You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1587 lines
59 KiB

  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename openocd.info
  4. @settitle Open On-Chip Debugger (OpenOCD)
  5. @dircategory Development
  6. @direntry
  7. * OpenOCD: (openocd). Open On-Chip Debugger.
  8. @end direntry
  9. @c %**end of header
  10. @include version.texi
  11. @copying
  12. Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
  13. Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
  14. @quotation
  15. Permission is granted to copy, distribute and/or modify this document
  16. under the terms of the GNU Free Documentation License, Version 1.2 or
  17. any later version published by the Free Software Foundation; with no
  18. Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
  19. Texts. A copy of the license is included in the section entitled ``GNU
  20. Free Documentation License''.
  21. @end quotation
  22. @end copying
  23. @titlepage
  24. @title Open On-Chip Debugger (OpenOCD)
  25. @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
  26. @subtitle @value{UPDATED}
  27. @page
  28. @vskip 0pt plus 1filll
  29. @insertcopying
  30. @end titlepage
  31. @contents
  32. @node Top, About, , (dir)
  33. @top OpenOCD
  34. This manual documents edition @value{EDITION} of the Open On-Chip Debugger
  35. (OpenOCD) version @value{VERSION}, @value{UPDATED}.
  36. @insertcopying
  37. @menu
  38. * About:: About OpenOCD.
  39. * Developers:: OpenOCD developers
  40. * Building:: Building OpenOCD
  41. * Running:: Running OpenOCD
  42. * Configuration:: OpenOCD Configuration.
  43. * Target library:: Target library
  44. * Commands:: OpenOCD Commands
  45. * Sample Scripts:: Sample Target Scripts
  46. * GDB and OpenOCD:: Using GDB and OpenOCD
  47. * TCL and OpenOCD:: Using TCL and OpenOCD
  48. * TCL scripting API:: Tcl scripting API
  49. * Upgrading:: Deprecated/Removed Commands
  50. * FAQ:: Frequently Asked Questions
  51. * License:: GNU Free Documentation License
  52. * Index:: Main index.
  53. @end menu
  54. @node About
  55. @unnumbered About
  56. @cindex about
  57. The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
  58. and boundary-scan testing for embedded target devices. The targets are interfaced
  59. using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
  60. connection types in the future.
  61. OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
  62. Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
  63. ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
  64. Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
  65. Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
  66. command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
  67. and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
  68. @node Developers
  69. @chapter Developers
  70. @cindex developers
  71. OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
  72. University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
  73. Others interested in improving the state of free and open debug and testing technology
  74. are welcome to participate.
  75. Other developers have contributed support for additional targets and flashes as well
  76. as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
  77. The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
  78. @node Building
  79. @chapter Building
  80. @cindex building OpenOCD
  81. You can download the current SVN version with SVN client of your choice from the
  82. following repositories:
  83. (@uref{svn://svn.berlios.de/openocd/trunk})
  84. or
  85. (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
  86. Using the SVN command line client, you can use the following command to fetch the
  87. latest version (make sure there is no (non-svn) directory called "openocd" in the
  88. current directory):
  89. @smallexample
  90. svn checkout svn://svn.berlios.de/openocd/trunk openocd
  91. @end smallexample
  92. Building OpenOCD requires a recent version of the GNU autotools.
  93. On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
  94. you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
  95. other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
  96. paths, resulting in obscure dependency errors (This is an observation I've gathered
  97. from the logs of one user - correct me if I'm wrong).
  98. You further need the appropriate driver files, if you want to build support for
  99. a FTDI FT2232 based interface:
  100. @itemize @bullet
  101. @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
  102. @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
  103. @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
  104. homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
  105. @end itemize
  106. libftdi is supported under windows. Versions earlier than 0.13 will require patching.
  107. see contrib/libftdi for more details.
  108. In general, the D2XX driver provides superior performance (several times as fast),
  109. but has the draw-back of being binary-only - though that isn't that bad, as it isn't
  110. a kernel module, only a user space library.
  111. To build OpenOCD (on both Linux and Cygwin), use the following commands:
  112. @smallexample
  113. ./bootstrap
  114. @end smallexample
  115. Bootstrap generates the configure script, and prepares building on your system.
  116. @smallexample
  117. ./configure
  118. @end smallexample
  119. Configure generates the Makefiles used to build OpenOCD.
  120. @smallexample
  121. make
  122. @end smallexample
  123. Make builds OpenOCD, and places the final executable in ./src/.
  124. The configure script takes several options, specifying which JTAG interfaces
  125. should be included:
  126. @itemize @bullet
  127. @item
  128. @option{--enable-parport}
  129. @item
  130. @option{--enable-parport_ppdev}
  131. @item
  132. @option{--enable-parport_giveio}
  133. @item
  134. @option{--enable-amtjtagaccel}
  135. @item
  136. @option{--enable-ft2232_ftd2xx}
  137. @footnote{Using the latest D2XX drivers from FTDI and following their installation
  138. instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
  139. build properly.}
  140. @item
  141. @option{--enable-ft2232_libftdi}
  142. @item
  143. @option{--with-ftd2xx=/path/to/d2xx/}
  144. @item
  145. @option{--enable-gw16012}
  146. @item
  147. @option{--enable-usbprog}
  148. @item
  149. @option{--enable-presto_libftdi}
  150. @item
  151. @option{--enable-presto_ftd2xx}
  152. @item
  153. @option{--enable-jlink}
  154. @end itemize
  155. If you want to access the parallel port using the PPDEV interface you have to specify
  156. both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
  157. the @option{--enable-parport_ppdev} option actually is an option to the parport driver
  158. (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
  159. Cygwin users have to specify the location of the FTDI D2XX package. This should be an
  160. absolute path containing no spaces.
  161. Linux users should copy the various parts of the D2XX package to the appropriate
  162. locations, i.e. /usr/include, /usr/lib.
  163. Miscellaneous configure options
  164. @itemize @bullet
  165. @item
  166. @option{--enable-gccwarnings} - enable extra gcc warnings during build
  167. @end itemize
  168. @node Running
  169. @chapter Running
  170. @cindex running OpenOCD
  171. @cindex --configfile
  172. @cindex --debug_level
  173. @cindex --logfile
  174. @cindex --search
  175. OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
  176. Run with @option{--help} or @option{-h} to view the available command line switches.
  177. It reads its configuration by default from the file openocd.cfg located in the current
  178. working directory. This may be overwritten with the @option{-f <configfile>} command line
  179. switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
  180. are executed in order.
  181. Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
  182. To enable debug output (when reporting problems or working on OpenOCD itself), use
  183. the @option{-d} command line switch. This sets the debug_level to "3", outputting
  184. the most information, including debug messages. The default setting is "2", outputting
  185. only informational messages, warnings and errors. You can also change this setting
  186. from within a telnet or gdb session (@option{debug_level <n>}).
  187. You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
  188. Search paths for config/script files can be added to OpenOCD by using
  189. the @option{-s <search>} switch. The current directory and the OpenOCD target library
  190. is in the search path by default.
  191. Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
  192. with the target. In general, it is possible for the JTAG controller to be unresponsive until
  193. the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
  194. @node Configuration
  195. @chapter Configuration
  196. @cindex configuration
  197. OpenOCD runs as a daemon, and reads it current configuration
  198. by default from the file openocd.cfg in the current directory. A different configuration
  199. file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
  200. The configuration file is used to specify on which ports the daemon listens for new
  201. connections, the JTAG interface used to connect to the target, the layout of the JTAG
  202. chain, the targets that should be debugged, and connected flashes.
  203. @section Daemon configuration
  204. @itemize @bullet
  205. @item @b{init} This command terminates the configuration stage and enters the normal
  206. command mode. This can be useful to add commands to the startup scripts and commands
  207. such as resetting the target, programming flash, etc. To reset the CPU upon startup,
  208. add "init" and "reset" at the end of the config script or at the end of the
  209. OpenOCD command line using the @option{-c} command line switch.
  210. @cindex init
  211. @item @b{telnet_port} <@var{number}>
  212. @cindex telnet_port
  213. Port on which to listen for incoming telnet connections
  214. @item @b{gdb_port} <@var{number}>
  215. @cindex gdb_port
  216. First port on which to listen for incoming GDB connections. The GDB port for the
  217. first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
  218. @item @b{gdb_breakpoint_override} <@var{hard/soft/disabled}>
  219. @cindex gdb_breakpoint_override
  220. hard/soft/disabled - force breakpoint type for gdb 'break' commands.
  221. The raison d'etre for this option is to support GDB GUI's without
  222. a hard/soft breakpoint concept where the default OpenOCD and
  223. GDB behaviour is not sufficient. Note that GDB will use hardware
  224. breakpoints if the memory map has been set up for flash regions.
  225. This option replaces older arm7_9 target commands that addressed
  226. the same issue.
  227. @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
  228. @cindex gdb_detach
  229. Configures what OpenOCD will do when gdb detaches from the daeman.
  230. Default behaviour is <@var{resume}>
  231. @item @b{gdb_memory_map} <@var{enable|disable}>
  232. @cindex gdb_memory_map
  233. Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
  234. requested. gdb will then know when to set hardware breakpoints, and program flash
  235. using the gdb load command. @option{gdb_flash_program enable} will also need enabling
  236. for flash programming to work.
  237. Default behaviour is <@var{enable}>
  238. @item @b{gdb_flash_program} <@var{enable|disable}>
  239. @cindex gdb_flash_program
  240. Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
  241. vFlash packet is received.
  242. Default behaviour is <@var{enable}>
  243. at item @b{tcl_port} <@var{number}>
  244. at cindex tcl_port
  245. Port on which to listen for incoming TCL syntax. This port is intended as
  246. a simplified RPC connection that can be used by clients to issue commands
  247. and get the output from the TCL engine.
  248. @end itemize
  249. @section JTAG interface configuration
  250. @itemize @bullet
  251. @item @b{interface} <@var{name}>
  252. @cindex interface
  253. Use the interface driver <@var{name}> to connect to the target. Currently supported
  254. interfaces are
  255. @itemize @minus
  256. @item @b{parport}
  257. PC parallel port bit-banging (Wigglers, PLD download cable, ...)
  258. @end itemize
  259. @itemize @minus
  260. @item @b{amt_jtagaccel}
  261. Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
  262. mode parallel port
  263. @end itemize
  264. @itemize @minus
  265. @item @b{ft2232}
  266. FTDI FT2232 based devices using either the open-source libftdi or the binary only
  267. FTD2XX driver. The FTD2XX is superior in performance, but not available on every
  268. platform. The libftdi uses libusb, and should be portable to all systems that provide
  269. libusb.
  270. @end itemize
  271. @itemize @minus
  272. @item @b{ep93xx}
  273. Cirrus Logic EP93xx based single-board computer bit-banging (in development)
  274. @end itemize
  275. @itemize @minus
  276. @item @b{presto}
  277. ASIX PRESTO USB JTAG programmer.
  278. @end itemize
  279. @itemize @minus
  280. @item @b{usbprog}
  281. usbprog is a freely programmable USB adapter.
  282. @end itemize
  283. @itemize @minus
  284. @item @b{gw16012}
  285. Gateworks GW16012 JTAG programmer.
  286. @end itemize
  287. @itemize @minus
  288. @item @b{jlink}
  289. Segger jlink usb adapter
  290. @end itemize
  291. @end itemize
  292. @itemize @bullet
  293. @item @b{jtag_speed} <@var{reset speed}>
  294. @cindex jtag_speed
  295. Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
  296. speed. The actual effect of this option depends on the JTAG interface used.
  297. The speed used during reset can be adjusted using setting jtag_speed during
  298. pre_reset and post_reset events.
  299. @itemize @minus
  300. @item wiggler: maximum speed / @var{number}
  301. @item ft2232: 6MHz / (@var{number}+1)
  302. @item amt jtagaccel: 8 / 2**@var{number}
  303. @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
  304. @end itemize
  305. Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
  306. especially true for synthesized cores (-S).
  307. @item @b{jtag_khz} <@var{reset speed kHz}>
  308. @cindex jtag_khz
  309. Same as jtag_speed, except that the speed is specified in maximum kHz. If
  310. the device can not support the rate asked for, or can not translate from
  311. kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
  312. is not supported, then an error is reported.
  313. @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
  314. @cindex reset_config
  315. The configuration of the reset signals available on the JTAG interface AND the target.
  316. If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
  317. then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
  318. @option{srst_only} or @option{trst_and_srst}.
  319. [@var{combination}] is an optional value specifying broken reset signal implementations.
  320. @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
  321. the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
  322. that the system is reset together with the test logic (only hypothetical, I haven't
  323. seen hardware with such a bug, and can be worked around).
  324. @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
  325. The default behaviour if no option given is @option{separate}.
  326. The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
  327. reset lines to be specified. Possible values are @option{trst_push_pull} (default)
  328. and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
  329. (default) and @option{srst_push_pull} for the system reset. These values only affect
  330. JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
  331. @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
  332. @cindex jtag_device
  333. Describes the devices that form the JTAG daisy chain, with the first device being
  334. the one closest to TDO. The parameters are the length of the instruction register
  335. (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
  336. of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
  337. The IDCODE instruction will in future be used to query devices for their JTAG
  338. identification code. This line is the same for all ARM7 and ARM9 devices.
  339. Other devices, like CPLDs, require different parameters. An example configuration
  340. line for a Xilinx XC9500 CPLD would look like this:
  341. @smallexample
  342. jtag_device 8 0x01 0x0e3 0xfe
  343. @end smallexample
  344. The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
  345. the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
  346. The IDCODE instruction is 0xfe.
  347. @item @b{jtag_nsrst_delay} <@var{ms}>
  348. @cindex jtag_nsrst_delay
  349. How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
  350. starting new JTAG operations.
  351. @item @b{jtag_ntrst_delay} <@var{ms}>
  352. @cindex jtag_ntrst_delay
  353. How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
  354. starting new JTAG operations.
  355. The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
  356. or on-chip features) keep a reset line asserted for some time after the external reset
  357. got deasserted.
  358. @end itemize
  359. @section parport options
  360. @itemize @bullet
  361. @item @b{parport_port} <@var{number}>
  362. @cindex parport_port
  363. Either the address of the I/O port (default: 0x378 for LPT1) or the number of
  364. the @file{/dev/parport} device
  365. When using PPDEV to access the parallel port, use the number of the parallel port:
  366. @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
  367. you may encounter a problem.
  368. @item @b{parport_cable} <@var{name}>
  369. @cindex parport_cable
  370. The layout of the parallel port cable used to connect to the target.
  371. Currently supported cables are
  372. @itemize @minus
  373. @item @b{wiggler}
  374. @cindex wiggler
  375. The original Wiggler layout, also supported by several clones, such
  376. as the Olimex ARM-JTAG
  377. @item @b{old_amt_wiggler}
  378. @cindex old_amt_wiggler
  379. The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
  380. version available from the website uses the original Wiggler layout ('@var{wiggler}')
  381. @item @b{chameleon}
  382. @cindex chameleon
  383. The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
  384. @item @b{dlc5}
  385. @cindex dlc5
  386. The Xilinx Parallel cable III.
  387. @item @b{triton}
  388. @cindex triton
  389. The parallel port adapter found on the 'Karo Triton 1 Development Board'.
  390. This is also the layout used by the HollyGates design
  391. (see @uref{http://www.lartmaker.nl/projects/jtag/}).
  392. @item @b{flashlink}
  393. @cindex flashlink
  394. The ST Parallel cable.
  395. @end itemize
  396. @item @b{parport_write_on_exit} <@var{on|off}>
  397. @cindex parport_write_on_exit
  398. This will configure the parallel driver to write a known value to the parallel
  399. interface on exiting OpenOCD
  400. @end itemize
  401. @section amt_jtagaccel options
  402. @itemize @bullet
  403. @item @b{parport_port} <@var{number}>
  404. @cindex parport_port
  405. Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
  406. @file{/dev/parport} device
  407. @end itemize
  408. @section ft2232 options
  409. @itemize @bullet
  410. @item @b{ft2232_device_desc} <@var{description}>
  411. @cindex ft2232_device_desc
  412. The USB device description of the FTDI FT2232 device. If not specified, the FTDI
  413. default value is used. This setting is only valid if compiled with FTD2XX support.
  414. @item @b{ft2232_layout} <@var{name}>
  415. @cindex ft2232_layout
  416. The layout of the FT2232 GPIO signals used to control output-enables and reset
  417. signals. Valid layouts are
  418. @itemize @minus
  419. @item @b{usbjtag}
  420. "USBJTAG-1" layout described in the original OpenOCD diploma thesis
  421. @item @b{jtagkey}
  422. Amontec JTAGkey and JTAGkey-tiny
  423. @item @b{signalyzer}
  424. Signalyzer
  425. @item @b{olimex-jtag}
  426. Olimex ARM-USB-OCD
  427. @item @b{m5960}
  428. American Microsystems M5960
  429. @item @b{evb_lm3s811}
  430. Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
  431. SRST signals on external connector
  432. @item @b{comstick}
  433. Hitex STR9 comstick
  434. @item @b{stm32stick}
  435. Hitex STM32 Performance Stick
  436. @item @b{flyswatter}
  437. Tin Can Tools Flyswatter
  438. @item @b{turtelizer2}
  439. egnite Software turtelizer2
  440. @item @b{oocdlink}
  441. OOCDLink
  442. @end itemize
  443. @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
  444. The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
  445. default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
  446. @smallexample
  447. ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
  448. @end smallexample
  449. @item @b{ft2232_latency} <@var{ms}>
  450. On some systems using ft2232 based JTAG interfaces the FT_Read function call in
  451. ft2232_read() fails to return the expected number of bytes. This can be caused by
  452. USB communication delays and has proved hard to reproduce and debug. Setting the
  453. FT2232 latency timer to a larger value increases delays for short USB packages but it
  454. also reduces the risk of timeouts before receiving the expected number of bytes.
  455. The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
  456. @end itemize
  457. @section ep93xx options
  458. @cindex ep93xx options
  459. Currently, there are no options available for the ep93xx interface.
  460. @page
  461. @section Target configuration
  462. @itemize @bullet
  463. @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
  464. <@var{variant}>
  465. @cindex target
  466. Defines a target that should be debugged. Currently supported types are:
  467. @itemize @minus
  468. @item @b{arm7tdmi}
  469. @item @b{arm720t}
  470. @item @b{arm9tdmi}
  471. @item @b{arm920t}
  472. @item @b{arm922t}
  473. @item @b{arm926ejs}
  474. @item @b{arm966e}
  475. @item @b{cortex_m3}
  476. @item @b{feroceon}
  477. @item @b{xscale}
  478. @end itemize
  479. If you want to use a target board that is not on this list, see Adding a new
  480. target board
  481. Endianess may be @option{little} or @option{big}.
  482. @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
  483. @cindex target_script
  484. Event is one of the following:
  485. @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
  486. @option{pre_resume} or @option{gdb_program_config}.
  487. @option{post_reset} and @option{reset} will produce the same results.
  488. @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
  489. <@var{backup}|@var{nobackup}>
  490. @cindex working_area
  491. Specifies a working area for the debugger to use. This may be used to speed-up
  492. downloads to target memory and flash operations, or to perform otherwise unavailable
  493. operations (some coprocessor operations on ARM7/9 systems, for example). The last
  494. parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
  495. a working_area that doesn't need to be backed up, as performing a backup slows down operation.
  496. @end itemize
  497. @subsection arm7tdmi options
  498. @cindex arm7tdmi options
  499. target arm7tdmi <@var{endianess}> <@var{jtag#}>
  500. The arm7tdmi target definition requires at least one additional argument, specifying
  501. the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
  502. The optional [@var{variant}] parameter has been removed in recent versions.
  503. The correct feature set is determined at runtime.
  504. @subsection arm720t options
  505. @cindex arm720t options
  506. ARM720t options are similar to ARM7TDMI options.
  507. @subsection arm9tdmi options
  508. @cindex arm9tdmi options
  509. ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
  510. @option{arm920t}, @option{arm922t} and @option{arm940t}.
  511. This enables the hardware single-stepping support found on these cores.
  512. @subsection arm920t options
  513. @cindex arm920t options
  514. ARM920t options are similar to ARM9TDMI options.
  515. @subsection arm966e options
  516. @cindex arm966e options
  517. ARM966e options are similar to ARM9TDMI options.
  518. @subsection cortex_m3 options
  519. @cindex cortex_m3 options
  520. use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
  521. openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
  522. the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
  523. be detected and the normal reset behaviour used.
  524. @subsection xscale options
  525. @cindex xscale options
  526. Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
  527. @option{pxa250}, @option{pxa255}, @option{pxa26x}.
  528. @section Flash configuration
  529. @cindex Flash configuration
  530. @itemize @bullet
  531. @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
  532. <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
  533. @cindex flash bank
  534. Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
  535. and <@var{bus_width}> bytes using the selected flash <driver>.
  536. @end itemize
  537. @subsection lpc2000 options
  538. @cindex lpc2000 options
  539. @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  540. <@var{clock}> [@var{calc_checksum}]
  541. LPC flashes don't require the chip and bus width to be specified. Additional
  542. parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
  543. or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
  544. of the target this flash belongs to (first is 0), the frequency at which the core
  545. is currently running (in kHz - must be an integral number), and the optional keyword
  546. @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
  547. vector table.
  548. @subsection cfi options
  549. @cindex cfi options
  550. @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
  551. <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
  552. CFI flashes require the number of the target they're connected to as an additional
  553. argument. The CFI driver makes use of a working area (specified for the target)
  554. to significantly speed up operation.
  555. @var{chip_width} and @var{bus_width} are specified in bytes.
  556. The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
  557. @var{x16_as_x8} ???
  558. @subsection at91sam7 options
  559. @cindex at91sam7 options
  560. @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
  561. AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
  562. reading the chip-id and type.
  563. @subsection str7 options
  564. @cindex str7 options
  565. @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  566. variant can be either STR71x, STR73x or STR75x.
  567. @subsection str9 options
  568. @cindex str9 options
  569. @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  570. The str9 needs the flash controller to be configured prior to Flash programming, eg.
  571. @smallexample
  572. str9x flash_config 0 4 2 0 0x80000
  573. @end smallexample
  574. This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
  575. @subsection str9 options (str9xpec driver)
  576. @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  577. Before using the flash commands the turbo mode will need enabling using str9xpec
  578. @option{enable_turbo} <@var{num>.}
  579. Only use this driver for locking/unlocking the device or configuring the option bytes.
  580. Use the standard str9 driver for programming.
  581. @subsection stellaris (LM3Sxxx) options
  582. @cindex stellaris (LM3Sxxx) options
  583. @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  584. stellaris flash plugin only require the @var{target#}.
  585. @subsection stm32x options
  586. @cindex stm32x options
  587. @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  588. stm32x flash plugin only require the @var{target#}.
  589. @node Target library
  590. @chapter Target library
  591. @cindex Target library
  592. OpenOCD comes with a target configuration script library. These scripts can be
  593. used as-is or serve as a starting point.
  594. The target library is published together with the openocd executable and
  595. the path to the target library is in the OpenOCD script search path.
  596. Similarly there are example scripts for configuring the JTAG interface.
  597. The command line below uses the example parport configuration scripts
  598. that ship with OpenOCD, then configures the str710.cfg target and
  599. finally issues the init and reset command. The communication speed
  600. is set to 10kHz for reset and 8MHz for post reset.
  601. @smallexample
  602. openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
  603. @end smallexample
  604. To list the target scripts available:
  605. @smallexample
  606. $ ls /usr/local/lib/openocd/target
  607. arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
  608. at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
  609. at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
  610. at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
  611. @end smallexample
  612. @node Commands
  613. @chapter Commands
  614. @cindex commands
  615. OpenOCD allows user interaction through a GDB server (default: port 3333),
  616. a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
  617. is available from both the telnet interface and a GDB session. To issue commands to the
  618. interpreter from within a GDB session, use the @option{monitor} command, e.g. use
  619. @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
  620. GDB session.
  621. The TCL interface is used as a simplified RPC mechanism that feeds all the
  622. input into the TCL interpreter and returns the output from the evaluation of
  623. the commands.
  624. @section Daemon
  625. @itemize @bullet
  626. @item @b{sleep} <@var{msec}>
  627. @cindex sleep
  628. Wait for n milliseconds before resuming. Useful in connection with script files
  629. (@var{script} command and @var{target_script} configuration).
  630. @item @b{shutdown}
  631. @cindex shutdown
  632. Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
  633. @item @b{debug_level} [@var{n}]
  634. @cindex debug_level
  635. Display or adjust debug level to n<0-3>
  636. @item @b{fast} [@var{enable/disable}]
  637. @cindex fast
  638. Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
  639. downloads and fast memory access will work if the JTAG interface isn't too fast and
  640. the core doesn't run at a too low frequency. Note that this option only changes the default
  641. and that the indvidual options, like DCC memory downloads, can be enabled and disabled
  642. individually.
  643. The target specific "dangerous" optimisation tweaking options may come and go
  644. as more robust and user friendly ways are found to ensure maximum throughput
  645. and robustness with a minimum of configuration.
  646. Typically the "fast enable" is specified first on the command line:
  647. @smallexample
  648. openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
  649. @end smallexample
  650. @item @b{log_output} <@var{file}>
  651. @cindex log_output
  652. Redirect logging to <file> (default: stderr)
  653. @item @b{script} <@var{file}>
  654. @cindex script
  655. Execute commands from <file>
  656. @end itemize
  657. @subsection Target state handling
  658. @itemize @bullet
  659. @item @b{poll} [@option{on}|@option{off}]
  660. @cindex poll
  661. Poll the target for its current state. If the target is in debug mode, architecture
  662. specific information about the current state is printed. An optional parameter
  663. allows continuous polling to be enabled and disabled.
  664. @item @b{halt} [@option{ms}]
  665. @cindex halt
  666. Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
  667. Default [@option{ms}] is 5 seconds if no arg given.
  668. Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
  669. will stop OpenOCD from waiting.
  670. @item @b{wait_halt} [@option{ms}]
  671. @cindex wait_halt
  672. Wait for the target to enter debug mode. Optional [@option{ms}] is
  673. a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
  674. arg given.
  675. @item @b{resume} [@var{address}]
  676. @cindex resume
  677. Resume the target at its current code position, or at an optional address.
  678. OpenOCD will wait 5 seconds for the target to resume.
  679. @item @b{step} [@var{address}]
  680. @cindex step
  681. Single-step the target at its current code position, or at an optional address.
  682. @item @b{reset} [@option{run}|@option{halt}|@option{init}]
  683. @cindex reset
  684. Perform a hard-reset. The optional parameter specifies what should happen after the reset.
  685. With no arguments a "reset run" is executed
  686. @itemize @minus
  687. @item @b{run}
  688. @cindex reset run
  689. Let the target run.
  690. @item @b{halt}
  691. @cindex reset halt
  692. Immediately halt the target (works only with certain configurations).
  693. @item @b{init}
  694. @cindex reset init
  695. Immediately halt the target, and execute the reset script (works only with certain
  696. configurations)
  697. @end itemize
  698. @end itemize
  699. @subsection Memory access commands
  700. These commands allow accesses of a specific size to the memory system:
  701. @itemize @bullet
  702. @item @b{mdw} <@var{addr}> [@var{count}]
  703. @cindex mdw
  704. display memory words
  705. @item @b{mdh} <@var{addr}> [@var{count}]
  706. @cindex mdh
  707. display memory half-words
  708. @item @b{mdb} <@var{addr}> [@var{count}]
  709. @cindex mdb
  710. display memory bytes
  711. @item @b{mww} <@var{addr}> <@var{value}>
  712. @cindex mww
  713. write memory word
  714. @item @b{mwh} <@var{addr}> <@var{value}>
  715. @cindex mwh
  716. write memory half-word
  717. @item @b{mwb} <@var{addr}> <@var{value}>
  718. @cindex mwb
  719. write memory byte
  720. @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  721. @cindex load_image
  722. Load image <@var{file}> to target memory at <@var{address}>
  723. @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
  724. @cindex dump_image
  725. Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
  726. (binary) <@var{file}>.
  727. @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  728. @cindex verify_image
  729. Verify <@var{file}> against target memory starting at <@var{address}>.
  730. This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
  731. @end itemize
  732. @subsection Flash commands
  733. @cindex Flash commands
  734. @itemize @bullet
  735. @item @b{flash banks}
  736. @cindex flash banks
  737. List configured flash banks
  738. @item @b{flash info} <@var{num}>
  739. @cindex flash info
  740. Print info about flash bank <@option{num}>
  741. @item @b{flash probe} <@var{num}>
  742. @cindex flash probe
  743. Identify the flash, or validate the parameters of the configured flash. Operation
  744. depends on the flash type.
  745. @item @b{flash erase_check} <@var{num}>
  746. @cindex flash erase_check
  747. Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
  748. updates the erase state information displayed by @option{flash info}. That means you have
  749. to issue an @option{erase_check} command after erasing or programming the device to get
  750. updated information.
  751. @item @b{flash protect_check} <@var{num}>
  752. @cindex flash protect_check
  753. Check protection state of sectors in flash bank <num>.
  754. @option{flash erase_sector} using the same syntax.
  755. @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
  756. @cindex flash erase_sector
  757. Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
  758. <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
  759. require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
  760. the CFI driver).
  761. @item @b{flash erase_address} <@var{address}> <@var{length}>
  762. @cindex flash erase_address
  763. Erase sectors starting at <@var{address}> for <@var{length}> bytes
  764. @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
  765. @cindex flash write_bank
  766. Write the binary <@var{file}> to flash bank <@var{num}>, starting at
  767. <@option{offset}> bytes from the beginning of the bank.
  768. @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
  769. @cindex flash write_image
  770. Write the image <@var{file}> to the current target's flash bank(s). A relocation
  771. [@var{offset}] can be specified and the file [@var{type}] can be specified
  772. explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
  773. (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
  774. if the @option{erase} parameter is given.
  775. @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
  776. @cindex flash protect
  777. Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
  778. <@var{last}> of @option{flash bank} <@var{num}>.
  779. @end itemize
  780. @page
  781. @section Target Specific Commands
  782. @cindex Target Specific Commands
  783. @subsection AT91SAM7 specific commands
  784. @cindex AT91SAM7 specific commands
  785. The flash configuration is deduced from the chip identification register. The flash
  786. controller handles erases automatically on a page (128/265 byte) basis so erase is
  787. not necessary for flash programming. AT91SAM7 processors with less than 512K flash
  788. only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
  789. that can be erased separatly. Only an EraseAll command is supported by the controller
  790. for each flash plane and this is called with
  791. @itemize @bullet
  792. @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
  793. bulk erase flash planes first_plane to last_plane.
  794. @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
  795. @cindex at91sam7 gpnvm
  796. set or clear a gpnvm bit for the processor
  797. @end itemize
  798. @subsection STR9 specific commands
  799. @cindex STR9 specific commands
  800. These are flash specific commands when using the str9xpec driver.
  801. @itemize @bullet
  802. @item @b{str9xpec enable_turbo} <@var{num}>
  803. @cindex str9xpec enable_turbo
  804. enable turbo mode, simply this will remove the str9 from the chain and talk
  805. directly to the embedded flash controller.
  806. @item @b{str9xpec disable_turbo} <@var{num}>
  807. @cindex str9xpec disable_turbo
  808. restore the str9 into jtag chain.
  809. @item @b{str9xpec lock} <@var{num}>
  810. @cindex str9xpec lock
  811. lock str9 device. The str9 will only respond to an unlock command that will
  812. erase the device.
  813. @item @b{str9xpec unlock} <@var{num}>
  814. @cindex str9xpec unlock
  815. unlock str9 device.
  816. @item @b{str9xpec options_read} <@var{num}>
  817. @cindex str9xpec options_read
  818. read str9 option bytes.
  819. @item @b{str9xpec options_write} <@var{num}>
  820. @cindex str9xpec options_write
  821. write str9 option bytes.
  822. @end itemize
  823. @subsection STR9 configuration
  824. @cindex STR9 configuration
  825. @itemize @bullet
  826. @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
  827. <@var{BBADR}> <@var{NBBADR}>
  828. @cindex str9x flash_config
  829. Configure str9 flash controller.
  830. @smallexample
  831. eg. str9x flash_config 0 4 2 0 0x80000
  832. This will setup
  833. BBSR - Boot Bank Size register
  834. NBBSR - Non Boot Bank Size register
  835. BBADR - Boot Bank Start Address register
  836. NBBADR - Boot Bank Start Address register
  837. @end smallexample
  838. @end itemize
  839. @subsection STR9 option byte configuration
  840. @cindex STR9 option byte configuration
  841. @itemize @bullet
  842. @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
  843. @cindex str9xpec options_cmap
  844. configure str9 boot bank.
  845. @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
  846. @cindex str9xpec options_lvdthd
  847. configure str9 lvd threshold.
  848. @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
  849. @cindex str9xpec options_lvdsel
  850. configure str9 lvd source.
  851. @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
  852. @cindex str9xpec options_lvdwarn
  853. configure str9 lvd reset warning source.
  854. @end itemize
  855. @subsection STM32x specific commands
  856. @cindex STM32x specific commands
  857. These are flash specific commands when using the stm32x driver.
  858. @itemize @bullet
  859. @item @b{stm32x lock} <@var{num}>
  860. @cindex stm32x lock
  861. lock stm32 device.
  862. @item @b{stm32x unlock} <@var{num}>
  863. @cindex stm32x unlock
  864. unlock stm32 device.
  865. @item @b{stm32x options_read} <@var{num}>
  866. @cindex stm32x options_read
  867. read stm32 option bytes.
  868. @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
  869. <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
  870. @cindex stm32x options_write
  871. write stm32 option bytes.
  872. @item @b{stm32x mass_erase} <@var{num}>
  873. @cindex stm32x mass_erase
  874. mass erase flash memory.
  875. @end itemize
  876. @subsection Stellaris specific commands
  877. @cindex Stellaris specific commands
  878. These are flash specific commands when using the Stellaris driver.
  879. @itemize @bullet
  880. @item @b{stellaris mass_erase} <@var{num}>
  881. @cindex stellaris mass_erase
  882. mass erase flash memory.
  883. @end itemize
  884. @page
  885. @section Architecture Specific Commands
  886. @cindex Architecture Specific Commands
  887. @subsection ARMV4/5 specific commands
  888. @cindex ARMV4/5 specific commands
  889. These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
  890. or Intel XScale (XScale isn't supported yet).
  891. @itemize @bullet
  892. @item @b{armv4_5 reg}
  893. @cindex armv4_5 reg
  894. Display a list of all banked core registers, fetching the current value from every
  895. core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
  896. register value.
  897. @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
  898. @cindex armv4_5 core_mode
  899. Displays the core_mode, optionally changing it to either ARM or Thumb mode.
  900. The target is resumed in the currently set @option{core_mode}.
  901. @end itemize
  902. @subsection ARM7/9 specific commands
  903. @cindex ARM7/9 specific commands
  904. These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
  905. ARM920t or ARM926EJ-S.
  906. @itemize @bullet
  907. @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
  908. @cindex arm7_9 dbgrq
  909. Enable use of the DBGRQ bit to force entry into debug mode. This should be
  910. safe for all but ARM7TDMI--S cores (like Philips LPC).
  911. @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
  912. @cindex arm7_9 fast_memory_access
  913. Allow OpenOCD to read and write memory without checking completion of
  914. the operation. This provides a huge speed increase, especially with USB JTAG
  915. cables (FT2232), but might be unsafe if used with targets running at a very low
  916. speed, like the 32kHz startup clock of an AT91RM9200.
  917. @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
  918. @cindex arm7_9 dcc_downloads
  919. Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
  920. amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
  921. unsafe, especially with targets running at a very low speed. This command was introduced
  922. with OpenOCD rev. 60.
  923. @end itemize
  924. @subsection ARM720T specific commands
  925. @cindex ARM720T specific commands
  926. @itemize @bullet
  927. @item @b{arm720t cp15} <@var{num}> [@var{value}]
  928. @cindex arm720t cp15
  929. display/modify cp15 register <@option{num}> [@option{value}].
  930. @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
  931. @cindex arm720t md<bhw>_phys
  932. Display memory at physical address addr.
  933. @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
  934. @cindex arm720t mw<bhw>_phys
  935. Write memory at physical address addr.
  936. @item @b{arm720t virt2phys} <@var{va}>
  937. @cindex arm720t virt2phys
  938. Translate a virtual address to a physical address.
  939. @end itemize
  940. @subsection ARM9TDMI specific commands
  941. @cindex ARM9TDMI specific commands
  942. @itemize @bullet
  943. @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
  944. @cindex arm9tdmi vector_catch
  945. Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
  946. @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
  947. @option{irq} @option{fiq}.
  948. Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
  949. @end itemize
  950. @subsection ARM966E specific commands
  951. @cindex ARM966E specific commands
  952. @itemize @bullet
  953. @item @b{arm966e cp15} <@var{num}> [@var{value}]
  954. @cindex arm966e cp15
  955. display/modify cp15 register <@option{num}> [@option{value}].
  956. @end itemize
  957. @subsection ARM920T specific commands
  958. @cindex ARM920T specific commands
  959. @itemize @bullet
  960. @item @b{arm920t cp15} <@var{num}> [@var{value}]
  961. @cindex arm920t cp15
  962. display/modify cp15 register <@option{num}> [@option{value}].
  963. @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
  964. @cindex arm920t cp15i
  965. display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
  966. @item @b{arm920t cache_info}
  967. @cindex arm920t cache_info
  968. Print information about the caches found. This allows you to see if your target
  969. is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
  970. @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
  971. @cindex arm920t md<bhw>_phys
  972. Display memory at physical address addr.
  973. @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
  974. @cindex arm920t mw<bhw>_phys
  975. Write memory at physical address addr.
  976. @item @b{arm920t read_cache} <@var{filename}>
  977. @cindex arm920t read_cache
  978. Dump the content of ICache and DCache to a file.
  979. @item @b{arm920t read_mmu} <@var{filename}>
  980. @cindex arm920t read_mmu
  981. Dump the content of the ITLB and DTLB to a file.
  982. @item @b{arm920t virt2phys} <@var{va}>
  983. @cindex arm920t virt2phys
  984. Translate a virtual address to a physical address.
  985. @end itemize
  986. @subsection ARM926EJS specific commands
  987. @cindex ARM926EJS specific commands
  988. @itemize @bullet
  989. @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
  990. @cindex arm926ejs cp15
  991. display/modify cp15 register <@option{num}> [@option{value}].
  992. @item @b{arm926ejs cache_info}
  993. @cindex arm926ejs cache_info
  994. Print information about the caches found.
  995. @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
  996. @cindex arm926ejs md<bhw>_phys
  997. Display memory at physical address addr.
  998. @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
  999. @cindex arm926ejs mw<bhw>_phys
  1000. Write memory at physical address addr.
  1001. @item @b{arm926ejs virt2phys} <@var{va}>
  1002. @cindex arm926ejs virt2phys
  1003. Translate a virtual address to a physical address.
  1004. @end itemize
  1005. @page
  1006. @section Debug commands
  1007. @cindex Debug commands
  1008. The following commands give direct access to the core, and are most likely
  1009. only useful while debugging OpenOCD.
  1010. @itemize @bullet
  1011. @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
  1012. @cindex arm7_9 write_xpsr
  1013. Immediately write either the current program status register (CPSR) or the saved
  1014. program status register (SPSR), without changing the register cache (as displayed
  1015. by the @option{reg} and @option{armv4_5 reg} commands).
  1016. @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
  1017. <@var{0=cpsr},@var{1=spsr}>
  1018. @cindex arm7_9 write_xpsr_im8
  1019. Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
  1020. operation (similar to @option{write_xpsr}).
  1021. @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
  1022. @cindex arm7_9 write_core_reg
  1023. Write a core register, without changing the register cache (as displayed by the
  1024. @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
  1025. encoding of the [M4:M0] bits of the PSR.
  1026. @end itemize
  1027. @page
  1028. @section JTAG commands
  1029. @cindex JTAG commands
  1030. @itemize @bullet
  1031. @item @b{scan_chain}
  1032. @cindex scan_chain
  1033. Print current scan chain configuration.
  1034. @item @b{jtag_reset} <@var{trst}> <@var{srst}>
  1035. @cindex jtag_reset
  1036. Toggle reset lines.
  1037. @item @b{endstate} <@var{tap_state}>
  1038. @cindex endstate
  1039. Finish JTAG operations in <@var{tap_state}>.
  1040. @item @b{runtest} <@var{num_cycles}>
  1041. @cindex runtest
  1042. Move to Run-Test/Idle, and execute <@var{num_cycles}>
  1043. @item @b{statemove} [@var{tap_state}]
  1044. @cindex statemove
  1045. Move to current endstate or [@var{tap_state}]
  1046. @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  1047. @cindex irscan
  1048. Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  1049. @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
  1050. @cindex drscan
  1051. Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
  1052. @item @b{verify_ircapture} <@option{enable}|@option{disable}>
  1053. @cindex verify_ircapture
  1054. Verify value captured during Capture-IR. Default is enabled.
  1055. @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  1056. @cindex var
  1057. Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  1058. @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
  1059. @cindex field
  1060. Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
  1061. @end itemize
  1062. @page
  1063. @section Target Requests
  1064. @cindex Target Requests
  1065. OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
  1066. See libdcc in the contrib dir for more details.
  1067. @itemize @bullet
  1068. @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
  1069. @cindex target_request debugmsgs
  1070. Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
  1071. @end itemize
  1072. @node Sample Scripts
  1073. @chapter Sample Scripts
  1074. @cindex scripts
  1075. This page shows how to use the target library.
  1076. The configuration script can be divided in the following section:
  1077. @itemize @bullet
  1078. @item daemon configuration
  1079. @item interface
  1080. @item jtag scan chain
  1081. @item target configuration
  1082. @item flash configuration
  1083. @end itemize
  1084. Detailed information about each section can be found at OpenOCD configuration.
  1085. @section AT91R40008 example
  1086. @cindex AT91R40008 example
  1087. To start OpenOCD with a target script for the AT91R40008 CPU and reset
  1088. the CPU upon startup of the OpenOCD daemon.
  1089. @smallexample
  1090. openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
  1091. @end smallexample
  1092. @node GDB and OpenOCD
  1093. @chapter GDB and OpenOCD
  1094. @cindex GDB and OpenOCD
  1095. OpenOCD complies with the remote gdbserver protocol, and as such can be used
  1096. to debug remote targets.
  1097. @section Connecting to gdb
  1098. @cindex Connecting to gdb
  1099. A connection is typically started as follows:
  1100. @smallexample
  1101. target remote localhost:3333
  1102. @end smallexample
  1103. This would cause gdb to connect to the gdbserver on the local pc using port 3333.
  1104. To see a list of available OpenOCD commands type @option{monitor help} on the
  1105. gdb commandline.
  1106. OpenOCD supports the gdb @option{qSupported} packet, this enables information
  1107. to be sent by the gdb server (openocd) to gdb. Typical information includes
  1108. packet size and device memory map.
  1109. Previous versions of OpenOCD required the following gdb options to increase
  1110. the packet size and speed up gdb communication.
  1111. @smallexample
  1112. set remote memory-write-packet-size 1024
  1113. set remote memory-write-packet-size fixed
  1114. set remote memory-read-packet-size 1024
  1115. set remote memory-read-packet-size fixed
  1116. @end smallexample
  1117. This is now handled in the @option{qSupported} PacketSize.
  1118. @section Programming using gdb
  1119. @cindex Programming using gdb
  1120. By default the target memory map is sent to gdb, this can be disabled by
  1121. the following OpenOCD config option:
  1122. @smallexample
  1123. gdb_memory_map disable
  1124. @end smallexample
  1125. For this to function correctly a valid flash config must also be configured
  1126. in OpenOCD. For faster performance you should also configure a valid
  1127. working area.
  1128. Informing gdb of the memory map of the target will enable gdb to protect any
  1129. flash area of the target and use hardware breakpoints by default. This means
  1130. that the OpenOCD option @option{gdb_breakpoint_override} is not required when
  1131. using a memory map.
  1132. To view the configured memory map in gdb, use the gdb command @option{info mem}
  1133. All other unasigned addresses within gdb are treated as RAM.
  1134. GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
  1135. this can be changed to the old behaviour by using the following gdb command.
  1136. @smallexample
  1137. set mem inaccessible-by-default off
  1138. @end smallexample
  1139. If @option{gdb_flash_program enable} is also used, gdb will be able to
  1140. program any flash memory using the vFlash interface.
  1141. gdb will look at the target memory map when a load command is given, if any
  1142. areas to be programmed lie within the target flash area the vFlash packets
  1143. will be used.
  1144. If the target needs configuring before gdb programming, a script can be executed.
  1145. @smallexample
  1146. target_script 0 gdb_program_config config.script
  1147. @end smallexample
  1148. To verify any flash programming the gdb command @option{compare-sections}
  1149. can be used.
  1150. @node TCL and OpenOCD
  1151. @chapter TCL and OpenOCD
  1152. @cindex TCL and OpenOCD
  1153. OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
  1154. support.
  1155. The TCL interpreter can be invoked from the interactive command line, files, and a network port.
  1156. The command and file interfaces are fairly straightforward, while the network
  1157. port is geared toward intergration with external clients. A small example
  1158. of an external TCL script that can connect to openocd is shown below.
  1159. @verbatim
  1160. # Simple tcl client to connect to openocd
  1161. puts "Use empty line to exit"
  1162. set fo [socket 127.0.0.1 6666]
  1163. puts -nonewline stdout "> "
  1164. flush stdout
  1165. while {[gets stdin line] >= 0} {
  1166. if {$line eq {}} break
  1167. puts $fo $line
  1168. flush $fo
  1169. gets $fo line
  1170. puts $line
  1171. puts -nonewline stdout "> "
  1172. flush stdout
  1173. }
  1174. close $fo
  1175. @end verbatim
  1176. This script can easily be modified to front various GUIs or be a sub
  1177. component of a larger framework for control and interaction.
  1178. @node TCL scripting API
  1179. @chapter TCL scripting API
  1180. @cindex TCL scripting API
  1181. API rules
  1182. The commands are stateless. E.g. the telnet command line has a concept
  1183. of currently active target, the Tcl API proc's take this sort of state
  1184. information as an argument to each proc.
  1185. There are three main types of return values: single value, name value
  1186. pair list and lists.
  1187. Name value pair. The proc 'foo' below returns a name/value pair
  1188. list.
  1189. @verbatim
  1190. > set foo(me) Duane
  1191. > set foo(you) Oyvind
  1192. > set foo(mouse) Micky
  1193. > set foo(duck) Donald
  1194. If one does this:
  1195. > set foo
  1196. The result is:
  1197. me Duane you Oyvind mouse Micky duck Donald
  1198. Thus, to get the names of the associative array is easy:
  1199. foreach { name value } [set foo] {
  1200. puts "Name: $name, Value: $value"
  1201. }
  1202. @end verbatim
  1203. Lists returned must be relatively small. Otherwise a range
  1204. should be passed in to the proc in question.
  1205. Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
  1206. is the low level API upon which "flash banks" is implemented.
  1207. OpenOCD commands can consist of two words, e.g. "flash banks". The
  1208. startup.tcl "unknown" proc will translate this into a tcl proc
  1209. called "flash_banks".
  1210. @node Upgrading
  1211. @chapter Deprecated/Removed Commands
  1212. @cindex Deprecated/Removed Commands
  1213. Certain OpenOCD commands have been deprecated/removed during the various revisions.
  1214. @itemize @bullet
  1215. @item @b{load_binary}
  1216. @cindex load_binary
  1217. use @option{load_image} command with same args
  1218. @item @b{dump_binary}
  1219. @cindex dump_binary
  1220. use @option{dump_image} command with same args
  1221. @item @b{flash erase}
  1222. @cindex flash erase
  1223. use @option{flash erase_sector} command with same args
  1224. @item @b{flash write}
  1225. @cindex flash write
  1226. use @option{flash write_bank} command with same args
  1227. @item @b{flash write_binary}
  1228. @cindex flash write_binary
  1229. use @option{flash write_bank} command with same args
  1230. @item @b{arm7_9 fast_writes}
  1231. @cindex arm7_9 fast_writes
  1232. use @option{arm7_9 fast_memory_access} command with same args
  1233. @item @b{flash auto_erase}
  1234. @cindex flash auto_erase
  1235. use @option{flash write_image} command passing @option{erase} as the first parameter.
  1236. @item @b{daemon_startup}
  1237. @cindex daemon_startup
  1238. this config option has been removed, simply adding @option{init} and @option{reset halt} to
  1239. the end of your config script will give the same behaviour as using @option{daemon_startup reset}
  1240. and @option{target cortex_m3 little reset_halt 0}.
  1241. @item @b{arm7_9 sw_bkpts}
  1242. @cindex arm7_9 sw_bkpts
  1243. On by default. See also @option{gdb_breakpoint_override}.
  1244. @item @b{arm7_9 force_hw_bkpts}
  1245. @cindex arm7_9 force_hw_bkpts
  1246. Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
  1247. for flash if the gdb memory map has been set up(default when flash is declared in
  1248. target configuration).
  1249. @item @b{run_and_halt_time}
  1250. @cindex run_and_halt_time
  1251. This command has been removed for simpler reset behaviour, it can be simulated with the
  1252. following commands:
  1253. @smallexample
  1254. reset run
  1255. sleep 100
  1256. halt
  1257. @end smallexample
  1258. @end itemize
  1259. @node FAQ
  1260. @chapter FAQ
  1261. @cindex faq
  1262. @enumerate
  1263. @item OpenOCD complains about a missing cygwin1.dll.
  1264. Make sure you have Cygwin installed, or at least a version of OpenOCD that
  1265. claims to come with all the necessary dlls. When using Cygwin, try launching
  1266. OpenOCD from the Cygwin shell.
  1267. @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
  1268. Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
  1269. arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
  1270. GDB issues software breakpoints when a normal breakpoint is requested, or to implement
  1271. source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
  1272. software breakpoints consume one of the two available hardware breakpoints.
  1273. @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
  1274. and works sometimes fine.
  1275. Make sure the core frequency specified in the @option{flash lpc2000} line matches the
  1276. clock at the time you're programming the flash. If you've specified the crystal's
  1277. frequency, make sure the PLL is disabled, if you've specified the full core speed
  1278. (e.g. 60MHz), make sure the PLL is enabled.
  1279. @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
  1280. I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
  1281. out while waiting for end of scan, rtck was disabled".
  1282. Make sure your PC's parallel port operates in EPP mode. You might have to try several
  1283. settings in your PC BIOS (ECP, EPP, and different versions of those).
  1284. @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
  1285. I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
  1286. memory read caused data abort".
  1287. The errors are non-fatal, and are the result of GDB trying to trace stack frames
  1288. beyond the last valid frame. It might be possible to prevent this by setting up
  1289. a proper "initial" stack frame, if you happen to know what exactly has to
  1290. be done, feel free to add this here.
  1291. @item I get the following message in the OpenOCD console (or log file):
  1292. "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
  1293. This warning doesn't indicate any serious problem, as long as you don't want to
  1294. debug your core right out of reset. Your .cfg file specified @option{jtag_reset
  1295. trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
  1296. your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
  1297. independently. With this setup, it's not possible to halt the core right out of
  1298. reset, everything else should work fine.
  1299. @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
  1300. Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
  1301. unstable. When single-stepping over large blocks of code, GDB and OpenOCD
  1302. quit with an error message. Is there a stability issue with OpenOCD?
  1303. No, this is not a stability issue concerning OpenOCD. Most users have solved
  1304. this issue by simply using a self-powered USB hub, which they connect their
  1305. Amontec JTAGkey to. Apparently, some computers do not provide a USB power
  1306. supply stable enough for the Amontec JTAGkey to be operated.
  1307. @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
  1308. following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
  1309. 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
  1310. What does that mean and what might be the reason for this?
  1311. First of all, the reason might be the USB power supply. Try using a self-powered
  1312. hub instead of a direct connection to your computer. Secondly, the error code 4
  1313. corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
  1314. chip ran into some sort of error - this points us to a USB problem.
  1315. @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
  1316. error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
  1317. What does that mean and what might be the reason for this?
  1318. Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
  1319. has closed the connection to OpenOCD. This might be a GDB issue.
  1320. @item In the configuration file in the section where flash device configurations
  1321. are described, there is a parameter for specifying the clock frequency for
  1322. LPC2000 internal flash devices (e.g.
  1323. @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
  1324. which must be specified in kilohertz. However, I do have a quartz crystal of a
  1325. frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
  1326. Is it possible to specify real numbers for the clock frequency?
  1327. No. The clock frequency specified here must be given as an integral number.
  1328. However, this clock frequency is used by the In-Application-Programming (IAP)
  1329. routines of the LPC2000 family only, which seems to be very tolerant concerning
  1330. the given clock frequency, so a slight difference between the specified clock
  1331. frequency and the actual clock frequency will not cause any trouble.
  1332. @item Do I have to keep a specific order for the commands in the configuration file?
  1333. Well, yes and no. Commands can be given in arbitrary order, yet the devices
  1334. listed for the JTAG scan chain must be given in the right order (jtag_device),
  1335. with the device closest to the TDO-Pin being listed first. In general,
  1336. whenever objects of the same type exist which require an index number, then
  1337. these objects must be given in the right order (jtag_devices, targets and flash
  1338. banks - a target references a jtag_device and a flash bank references a target).
  1339. @item Sometimes my debugging session terminates with an error. When I look into the
  1340. log file, I can see these error messages: Error: arm7_9_common.c:561
  1341. arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
  1342. TODO.
  1343. @end enumerate
  1344. @include fdl.texi
  1345. @node Index
  1346. @unnumbered Index
  1347. @printindex cp
  1348. @bye