @b{jtag_nsrst_delay}, but for nTRST
  1020. The jtag_n[st]rst_delay options are useful if reset circuitry (like a
  1021. big resistor/capacitor, reset supervisor, or on-chip features). This
  1022. keeps the signal asserted for some time after the external reset got
  1023. deasserted.
  1024. @section reset_config
  1025. @b{Note:} To maintainer types and integrators. Where exactly the
  1026. ``reset configuration'' goes is a good question. It touches several
  1027. things at once. In the end, if you have a board file - the board file
  1028. should define it and assume 100% that the DONGLE supports
  1029. anything. However, that does not mean the target should not also make
  1030. not of something the silicon vendor has done inside the
  1031. chip. @i{Grr.... nothing is every pretty.}
  1032. @* @b{Problems:}
  1033. @enumerate
  1034. @item Every JTAG Dongle is slightly different, some dongles impliment reset differently.
  1035. @item Every board is also slightly different; some boards tie TRST and SRST together.
  1036. @item Every chip is slightly different; some chips internally tie the two signals together.
  1037. @item Some may not impliment all of the signals the same way.
  1038. @item Some signals might be push-pull, others open-drain/collector.
  1039. @end enumerate
  1040. @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
  1041. reset the TAP via TRST and send commands through the JTAG tap to halt
  1042. the CPU at the reset vector before the 1st instruction is executed,
  1043. and finally release the SRST signal.
  1044. @*Depending upon your board vendor, your chip vendor, etc, these
  1045. signals may have slightly different names.
  1046. OpenOCD defines these signals in these terms:
  1047. @itemize @bullet
  1048. @item @b{TRST} - is Tap Reset - and should reset only the TAP.
  1049. @item @b{SRST} - is System Reset - typically equal to a reset push button.
  1050. @end itemize
  1051. The Command:
  1052. @itemize @bullet
  1053. @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
  1054. @cindex reset_config
  1055. @* The @t{reset_config} command tells OpenOCD the reset configuration
  1056. of your combination of Dongle, Board, and Chips.
  1057. If the JTAG interface provides SRST, but the target doesn't connect
  1058. that signal properly, then OpenOCD can't use it. <@var{signals}> can
  1059. be @option{none}, @option{trst_only}, @option{srst_only} or
  1060. @option{trst_and_srst}.
  1061. [@var{combination}] is an optional value specifying broken reset
  1062. signal implementations. @option{srst_pulls_trst} states that the
  1063. testlogic is reset together with the reset of the system (e.g. Philips
  1064. LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
  1065. the system is reset together with the test logic (only hypothetical, I
  1066. haven't seen hardware with such a bug, and can be worked around).
  1067. @option{combined} imples both @option{srst_pulls_trst} and
  1068. @option{trst_pulls_srst}. The default behaviour if no option given is
  1069. @option{separate}.
  1070. The [@var{trst_type}] and [@var{srst_type}] parameters allow the
  1071. driver type of the reset lines to be specified. Possible values are
  1072. @option{trst_push_pull} (default) and @option{trst_open_drain} for the
  1073. test reset signal, and @option{srst_open_drain} (default) and
  1074. @option{srst_push_pull} for the system reset. These values only affect
  1075. JTAG interfaces with support for different drivers, like the Amontec
  1076. JTAGkey and JTAGAccelerator.
  1077. @comment - end command
  1078. @end itemize
  1079. @node Tap Creation
  1080. @chapter Tap Creation
  1081. @cindex tap creation
  1082. @cindex tap configuration
  1083. In order for OpenOCD to control a target, a JTAG tap must be
  1084. defined/created.
  1085. Commands to create taps are normally found in a configuration file and
  1086. are not normally typed by a human.
  1087. When a tap is created a @b{dotted.name} is created for the tap. Other
  1088. commands use that dotted.name to manipulate or refer to the tap.
  1089. Tap Uses:
  1090. @itemize @bullet
  1091. @item @b{Debug Target} A tap can be used by a GDB debug target
  1092. @item @b{Flash Programing} Some chips program the flash via JTAG
  1093. @item @b{Boundry Scan} Some chips support boundry scan.
  1094. @end itemize
  1095. @section jtag newtap
  1096. @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
  1097. @cindex jtag_device
  1098. @cindex jtag newtap
  1099. @cindex tap
  1100. @cindex tap order
  1101. @cindex tap geometry
  1102. @comment START options
  1103. @itemize @bullet
  1104. @item @b{CHIPNAME}
  1105. @* is a symbolic name of the chip.
  1106. @item @b{TAPNAME}
  1107. @* is a symbol name of a tap present on the chip.
  1108. @item @b{Required configparams}
  1109. @* Every tap has 3 required configparams, and several ``optional
  1110. parameters'', the required parameters are:
  1111. @comment START REQUIRED
  1112. @itemize @bullet
  1113. @item @b{-irlen NUMBER} - the length in bits of the instruction register
  1114. @item @b{-ircapture NUMBER} - the ID code capture command.
  1115. @item @b{-irmask NUMBER} - the corrisponding mask for the ir register.
  1116. @comment END REQUIRED
  1117. @end itemize
  1118. An example of a FOOBAR Tap
  1119. @example
  1120. jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
  1121. @end example
  1122. Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
  1123. bits long, during Capture-IR 0x42 is loaded into the IR, and bits
  1124. [6,4,2,0] are checked.
  1125. FIXME: The IDCODE - this was not used in the old code, it should be?
  1126. Right? -Duane.
  1127. @item @b{Optional configparams}
  1128. @comment START Optional
  1129. @itemize @bullet
  1130. @item @b{-expected-id NUMBER}
  1131. @* By default it is zero. If non-zero represents the
  1132. expected tap ID used when the Jtag Chain is examined. See below.
  1133. @item @b{-disable}
  1134. @item @b{-enable}
  1135. @* By default not specified the tap is enabled. Some chips have a
  1136. jtag route controller (JRC) that is used to enable and/or disable
  1137. specific jtag taps. You can later enable or disable any JTAG tap via
  1138. the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
  1139. DOTTED.NAME}
  1140. @comment END Optional
  1141. @end itemize
  1142. @comment END OPTIONS
  1143. @end itemize
  1144. @b{Notes:}
  1145. @comment START NOTES
  1146. @itemize @bullet
  1147. @item @b{Technically}
  1148. @* newtap is a sub command of the ``jtag'' command
  1149. @item @b{Big Picture Background}
  1150. @*GDB Talks to OpenOCD using the GDB protocol via
  1151. tcpip. OpenOCD then uses the JTAG interface (the dongle) to
  1152. control the JTAG chain on your board. Your board has one or more chips
  1153. in a @i{daisy chain configuration}. Each chip may have one or more
  1154. jtag taps. GDB ends up talking via OpenOCD to one of the taps.
  1155. @item @b{NAME Rules}
  1156. @*Names follow ``C'' symbol name rules (start with alpha ...)
  1157. @item @b{TAPNAME - Conventions}
  1158. @itemize @bullet
  1159. @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
  1160. @item @b{cpu} - the main cpu of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
  1161. @item @b{flash} - if the chip has a flash tap, example: str912.flash
  1162. @item @b{bs} - for boundary scan if this is a seperate tap.
  1163. @item @b{jrc} - for jtag route controller (example: OMAP3530 found on Beagleboards)
  1164. @item @b{unknownN} - where N is a number if you have no idea what the tap is for
  1165. @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
  1166. @item @b{When in doubt} - use the chip makers name in their data sheet.
  1167. @end itemize
  1168. @item @b{DOTTED.NAME}
  1169. @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
  1170. @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
  1171. dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
  1172. @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
  1173. numerous other places to refer to various taps.
  1174. @item @b{ORDER}
  1175. @* The order this command appears via the config files is
  1176. important.
  1177. @item @b{Multi Tap Example}
  1178. @* This example is based on the ST Microsystems STR912. See the ST
  1179. document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
  1180. 28/102, Figure 3: Jtag chaining inside the STR91xFA}.
  1181. @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
  1182. @*@b{checked: 28/nov/2008}
  1183. The diagram shows the TDO pin connects to the flash tap, flash TDI
  1184. connects to the CPU debug tap, CPU TDI connects to the boundary scan
  1185. tap which then connects to the TDI pin.
  1186. @example
  1187. # The order is...
  1188. # create tap: 'str912.flash'
  1189. jtag newtap str912 flash ... params ...
  1190. # create tap: 'str912.cpu'
  1191. jtag newtap str912 cpu ... params ...
  1192. # create tap: 'str912.bs'
  1193. jtag newtap str912 bs ... params ...
  1194. @end example
  1195. @item @b{Note: Deprecated} - Index Numbers
  1196. @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
  1197. feature is still present, however its use is highly discouraged and
  1198. should not be counted upon.
  1199. @item @b{Multiple chips}
  1200. @* If your board has multiple chips, you should be
  1201. able to @b{source} two configuration files, in the proper order, and
  1202. have the taps created in the proper order.
  1203. @comment END NOTES
  1204. @end itemize
  1205. @comment at command level
  1206. @comment DOCUMENT old command
  1207. @section jtag_device - REMOVED
  1208. @example
  1209. @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
  1210. @end example
  1211. @cindex jtag_device
  1212. @* @b{Removed: 28/nov/2008} This command has been removed and replaced
  1213. by the ``jtag newtap'' command. The documentation remains here so that
  1214. one can easily convert the old syntax to the new syntax. About the old
  1215. syntax: The old syntax is positional, ie: The 4th parameter is the
  1216. ``irmask''. The new syntax requires named prefixes, and supports
  1217. additional options, for example ``-irmask 4''. Please refer to the
  1218. @b{jtag newtap} command for details.
  1219. @example
  1220. OLD: jtag_device 8 0x01 0x0e3 0xfe
  1221. NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0xe3 -irmask 0xfe
  1222. @end example
  1223. @section Enable/Disable Taps
  1224. @b{Note:} These commands are intended to be used as a machine/script
  1225. interface. Humans might find the ``scan_chain'' command more helpful
  1226. when querying the state of the JTAG taps.
  1227. @b{By default, all taps are enabled}
  1228. @itemize @bullet
  1229. @item @b{jtag tapenable} @var{DOTTED.NAME}
  1230. @item @b{jtag tapdisable} @var{DOTTED.NAME}
  1231. @item @b{jtag tapisenabled} @var{DOTTED.NAME}
  1232. @end itemize
  1233. @cindex tap enable
  1234. @cindex tap disable
  1235. @cindex JRC
  1236. @cindex route controller
  1237. These commands are used when your target has a JTAG Route controller
  1238. that effectively adds or removes a tap from the jtag chain in a
  1239. non-standard way.
  1240. The ``standard way'' to remove a tap would be to place the tap in
  1241. bypass mode. But with the advent of modern chips, this is not always a
  1242. good solution. Some taps operate slowly, others operate fast, and
  1243. there are other JTAG clock syncronization problems one must face. To
  1244. solve that problem, the JTAG Route controller was introduced. Rather
  1245. then ``bypass'' the tap, the tap is completely removed from the
  1246. circuit and skipped.
  1247. From OpenOCD's view point, a JTAG TAP is in one of 3 states:
  1248. @itemize @bullet
  1249. @item @b{Enabled - Not In ByPass} and has a variable bit length
  1250. @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
  1251. @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
  1252. @end itemize
  1253. The IEEE JTAG definition has no concept of a ``disabled'' tap.
  1254. @b{Historical note:} this feature was added 28/nov/2008
  1255. @b{jtag tapisenabled DOTTED.NAME}
  1256. This command returns 1 if the named tap is currently enabled, 0 if not.
  1257. This command exists so that scripts that manipulate a JRC (like the
  1258. Omap3530 has) can determine if OpenOCD thinks a tap is presently
  1259. enabled, or disabled.
  1260. @page
  1261. @node Target Configuration
  1262. @chapter Target Configuration
  1263. This chapter discusses how to create a GDB Debug Target. Before
  1264. creating a ``target'' a JTAG Tap DOTTED.NAME must exist first.
  1265. @section targets [NAME]
  1266. @b{Note:} This command name is PLURAL - not singular.
  1267. With NO parameter, this plural @b{targets} command lists all known
  1268. targets in a human friendly form.
  1269. With a parameter, this pural @b{targets} command sets the current
  1270. target to the given name. (ie: If there are multiple debug targets)
  1271. Example:
  1272. @verbatim
  1273. (gdb) mon targets
  1274. CmdName Type Endian ChainPos State
  1275. -- ---------- ---------- ---------- -------- ----------
  1276. 0: target0 arm7tdmi little 0 halted
  1277. @end verbatim
  1278. @section target COMMANDS
  1279. @b{Note:} This command name is SINGULAR - not plural. It is used to
  1280. manipulate specific targets, to create targets and other things.
  1281. Once a target is created, a TARGETNAME (object) command is created;
  1282. see below for details.
  1283. The TARGET command accepts these sub-commands:
  1284. @itemize @bullet
  1285. @item @b{create} .. parameters ..
  1286. @* creates a new target, See below for details.
  1287. @item @b{types}
  1288. @* Lists all supported target types (perhaps some are not yet in this document).
  1289. @item @b{names}
  1290. @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
  1291. @verbatim
  1292. foreach t [target names] {
  1293. puts [format "Target: %s\n" $t]
  1294. }
  1295. @end verbatim
  1296. @item @b{current}
  1297. @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
  1298. By default, commands like: ``mww'' (used to write memory) operate on the current target.
  1299. @item @b{number} @b{NUMBER}
  1300. @* Internally OpenOCD maintains a list of targets - in numerical index
  1301. (0..N-1) this command returns the name of the target at index N.
  1302. Example usage:
  1303. @verbatim
  1304. set thename [target number $x]
  1305. puts [format "Target %d is: %s\n" $x $thename]
  1306. @end verbatim
  1307. @item @b{count}
  1308. @* Returns the number of targets known to OpenOCD (see number above)
  1309. Example:
  1310. @verbatim
  1311. set c [target count]
  1312. for { set x 0 } { $x < $c } { incr x } {
  1313. # Assuming you have created this function
  1314. print_target_details $x
  1315. }
  1316. @end verbatim
  1317. @end itemize
  1318. @section TARGETNAME (object) commands
  1319. @b{Use:} Once a target is created, an ``object name'' that represents the
  1320. target is created. By convention, the target name is identical to the
  1321. tap name. In a multiple target system, one can preceed many common
  1322. commands with a specific target name and effect only that target.
  1323. @example
  1324. str912.cpu mww 0x1234 0x42
  1325. omap3530.cpu mww 0x5555 123
  1326. @end example
  1327. @b{Model:} The Tcl/Tk language has the concept of object commands. A
  1328. good example is a on screen button, once a button is created a button
  1329. has a name (a path in TK terms) and that name is useable as a 1st
  1330. class command. For example in TK, one can create a button and later
  1331. configure it like this:
  1332. @example
  1333. # Create
  1334. button .foobar -background red -command @{ foo @}
  1335. # Modify
  1336. .foobar configure -foreground blue
  1337. # Query
  1338. set x [.foobar cget -background]
  1339. # Report
  1340. puts [format "The button is %s" $x]
  1341. @end example
  1342. In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
  1343. button. Commands avaialble as a ``target object'' are:
  1344. @comment START targetobj commands.
  1345. @itemize @bullet
  1346. @item @b{configure} - configure the target; see Target Config/Cget Options below
  1347. @item @b{cget} - query the target configuration; see Target Config/Cget Options below
  1348. @item @b{curstate} - current target state (running, halt, etc)
  1349. @item @b{eventlist}
  1350. @* Intended for a human to see/read the currently configure target events.
  1351. @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
  1352. @comment start memory
  1353. @itemize @bullet
  1354. @item @b{mww} ...
  1355. @item @b{mwh} ...
  1356. @item @b{mwb} ...
  1357. @item @b{mdw} ...
  1358. @item @b{mdh} ...
  1359. @item @b{mdb} ...
  1360. @comment end memory
  1361. @end itemize
  1362. @item @b{Memory To Array, Array To Memory}
  1363. @* These are aimed at a machine interface to memory
  1364. @itemize @bullet
  1365. @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
  1366. @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
  1367. @* Where:
  1368. @* @b{ARRAYNAME} is the name of an array variable
  1369. @* @b{WIDTH} is 8/16/32 - indicating the memory access size
  1370. @* @b{ADDRESS} is the target memory address
  1371. @* @b{COUNT} is the number of elements to process
  1372. @end itemize
  1373. @item @b{Used during ``reset''}
  1374. @* These commands are used internally by the OpenOCD scripts to deal
  1375. with odd reset situations and are not documented here.
  1376. @itemize @bullet
  1377. @item @b{arp_examine}
  1378. @item @b{arp_poll}
  1379. @item @b{arp_reset}
  1380. @item @b{arp_halt}
  1381. @item @b{arp_waitstate}
  1382. @end itemize
  1383. @item @b{invoke-event} @b{EVENT-NAME}
  1384. @* Invokes the specific event manually for the target
  1385. @end itemize
  1386. @section Target Events
  1387. At various times, certain things can happen, or you want them to happen.
  1388. Examples:
  1389. @itemize @bullet
  1390. @item What should happen when GDB connects? Should your target reset?
  1391. @item When GDB tries to flash the target, do you need to enable the flash via a special command?
  1392. @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
  1393. @end itemize
  1394. All of the above items are handled by target events.
  1395. To specify an event action, either during target creation, or later
  1396. via ``$_TARGETNAME configure'' see this example.
  1397. Syntactially, the option is: ``-event NAME BODY'' where NAME is a
  1398. target event name, and BODY is a tcl procedure or string of commands
  1399. to execute.
  1400. The programmers model is the ``-command'' option used in Tcl/Tk
  1401. buttons and events. Below are two identical examples, the first
  1402. creates and invokes small procedure. The second inlines the procedure.
  1403. @example
  1404. proc my_attach_proc @{ @} @{
  1405. puts "RESET...."
  1406. reset halt
  1407. @}
  1408. mychip.cpu configure -event gdb-attach my_attach_proc
  1409. mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
  1410. @end example
  1411. Current Events
  1412. @itemize @bullet
  1413. @item @b{debug-halted}
  1414. @* The target has halted for debug reasons (ie: breakpoint)
  1415. @item @b{debug-resumed}
  1416. @* The target has resumed (ie: gdb said run)
  1417. @item @b{early-halted}
  1418. @* Occurs early in the halt process
  1419. @item @b{examine-end}
  1420. @* Currently not used (goal: when JTAG examine completes)
  1421. @item @b{examine-start}
  1422. @* Currently not used (goal: when JTAG examine starts)
  1423. @item @b{gdb-attach}
  1424. @* When GDB connects
  1425. @item @b{gdb-detach}
  1426. @* When GDB disconnects
  1427. @item @b{gdb-end}
  1428. @* When the taret has halted and GDB is not doing anything (see early halt)
  1429. @item @b{gdb-flash-erase-start}
  1430. @* Before the GDB flash process tries to erase the flash
  1431. @item @b{gdb-flash-erase-end}
  1432. @* After the GDB flash process has finished erasing the flash
  1433. @item @b{gdb-flash-write-start}
  1434. @* Before GDB writes to the flash
  1435. @item @b{gdb-flash-write-end}
  1436. @* After GDB writes to the flash
  1437. @item @b{gdb-start}
  1438. @* Before the taret steps, gdb is trying to start/resume the tarfget
  1439. @item @b{halted}
  1440. @* The target has halted
  1441. @item @b{old-gdb_program_config}
  1442. @* DO NOT USE THIS: Used internally
  1443. @item @b{old-pre_resume}
  1444. @* DO NOT USE THIS: Used internally
  1445. @item @b{reset-assert-pre}
  1446. @* Before reset is asserted on the tap.
  1447. @item @b{reset-assert-post}
  1448. @* Reset is now asserted on the tap.
  1449. @item @b{reset-deassert-pre}
  1450. @* Reset is about to be released on the tap
  1451. @item @b{reset-deassert-post}
  1452. @* Reset has been released on the tap
  1453. @item @b{reset-end}
  1454. @* Currently not used.
  1455. @item @b{reset-halt-post}
  1456. @* Currently not usd
  1457. @item @b{reset-halt-pre}
  1458. @* Currently not used
  1459. @item @b{reset-init}
  1460. @* Currently not used
  1461. @item @b{reset-start}
  1462. @* Currently not used
  1463. @item @b{reset-wait-pos}
  1464. @* Currently not used
  1465. @item @b{reset-wait-pre}
  1466. @* Currently not used
  1467. @item @b{resume-start}
  1468. @* Before any target is resumed
  1469. @item @b{resume-end}
  1470. @* After all targets have resumed
  1471. @item @b{resume-ok}
  1472. @* Success
  1473. @item @b{resumed}
  1474. @* Target has resumed
  1475. @end itemize
  1476. @section target create
  1477. @cindex target
  1478. @cindex target creation
  1479. @example
  1480. @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
  1481. @end example
  1482. @*This command creates a GDB debug target that refers to a specific JTAG tap.
  1483. @comment START params
  1484. @itemize @bullet
  1485. @item @b{NAME}
  1486. @* Is the name of the debug target. By convention it should be the tap
  1487. DOTTED.NAME, this name is also used to create the target object
  1488. command.
  1489. @item @b{TYPE}
  1490. @* Specifies the target type, ie: arm7tdmi, or cortexM3. Currently supported targes are:
  1491. @comment START types
  1492. @itemize @minus
  1493. @item @b{arm7tdmi}
  1494. @item @b{arm720t}
  1495. @item @b{arm9tdmi}
  1496. @item @b{arm920t}
  1497. @item @b{arm922t}
  1498. @item @b{arm926ejs}
  1499. @item @b{arm966e}
  1500. @item @b{cortex_m3}
  1501. @item @b{feroceon}
  1502. @item @b{xscale}
  1503. @item @b{arm11}
  1504. @item @b{mips_m4k}
  1505. @comment end TYPES
  1506. @end itemize
  1507. @item @b{PARAMS}
  1508. @*PARAMs are various target configure parameters, the following are mandatory
  1509. at configuration:
  1510. @comment START mandatory
  1511. @itemize @bullet
  1512. @item @b{-endian big|little}
  1513. @item @b{-chain-position DOTTED.NAME}
  1514. @comment end MANDATORY
  1515. @end itemize
  1516. @comment END params
  1517. @end itemize
  1518. @section Target Config/Cget Options
  1519. These options can be specified when the target is created, or later
  1520. via the configure option or to query the target via cget.
  1521. @itemize @bullet
  1522. @item @b{-type} - returns the target type
  1523. @item @b{-event NAME BODY} see Target events
  1524. @item @b{-work-area-virt [ADDRESS]} specify/set the work area
  1525. @item @b{-work-area-phys [ADDRESS]} specify/set the work area
  1526. @item @b{-work-area-size [ADDRESS]} specify/set the work area
  1527. @item @b{-work-area-backup [0|1]} does the work area get backed up
  1528. @item @b{-endian [big|little]}
  1529. @item @b{-variant [NAME]} some chips have varients OpenOCD needs to know about
  1530. @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
  1531. @end itemize
  1532. Example:
  1533. @example
  1534. for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
  1535. set name [target number $x]
  1536. set y [$name cget -endian]
  1537. set z [$name cget -type]
  1538. puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
  1539. @}
  1540. @end example
  1541. @section Target Varients
  1542. @itemize @bullet
  1543. @item @b{arm7tdmi}
  1544. @* Unknown (please write me)
  1545. @item @b{arm720t}
  1546. @* Unknown (please write me) (simular to arm7tdmi)
  1547. @item @b{arm9tdmi}
  1548. @* Varients: @option{arm920t}, @option{arm922t} and @option{arm940t}
  1549. This enables the hardware single-stepping support found on these
  1550. cores.
  1551. @item @b{arm920t}
  1552. @* None.
  1553. @item @b{arm966e}
  1554. @* None (this is also used as the ARM946)
  1555. @item @b{cortex_m3}
  1556. @* use variant <@var{-variant lm3s}> when debugging luminary lm3s targets. This will cause
  1557. OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
  1558. the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
  1559. be detected and the normal reset behaviour used.
  1560. @item @b{xscale}
  1561. @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
  1562. @item @b{arm11}
  1563. @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
  1564. @item @b{mips_m4k}
  1565. @* Use variant @option{ejtag_srst} when debugging targets that do not
  1566. provide a functional SRST line on the EJTAG connector. This causes
  1567. OpenOCD to instead use an EJTAG software reset command to reset the
  1568. processor. You still need to enable @option{srst} on the reset
  1569. configuration command to enable OpenOCD hardware reset functionality.
  1570. @comment END varients
  1571. @end itemize
  1572. @section working_area - Command Removed
  1573. @cindex working_area
  1574. @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
  1575. @* This documentation remains because there are existing scripts that
  1576. still use this that need to be converted.
  1577. @example
  1578. working_area target# address size backup| [virtualaddress]
  1579. @end example
  1580. @* The target# is a the 0 based target numerical index.
  1581. This command specifies a working area for the debugger to use. This
  1582. may be used to speed-up downloads to target memory and flash
  1583. operations, or to perform otherwise unavailable operations (some
  1584. coprocessor operations on ARM7/9 systems, for example). The last
  1585. parameter decides whether the memory should be preserved
  1586. (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
  1587. possible, use a working_area that doesn't need to be backed up, as
  1588. performing a backup slows down operation.
  1589. @node Flash Configuration
  1590. @chapter Flash Programing
  1591. @cindex Flash Configuration
  1592. @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
  1593. flash that a micro may boot from. Perhaps you the reader would like to
  1594. contribute support for this.
  1595. Flash Steps:
  1596. @enumerate
  1597. @item Configure via the command @b{flash bank}
  1598. @* Normally this is done in a configuration file.
  1599. @item Operate on the flash via @b{flash SOMECOMMAND}
  1600. @* Often commands to manipulate the flash are typed by a human, or run
  1601. via a script in some automated way. For example: To program the boot
  1602. flash on your board.
  1603. @item GDB Flashing
  1604. @* Flashing via GDB requires the flash be configured via ``flash
  1605. bank'', and the GDB flash features be enabled. See the Daemon
  1606. configuration section for more details.
  1607. @end enumerate
  1608. @section Flash commands
  1609. @cindex Flash commands
  1610. @subsection flash banks
  1611. @b{flash banks}
  1612. @cindex flash banks
  1613. @*List configured flash banks
  1614. @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
  1615. @subsection flash info
  1616. @b{flash info} <@var{num}>
  1617. @cindex flash info
  1618. @*Print info about flash bank <@option{num}>
  1619. @subsection flash probe
  1620. @b{flash probe} <@var{num}>
  1621. @cindex flash probe
  1622. @*Identify the flash, or validate the parameters of the configured flash. Operation
  1623. depends on the flash type.
  1624. @subsection flash erase_check
  1625. @b{flash erase_check} <@var{num}>
  1626. @cindex flash erase_check
  1627. @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
  1628. updates the erase state information displayed by @option{flash info}. That means you have
  1629. to issue an @option{erase_check} command after erasing or programming the device to get
  1630. updated information.
  1631. @subsection flash protect_check
  1632. @b{flash protect_check} <@var{num}>
  1633. @cindex flash protect_check
  1634. @*Check protection state of sectors in flash bank <num>.
  1635. @option{flash erase_sector} using the same syntax.
  1636. @subsection flash erase_sector
  1637. @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
  1638. @cindex flash erase_sector
  1639. @anchor{flash erase_sector}
  1640. @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
  1641. <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
  1642. require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
  1643. the CFI driver).
  1644. @subsection flash erase_address
  1645. @b{flash erase_address} <@var{address}> <@var{length}>
  1646. @cindex flash erase_address
  1647. @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
  1648. @subsection flash write_bank
  1649. @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
  1650. @cindex flash write_bank
  1651. @anchor{flash write_bank}
  1652. @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
  1653. <@option{offset}> bytes from the beginning of the bank.
  1654. @subsection flash write_image
  1655. @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
  1656. @cindex flash write_image
  1657. @anchor{flash write_image}
  1658. @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
  1659. [@var{offset}] can be specified and the file [@var{type}] can be specified
  1660. explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
  1661. (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
  1662. if the @option{erase} parameter is given.
  1663. @subsection flash protect
  1664. @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
  1665. @cindex flash protect
  1666. @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
  1667. <@var{last}> of @option{flash bank} <@var{num}>.
  1668. @subsection mFlash commands
  1669. @cindex mFlash commands
  1670. @itemize @bullet
  1671. @item @b{mflash probe}
  1672. @cindex mflash probe
  1673. Probe mflash.
  1674. @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
  1675. @cindex mflash write
  1676. Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
  1677. <@var{offset}> bytes from the beginning of the bank.
  1678. @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
  1679. @cindex mflash dump
  1680. Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
  1681. to a <@var{file}>.
  1682. @end itemize
  1683. @section flash bank command
  1684. The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
  1685. @example
  1686. @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
  1687. <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
  1688. @end example
  1689. @cindex flash bank
  1690. @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
  1691. and <@var{bus_width}> bytes using the selected flash <driver>.
  1692. @subsection External Flash - cfi options
  1693. @cindex cfi options
  1694. CFI flash are external flash chips - often they are connected to a
  1695. specific chip select on the micro. By default at hard reset most
  1696. micros have the ablity to ``boot'' from some flash chip - typically
  1697. attached to the chips CS0 pin.
  1698. For other chip selects: OpenOCD does not know how to configure, or
  1699. access a specific chip select. Instead you the human might need to via
  1700. other commands (like: mww) configure additional chip selects, or
  1701. perhaps configure a GPIO pin that controls the ``write protect'' pin
  1702. on the FLASH chip.
  1703. @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
  1704. <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
  1705. @*CFI flashes require the number of the target they're connected to as an additional
  1706. argument. The CFI driver makes use of a working area (specified for the target)
  1707. to significantly speed up operation.
  1708. @var{chip_width} and @var{bus_width} are specified in bytes.
  1709. The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
  1710. @var{x16_as_x8} ???
  1711. @subsection Internal Flash (Micro Controllers)
  1712. @subsubsection lpc2000 options
  1713. @cindex lpc2000 options
  1714. @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  1715. <@var{clock}> [@var{calc_checksum}]
  1716. @*LPC flashes don't require the chip and bus width to be specified. Additional
  1717. parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
  1718. or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
  1719. of the target this flash belongs to (first is 0), the frequency at which the core
  1720. is currently running (in kHz - must be an integral number), and the optional keyword
  1721. @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
  1722. vector table.
  1723. @subsubsection at91sam7 options
  1724. @cindex at91sam7 options
  1725. @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
  1726. @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
  1727. reading the chip-id and type.
  1728. @subsubsection str7 options
  1729. @cindex str7 options
  1730. @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  1731. @*variant can be either STR71x, STR73x or STR75x.
  1732. @subsubsection str9 options
  1733. @cindex str9 options
  1734. @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1735. @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
  1736. @example
  1737. str9x flash_config 0 4 2 0 0x80000
  1738. @end example
  1739. This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
  1740. @subsubsection str9 options (str9xpec driver)
  1741. @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1742. @*Before using the flash commands the turbo mode will need enabling using str9xpec
  1743. @option{enable_turbo} <@var{num>.}
  1744. Only use this driver for locking/unlocking the device or configuring the option bytes.
  1745. Use the standard str9 driver for programming. @xref{STR9 specific commands}.
  1746. @subsubsection stellaris (LM3Sxxx) options
  1747. @cindex stellaris (LM3Sxxx) options
  1748. @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1749. @*stellaris flash plugin only require the @var{target#}.
  1750. @subsubsection stm32x options
  1751. @cindex stm32x options
  1752. @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1753. @*stm32x flash plugin only require the @var{target#}.
  1754. @subsubsection aduc702x options
  1755. @cindex aduc702x options
  1756. @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  1757. @*aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
  1758. @subsection mFlash configuration
  1759. @cindex mFlash configuration
  1760. @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
  1761. <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
  1762. @cindex mflash bank
  1763. @*Configures a mflash for <@var{soc}> host bank at
  1764. <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
  1765. order. Pin number format is dependent on host GPIO calling convention.
  1766. If WP or DPD pin was not used, write -1. Currently, mflash bank
  1767. support s3c2440 and pxa270.
  1768. (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
  1769. @example
  1770. mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
  1771. @end example
  1772. (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
  1773. @example
  1774. mflash bank pxa270 0x08000000 2 2 43 -1 51 0
  1775. @end example
  1776. @section Micro Controller Specific Flash Commands
  1777. @subsection AT91SAM7 specific commands
  1778. @cindex AT91SAM7 specific commands
  1779. The flash configuration is deduced from the chip identification register. The flash
  1780. controller handles erases automatically on a page (128/265 byte) basis so erase is
  1781. not necessary for flash programming. AT91SAM7 processors with less than 512K flash
  1782. only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
  1783. that can be erased separatly. Only an EraseAll command is supported by the controller
  1784. for each flash plane and this is called with
  1785. @itemize @bullet
  1786. @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
  1787. @*bulk erase flash planes first_plane to last_plane.
  1788. @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
  1789. @cindex at91sam7 gpnvm
  1790. @*set or clear a gpnvm bit for the processor
  1791. @end itemize
  1792. @subsection STR9 specific commands
  1793. @cindex STR9 specific commands
  1794. @anchor{STR9 specific commands}
  1795. These are flash specific commands when using the str9xpec driver.
  1796. @itemize @bullet
  1797. @item @b{str9xpec enable_turbo} <@var{num}>
  1798. @cindex str9xpec enable_turbo
  1799. @*enable turbo mode, simply this will remove the str9 from the chain and talk
  1800. directly to the embedded flash controller.
  1801. @item @b{str9xpec disable_turbo} <@var{num}>
  1802. @cindex str9xpec disable_turbo
  1803. @*restore the str9 into jtag chain.
  1804. @item @b{str9xpec lock} <@var{num}>
  1805. @cindex str9xpec lock
  1806. @*lock str9 device. The str9 will only respond to an unlock command that will
  1807. erase the device.
  1808. @item @b{str9xpec unlock} <@var{num}>
  1809. @cindex str9xpec unlock
  1810. @*unlock str9 device.
  1811. @item @b{str9xpec options_read} <@var{num}>
  1812. @cindex str9xpec options_read
  1813. @*read str9 option bytes.
  1814. @item @b{str9xpec options_write} <@var{num}>
  1815. @cindex str9xpec options_write
  1816. @*write str9 option bytes.
  1817. @end itemize
  1818. Note: Before using the str9xpec driver here is some background info to help
  1819. you better understand how the drivers works. OpenOCD has two flash drivers for
  1820. the str9.
  1821. @enumerate
  1822. @item
  1823. Standard driver @option{str9x} programmed via the str9 core. Normally used for
  1824. flash programming as it is faster than the @option{str9xpec} driver.
  1825. @item
  1826. Direct programming @option{str9xpec} using the flash controller, this is
  1827. ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
  1828. core does not need to be running to program using this flash driver. Typical use
  1829. for this driver is locking/unlocking the target and programming the option bytes.
  1830. @end enumerate
  1831. Before we run any cmds using the @option{str9xpec} driver we must first disable
  1832. the str9 core. This example assumes the @option{str9xpec} driver has been
  1833. configured for flash bank 0.
  1834. @example
  1835. # assert srst, we do not want core running
  1836. # while accessing str9xpec flash driver
  1837. jtag_reset 0 1
  1838. # turn off target polling
  1839. poll off
  1840. # disable str9 core
  1841. str9xpec enable_turbo 0
  1842. # read option bytes
  1843. str9xpec options_read 0
  1844. # re-enable str9 core
  1845. str9xpec disable_turbo 0
  1846. poll on
  1847. reset halt
  1848. @end example
  1849. The above example will read the str9 option bytes.
  1850. When performing a unlock remember that you will not be able to halt the str9 - it
  1851. has been locked. Halting the core is not required for the @option{str9xpec} driver
  1852. as mentioned above, just issue the cmds above manually or from a telnet prompt.
  1853. @subsection STR9 configuration
  1854. @cindex STR9 configuration
  1855. @itemize @bullet
  1856. @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
  1857. <@var{BBADR}> <@var{NBBADR}>
  1858. @cindex str9x flash_config
  1859. @*Configure str9 flash controller.
  1860. @example
  1861. eg. str9x flash_config 0 4 2 0 0x80000
  1862. This will setup
  1863. BBSR - Boot Bank Size register
  1864. NBBSR - Non Boot Bank Size register
  1865. BBADR - Boot Bank Start Address register
  1866. NBBADR - Boot Bank Start Address register
  1867. @end example
  1868. @end itemize
  1869. @subsection STR9 option byte configuration
  1870. @cindex STR9 option byte configuration
  1871. @itemize @bullet
  1872. @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
  1873. @cindex str9xpec options_cmap
  1874. @*configure str9 boot bank.
  1875. @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
  1876. @cindex str9xpec options_lvdthd
  1877. @*configure str9 lvd threshold.
  1878. @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
  1879. @cindex str9xpec options_lvdsel
  1880. @*configure str9 lvd source.
  1881. @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
  1882. @cindex str9xpec options_lvdwarn
  1883. @*configure str9 lvd reset warning source.
  1884. @end itemize
  1885. @subsection STM32x specific commands
  1886. @cindex STM32x specific commands
  1887. These are flash specific commands when using the stm32x driver.
  1888. @itemize @bullet
  1889. @item @b{stm32x lock} <@var{num}>
  1890. @cindex stm32x lock
  1891. @*lock stm32 device.
  1892. @item @b{stm32x unlock} <@var{num}>
  1893. @cindex stm32x unlock
  1894. @*unlock stm32 device.
  1895. @item @b{stm32x options_read} <@var{num}>
  1896. @cindex stm32x options_read
  1897. @*read stm32 option bytes.
  1898. @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
  1899. <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
  1900. @cindex stm32x options_write
  1901. @*write stm32 option bytes.
  1902. @item @b{stm32x mass_erase} <@var{num}>
  1903. @cindex stm32x mass_erase
  1904. @*mass erase flash memory.
  1905. @end itemize
  1906. @subsection Stellaris specific commands
  1907. @cindex Stellaris specific commands
  1908. These are flash specific commands when using the Stellaris driver.
  1909. @itemize @bullet
  1910. @item @b{stellaris mass_erase} <@var{num}>
  1911. @cindex stellaris mass_erase
  1912. @*mass erase flash memory.
  1913. @end itemize
  1914. @node General Commands
  1915. @chapter General Commands
  1916. @cindex commands
  1917. The commands documented in this chapter here are common commands that
  1918. you a human may want to type and see the output of. Configuration type
  1919. commands are documented elsewhere.
  1920. Intent:
  1921. @itemize @bullet
  1922. @item @b{Source Of Commands}
  1923. @* OpenOCD commands can occur in a configuration script (discussed
  1924. elsewhere) or typed manually by a human or supplied programatically,
  1925. or via one of several Tcp/Ip Ports.
  1926. @item @b{From the human}
  1927. @* A human should interact with the Telnet interface (default port: 4444,
  1928. or via GDB, default port 3333)
  1929. To issue commands from within a GDB session, use the @option{monitor}
  1930. command, e.g. use @option{monitor poll} to issue the @option{poll}
  1931. command. All output is relayed through the GDB session.
  1932. @item @b{Machine Interface}
  1933. The TCL interface intent is to be a machine interface. The default TCL
  1934. port is 5555.
  1935. @end itemize
  1936. @section Daemon Commands
  1937. @subsection sleep
  1938. @b{sleep} <@var{msec}>
  1939. @cindex sleep
  1940. @*Wait for n milliseconds before resuming. Useful in connection with script files
  1941. (@var{script} command and @var{target_script} configuration).
  1942. @subsection sleep
  1943. @b{shutdown}
  1944. @cindex shutdown
  1945. @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
  1946. @subsection debug_level [@var{n}]
  1947. @cindex debug_level
  1948. @anchor{debug_level}
  1949. @*Display or adjust debug level to n<0-3>
  1950. @subsection fast [@var{enable|disable}]
  1951. @cindex fast
  1952. @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
  1953. downloads and fast memory access will work if the JTAG interface isn't too fast and
  1954. the core doesn't run at a too low frequency. Note that this option only changes the default
  1955. and that the indvidual options, like DCC memory downloads, can be enabled and disabled
  1956. individually.
  1957. The target specific "dangerous" optimisation tweaking options may come and go
  1958. as more robust and user friendly ways are found to ensure maximum throughput
  1959. and robustness with a minimum of configuration.
  1960. Typically the "fast enable" is specified first on the command line:
  1961. @example
  1962. openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
  1963. @end example
  1964. @subsection log_output <@var{file}>
  1965. @cindex log_output
  1966. @*Redirect logging to <file> (default: stderr)
  1967. @subsection script <@var{file}>
  1968. @cindex script
  1969. @*Execute commands from <file>
  1970. Also see: ``source [find FILENAME]''
  1971. @section Target state handling
  1972. @subsection power <@var{on}|@var{off}>
  1973. @cindex reg
  1974. @*Turn power switch to target on/off.
  1975. No arguments: print status.
  1976. Not all interfaces support this.
  1977. @subsection reg [@option{#}|@option{name}] [value]
  1978. @cindex reg
  1979. @*Access a single register by its number[@option{#}] or by its [@option{name}].
  1980. No arguments: list all available registers for the current target.
  1981. Number or name argument: display a register
  1982. Number or name and value arguments: set register value
  1983. @subsection poll [@option{on}|@option{off}]
  1984. @cindex poll
  1985. @*Poll the target for its current state. If the target is in debug mode, architecture
  1986. specific information about the current state is printed. An optional parameter
  1987. allows continuous polling to be enabled and disabled.
  1988. @subsection halt [@option{ms}]
  1989. @cindex halt
  1990. @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
  1991. Default [@option{ms}] is 5 seconds if no arg given.
  1992. Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
  1993. will stop OpenOCD from waiting.
  1994. @subsection wait_halt [@option{ms}]
  1995. @cindex wait_halt
  1996. @*Wait for the target to enter debug mode. Optional [@option{ms}] is
  1997. a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
  1998. arg given.
  1999. @subsection resume [@var{address}]
  2000. @cindex resume
  2001. @*Resume the target at its current code position, or at an optional address.
  2002. OpenOCD will wait 5 seconds for the target to resume.
  2003. @subsection step [@var{address}]
  2004. @cindex step
  2005. @*Single-step the target at its current code position, or at an optional address.
  2006. @subsection reset [@option{run}|@option{halt}|@option{init}]
  2007. @cindex reset
  2008. @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
  2009. With no arguments a "reset run" is executed
  2010. @itemize @minus
  2011. @item @b{run}
  2012. @cindex reset run
  2013. @*Let the target run.
  2014. @item @b{halt}
  2015. @cindex reset halt
  2016. @*Immediately halt the target (works only with certain configurations).
  2017. @item @b{init}
  2018. @cindex reset init
  2019. @*Immediately halt the target, and execute the reset script (works only with certain
  2020. configurations)
  2021. @end itemize
  2022. @subsection soft_reset_halt
  2023. @cindex reset
  2024. @*Requesting target halt and executing a soft reset. This often used
  2025. when a target cannot be reset and halted. The target, after reset is
  2026. released begins to execute code. OpenOCD attempts to stop the CPU and
  2027. then sets the Program counter back at the reset vector. Unfortunatlly
  2028. that code that was executed may have left hardware in an unknown
  2029. state.
  2030. @section Memory access commands
  2031. @subsection meminfo
  2032. display available ram memory.
  2033. @subsection Memory Peek/Poke type commands
  2034. These commands allow accesses of a specific size to the memory
  2035. system. Often these are used to configure the current target in some
  2036. special way. For example - one may need to write certian values to the
  2037. SDRAM controller to enable SDRAM.
  2038. @enumerate
  2039. @item To change the current target see the ``targets'' (plural) command
  2040. @item In system level scripts these commands are depricated, please use the TARGET object versions.
  2041. @end enumerate
  2042. @itemize @bullet
  2043. @item @b{mdw} <@var{addr}> [@var{count}]
  2044. @cindex mdw
  2045. @*display memory words (32bit)
  2046. @item @b{mdh} <@var{addr}> [@var{count}]
  2047. @cindex mdh
  2048. @*display memory half-words (16bit)
  2049. @item @b{mdb} <@var{addr}> [@var{count}]
  2050. @cindex mdb
  2051. @*display memory bytes (8bit)
  2052. @item @b{mww} <@var{addr}> <@var{value}>
  2053. @cindex mww
  2054. @*write memory word (32bit)
  2055. @item @b{mwh} <@var{addr}> <@var{value}>
  2056. @cindex mwh
  2057. @*write memory half-word (16bit)
  2058. @item @b{mwb} <@var{addr}> <@var{value}>
  2059. @cindex mwb
  2060. @*write memory byte (8bit)
  2061. @end itemize
  2062. @section Image Loading Commands
  2063. @subsection load_image
  2064. @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2065. @cindex load_image
  2066. @anchor{load_image}
  2067. @*Load image <@var{file}> to target memory at <@var{address}>
  2068. @subsection fast_load_image
  2069. @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2070. @cindex fast_load_image
  2071. @anchor{fast_load_image}
  2072. @*Normally you should be using @b{load_image} or GDB load. However, for
  2073. testing purposes or when IO overhead is significant(OpenOCD running on embedded
  2074. host), then storing the image in memory and uploading the image to the target
  2075. can be a way to upload e.g. multiple debug sessions when the binary does not change.
  2076. Arguments as @b{load_image}, but image is stored in OpenOCD host
  2077. memory, i.e. does not affect target. This approach is also useful when profiling
  2078. target programming performance as IO and target programming can easily be profiled
  2079. seperately.
  2080. @subsection fast_load
  2081. @b{fast_load}
  2082. @cindex fast_image
  2083. @anchor{fast_image}
  2084. @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
  2085. @subsection dump_image
  2086. @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
  2087. @cindex dump_image
  2088. @anchor{dump_image}
  2089. @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
  2090. (binary) <@var{file}>.
  2091. @subsection verify_image
  2092. @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  2093. @cindex verify_image
  2094. @*Verify <@var{file}> against target memory starting at <@var{address}>.
  2095. This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
  2096. @section Breakpoint commands
  2097. @cindex Breakpoint commands
  2098. @itemize @bullet
  2099. @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
  2100. @cindex bp
  2101. @*set breakpoint <address> <length> [hw]
  2102. @item @b{rbp} <@var{addr}>
  2103. @cindex rbp
  2104. @*remove breakpoint <adress>
  2105. @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
  2106. @cindex wp
  2107. @*set watchpoint <address> <length> <r/w/a> [value] [mask]
  2108. @item @b{rwp} <@var{addr}>
  2109. @cindex rwp
  2110. @*remove watchpoint <adress>
  2111. @end itemize
  2112. @section Misc Commands
  2113. @cindex Other Target Commands
  2114. @itemize
  2115. @item @b{profile} <@var{seconds}> <@var{gmon.out}>
  2116. Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
  2117. @end itemize
  2118. @section Target Specific Commands
  2119. @cindex Target Specific Commands
  2120. @page
  2121. @section Architecture Specific Commands
  2122. @cindex Architecture Specific Commands
  2123. @subsection ARMV4/5 specific commands
  2124. @cindex ARMV4/5 specific commands
  2125. These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
  2126. or Intel XScale (XScale isn't supported yet).
  2127. @itemize @bullet
  2128. @item @b{armv4_5 reg}
  2129. @cindex armv4_5 reg
  2130. @*Display a list of all banked core registers, fetching the current value from every
  2131. core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
  2132. register value.
  2133. @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
  2134. @cindex armv4_5 core_mode
  2135. @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
  2136. The target is resumed in the currently set @option{core_mode}.
  2137. @end itemize
  2138. @subsection ARM7/9 specific commands
  2139. @cindex ARM7/9 specific commands
  2140. These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
  2141. ARM920t or ARM926EJ-S.
  2142. @itemize @bullet
  2143. @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
  2144. @cindex arm7_9 dbgrq
  2145. @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
  2146. safe for all but ARM7TDMI--S cores (like Philips LPC).
  2147. @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
  2148. @cindex arm7_9 fast_memory_access
  2149. @anchor{arm7_9 fast_memory_access}
  2150. @*Allow OpenOCD to read and write memory without checking completion of
  2151. the operation. This provides a huge speed increase, especially with USB JTAG
  2152. cables (FT2232), but might be unsafe if used with targets running at a very low
  2153. speed, like the 32kHz startup clock of an AT91RM9200.
  2154. @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
  2155. @cindex arm7_9 dcc_downloads
  2156. @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
  2157. amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
  2158. unsafe, especially with targets running at a very low speed. This command was introduced
  2159. with OpenOCD rev. 60.
  2160. @end itemize
  2161. @subsection ARM720T specific commands
  2162. @cindex ARM720T specific commands
  2163. @itemize @bullet
  2164. @item @b{arm720t cp15} <@var{num}> [@var{value}]
  2165. @cindex arm720t cp15
  2166. @*display/modify cp15 register <@option{num}> [@option{value}].
  2167. @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
  2168. @cindex arm720t md<bhw>_phys
  2169. @*Display memory at physical address addr.
  2170. @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
  2171. @cindex arm720t mw<bhw>_phys
  2172. @*Write memory at physical address addr.
  2173. @item @b{arm720t virt2phys} <@var{va}>
  2174. @cindex arm720t virt2phys
  2175. @*Translate a virtual address to a physical address.
  2176. @end itemize
  2177. @subsection ARM9TDMI specific commands
  2178. @cindex ARM9TDMI specific commands
  2179. @itemize @bullet
  2180. @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
  2181. @cindex arm9tdmi vector_catch
  2182. @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
  2183. @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
  2184. @option{irq} @option{fiq}.
  2185. Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
  2186. @end itemize
  2187. @subsection ARM966E specific commands
  2188. @cindex ARM966E specific commands
  2189. @itemize @bullet
  2190. @item @b{arm966e cp15} <@var{num}> [@var{value}]
  2191. @cindex arm966e cp15
  2192. @*display/modify cp15 register <@option{num}> [@option{value}].
  2193. @end itemize
  2194. @subsection ARM920T specific commands
  2195. @cindex ARM920T specific commands
  2196. @itemize @bullet
  2197. @item @b{arm920t cp15} <@var{num}> [@var{value}]
  2198. @cindex arm920t cp15
  2199. @*display/modify cp15 register <@option{num}> [@option{value}].
  2200. @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
  2201. @cindex arm920t cp15i
  2202. @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
  2203. @item @b{arm920t cache_info}
  2204. @cindex arm920t cache_info
  2205. @*Print information about the caches found. This allows you to see if your target
  2206. is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
  2207. @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
  2208. @cindex arm920t md<bhw>_phys
  2209. @*Display memory at physical address addr.
  2210. @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
  2211. @cindex arm920t mw<bhw>_phys
  2212. @*Write memory at physical address addr.
  2213. @item @b{arm920t read_cache} <@var{filename}>
  2214. @cindex arm920t read_cache
  2215. @*Dump the content of ICache and DCache to a file.
  2216. @item @b{arm920t read_mmu} <@var{filename}>
  2217. @cindex arm920t read_mmu
  2218. @*Dump the content of the ITLB and DTLB to a file.
  2219. @item @b{arm920t virt2phys} <@var{va}>
  2220. @cindex arm920t virt2phys
  2221. @*Translate a virtual address to a physical address.
  2222. @end itemize
  2223. @subsection ARM926EJS specific commands
  2224. @cindex ARM926EJS specific commands
  2225. @itemize @bullet
  2226. @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
  2227. @cindex arm926ejs cp15
  2228. @*display/modify cp15 register <@option{num}> [@option{value}].
  2229. @item @b{arm926ejs cache_info}
  2230. @cindex arm926ejs cache_info
  2231. @*Print information about the caches found.
  2232. @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
  2233. @cindex arm926ejs md<bhw>_phys
  2234. @*Display memory at physical address addr.
  2235. @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
  2236. @cindex arm926ejs mw<bhw>_phys
  2237. @*Write memory at physical address addr.
  2238. @item @b{arm926ejs virt2phys} <@var{va}>
  2239. @cindex arm926ejs virt2phys
  2240. @*Translate a virtual address to a physical address.
  2241. @end itemize
  2242. @subsection CORTEX_M3 specific commands
  2243. @cindex CORTEX_M3 specific commands
  2244. @itemize @bullet
  2245. @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
  2246. @cindex cortex_m3 maskisr
  2247. @*Enable masking (disabling) interrupts during target step/resume.
  2248. @end itemize
  2249. @page
  2250. @section Debug commands
  2251. @cindex Debug commands
  2252. The following commands give direct access to the core, and are most likely
  2253. only useful while debugging OpenOCD.
  2254. @itemize @bullet
  2255. @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
  2256. @cindex arm7_9 write_xpsr
  2257. @*Immediately write either the current program status register (CPSR) or the saved
  2258. program status register (SPSR), without changing the register cache (as displayed
  2259. by the @option{reg} and @option{armv4_5 reg} commands).
  2260. @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
  2261. <@var{0=cpsr},@var{1=spsr}>
  2262. @cindex arm7_9 write_xpsr_im8
  2263. @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
  2264. operation (similar to @option{write_xpsr}).
  2265. @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
  2266. @cindex arm7_9 write_core_reg
  2267. @*Write a core register, without changing the register cache (as displayed by the
  2268. @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
  2269. encoding of the [M4:M0] bits of the PSR.
  2270. @end itemize
  2271. @section Target Requests
  2272. @cindex Target Requests
  2273. OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
  2274. See libdcc in the contrib dir for more details.
  2275. @itemize @bullet
  2276. @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
  2277. @cindex target_request debugmsgs
  2278. @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
  2279. @end itemize
  2280. @node JTAG Commands
  2281. @chapter JTAG Commands
  2282. @cindex JTAG commands
  2283. Generally most people will not use the bulk of these commands. They
  2284. are mostly used by the OpenOCD developers or those who need to
  2285. directly manipulate the JTAG taps.
  2286. In general these commands control JTAG taps at a very low level. For
  2287. example if you need to control a JTAG Route Controller (ie: the
  2288. OMAP3530 on the Beagle Board has one) you might use these commands in
  2289. a script or an event procedure.
  2290. @itemize @bullet
  2291. @item @b{scan_chain}
  2292. @cindex scan_chain
  2293. @*Print current scan chain configuration.
  2294. @item @b{jtag_reset} <@var{trst}> <@var{srst}>
  2295. @cindex jtag_reset
  2296. @*Toggle reset lines.
  2297. @item @b{endstate} <@var{tap_state}>
  2298. @cindex endstate
  2299. @*Finish JTAG operations in <@var{tap_state}>.
  2300. @item @b{runtest} <@var{num_cycles}>
  2301. @cindex runtest
  2302. @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
  2303. @item @b{statemove} [@var{tap_state}]
  2304. @cindex statemove
  2305. @*Move to current endstate or [@var{tap_state}]
  2306. @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  2307. @cindex irscan
  2308. @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  2309. @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
  2310. @cindex drscan
  2311. @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
  2312. @item @b{verify_ircapture} <@option{enable}|@option{disable}>
  2313. @cindex verify_ircapture
  2314. @*Verify value captured during Capture-IR. Default is enabled.
  2315. @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  2316. @cindex var
  2317. @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  2318. @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
  2319. @cindex field
  2320. Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
  2321. @end itemize
  2322. @node TFTP
  2323. @chapter TFTP
  2324. @cindex TFTP
  2325. If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
  2326. be used to access files on PCs(either developer PC or some other PC).
  2327. The way this works on the ZY1000 is to prefix a filename by
  2328. "/tftp/ip/" and append the tftp path on the tftp
  2329. server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
  2330. load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
  2331. if the file was hosted on the embedded host.
  2332. In order to achieve decent performance, you must choose a tftp server
  2333. that supports a packet size bigger than the default packet size(512 bytes). There
  2334. are numerous tftp servers out there(free and commercial) and you will have to do
  2335. a bit of googling to find something that fits your requirements.
  2336. @node Sample Scripts
  2337. @chapter Sample Scripts
  2338. @cindex scripts
  2339. This page shows how to use the target library.
  2340. The configuration script can be divided in the following section:
  2341. @itemize @bullet
  2342. @item daemon configuration
  2343. @item interface
  2344. @item jtag scan chain
  2345. @item target configuration
  2346. @item flash configuration
  2347. @end itemize
  2348. Detailed information about each section can be found at OpenOCD configuration.
  2349. @section AT91R40008 example
  2350. @cindex AT91R40008 example
  2351. To start OpenOCD with a target script for the AT91R40008 CPU and reset
  2352. the CPU upon startup of the OpenOCD daemon.
  2353. @example
  2354. openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
  2355. @end example
  2356. @node GDB and OpenOCD
  2357. @chapter GDB and OpenOCD
  2358. @cindex GDB and OpenOCD
  2359. OpenOCD complies with the remote gdbserver protocol, and as such can be used
  2360. to debug remote targets.
  2361. @section Connecting to GDB
  2362. @cindex Connecting to GDB
  2363. @anchor{Connecting to GDB}
  2364. Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
  2365. instance 6.3 has a known bug where it produces bogus memory access
  2366. errors, which has since been fixed: look up 1836 in
  2367. @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
  2368. @*OpenOCD can communicate with GDB in two ways:
  2369. @enumerate
  2370. @item
  2371. A socket (tcp) connection is typically started as follows:
  2372. @example
  2373. target remote localhost:3333
  2374. @end example
  2375. This would cause GDB to connect to the gdbserver on the local pc using port 3333.
  2376. @item
  2377. A pipe connection is typically started as follows:
  2378. @example
  2379. target remote openocd --pipe
  2380. @end example
  2381. This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
  2382. Using this method has the advantage of GDB starting/stopping OpenOCD for debug session.
  2383. @end enumerate
  2384. @*To see a list of available OpenOCD commands type @option{monitor help} on the
  2385. GDB commandline.
  2386. OpenOCD supports the gdb @option{qSupported} packet, this enables information
  2387. to be sent by the gdb server (OpenOCD) to GDB. Typical information includes
  2388. packet size and device memory map.
  2389. Previous versions of OpenOCD required the following GDB options to increase
  2390. the packet size and speed up GDB communication.
  2391. @example
  2392. set remote memory-write-packet-size 1024
  2393. set remote memory-write-packet-size fixed
  2394. set remote memory-read-packet-size 1024
  2395. set remote memory-read-packet-size fixed
  2396. @end example
  2397. This is now handled in the @option{qSupported} PacketSize and should not be required.
  2398. @section Programming using GDB
  2399. @cindex Programming using GDB
  2400. By default the target memory map is sent to GDB, this can be disabled by
  2401. the following OpenOCD config option:
  2402. @example
  2403. gdb_memory_map disable
  2404. @end example
  2405. For this to function correctly a valid flash config must also be configured
  2406. in OpenOCD. For faster performance you should also configure a valid
  2407. working area.
  2408. Informing GDB of the memory map of the target will enable GDB to protect any
  2409. flash area of the target and use hardware breakpoints by default. This means
  2410. that the OpenOCD option @option{gdb_breakpoint_override} is not required when
  2411. using a memory map. @xref{gdb_breakpoint_override}.
  2412. To view the configured memory map in GDB, use the gdb command @option{info mem}
  2413. All other unasigned addresses within GDB are treated as RAM.
  2414. GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
  2415. this can be changed to the old behaviour by using the following GDB command.
  2416. @example
  2417. set mem inaccessible-by-default off
  2418. @end example
  2419. If @option{gdb_flash_program enable} is also used, GDB will be able to
  2420. program any flash memory using the vFlash interface.
  2421. GDB will look at the target memory map when a load command is given, if any
  2422. areas to be programmed lie within the target flash area the vFlash packets
  2423. will be used.
  2424. If the target needs configuring before GDB programming, an event
  2425. script can be executed.
  2426. @example
  2427. $_TARGETNAME configure -event EVENTNAME BODY
  2428. @end example
  2429. To verify any flash programming the GDB command @option{compare-sections}
  2430. can be used.
  2431. @node TCL scripting API
  2432. @chapter TCL scripting API
  2433. @cindex TCL scripting API
  2434. API rules
  2435. The commands are stateless. E.g. the telnet command line has a concept
  2436. of currently active target, the Tcl API proc's take this sort of state
  2437. information as an argument to each proc.
  2438. There are three main types of return values: single value, name value
  2439. pair list and lists.
  2440. Name value pair. The proc 'foo' below returns a name/value pair
  2441. list.
  2442. @verbatim
  2443. > set foo(me) Duane
  2444. > set foo(you) Oyvind
  2445. > set foo(mouse) Micky
  2446. > set foo(duck) Donald
  2447. If one does this:
  2448. > set foo
  2449. The result is:
  2450. me Duane you Oyvind mouse Micky duck Donald
  2451. Thus, to get the names of the associative array is easy:
  2452. foreach { name value } [set foo] {
  2453. puts "Name: $name, Value: $value"
  2454. }
  2455. @end verbatim
  2456. Lists returned must be relatively small. Otherwise a range
  2457. should be passed in to the proc in question.
  2458. Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
  2459. is the low level API upon which "flash banks" is implemented.
  2460. @itemize @bullet
  2461. @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
  2462. Read memory and return as a TCL array for script processing
  2463. @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
  2464. Convert a TCL array to memory locations and write the values
  2465. @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
  2466. Return information about the flash banks
  2467. @end itemize
  2468. OpenOCD commands can consist of two words, e.g. "flash banks". The
  2469. startup.tcl "unknown" proc will translate this into a tcl proc
  2470. called "flash_banks".
  2471. @node Upgrading
  2472. @chapter Deprecated/Removed Commands
  2473. @cindex Deprecated/Removed Commands
  2474. Certain OpenOCD commands have been deprecated/removed during the various revisions.
  2475. @itemize @bullet
  2476. @item @b{arm7_9 fast_writes}
  2477. @cindex arm7_9 fast_writes
  2478. @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
  2479. @item @b{arm7_9 force_hw_bkpts}
  2480. @cindex arm7_9 force_hw_bkpts
  2481. @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
  2482. for flash if the gdb memory map has been set up(default when flash is declared in
  2483. target configuration). @xref{gdb_breakpoint_override}.
  2484. @item @b{arm7_9 sw_bkpts}
  2485. @cindex arm7_9 sw_bkpts
  2486. @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
  2487. @item @b{daemon_startup}
  2488. @cindex daemon_startup
  2489. @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
  2490. the end of your config script will give the same behaviour as using @option{daemon_startup reset}
  2491. and @option{target cortex_m3 little reset_halt 0}.
  2492. @item @b{dump_binary}
  2493. @cindex dump_binary
  2494. @*use @option{dump_image} command with same args. @xref{dump_image}.
  2495. @item @b{flash erase}
  2496. @cindex flash erase
  2497. @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
  2498. @item @b{flash write}
  2499. @cindex flash write
  2500. @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
  2501. @item @b{flash write_binary}
  2502. @cindex flash write_binary
  2503. @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
  2504. @item @b{flash auto_erase}
  2505. @cindex flash auto_erase
  2506. @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
  2507. @item @b{load_binary}
  2508. @cindex load_binary
  2509. @*use @option{load_image} command with same args. @xref{load_image}.
  2510. @item @b{run_and_halt_time}
  2511. @cindex run_and_halt_time
  2512. @*This command has been removed for simpler reset behaviour, it can be simulated with the
  2513. following commands:
  2514. @smallexample
  2515. reset run
  2516. sleep 100
  2517. halt
  2518. @end smallexample
  2519. @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
  2520. @cindex target
  2521. @*use the create subcommand of @option{target}.
  2522. @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
  2523. @cindex target_script
  2524. @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
  2525. @item @b{working_area}
  2526. @cindex working_area
  2527. @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
  2528. @end itemize
  2529. @node FAQ
  2530. @chapter FAQ
  2531. @cindex faq
  2532. @enumerate
  2533. @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
  2534. @cindex RTCK
  2535. @cindex adaptive clocking
  2536. @*
  2537. In digital circuit design it is often refered to as ``clock
  2538. syncronization'' the JTAG interface uses one clock (TCK or TCLK)
  2539. operating at some speed, your target is operating at another. The two
  2540. clocks are not syncronized, they are ``asynchronous''
  2541. In order for the two to work together they must syncronize. Otherwise
  2542. the two systems will get out of sync with each other and nothing will
  2543. work. There are 2 basic options. @b{1.} use a special circuit or
  2544. @b{2.} one clock must be some multile slower the the other.
  2545. @b{Does this really matter?} For some chips and some situations, this
  2546. is a non-issue (ie: A 500mhz ARM926) but for others - for example some
  2547. ATMEL SAM7 and SAM9 chips start operation from reset at 32khz -
  2548. program/enable the oscillators and eventually the main clock. It is in
  2549. those critical times you must slow the jtag clock to sometimes 1 to
  2550. 4khz.
  2551. Imagine debugging that 500mhz arm926 hand held battery powered device
  2552. that ``deep sleeps'' at 32khz between every keystroke. It can be
  2553. painful.
  2554. @b{Solution #1 - A special circuit}
  2555. In order to make use of this your jtag dongle must support the RTCK
  2556. feature. Not all dongles support this - keep reading!
  2557. The RTCK signal often found in some ARM chips is used to help with
  2558. this problem. ARM has a good description of the problem described at
  2559. this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
  2560. 28/nov/2008]. Link title: ``How does the jtag synchronisation logic
  2561. work? / how does adaptive clocking working?''.
  2562. The nice thing about adaptive clocking is that ``battery powered hand
  2563. held device example'' - the adaptiveness works perfectly all the
  2564. time. One can set a break point or halt the system in the deep power
  2565. down code, slow step out until the system speeds up.
  2566. @b{Solution #2 - Always works - but is slower}
  2567. Often this is a perfectly acceptable solution.
  2568. In the most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
  2569. the target clock speed. But what is that ``magic division'' it varies
  2570. depending upon the chips on your board. @b{ARM Rule of thumb} Most ARM
  2571. based systems require an 8:1 division. @b{Xilinx Rule of thumb} is
  2572. 1/12 the clock speed.
  2573. Note: Many FTDI2232C based JTAG dongles are limited to 6mhz.
  2574. You can still debug the 'lower power' situations - you just need to
  2575. manually adjust the clock speed at every step. While painful and
  2576. teadious, it is not always practical.
  2577. It is however easy to ``code your way around it'' - ie: Cheat a little
  2578. have a special debug mode in your application that does a ``high power
  2579. sleep''. If you are careful - 98% of your problems can be debugged
  2580. this way.
  2581. To set the JTAG frequency use the command:
  2582. @example
  2583. # Example: 1.234mhz
  2584. jtag_khz 1234
  2585. @end example
  2586. @item @b{Win32 Pathnames} Why does not backslashes in paths under Windows doesn't work?
  2587. OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
  2588. around Windows filenames.
  2589. @example
  2590. > echo \a
  2591. > echo @{\a@}
  2592. \a
  2593. > echo "\a"
  2594. >
  2595. @end example
  2596. @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
  2597. Make sure you have Cygwin installed, or at least a version of OpenOCD that
  2598. claims to come with all the necessary dlls. When using Cygwin, try launching
  2599. OpenOCD from the Cygwin shell.
  2600. @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
  2601. Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
  2602. arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
  2603. GDB issues software breakpoints when a normal breakpoint is requested, or to implement
  2604. source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
  2605. software breakpoints consume one of the two available hardware breakpoints.
  2606. @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
  2607. and works sometimes fine.
  2608. Make sure the core frequency specified in the @option{flash lpc2000} line matches the
  2609. clock at the time you're programming the flash. If you've specified the crystal's
  2610. frequency, make sure the PLL is disabled, if you've specified the full core speed
  2611. (e.g. 60MHz), make sure the PLL is enabled.
  2612. @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
  2613. I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
  2614. out while waiting for end of scan, rtck was disabled".
  2615. Make sure your PC's parallel port operates in EPP mode. You might have to try several
  2616. settings in your PC BIOS (ECP, EPP, and different versions of those).
  2617. @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
  2618. I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
  2619. memory read caused data abort".
  2620. The errors are non-fatal, and are the result of GDB trying to trace stack frames
  2621. beyond the last valid frame. It might be possible to prevent this by setting up
  2622. a proper "initial" stack frame, if you happen to know what exactly has to
  2623. be done, feel free to add this here.
  2624. @b{Simple:} In your startup code - push 8 registers of ZEROs onto the
  2625. stack before calling main(). What GDB is doing is ``climbing'' the run
  2626. time stack by reading various values on the stack using the standard
  2627. call frame for the target. GDB keeps going - until one of 2 things
  2628. happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
  2629. stackframes have been processed. By pushing ZEROs on the stack, GDB
  2630. gracefully stops.
  2631. @b{Debugging Interrupt Service Routines} - In your ISR before you call
  2632. your C code, do the same, artifically push some zeros on to the stack,
  2633. remember to pop them off when the ISR is done.
  2634. @b{Also note:} If you have a multi-threaded operating system, they
  2635. often do not @b{in the intrest of saving memory} waste these few
  2636. bytes. Painful...
  2637. @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
  2638. "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
  2639. This warning doesn't indicate any serious problem, as long as you don't want to
  2640. debug your core right out of reset. Your .cfg file specified @option{jtag_reset
  2641. trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
  2642. your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
  2643. independently. With this setup, it's not possible to halt the core right out of
  2644. reset, everything else should work fine.
  2645. @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
  2646. Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
  2647. unstable. When single-stepping over large blocks of code, GDB and OpenOCD
  2648. quit with an error message. Is there a stability issue with OpenOCD?
  2649. No, this is not a stability issue concerning OpenOCD. Most users have solved
  2650. this issue by simply using a self-powered USB hub, which they connect their
  2651. Amontec JTAGkey to. Apparently, some computers do not provide a USB power
  2652. supply stable enough for the Amontec JTAGkey to be operated.
  2653. @b{Laptops running on battery have this problem too...}
  2654. @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
  2655. following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
  2656. 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
  2657. What does that mean and what might be the reason for this?
  2658. First of all, the reason might be the USB power supply. Try using a self-powered
  2659. hub instead of a direct connection to your computer. Secondly, the error code 4
  2660. corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
  2661. chip ran into some sort of error - this points us to a USB problem.
  2662. @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
  2663. error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
  2664. What does that mean and what might be the reason for this?
  2665. Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
  2666. has closed the connection to OpenOCD. This might be a GDB issue.
  2667. @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
  2668. are described, there is a parameter for specifying the clock frequency
  2669. for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
  2670. 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
  2671. specified in kilohertz. However, I do have a quartz crystal of a
  2672. frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
  2673. i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
  2674. clock frequency?
  2675. No. The clock frequency specified here must be given as an integral number.
  2676. However, this clock frequency is used by the In-Application-Programming (IAP)
  2677. routines of the LPC2000 family only, which seems to be very tolerant concerning
  2678. the given clock frequency, so a slight difference between the specified clock
  2679. frequency and the actual clock frequency will not cause any trouble.
  2680. @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
  2681. Well, yes and no. Commands can be given in arbitrary order, yet the
  2682. devices listed for the JTAG scan chain must be given in the right
  2683. order (jtag newdevice), with the device closest to the TDO-Pin being
  2684. listed first. In general, whenever objects of the same type exist
  2685. which require an index number, then these objects must be given in the
  2686. right order (jtag newtap, targets and flash banks - a target
  2687. references a jtag newtap and a flash bank references a target).
  2688. You can use the ``scan_chain'' command to verify and display the tap order.
  2689. @item @b{JTAG Tap Order} JTAG Tap Order - Command Order
  2690. Many newer devices have multiple JTAG taps. For example: ST
  2691. Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
  2692. ``cortexM3'' tap. Example: The STM32 reference manual, Document ID:
  2693. RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
  2694. connected to the Boundary Scan Tap, which then connects to the
  2695. CortexM3 Tap, which then connects to the TDO pin.
  2696. Thus, the proper order for the STM32 chip is: (1) The CortexM3, then
  2697. (2) The Boundary Scan Tap. If your board includes an additional JTAG
  2698. chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
  2699. place it before or after the stm32 chip in the chain. For example:
  2700. @itemize @bullet
  2701. @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
  2702. @item STM32 BS TDO (output) -> STM32 CortexM3 TDI (input)
  2703. @item STM32 CortexM3 TDO (output) -> SM32 TDO Pin
  2704. @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
  2705. @item Xilinx TDO Pin -> OpenOCD TDO (input)
  2706. @end itemize
  2707. The ``jtag device'' commands would thus be in the order shown below. Note
  2708. @itemize @bullet
  2709. @item jtag newtap Xilinx tap -irlen ...
  2710. @item jtag newtap stm32 cpu -irlen ...
  2711. @item jtag newtap stm32 bs -irlen ...
  2712. @item # Create the debug target and say where it is
  2713. @item target create stm32.cpu -chain-position stm32.cpu ...
  2714. @end itemize
  2715. @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
  2716. log file, I can see these error messages: Error: arm7_9_common.c:561
  2717. arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
  2718. TODO.
  2719. @end enumerate
  2720. @node TCL Crash Course
  2721. @chapter TCL Crash Course
  2722. @cindex TCL
  2723. Not everyone knows TCL - this is not intended to be a replacement for
  2724. learning TCL, the intent of this chapter is to give you some idea of
  2725. how the TCL Scripts work.
  2726. This chapter is written with two audiences in mind. (1) OpenOCD users
  2727. who need to understand a bit more of how JIM-Tcl works so they can do
  2728. something useful, and (2) those that want to add a new command to
  2729. OpenOCD.
  2730. @section TCL Rule #1
  2731. There is a famous joke, it goes like this:
  2732. @enumerate
  2733. @item Rule #1: The wife is always correct
  2734. @item Rule #2: If you think otherwise, See Rule #1
  2735. @end enumerate
  2736. The TCL equal is this:
  2737. @enumerate
  2738. @item Rule #1: Everything is a string
  2739. @item Rule #2: If you think otherwise, See Rule #1
  2740. @end enumerate
  2741. As in the famous joke, the consequences of Rule #1 are profound. Once
  2742. you understand Rule #1, you will understand TCL.
  2743. @section TCL Rule #1b
  2744. There is a second pair of rules.
  2745. @enumerate
  2746. @item Rule #1: Control flow does not exist. Only commands
  2747. @* For example: the classic FOR loop or IF statement is not a control
  2748. flow item, they are commands, there is no such thing as control flow
  2749. in TCL.
  2750. @item Rule #2: If you think otherwise, See Rule #1
  2751. @* Actually what happens is this: There are commands that by
  2752. convention, act like control flow key words in other languages. One of
  2753. those commands is the word ``for'', another command is ``if''.
  2754. @end enumerate
  2755. @section Per Rule #1 - All Results are strings
  2756. Every TCL command results in a string. The word ``result'' is used
  2757. deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
  2758. Everything is a string}
  2759. @section TCL Quoting Operators
  2760. In life of a TCL script, there are two important periods of time, the
  2761. difference is subtle.
  2762. @enumerate
  2763. @item Parse Time
  2764. @item Evaluation Time
  2765. @end enumerate
  2766. The two key items here are how ``quoted things'' work in TCL. TCL has
  2767. three primary quoting constructs, the [square-brackets] the
  2768. @{curly-braces@} and ``double-quotes''
  2769. By now you should know $VARIABLES always start with a $DOLLAR
  2770. sign. BTW, to set a variable, you actually use the command ``set'', as
  2771. in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
  2772. = 1'' statement, but without the equal sign.
  2773. @itemize @bullet
  2774. @item @b{[square-brackets]}
  2775. @* @b{[square-brackets]} are command subsitution. It operates much
  2776. like Unix Shell `back-ticks`. The result of a [square-bracket]
  2777. operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
  2778. string}. These two statments are roughly identical.
  2779. @example
  2780. # bash example
  2781. X=`date`
  2782. echo "The Date is: $X"
  2783. # TCL example
  2784. set X [date]
  2785. puts "The Date is: $X"
  2786. @end example
  2787. @item @b{``double-quoted-things''}
  2788. @* @b{``double-quoted-things''} are just simply quoted
  2789. text. $VARIABLES and [square-brackets] are expanded in place - the
  2790. result however is exactly 1 string. @i{Remember Rule #1 - Everything
  2791. is a string}
  2792. @example
  2793. set x "Dinner"
  2794. puts "It is now \"[date]\", $x is in 1 hour"
  2795. @end example
  2796. @item @b{@{Curly-Braces@}}
  2797. @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
  2798. parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
  2799. 'single-quote' operators in BASH shell scripts, with the added
  2800. feature: @{curly-braces@} nest, single quotes can not. @{@{@{this is
  2801. nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
  2802. 28/nov/2008, Jim/OpenOCD does not have a date command.
  2803. @end itemize
  2804. @section Consequences of Rule 1/2/3/4
  2805. The consequences of Rule 1 is profound.
  2806. @subsection Tokenizing & Execution.
  2807. Of course, whitespace, blank lines and #comment lines are handled in
  2808. the normal way.
  2809. As a script is parsed, each (multi) line in the script file is
  2810. tokenized and according to the quoting rules. After tokenizing, that
  2811. line is immedatly executed.
  2812. Multi line statements end with one or more ``still-open''
  2813. @{curly-braces@} which - eventually - a few lines later closes.
  2814. @subsection Command Execution
  2815. Remember earlier: There is no such thing as ``control flow''
  2816. statements in TCL. Instead there are COMMANDS that simpily act like
  2817. control flow operators.
  2818. Commands are executed like this:
  2819. @enumerate
  2820. @item Parse the next line into (argc) and (argv[]).
  2821. @item Look up (argv[0]) in a table and call its function.
  2822. @item Repeat until End Of File.
  2823. @end enumerate
  2824. It sort of works like this:
  2825. @example
  2826. for(;;)@{
  2827. ReadAndParse( &argc, &argv );
  2828. cmdPtr = LookupCommand( argv[0] );
  2829. (*cmdPtr->Execute)( argc, argv );
  2830. @}
  2831. @end example
  2832. When the command ``proc'' is parsed (which creates a procedure
  2833. function) it gets 3 parameters on the command line. @b{1} the name of
  2834. the proc (function), @b{2} the list of parameters, and @b{3} the body
  2835. of the function. Not the choice of words: LIST and BODY. The PROC
  2836. command stores these items in a table somewhere so it can be found by
  2837. ``LookupCommand()''
  2838. @subsection The FOR Command
  2839. The most interesting command to look at is the FOR command. In TCL,
  2840. the FOR command is normally implimented in C. Remember, FOR is a
  2841. command just like any other command.
  2842. When the ascii text containing the FOR command is parsed, the parser
  2843. produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
  2844. are:
  2845. @enumerate 0
  2846. @item The ascii text 'for'
  2847. @item The start text
  2848. @item The test expression
  2849. @item The next text
  2850. @item The body text
  2851. @end enumerate
  2852. Sort of reminds you of ``main( int argc, char **argv )'' does it not?
  2853. Remember @i{Rule #1 - Everything is a string.} The key point is this:
  2854. Often many of those parameters are in @{curly-braces@} - thus the
  2855. variables inside are not expanded or replaced until later.
  2856. Remember that every TCL command looks like the classic ``main( argc,
  2857. argv )'' function in C. In JimTCL - they actually look like this:
  2858. @example
  2859. int
  2860. MyCommand( Jim_Interp *interp,
  2861. int *argc,
  2862. Jim_Obj * const *argvs );
  2863. @end example
  2864. Real TCL is nearly identical. Although the newer versions have
  2865. introduced a byte-code parser and intepreter, but at the core, it
  2866. still operates in the same basic way.
  2867. @subsection FOR Command Implimentation
  2868. To understand TCL it is perhaps most helpful to see the FOR
  2869. command. Remember, it is a COMMAND not a control flow structure.
  2870. In TCL there are two underying C helper functions.
  2871. Remember Rule #1 - You are a string.
  2872. The @b{first} helper parses and executes commands found in an ascii
  2873. string. Commands can be seperated by semi-colons, or newlines. While
  2874. parsing, variables are expanded per the quoting rules
  2875. The @b{second} helper evaluates an ascii string as a numerical
  2876. expression and returns a value.
  2877. Here is an example of how the @b{FOR} command could be
  2878. implimented. The pseudo code below does not show error handling.
  2879. @example
  2880. void Execute_AsciiString( void *interp, const char *string );
  2881. int Evaluate_AsciiExpression( void *interp, const char *string );
  2882. int
  2883. MyForCommand( void *interp,
  2884. int argc,
  2885. char **argv )
  2886. @{
  2887. if( argc != 5 )@{
  2888. SetResult( interp, "WRONG number of parameters");
  2889. return ERROR;
  2890. @}
  2891. // argv[0] = the ascii string just like C
  2892. // Execute the start statement.
  2893. Execute_AsciiString( interp, argv[1] );
  2894. // Top of loop test
  2895. for(;;)@{
  2896. i = Evaluate_AsciiExpression(interp, argv[2]);
  2897. if( i == 0 )
  2898. break;
  2899. // Execute the body
  2900. Execute_AsciiString( interp, argv[3] );
  2901. // Execute the LOOP part
  2902. Execute_AsciiString( interp, argv[4] );
  2903. @}
  2904. // Return no error
  2905. SetResult( interp, "" );
  2906. return SUCCESS;
  2907. @}
  2908. @end example
  2909. Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
  2910. in the same basic way.
  2911. @section OpenOCD TCL Usage
  2912. @subsection source and find commands
  2913. @b{Where:} In many configuration files
  2914. @* Example: @b{ source [find FILENAME] }
  2915. @*Remember the parsing rules
  2916. @enumerate
  2917. @item The FIND command is in square brackets.
  2918. @* The FIND command is executed with the parameter FILENAME. It should
  2919. find the full path to the named file. The RESULT is a string, which is
  2920. subsituted on the orginal command line.
  2921. @item The command source is executed with the resulting filename.
  2922. @* SOURCE reads a file and executes as a script.
  2923. @end enumerate
  2924. @subsection format command
  2925. @b{Where:} Generally occurs in numerous places.
  2926. @* TCL no command like @b{printf()}, intead it has @b{format}, which is really more like
  2927. @b{sprintf()}.
  2928. @b{Example}
  2929. @example
  2930. set x 6
  2931. set y 7
  2932. puts [format "The answer: %d" [expr $x * $y]]
  2933. @end example
  2934. @enumerate
  2935. @item The SET command creates 2 variables, X and Y.
  2936. @item The double [nested] EXPR command performs math
  2937. @* The EXPR command produces numerical result as a string.
  2938. @* Refer to Rule #1
  2939. @item The format command is executed, producing a single string
  2940. @* Refer to Rule #1.
  2941. @item The PUTS command outputs the text.
  2942. @end enumerate
  2943. @subsection Body Or Inlined Text
  2944. @b{Where:} Various TARGET scripts.
  2945. @example
  2946. #1 Good
  2947. proc someproc @{@} @{
  2948. ... multiple lines of stuff ...
  2949. @}
  2950. $_TARGETNAME configure -event FOO someproc
  2951. #2 Good - no variables
  2952. $_TARGETNAME confgure -event foo "this ; that;"
  2953. #3 Good Curly Braces
  2954. $_TARGETNAME configure -event FOO @{
  2955. puts "Time: [date]"
  2956. @}
  2957. #4 DANGER DANGER DANGER
  2958. $_TARGETNAME configure -event foo "puts \"Time: [date]\""
  2959. @end example
  2960. @enumerate
  2961. @item The $_TARGETNAME is an OpenOCD variable convention.
  2962. @*@b{$_TARGETNAME} represents the last target created, the value changes
  2963. each time a new target is created. Remember the parsing rules. When
  2964. the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
  2965. the name of the target which happens to be a TARGET (object)
  2966. command.
  2967. @item The 2nd parameter to the @option{-event} parameter is a TCBODY
  2968. @*There are 4 examples:
  2969. @enumerate
  2970. @item The TCLBODY is a simple string that happens to be a proc name
  2971. @item The TCLBODY is several simple commands semi-colon seperated
  2972. @item The TCLBODY is a multi-line @{curly-brace@} quoted string
  2973. @item The TCLBODY is a string with variables that get expanded.
  2974. @end enumerate
  2975. In the end, when the target event FOO occurs the TCLBODY is
  2976. evaluated. Method @b{#1} and @b{#2} are functionally identical. For
  2977. Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
  2978. Remember the parsing rules. In case #3, @{curly-braces@} mean the
  2979. $VARS and [square-brackets] are expanded later, when the EVENT occurs,
  2980. and the text is evaluated. In case #4, they are replaced before the
  2981. ``Target Object Command'' is executed. This occurs at the same time
  2982. $_TARGETNAME is replaced. In case #4 the date will never
  2983. change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
  2984. Jim/OpenOCD does not have a date command@}
  2985. @end enumerate
  2986. @subsection Global Variables
  2987. @b{Where:} You might discover this when writing your own procs @* In
  2988. simple terms: Inside a PROC, if you need to access a global variable
  2989. you must say so. Also see ``upvar''. Example:
  2990. @example
  2991. proc myproc @{ @} @{
  2992. set y 0 #Local variable Y
  2993. global x #Global variable X
  2994. puts [format "X=%d, Y=%d" $x $y]
  2995. @}
  2996. @end example
  2997. @section Other Tcl Hacks
  2998. @b{Dynamic Variable Creation}
  2999. @example
  3000. # Dynamically create a bunch of variables.
  3001. for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
  3002. # Create var name
  3003. set vn [format "BIT%d" $x]
  3004. # Make it a global
  3005. global $vn
  3006. # Set it.
  3007. set $vn [expr (1 << $x)]
  3008. @}
  3009. @end example
  3010. @b{Dynamic Proc/Command Creation}
  3011. @example
  3012. # One "X" function - 5 uart functions.
  3013. foreach who @{A B C D E@}
  3014. proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
  3015. @}
  3016. @end example
  3017. @node Target library
  3018. @chapter Target library
  3019. @cindex Target library
  3020. OpenOCD comes with a target configuration script library. These scripts can be
  3021. used as-is or serve as a starting point.
  3022. The target library is published together with the OpenOCD executable and
  3023. the path to the target library is in the OpenOCD script search path.
  3024. Similarly there are example scripts for configuring the JTAG interface.
  3025. The command line below uses the example parport configuration scripts
  3026. that ship with OpenOCD, then configures the str710.cfg target and
  3027. finally issues the init and reset command. The communication speed
  3028. is set to 10kHz for reset and 8MHz for post reset.
  3029. @example
  3030. openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
  3031. @end example
  3032. To list the target scripts available:
  3033. @example
  3034. $ ls /usr/local/lib/openocd/target
  3035. arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
  3036. at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
  3037. at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
  3038. at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
  3039. @end example
  3040. @include fdl.texi
  3041. @node OpenOCD Index
  3042. @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
  3043. @comment case issue with ``Index.html'' and ``index.html''
  3044. @comment Occurs when creating ``--html --no-split'' output
  3045. @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
  3046. @unnumbered OpenOCD Index
  3047. @printindex cp
  3048. @bye