You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2809 lines
84 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005, 2007 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * Copyright (C) 2009 Michael Schwingen *
  5. * michael@schwingen.org *
  6. * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
  7. * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
  8. * *
  9. * This program is free software; you can redistribute it and/or modify *
  10. * it under the terms of the GNU General Public License as published by *
  11. * the Free Software Foundation; either version 2 of the License, or *
  12. * (at your option) any later version. *
  13. * *
  14. * This program is distributed in the hope that it will be useful, *
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  17. * GNU General Public License for more details. *
  18. * *
  19. * You should have received a copy of the GNU General Public License *
  20. * along with this program; if not, write to the *
  21. * Free Software Foundation, Inc., *
  22. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  23. ***************************************************************************/
  24. #ifdef HAVE_CONFIG_H
  25. #include "config.h"
  26. #endif
  27. #include "imp.h"
  28. #include "cfi.h"
  29. #include "non_cfi.h"
  30. #include <target/arm.h>
  31. #include <helper/binarybuffer.h>
  32. #include <target/algorithm.h>
  33. #define CFI_MAX_BUS_WIDTH 4
  34. #define CFI_MAX_CHIP_WIDTH 4
  35. /* defines internal maximum size for code fragment in cfi_intel_write_block() */
  36. #define CFI_MAX_INTEL_CODESIZE 256
  37. static struct cfi_unlock_addresses cfi_unlock_addresses[] =
  38. {
  39. [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
  40. [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
  41. };
  42. /* CFI fixups foward declarations */
  43. static void cfi_fixup_0002_erase_regions(struct flash_bank *flash, void *param);
  44. static void cfi_fixup_0002_unlock_addresses(struct flash_bank *flash, void *param);
  45. static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *flash, void *param);
  46. /* fixup after reading cmdset 0002 primary query table */
  47. static const struct cfi_fixup cfi_0002_fixups[] = {
  48. {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  49. {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  50. {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  51. {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  52. {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  53. {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_atmel_reversed_erase_regions, NULL},
  54. {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
  55. {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
  56. {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
  57. {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
  58. {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
  59. {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
  60. {0, 0, NULL, NULL}
  61. };
  62. /* fixup after reading cmdset 0001 primary query table */
  63. static const struct cfi_fixup cfi_0001_fixups[] = {
  64. {0, 0, NULL, NULL}
  65. };
  66. static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
  67. {
  68. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  69. const struct cfi_fixup *f;
  70. for (f = fixups; f->fixup; f++)
  71. {
  72. if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
  73. ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
  74. {
  75. f->fixup(bank, f->param);
  76. }
  77. }
  78. }
  79. /* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */
  80. static __inline__ uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
  81. {
  82. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  83. if (cfi_info->x16_as_x8) offset *= 2;
  84. /* while the sector list isn't built, only accesses to sector 0 work */
  85. if (sector == 0)
  86. return bank->base + offset * bank->bus_width;
  87. else
  88. {
  89. if (!bank->sectors)
  90. {
  91. LOG_ERROR("BUG: sector list not yet built");
  92. exit(-1);
  93. }
  94. return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
  95. }
  96. }
  97. static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
  98. {
  99. int i;
  100. /* clear whole buffer, to ensure bits that exceed the bus_width
  101. * are set to zero
  102. */
  103. for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
  104. cmd_buf[i] = 0;
  105. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  106. {
  107. for (i = bank->bus_width; i > 0; i--)
  108. {
  109. *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
  110. }
  111. }
  112. else
  113. {
  114. for (i = 1; i <= bank->bus_width; i++)
  115. {
  116. *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
  117. }
  118. }
  119. }
  120. static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
  121. {
  122. uint8_t command[CFI_MAX_BUS_WIDTH];
  123. cfi_command(bank, cmd, command);
  124. return target_write_memory(bank->target, address, bank->bus_width, 1, command);
  125. }
  126. /* read unsigned 8-bit value from the bank
  127. * flash banks are expected to be made of similar chips
  128. * the query result should be the same for all
  129. */
  130. static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
  131. {
  132. struct target *target = bank->target;
  133. uint8_t data[CFI_MAX_BUS_WIDTH];
  134. int retval;
  135. retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
  136. if (retval != ERROR_OK)
  137. return retval;
  138. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  139. *val = data[0];
  140. else
  141. *val = data[bank->bus_width - 1];
  142. return ERROR_OK;
  143. }
  144. /* read unsigned 8-bit value from the bank
  145. * in case of a bank made of multiple chips,
  146. * the individual values are ORed
  147. */
  148. static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
  149. {
  150. struct target *target = bank->target;
  151. uint8_t data[CFI_MAX_BUS_WIDTH];
  152. int i;
  153. int retval;
  154. retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
  155. if (retval != ERROR_OK)
  156. return retval;
  157. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  158. {
  159. for (i = 0; i < bank->bus_width / bank->chip_width; i++)
  160. data[0] |= data[i];
  161. *val = data[0];
  162. }
  163. else
  164. {
  165. uint8_t value = 0;
  166. for (i = 0; i < bank->bus_width / bank->chip_width; i++)
  167. value |= data[bank->bus_width - 1 - i];
  168. *val = value;
  169. }
  170. return ERROR_OK;
  171. }
  172. static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
  173. {
  174. struct target *target = bank->target;
  175. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  176. uint8_t data[CFI_MAX_BUS_WIDTH * 2];
  177. int retval;
  178. if (cfi_info->x16_as_x8)
  179. {
  180. uint8_t i;
  181. for (i = 0;i < 2;i++)
  182. {
  183. retval = target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
  184. &data[i*bank->bus_width]);
  185. if (retval != ERROR_OK)
  186. return retval;
  187. }
  188. } else
  189. {
  190. retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data);
  191. if (retval != ERROR_OK)
  192. return retval;
  193. }
  194. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  195. *val = data[0] | data[bank->bus_width] << 8;
  196. else
  197. *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
  198. return ERROR_OK;
  199. }
  200. static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
  201. {
  202. struct target *target = bank->target;
  203. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  204. uint8_t data[CFI_MAX_BUS_WIDTH * 4];
  205. int retval;
  206. if (cfi_info->x16_as_x8)
  207. {
  208. uint8_t i;
  209. for (i = 0;i < 4;i++)
  210. {
  211. retval = target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
  212. &data[i*bank->bus_width]);
  213. if (retval != ERROR_OK)
  214. return retval;
  215. }
  216. }
  217. else
  218. {
  219. retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data);
  220. if (retval != ERROR_OK)
  221. return retval;
  222. }
  223. if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
  224. *val = data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
  225. else
  226. *val = data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
  227. data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
  228. return ERROR_OK;
  229. }
  230. static int cfi_reset(struct flash_bank *bank)
  231. {
  232. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  233. int retval = ERROR_OK;
  234. if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
  235. {
  236. return retval;
  237. }
  238. if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
  239. {
  240. return retval;
  241. }
  242. if (cfi_info->manufacturer == 0x20 &&
  243. (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E))
  244. {
  245. /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
  246. * so we send an extra 0xF0 reset to fix the bug */
  247. if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00))) != ERROR_OK)
  248. {
  249. return retval;
  250. }
  251. }
  252. return retval;
  253. }
  254. static void cfi_intel_clear_status_register(struct flash_bank *bank)
  255. {
  256. struct target *target = bank->target;
  257. if (target->state != TARGET_HALTED)
  258. {
  259. LOG_ERROR("BUG: attempted to clear status register while target wasn't halted");
  260. exit(-1);
  261. }
  262. cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
  263. }
  264. static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
  265. {
  266. uint8_t status;
  267. int retval = ERROR_OK;
  268. for (;;)
  269. {
  270. if (timeout-- < 0)
  271. {
  272. LOG_ERROR("timeout while waiting for WSM to become ready");
  273. return ERROR_FAIL;
  274. }
  275. retval = cfi_get_u8(bank, 0, 0x0, &status);
  276. if (retval != ERROR_OK)
  277. return retval;
  278. if (status & 0x80)
  279. break;
  280. alive_sleep(1);
  281. }
  282. /* mask out bit 0 (reserved) */
  283. status = status & 0xfe;
  284. LOG_DEBUG("status: 0x%x", status);
  285. if (status != 0x80)
  286. {
  287. LOG_ERROR("status register: 0x%x", status);
  288. if (status & 0x2)
  289. LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
  290. if (status & 0x4)
  291. LOG_ERROR("Program suspended");
  292. if (status & 0x8)
  293. LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
  294. if (status & 0x10)
  295. LOG_ERROR("Program Error / Error in Setting Lock-Bit");
  296. if (status & 0x20)
  297. LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
  298. if (status & 0x40)
  299. LOG_ERROR("Block Erase Suspended");
  300. cfi_intel_clear_status_register(bank);
  301. retval = ERROR_FAIL;
  302. }
  303. *val = status;
  304. return retval;
  305. }
  306. static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
  307. {
  308. uint8_t status, oldstatus;
  309. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  310. int retval;
  311. retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
  312. if (retval != ERROR_OK)
  313. return retval;
  314. do {
  315. retval = cfi_get_u8(bank, 0, 0x0, &status);
  316. if (retval != ERROR_OK)
  317. return retval;
  318. if ((status ^ oldstatus) & 0x40) {
  319. if (status & cfi_info->status_poll_mask & 0x20) {
  320. retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
  321. if (retval != ERROR_OK)
  322. return retval;
  323. retval = cfi_get_u8(bank, 0, 0x0, &status);
  324. if (retval != ERROR_OK)
  325. return retval;
  326. if ((status ^ oldstatus) & 0x40) {
  327. LOG_ERROR("dq5 timeout, status: 0x%x", status);
  328. return(ERROR_FLASH_OPERATION_FAILED);
  329. } else {
  330. LOG_DEBUG("status: 0x%x", status);
  331. return(ERROR_OK);
  332. }
  333. }
  334. } else { /* no toggle: finished, OK */
  335. LOG_DEBUG("status: 0x%x", status);
  336. return(ERROR_OK);
  337. }
  338. oldstatus = status;
  339. alive_sleep(1);
  340. } while (timeout-- > 0);
  341. LOG_ERROR("timeout, status: 0x%x", status);
  342. return(ERROR_FLASH_BUSY);
  343. }
  344. static int cfi_read_intel_pri_ext(struct flash_bank *bank)
  345. {
  346. int retval;
  347. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  348. struct cfi_intel_pri_ext *pri_ext;
  349. if (cfi_info->pri_ext)
  350. free(cfi_info->pri_ext);
  351. pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
  352. if (pri_ext == NULL)
  353. {
  354. LOG_ERROR("Out of memory");
  355. return ERROR_FAIL;
  356. }
  357. cfi_info->pri_ext = pri_ext;
  358. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
  359. if (retval != ERROR_OK)
  360. return retval;
  361. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
  362. if (retval != ERROR_OK)
  363. return retval;
  364. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
  365. if (retval != ERROR_OK)
  366. return retval;
  367. if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
  368. {
  369. if ((retval = cfi_reset(bank)) != ERROR_OK)
  370. {
  371. return retval;
  372. }
  373. LOG_ERROR("Could not read bank flash bank information");
  374. return ERROR_FLASH_BANK_INVALID;
  375. }
  376. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
  377. if (retval != ERROR_OK)
  378. return retval;
  379. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
  380. if (retval != ERROR_OK)
  381. return retval;
  382. LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
  383. retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
  384. if (retval != ERROR_OK)
  385. return retval;
  386. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
  387. if (retval != ERROR_OK)
  388. return retval;
  389. retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
  390. if (retval != ERROR_OK)
  391. return retval;
  392. LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x",
  393. pri_ext->feature_support,
  394. pri_ext->suspend_cmd_support,
  395. pri_ext->blk_status_reg_mask);
  396. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
  397. if (retval != ERROR_OK)
  398. return retval;
  399. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
  400. if (retval != ERROR_OK)
  401. return retval;
  402. LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
  403. (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
  404. (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
  405. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
  406. if (retval != ERROR_OK)
  407. return retval;
  408. if (pri_ext->num_protection_fields != 1)
  409. {
  410. LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields);
  411. }
  412. retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
  413. if (retval != ERROR_OK)
  414. return retval;
  415. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
  416. if (retval != ERROR_OK)
  417. return retval;
  418. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
  419. if (retval != ERROR_OK)
  420. return retval;
  421. LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
  422. return ERROR_OK;
  423. }
  424. static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
  425. {
  426. int retval;
  427. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  428. struct cfi_spansion_pri_ext *pri_ext;
  429. if (cfi_info->pri_ext)
  430. free(cfi_info->pri_ext);
  431. pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
  432. if (pri_ext == NULL)
  433. {
  434. LOG_ERROR("Out of memory");
  435. return ERROR_FAIL;
  436. }
  437. cfi_info->pri_ext = pri_ext;
  438. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
  439. if (retval != ERROR_OK)
  440. return retval;
  441. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
  442. if (retval != ERROR_OK)
  443. return retval;
  444. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
  445. if (retval != ERROR_OK)
  446. return retval;
  447. if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
  448. {
  449. if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
  450. {
  451. return retval;
  452. }
  453. LOG_ERROR("Could not read spansion bank information");
  454. return ERROR_FLASH_BANK_INVALID;
  455. }
  456. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
  457. if (retval != ERROR_OK)
  458. return retval;
  459. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
  460. if (retval != ERROR_OK)
  461. return retval;
  462. LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
  463. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
  464. if (retval != ERROR_OK)
  465. return retval;
  466. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
  467. if (retval != ERROR_OK)
  468. return retval;
  469. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
  470. if (retval != ERROR_OK)
  471. return retval;
  472. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
  473. if (retval != ERROR_OK)
  474. return retval;
  475. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
  476. if (retval != ERROR_OK)
  477. return retval;
  478. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
  479. if (retval != ERROR_OK)
  480. return retval;
  481. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
  482. if (retval != ERROR_OK)
  483. return retval;
  484. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
  485. if (retval != ERROR_OK)
  486. return retval;
  487. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
  488. if (retval != ERROR_OK)
  489. return retval;
  490. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
  491. if (retval != ERROR_OK)
  492. return retval;
  493. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
  494. if (retval != ERROR_OK)
  495. return retval;
  496. LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision,
  497. pri_ext->EraseSuspend, pri_ext->BlkProt);
  498. LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
  499. pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
  500. LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
  501. LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
  502. (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
  503. (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
  504. LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
  505. /* default values for implementation specific workarounds */
  506. pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
  507. pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
  508. pri_ext->_reversed_geometry = 0;
  509. return ERROR_OK;
  510. }
  511. static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
  512. {
  513. int retval;
  514. struct cfi_atmel_pri_ext atmel_pri_ext;
  515. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  516. struct cfi_spansion_pri_ext *pri_ext;
  517. if (cfi_info->pri_ext)
  518. free(cfi_info->pri_ext);
  519. pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
  520. if (pri_ext == NULL)
  521. {
  522. LOG_ERROR("Out of memory");
  523. return ERROR_FAIL;
  524. }
  525. /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
  526. * but a different primary extended query table.
  527. * We read the atmel table, and prepare a valid AMD/Spansion query table.
  528. */
  529. memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
  530. cfi_info->pri_ext = pri_ext;
  531. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
  532. if (retval != ERROR_OK)
  533. return retval;
  534. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
  535. if (retval != ERROR_OK)
  536. return retval;
  537. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
  538. if (retval != ERROR_OK)
  539. return retval;
  540. if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I'))
  541. {
  542. if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
  543. {
  544. return retval;
  545. }
  546. LOG_ERROR("Could not read atmel bank information");
  547. return ERROR_FLASH_BANK_INVALID;
  548. }
  549. pri_ext->pri[0] = atmel_pri_ext.pri[0];
  550. pri_ext->pri[1] = atmel_pri_ext.pri[1];
  551. pri_ext->pri[2] = atmel_pri_ext.pri[2];
  552. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
  553. if (retval != ERROR_OK)
  554. return retval;
  555. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
  556. if (retval != ERROR_OK)
  557. return retval;
  558. LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
  559. pri_ext->major_version = atmel_pri_ext.major_version;
  560. pri_ext->minor_version = atmel_pri_ext.minor_version;
  561. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
  562. if (retval != ERROR_OK)
  563. return retval;
  564. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
  565. if (retval != ERROR_OK)
  566. return retval;
  567. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
  568. if (retval != ERROR_OK)
  569. return retval;
  570. retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
  571. if (retval != ERROR_OK)
  572. return retval;
  573. LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
  574. atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
  575. if (atmel_pri_ext.features & 0x02)
  576. pri_ext->EraseSuspend = 2;
  577. if (atmel_pri_ext.bottom_boot)
  578. pri_ext->TopBottom = 2;
  579. else
  580. pri_ext->TopBottom = 3;
  581. pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
  582. pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
  583. return ERROR_OK;
  584. }
  585. static int cfi_read_0002_pri_ext(struct flash_bank *bank)
  586. {
  587. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  588. if (cfi_info->manufacturer == CFI_MFR_ATMEL)
  589. {
  590. return cfi_read_atmel_pri_ext(bank);
  591. }
  592. else
  593. {
  594. return cfi_read_spansion_pri_ext(bank);
  595. }
  596. }
  597. static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
  598. {
  599. int printed;
  600. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  601. struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
  602. printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
  603. buf += printed;
  604. buf_size -= printed;
  605. printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
  606. pri_ext->pri[1], pri_ext->pri[2],
  607. pri_ext->major_version, pri_ext->minor_version);
  608. buf += printed;
  609. buf_size -= printed;
  610. printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
  611. (pri_ext->SiliconRevision) >> 2,
  612. (pri_ext->SiliconRevision) & 0x03);
  613. buf += printed;
  614. buf_size -= printed;
  615. printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
  616. pri_ext->EraseSuspend,
  617. pri_ext->BlkProt);
  618. buf += printed;
  619. buf_size -= printed;
  620. printed = snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
  621. (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
  622. (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
  623. return ERROR_OK;
  624. }
  625. static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
  626. {
  627. int printed;
  628. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  629. struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
  630. printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
  631. buf += printed;
  632. buf_size -= printed;
  633. printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
  634. buf += printed;
  635. buf_size -= printed;
  636. printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
  637. buf += printed;
  638. buf_size -= printed;
  639. printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
  640. (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
  641. (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
  642. buf += printed;
  643. buf_size -= printed;
  644. printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
  645. return ERROR_OK;
  646. }
  647. /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
  648. */
  649. FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
  650. {
  651. struct cfi_flash_bank *cfi_info;
  652. if (CMD_ARGC < 6)
  653. {
  654. LOG_WARNING("incomplete flash_bank cfi configuration");
  655. return ERROR_FLASH_BANK_INVALID;
  656. }
  657. /* both widths must:
  658. * - not exceed max value;
  659. * - not be null;
  660. * - be equal to a power of 2.
  661. * bus must be wide enought to hold one chip */
  662. if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
  663. || (bank->bus_width > CFI_MAX_BUS_WIDTH)
  664. || (bank->chip_width == 0)
  665. || (bank->bus_width == 0)
  666. || (bank->chip_width & (bank->chip_width - 1))
  667. || (bank->bus_width & (bank->bus_width - 1))
  668. || (bank->chip_width > bank->bus_width))
  669. {
  670. LOG_ERROR("chip and bus width have to specified in bytes");
  671. return ERROR_FLASH_BANK_INVALID;
  672. }
  673. cfi_info = malloc(sizeof(struct cfi_flash_bank));
  674. cfi_info->probed = 0;
  675. cfi_info->erase_region_info = 0;
  676. cfi_info->pri_ext = NULL;
  677. bank->driver_priv = cfi_info;
  678. cfi_info->write_algorithm = NULL;
  679. cfi_info->x16_as_x8 = 0;
  680. cfi_info->jedec_probe = 0;
  681. cfi_info->not_cfi = 0;
  682. for (unsigned i = 6; i < CMD_ARGC; i++)
  683. {
  684. if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
  685. {
  686. cfi_info->x16_as_x8 = 1;
  687. }
  688. else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
  689. {
  690. cfi_info->jedec_probe = 1;
  691. }
  692. }
  693. cfi_info->write_algorithm = NULL;
  694. /* bank wasn't probed yet */
  695. cfi_info->qry[0] = 0xff;
  696. return ERROR_OK;
  697. }
  698. static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
  699. {
  700. int retval;
  701. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  702. int i;
  703. cfi_intel_clear_status_register(bank);
  704. for (i = first; i <= last; i++)
  705. {
  706. if ((retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0))) != ERROR_OK)
  707. {
  708. return retval;
  709. }
  710. if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
  711. {
  712. return retval;
  713. }
  714. uint8_t status;
  715. retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ), &status);
  716. if (retval != ERROR_OK)
  717. return retval;
  718. if (status == 0x80)
  719. bank->sectors[i].is_erased = 1;
  720. else
  721. {
  722. if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
  723. {
  724. return retval;
  725. }
  726. LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base);
  727. return ERROR_FLASH_OPERATION_FAILED;
  728. }
  729. }
  730. return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
  731. }
  732. static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
  733. {
  734. int retval;
  735. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  736. struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
  737. int i;
  738. for (i = first; i <= last; i++)
  739. {
  740. if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
  741. {
  742. return retval;
  743. }
  744. if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
  745. {
  746. return retval;
  747. }
  748. if ((retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
  749. {
  750. return retval;
  751. }
  752. if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
  753. {
  754. return retval;
  755. }
  756. if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
  757. {
  758. return retval;
  759. }
  760. if ((retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0))) != ERROR_OK)
  761. {
  762. return retval;
  763. }
  764. if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK)
  765. bank->sectors[i].is_erased = 1;
  766. else
  767. {
  768. if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
  769. {
  770. return retval;
  771. }
  772. LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32, i, bank->base);
  773. return ERROR_FLASH_OPERATION_FAILED;
  774. }
  775. }
  776. return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
  777. }
  778. static int cfi_erase(struct flash_bank *bank, int first, int last)
  779. {
  780. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  781. if (bank->target->state != TARGET_HALTED)
  782. {
  783. LOG_ERROR("Target not halted");
  784. return ERROR_TARGET_NOT_HALTED;
  785. }
  786. if ((first < 0) || (last < first) || (last >= bank->num_sectors))
  787. {
  788. return ERROR_FLASH_SECTOR_INVALID;
  789. }
  790. if (cfi_info->qry[0] != 'Q')
  791. return ERROR_FLASH_BANK_NOT_PROBED;
  792. switch (cfi_info->pri_id)
  793. {
  794. case 1:
  795. case 3:
  796. return cfi_intel_erase(bank, first, last);
  797. break;
  798. case 2:
  799. return cfi_spansion_erase(bank, first, last);
  800. break;
  801. default:
  802. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  803. break;
  804. }
  805. return ERROR_OK;
  806. }
  807. static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
  808. {
  809. int retval;
  810. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  811. struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
  812. int retry = 0;
  813. int i;
  814. /* if the device supports neither legacy lock/unlock (bit 3) nor
  815. * instant individual block locking (bit 5).
  816. */
  817. if (!(pri_ext->feature_support & 0x28))
  818. return ERROR_FLASH_OPERATION_FAILED;
  819. cfi_intel_clear_status_register(bank);
  820. for (i = first; i <= last; i++)
  821. {
  822. if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
  823. {
  824. return retval;
  825. }
  826. if (set)
  827. {
  828. if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
  829. {
  830. return retval;
  831. }
  832. bank->sectors[i].is_protected = 1;
  833. }
  834. else
  835. {
  836. if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
  837. {
  838. return retval;
  839. }
  840. bank->sectors[i].is_protected = 0;
  841. }
  842. /* instant individual block locking doesn't require reading of the status register */
  843. if (!(pri_ext->feature_support & 0x20))
  844. {
  845. /* Clear lock bits operation may take up to 1.4s */
  846. uint8_t status;
  847. retval = cfi_intel_wait_status_busy(bank, 1400, &status);
  848. if (retval != ERROR_OK)
  849. return retval;
  850. }
  851. else
  852. {
  853. uint8_t block_status;
  854. /* read block lock bit, to verify status */
  855. if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
  856. {
  857. return retval;
  858. }
  859. retval = cfi_get_u8(bank, i, 0x2, &block_status);
  860. if (retval != ERROR_OK)
  861. return retval;
  862. if ((block_status & 0x1) != set)
  863. {
  864. LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status);
  865. if ((retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55))) != ERROR_OK)
  866. {
  867. return retval;
  868. }
  869. uint8_t status;
  870. retval = cfi_intel_wait_status_busy(bank, 10, &status);
  871. if (retval != ERROR_OK)
  872. return retval;
  873. if (retry > 10)
  874. return ERROR_FLASH_OPERATION_FAILED;
  875. else
  876. {
  877. i--;
  878. retry++;
  879. }
  880. }
  881. }
  882. }
  883. /* if the device doesn't support individual block lock bits set/clear,
  884. * all blocks have been unlocked in parallel, so we set those that should be protected
  885. */
  886. if ((!set) && (!(pri_ext->feature_support & 0x20)))
  887. {
  888. /* FIX!!! this code path is broken!!!
  889. *
  890. * The correct approach is:
  891. *
  892. * 1. read out current protection status
  893. *
  894. * 2. override read out protection status w/unprotected.
  895. *
  896. * 3. re-protect what should be protected.
  897. *
  898. */
  899. for (i = 0; i < bank->num_sectors; i++)
  900. {
  901. if (bank->sectors[i].is_protected == 1)
  902. {
  903. cfi_intel_clear_status_register(bank);
  904. if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
  905. {
  906. return retval;
  907. }
  908. if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
  909. {
  910. return retval;
  911. }
  912. uint8_t status;
  913. retval = cfi_intel_wait_status_busy(bank, 100, &status);
  914. if (retval != ERROR_OK)
  915. return retval;
  916. }
  917. }
  918. }
  919. return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
  920. }
  921. static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
  922. {
  923. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  924. if (bank->target->state != TARGET_HALTED)
  925. {
  926. LOG_ERROR("Target not halted");
  927. return ERROR_TARGET_NOT_HALTED;
  928. }
  929. if ((first < 0) || (last < first) || (last >= bank->num_sectors))
  930. {
  931. LOG_ERROR("Invalid sector range");
  932. return ERROR_FLASH_SECTOR_INVALID;
  933. }
  934. if (cfi_info->qry[0] != 'Q')
  935. return ERROR_FLASH_BANK_NOT_PROBED;
  936. switch (cfi_info->pri_id)
  937. {
  938. case 1:
  939. case 3:
  940. return cfi_intel_protect(bank, set, first, last);
  941. break;
  942. default:
  943. LOG_ERROR("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
  944. return ERROR_FAIL;
  945. }
  946. }
  947. /* Convert code image to target endian */
  948. /* FIXME create general block conversion fcts in target.c?) */
  949. static void cfi_fix_code_endian(struct target *target, uint8_t *dest, const uint32_t *src, uint32_t count)
  950. {
  951. uint32_t i;
  952. for (i = 0; i< count; i++)
  953. {
  954. target_buffer_set_u32(target, dest, *src);
  955. dest += 4;
  956. src++;
  957. }
  958. }
  959. static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
  960. {
  961. struct target *target = bank->target;
  962. uint8_t buf[CFI_MAX_BUS_WIDTH];
  963. cfi_command(bank, cmd, buf);
  964. switch (bank->bus_width)
  965. {
  966. case 1 :
  967. return buf[0];
  968. break;
  969. case 2 :
  970. return target_buffer_get_u16(target, buf);
  971. break;
  972. case 4 :
  973. return target_buffer_get_u32(target, buf);
  974. break;
  975. default :
  976. LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
  977. return 0;
  978. }
  979. }
  980. static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
  981. {
  982. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  983. struct target *target = bank->target;
  984. struct reg_param reg_params[7];
  985. struct arm_algorithm armv4_5_info;
  986. struct working_area *source;
  987. uint32_t buffer_size = 32768;
  988. uint32_t write_command_val, busy_pattern_val, error_pattern_val;
  989. /* algorithm register usage:
  990. * r0: source address (in RAM)
  991. * r1: target address (in Flash)
  992. * r2: count
  993. * r3: flash write command
  994. * r4: status byte (returned to host)
  995. * r5: busy test pattern
  996. * r6: error test pattern
  997. */
  998. static const uint32_t word_32_code[] = {
  999. 0xe4904004, /* loop: ldr r4, [r0], #4 */
  1000. 0xe5813000, /* str r3, [r1] */
  1001. 0xe5814000, /* str r4, [r1] */
  1002. 0xe5914000, /* busy: ldr r4, [r1] */
  1003. 0xe0047005, /* and r7, r4, r5 */
  1004. 0xe1570005, /* cmp r7, r5 */
  1005. 0x1afffffb, /* bne busy */
  1006. 0xe1140006, /* tst r4, r6 */
  1007. 0x1a000003, /* bne done */
  1008. 0xe2522001, /* subs r2, r2, #1 */
  1009. 0x0a000001, /* beq done */
  1010. 0xe2811004, /* add r1, r1 #4 */
  1011. 0xeafffff2, /* b loop */
  1012. 0xeafffffe /* done: b -2 */
  1013. };
  1014. static const uint32_t word_16_code[] = {
  1015. 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
  1016. 0xe1c130b0, /* strh r3, [r1] */
  1017. 0xe1c140b0, /* strh r4, [r1] */
  1018. 0xe1d140b0, /* busy ldrh r4, [r1] */
  1019. 0xe0047005, /* and r7, r4, r5 */
  1020. 0xe1570005, /* cmp r7, r5 */
  1021. 0x1afffffb, /* bne busy */
  1022. 0xe1140006, /* tst r4, r6 */
  1023. 0x1a000003, /* bne done */
  1024. 0xe2522001, /* subs r2, r2, #1 */
  1025. 0x0a000001, /* beq done */
  1026. 0xe2811002, /* add r1, r1 #2 */
  1027. 0xeafffff2, /* b loop */
  1028. 0xeafffffe /* done: b -2 */
  1029. };
  1030. static const uint32_t word_8_code[] = {
  1031. 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
  1032. 0xe5c13000, /* strb r3, [r1] */
  1033. 0xe5c14000, /* strb r4, [r1] */
  1034. 0xe5d14000, /* busy ldrb r4, [r1] */
  1035. 0xe0047005, /* and r7, r4, r5 */
  1036. 0xe1570005, /* cmp r7, r5 */
  1037. 0x1afffffb, /* bne busy */
  1038. 0xe1140006, /* tst r4, r6 */
  1039. 0x1a000003, /* bne done */
  1040. 0xe2522001, /* subs r2, r2, #1 */
  1041. 0x0a000001, /* beq done */
  1042. 0xe2811001, /* add r1, r1 #1 */
  1043. 0xeafffff2, /* b loop */
  1044. 0xeafffffe /* done: b -2 */
  1045. };
  1046. uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
  1047. const uint32_t *target_code_src;
  1048. uint32_t target_code_size;
  1049. int retval = ERROR_OK;
  1050. cfi_intel_clear_status_register(bank);
  1051. armv4_5_info.common_magic = ARM_COMMON_MAGIC;
  1052. armv4_5_info.core_mode = ARM_MODE_SVC;
  1053. armv4_5_info.core_state = ARM_STATE_ARM;
  1054. /* If we are setting up the write_algorith, we need target_code_src */
  1055. /* if not we only need target_code_size. */
  1056. /* However, we don't want to create multiple code paths, so we */
  1057. /* do the unecessary evaluation of target_code_src, which the */
  1058. /* compiler will probably nicely optimize away if not needed */
  1059. /* prepare algorithm code for target endian */
  1060. switch (bank->bus_width)
  1061. {
  1062. case 1 :
  1063. target_code_src = word_8_code;
  1064. target_code_size = sizeof(word_8_code);
  1065. break;
  1066. case 2 :
  1067. target_code_src = word_16_code;
  1068. target_code_size = sizeof(word_16_code);
  1069. break;
  1070. case 4 :
  1071. target_code_src = word_32_code;
  1072. target_code_size = sizeof(word_32_code);
  1073. break;
  1074. default:
  1075. LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
  1076. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1077. }
  1078. /* flash write code */
  1079. if (!cfi_info->write_algorithm)
  1080. {
  1081. if (target_code_size > sizeof(target_code))
  1082. {
  1083. LOG_WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile.");
  1084. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1085. }
  1086. cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
  1087. /* Get memory for block write handler */
  1088. retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
  1089. if (retval != ERROR_OK)
  1090. {
  1091. LOG_WARNING("No working area available, can't do block memory writes");
  1092. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1093. };
  1094. /* write algorithm code to working area */
  1095. retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code);
  1096. if (retval != ERROR_OK)
  1097. {
  1098. LOG_ERROR("Unable to write block write code to target");
  1099. goto cleanup;
  1100. }
  1101. }
  1102. /* Get a workspace buffer for the data to flash starting with 32k size.
  1103. Half size until buffer would be smaller 256 Bytem then fail back */
  1104. /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
  1105. while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
  1106. {
  1107. buffer_size /= 2;
  1108. if (buffer_size <= 256)
  1109. {
  1110. LOG_WARNING("no large enough working area available, can't do block memory writes");
  1111. retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1112. goto cleanup;
  1113. }
  1114. };
  1115. /* setup algo registers */
  1116. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
  1117. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  1118. init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
  1119. init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
  1120. init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
  1121. init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
  1122. init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
  1123. /* prepare command and status register patterns */
  1124. write_command_val = cfi_command_val(bank, 0x40);
  1125. busy_pattern_val = cfi_command_val(bank, 0x80);
  1126. error_pattern_val = cfi_command_val(bank, 0x7e);
  1127. LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32, source->address, buffer_size);
  1128. /* Programming main loop */
  1129. while (count > 0)
  1130. {
  1131. uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
  1132. uint32_t wsm_error;
  1133. if ((retval = target_write_buffer(target, source->address, thisrun_count, buffer)) != ERROR_OK)
  1134. {
  1135. goto cleanup;
  1136. }
  1137. buf_set_u32(reg_params[0].value, 0, 32, source->address);
  1138. buf_set_u32(reg_params[1].value, 0, 32, address);
  1139. buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
  1140. buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
  1141. buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
  1142. buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
  1143. LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address);
  1144. /* Execute algorithm, assume breakpoint for last instruction */
  1145. retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
  1146. cfi_info->write_algorithm->address,
  1147. cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t),
  1148. 10000, /* 10s should be enough for max. 32k of data */
  1149. &armv4_5_info);
  1150. /* On failure try a fall back to direct word writes */
  1151. if (retval != ERROR_OK)
  1152. {
  1153. cfi_intel_clear_status_register(bank);
  1154. LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
  1155. retval = ERROR_FLASH_OPERATION_FAILED;
  1156. /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
  1157. /* FIXME To allow fall back or recovery, we must save the actual status
  1158. somewhere, so that a higher level code can start recovery. */
  1159. goto cleanup;
  1160. }
  1161. /* Check return value from algo code */
  1162. wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
  1163. if (wsm_error)
  1164. {
  1165. /* read status register (outputs debug inforation) */
  1166. uint8_t status;
  1167. cfi_intel_wait_status_busy(bank, 100, &status);
  1168. cfi_intel_clear_status_register(bank);
  1169. retval = ERROR_FLASH_OPERATION_FAILED;
  1170. goto cleanup;
  1171. }
  1172. buffer += thisrun_count;
  1173. address += thisrun_count;
  1174. count -= thisrun_count;
  1175. keep_alive();
  1176. }
  1177. /* free up resources */
  1178. cleanup:
  1179. if (source)
  1180. target_free_working_area(target, source);
  1181. if (cfi_info->write_algorithm)
  1182. {
  1183. target_free_working_area(target, cfi_info->write_algorithm);
  1184. cfi_info->write_algorithm = NULL;
  1185. }
  1186. destroy_reg_param(&reg_params[0]);
  1187. destroy_reg_param(&reg_params[1]);
  1188. destroy_reg_param(&reg_params[2]);
  1189. destroy_reg_param(&reg_params[3]);
  1190. destroy_reg_param(&reg_params[4]);
  1191. destroy_reg_param(&reg_params[5]);
  1192. destroy_reg_param(&reg_params[6]);
  1193. return retval;
  1194. }
  1195. static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
  1196. {
  1197. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1198. struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
  1199. struct target *target = bank->target;
  1200. struct reg_param reg_params[10];
  1201. struct arm_algorithm armv4_5_info;
  1202. struct working_area *source;
  1203. uint32_t buffer_size = 32768;
  1204. uint32_t status;
  1205. int retval = ERROR_OK;
  1206. /* input parameters - */
  1207. /* R0 = source address */
  1208. /* R1 = destination address */
  1209. /* R2 = number of writes */
  1210. /* R3 = flash write command */
  1211. /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
  1212. /* output parameters - */
  1213. /* R5 = 0x80 ok 0x00 bad */
  1214. /* temp registers - */
  1215. /* R6 = value read from flash to test status */
  1216. /* R7 = holding register */
  1217. /* unlock registers - */
  1218. /* R8 = unlock1_addr */
  1219. /* R9 = unlock1_cmd */
  1220. /* R10 = unlock2_addr */
  1221. /* R11 = unlock2_cmd */
  1222. static const uint32_t word_32_code[] = {
  1223. /* 00008100 <sp_32_code>: */
  1224. 0xe4905004, /* ldr r5, [r0], #4 */
  1225. 0xe5889000, /* str r9, [r8] */
  1226. 0xe58ab000, /* str r11, [r10] */
  1227. 0xe5883000, /* str r3, [r8] */
  1228. 0xe5815000, /* str r5, [r1] */
  1229. 0xe1a00000, /* nop */
  1230. /* */
  1231. /* 00008110 <sp_32_busy>: */
  1232. 0xe5916000, /* ldr r6, [r1] */
  1233. 0xe0257006, /* eor r7, r5, r6 */
  1234. 0xe0147007, /* ands r7, r4, r7 */
  1235. 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
  1236. 0xe0166124, /* ands r6, r6, r4, lsr #2 */
  1237. 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
  1238. 0xe5916000, /* ldr r6, [r1] */
  1239. 0xe0257006, /* eor r7, r5, r6 */
  1240. 0xe0147007, /* ands r7, r4, r7 */
  1241. 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
  1242. 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
  1243. 0x1a000004, /* bne 8154 <sp_32_done> */
  1244. /* */
  1245. /* 00008140 <sp_32_cont>: */
  1246. 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
  1247. 0x03a05080, /* moveq r5, #128 ; 0x80 */
  1248. 0x0a000001, /* beq 8154 <sp_32_done> */
  1249. 0xe2811004, /* add r1, r1, #4 ; 0x4 */
  1250. 0xeaffffe8, /* b 8100 <sp_32_code> */
  1251. /* */
  1252. /* 00008154 <sp_32_done>: */
  1253. 0xeafffffe /* b 8154 <sp_32_done> */
  1254. };
  1255. static const uint32_t word_16_code[] = {
  1256. /* 00008158 <sp_16_code>: */
  1257. 0xe0d050b2, /* ldrh r5, [r0], #2 */
  1258. 0xe1c890b0, /* strh r9, [r8] */
  1259. 0xe1cab0b0, /* strh r11, [r10] */
  1260. 0xe1c830b0, /* strh r3, [r8] */
  1261. 0xe1c150b0, /* strh r5, [r1] */
  1262. 0xe1a00000, /* nop (mov r0,r0) */
  1263. /* */
  1264. /* 00008168 <sp_16_busy>: */
  1265. 0xe1d160b0, /* ldrh r6, [r1] */
  1266. 0xe0257006, /* eor r7, r5, r6 */
  1267. 0xe0147007, /* ands r7, r4, r7 */
  1268. 0x0a000007, /* beq 8198 <sp_16_cont> */
  1269. 0xe0166124, /* ands r6, r6, r4, lsr #2 */
  1270. 0x0afffff9, /* beq 8168 <sp_16_busy> */
  1271. 0xe1d160b0, /* ldrh r6, [r1] */
  1272. 0xe0257006, /* eor r7, r5, r6 */
  1273. 0xe0147007, /* ands r7, r4, r7 */
  1274. 0x0a000001, /* beq 8198 <sp_16_cont> */
  1275. 0xe3a05000, /* mov r5, #0 ; 0x0 */
  1276. 0x1a000004, /* bne 81ac <sp_16_done> */
  1277. /* */
  1278. /* 00008198 <sp_16_cont>: */
  1279. 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
  1280. 0x03a05080, /* moveq r5, #128 ; 0x80 */
  1281. 0x0a000001, /* beq 81ac <sp_16_done> */
  1282. 0xe2811002, /* add r1, r1, #2 ; 0x2 */
  1283. 0xeaffffe8, /* b 8158 <sp_16_code> */
  1284. /* */
  1285. /* 000081ac <sp_16_done>: */
  1286. 0xeafffffe /* b 81ac <sp_16_done> */
  1287. };
  1288. static const uint32_t word_16_code_dq7only[] = {
  1289. /* <sp_16_code>: */
  1290. 0xe0d050b2, /* ldrh r5, [r0], #2 */
  1291. 0xe1c890b0, /* strh r9, [r8] */
  1292. 0xe1cab0b0, /* strh r11, [r10] */
  1293. 0xe1c830b0, /* strh r3, [r8] */
  1294. 0xe1c150b0, /* strh r5, [r1] */
  1295. 0xe1a00000, /* nop (mov r0,r0) */
  1296. /* */
  1297. /* <sp_16_busy>: */
  1298. 0xe1d160b0, /* ldrh r6, [r1] */
  1299. 0xe0257006, /* eor r7, r5, r6 */
  1300. 0xe2177080, /* ands r7, #0x80 */
  1301. 0x1afffffb, /* bne 8168 <sp_16_busy> */
  1302. /* */
  1303. 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
  1304. 0x03a05080, /* moveq r5, #128 ; 0x80 */
  1305. 0x0a000001, /* beq 81ac <sp_16_done> */
  1306. 0xe2811002, /* add r1, r1, #2 ; 0x2 */
  1307. 0xeafffff0, /* b 8158 <sp_16_code> */
  1308. /* */
  1309. /* 000081ac <sp_16_done>: */
  1310. 0xeafffffe /* b 81ac <sp_16_done> */
  1311. };
  1312. static const uint32_t word_8_code[] = {
  1313. /* 000081b0 <sp_16_code_end>: */
  1314. 0xe4d05001, /* ldrb r5, [r0], #1 */
  1315. 0xe5c89000, /* strb r9, [r8] */
  1316. 0xe5cab000, /* strb r11, [r10] */
  1317. 0xe5c83000, /* strb r3, [r8] */
  1318. 0xe5c15000, /* strb r5, [r1] */
  1319. 0xe1a00000, /* nop (mov r0,r0) */
  1320. /* */
  1321. /* 000081c0 <sp_8_busy>: */
  1322. 0xe5d16000, /* ldrb r6, [r1] */
  1323. 0xe0257006, /* eor r7, r5, r6 */
  1324. 0xe0147007, /* ands r7, r4, r7 */
  1325. 0x0a000007, /* beq 81f0 <sp_8_cont> */
  1326. 0xe0166124, /* ands r6, r6, r4, lsr #2 */
  1327. 0x0afffff9, /* beq 81c0 <sp_8_busy> */
  1328. 0xe5d16000, /* ldrb r6, [r1] */
  1329. 0xe0257006, /* eor r7, r5, r6 */
  1330. 0xe0147007, /* ands r7, r4, r7 */
  1331. 0x0a000001, /* beq 81f0 <sp_8_cont> */
  1332. 0xe3a05000, /* mov r5, #0 ; 0x0 */
  1333. 0x1a000004, /* bne 8204 <sp_8_done> */
  1334. /* */
  1335. /* 000081f0 <sp_8_cont>: */
  1336. 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
  1337. 0x03a05080, /* moveq r5, #128 ; 0x80 */
  1338. 0x0a000001, /* beq 8204 <sp_8_done> */
  1339. 0xe2811001, /* add r1, r1, #1 ; 0x1 */
  1340. 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
  1341. /* */
  1342. /* 00008204 <sp_8_done>: */
  1343. 0xeafffffe /* b 8204 <sp_8_done> */
  1344. };
  1345. armv4_5_info.common_magic = ARM_COMMON_MAGIC;
  1346. armv4_5_info.core_mode = ARM_MODE_SVC;
  1347. armv4_5_info.core_state = ARM_STATE_ARM;
  1348. int target_code_size;
  1349. const uint32_t *target_code_src;
  1350. switch (bank->bus_width)
  1351. {
  1352. case 1 :
  1353. target_code_src = word_8_code;
  1354. target_code_size = sizeof(word_8_code);
  1355. break;
  1356. case 2 :
  1357. /* Check for DQ5 support */
  1358. if( cfi_info->status_poll_mask & (1 << 5) )
  1359. {
  1360. target_code_src = word_16_code;
  1361. target_code_size = sizeof(word_16_code);
  1362. }
  1363. else
  1364. {
  1365. /* No DQ5 support. Use DQ7 DATA# polling only. */
  1366. target_code_src = word_16_code_dq7only;
  1367. target_code_size = sizeof(word_16_code_dq7only);
  1368. }
  1369. break;
  1370. case 4 :
  1371. target_code_src = word_32_code;
  1372. target_code_size = sizeof(word_32_code);
  1373. break;
  1374. default:
  1375. LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
  1376. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1377. }
  1378. /* flash write code */
  1379. if (!cfi_info->write_algorithm)
  1380. {
  1381. uint8_t *target_code;
  1382. /* convert bus-width dependent algorithm code to correct endiannes */
  1383. target_code = malloc(target_code_size);
  1384. if (target_code == NULL)
  1385. {
  1386. LOG_ERROR("Out of memory");
  1387. return ERROR_FAIL;
  1388. }
  1389. cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
  1390. /* allocate working area */
  1391. retval = target_alloc_working_area(target, target_code_size,
  1392. &cfi_info->write_algorithm);
  1393. if (retval != ERROR_OK)
  1394. {
  1395. free(target_code);
  1396. return retval;
  1397. }
  1398. /* write algorithm code to working area */
  1399. if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address,
  1400. target_code_size, target_code)) != ERROR_OK)
  1401. {
  1402. free(target_code);
  1403. return retval;
  1404. }
  1405. free(target_code);
  1406. }
  1407. /* the following code still assumes target code is fixed 24*4 bytes */
  1408. while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
  1409. {
  1410. buffer_size /= 2;
  1411. if (buffer_size <= 256)
  1412. {
  1413. /* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
  1414. if (cfi_info->write_algorithm)
  1415. target_free_working_area(target, cfi_info->write_algorithm);
  1416. LOG_WARNING("not enough working area available, can't do block memory writes");
  1417. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1418. }
  1419. };
  1420. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
  1421. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
  1422. init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
  1423. init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
  1424. init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
  1425. init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
  1426. init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
  1427. init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
  1428. init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
  1429. init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
  1430. while (count > 0)
  1431. {
  1432. uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
  1433. retval = target_write_buffer(target, source->address, thisrun_count, buffer);
  1434. if (retval != ERROR_OK)
  1435. {
  1436. break;
  1437. }
  1438. buf_set_u32(reg_params[0].value, 0, 32, source->address);
  1439. buf_set_u32(reg_params[1].value, 0, 32, address);
  1440. buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
  1441. buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
  1442. buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
  1443. buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
  1444. buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
  1445. buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
  1446. buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
  1447. retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
  1448. cfi_info->write_algorithm->address,
  1449. cfi_info->write_algorithm->address + ((target_code_size) - 4),
  1450. 10000, &armv4_5_info);
  1451. if (retval != ERROR_OK)
  1452. {
  1453. break;
  1454. }
  1455. status = buf_get_u32(reg_params[5].value, 0, 32);
  1456. if (status != 0x80)
  1457. {
  1458. LOG_ERROR("flash write block failed status: 0x%" PRIx32 , status);
  1459. retval = ERROR_FLASH_OPERATION_FAILED;
  1460. break;
  1461. }
  1462. buffer += thisrun_count;
  1463. address += thisrun_count;
  1464. count -= thisrun_count;
  1465. }
  1466. target_free_all_working_areas(target);
  1467. destroy_reg_param(&reg_params[0]);
  1468. destroy_reg_param(&reg_params[1]);
  1469. destroy_reg_param(&reg_params[2]);
  1470. destroy_reg_param(&reg_params[3]);
  1471. destroy_reg_param(&reg_params[4]);
  1472. destroy_reg_param(&reg_params[5]);
  1473. destroy_reg_param(&reg_params[6]);
  1474. destroy_reg_param(&reg_params[7]);
  1475. destroy_reg_param(&reg_params[8]);
  1476. destroy_reg_param(&reg_params[9]);
  1477. return retval;
  1478. }
  1479. static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
  1480. {
  1481. int retval;
  1482. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1483. struct target *target = bank->target;
  1484. cfi_intel_clear_status_register(bank);
  1485. if ((retval = cfi_send_command(bank, 0x40, address)) != ERROR_OK)
  1486. {
  1487. return retval;
  1488. }
  1489. if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
  1490. {
  1491. return retval;
  1492. }
  1493. uint8_t status;
  1494. retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max), &status);
  1495. if (retval != 0x80)
  1496. {
  1497. if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
  1498. {
  1499. return retval;
  1500. }
  1501. LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
  1502. return ERROR_FLASH_OPERATION_FAILED;
  1503. }
  1504. return ERROR_OK;
  1505. }
  1506. static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
  1507. {
  1508. int retval;
  1509. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1510. struct target *target = bank->target;
  1511. /* Calculate buffer size and boundary mask */
  1512. /* buffersize is (buffer size per chip) * (number of chips) */
  1513. /* bufferwsize is buffersize in words */
  1514. uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
  1515. uint32_t buffermask = buffersize-1;
  1516. uint32_t bufferwsize = buffersize / bank->bus_width;
  1517. /* Check for valid range */
  1518. if (address & buffermask)
  1519. {
  1520. LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary",
  1521. bank->base, address, cfi_info->max_buf_write_size);
  1522. return ERROR_FLASH_OPERATION_FAILED;
  1523. }
  1524. /* Check for valid size */
  1525. if (wordcount > bufferwsize)
  1526. {
  1527. LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32 , wordcount, buffersize);
  1528. return ERROR_FLASH_OPERATION_FAILED;
  1529. }
  1530. /* Write to flash buffer */
  1531. cfi_intel_clear_status_register(bank);
  1532. /* Initiate buffer operation _*/
  1533. if ((retval = cfi_send_command(bank, 0xe8, address)) != ERROR_OK)
  1534. {
  1535. return retval;
  1536. }
  1537. uint8_t status;
  1538. retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max), &status);
  1539. if (retval != ERROR_OK)
  1540. return retval;
  1541. if (status != 0x80)
  1542. {
  1543. if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
  1544. {
  1545. return retval;
  1546. }
  1547. LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
  1548. return ERROR_FLASH_OPERATION_FAILED;
  1549. }
  1550. /* Write buffer wordcount-1 and data words */
  1551. if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
  1552. {
  1553. return retval;
  1554. }
  1555. if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
  1556. {
  1557. return retval;
  1558. }
  1559. /* Commit write operation */
  1560. if ((retval = cfi_send_command(bank, 0xd0, address)) != ERROR_OK)
  1561. {
  1562. return retval;
  1563. }
  1564. retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max), &status);
  1565. if (retval != ERROR_OK)
  1566. return retval;
  1567. if (status != 0x80)
  1568. {
  1569. if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
  1570. {
  1571. return retval;
  1572. }
  1573. LOG_ERROR("Buffer write at base 0x%" PRIx32 ", address %" PRIx32 " failed.", bank->base, address);
  1574. return ERROR_FLASH_OPERATION_FAILED;
  1575. }
  1576. return ERROR_OK;
  1577. }
  1578. static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
  1579. {
  1580. int retval;
  1581. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1582. struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
  1583. struct target *target = bank->target;
  1584. if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
  1585. {
  1586. return retval;
  1587. }
  1588. if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
  1589. {
  1590. return retval;
  1591. }
  1592. if ((retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
  1593. {
  1594. return retval;
  1595. }
  1596. if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
  1597. {
  1598. return retval;
  1599. }
  1600. if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
  1601. {
  1602. if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
  1603. {
  1604. return retval;
  1605. }
  1606. LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
  1607. return ERROR_FLASH_OPERATION_FAILED;
  1608. }
  1609. return ERROR_OK;
  1610. }
  1611. static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
  1612. {
  1613. int retval;
  1614. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1615. struct target *target = bank->target;
  1616. struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
  1617. /* Calculate buffer size and boundary mask */
  1618. /* buffersize is (buffer size per chip) * (number of chips) */
  1619. /* bufferwsize is buffersize in words */
  1620. uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
  1621. uint32_t buffermask = buffersize-1;
  1622. uint32_t bufferwsize = buffersize / bank->bus_width;
  1623. /* Check for valid range */
  1624. if (address & buffermask)
  1625. {
  1626. LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size);
  1627. return ERROR_FLASH_OPERATION_FAILED;
  1628. }
  1629. /* Check for valid size */
  1630. if (wordcount > bufferwsize)
  1631. {
  1632. LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32, wordcount, buffersize);
  1633. return ERROR_FLASH_OPERATION_FAILED;
  1634. }
  1635. // Unlock
  1636. if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
  1637. {
  1638. return retval;
  1639. }
  1640. if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
  1641. {
  1642. return retval;
  1643. }
  1644. // Buffer load command
  1645. if ((retval = cfi_send_command(bank, 0x25, address)) != ERROR_OK)
  1646. {
  1647. return retval;
  1648. }
  1649. /* Write buffer wordcount-1 and data words */
  1650. if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
  1651. {
  1652. return retval;
  1653. }
  1654. if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
  1655. {
  1656. return retval;
  1657. }
  1658. /* Commit write operation */
  1659. if ((retval = cfi_send_command(bank, 0x29, address)) != ERROR_OK)
  1660. {
  1661. return retval;
  1662. }
  1663. if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
  1664. {
  1665. if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
  1666. {
  1667. return retval;
  1668. }
  1669. LOG_ERROR("couldn't write block at base 0x%" PRIx32 ", address %" PRIx32 ", size %" PRIx32 , bank->base, address, bufferwsize);
  1670. return ERROR_FLASH_OPERATION_FAILED;
  1671. }
  1672. return ERROR_OK;
  1673. }
  1674. static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
  1675. {
  1676. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1677. switch (cfi_info->pri_id)
  1678. {
  1679. case 1:
  1680. case 3:
  1681. return cfi_intel_write_word(bank, word, address);
  1682. break;
  1683. case 2:
  1684. return cfi_spansion_write_word(bank, word, address);
  1685. break;
  1686. default:
  1687. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1688. break;
  1689. }
  1690. return ERROR_FLASH_OPERATION_FAILED;
  1691. }
  1692. static int cfi_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
  1693. {
  1694. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1695. switch (cfi_info->pri_id)
  1696. {
  1697. case 1:
  1698. case 3:
  1699. return cfi_intel_write_words(bank, word, wordcount, address);
  1700. break;
  1701. case 2:
  1702. return cfi_spansion_write_words(bank, word, wordcount, address);
  1703. break;
  1704. default:
  1705. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1706. break;
  1707. }
  1708. return ERROR_FLASH_OPERATION_FAILED;
  1709. }
  1710. static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
  1711. {
  1712. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1713. struct target *target = bank->target;
  1714. uint32_t address = bank->base + offset;
  1715. uint32_t read_p;
  1716. int align; /* number of unaligned bytes */
  1717. uint8_t current_word[CFI_MAX_BUS_WIDTH];
  1718. int i;
  1719. int retval;
  1720. LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
  1721. (int)count, (unsigned)offset);
  1722. if (bank->target->state != TARGET_HALTED)
  1723. {
  1724. LOG_ERROR("Target not halted");
  1725. return ERROR_TARGET_NOT_HALTED;
  1726. }
  1727. if (offset + count > bank->size)
  1728. return ERROR_FLASH_DST_OUT_OF_BANK;
  1729. if (cfi_info->qry[0] != 'Q')
  1730. return ERROR_FLASH_BANK_NOT_PROBED;
  1731. /* start at the first byte of the first word (bus_width size) */
  1732. read_p = address & ~(bank->bus_width - 1);
  1733. if ((align = address - read_p) != 0)
  1734. {
  1735. LOG_INFO("Fixup %d unaligned read head bytes", align);
  1736. /* read a complete word from flash */
  1737. if ((retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word)) != ERROR_OK)
  1738. return retval;
  1739. /* take only bytes we need */
  1740. for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
  1741. *buffer++ = current_word[i];
  1742. read_p += bank->bus_width;
  1743. }
  1744. align = count / bank->bus_width;
  1745. if (align)
  1746. {
  1747. if ((retval = target_read_memory(target, read_p, bank->bus_width, align, buffer)) != ERROR_OK)
  1748. return retval;
  1749. read_p += align * bank->bus_width;
  1750. buffer += align * bank->bus_width;
  1751. count -= align * bank->bus_width;
  1752. }
  1753. if (count)
  1754. {
  1755. LOG_INFO("Fixup %d unaligned read tail bytes", count);
  1756. /* read a complete word from flash */
  1757. if ((retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word)) != ERROR_OK)
  1758. return retval;
  1759. /* take only bytes we need */
  1760. for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
  1761. *buffer++ = current_word[i];
  1762. }
  1763. return ERROR_OK;
  1764. }
  1765. static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
  1766. {
  1767. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1768. struct target *target = bank->target;
  1769. uint32_t address = bank->base + offset; /* address of first byte to be programmed */
  1770. uint32_t write_p;
  1771. int align; /* number of unaligned bytes */
  1772. int blk_count; /* number of bus_width bytes for block copy */
  1773. uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
  1774. int i;
  1775. int retval;
  1776. if (bank->target->state != TARGET_HALTED)
  1777. {
  1778. LOG_ERROR("Target not halted");
  1779. return ERROR_TARGET_NOT_HALTED;
  1780. }
  1781. if (offset + count > bank->size)
  1782. return ERROR_FLASH_DST_OUT_OF_BANK;
  1783. if (cfi_info->qry[0] != 'Q')
  1784. return ERROR_FLASH_BANK_NOT_PROBED;
  1785. /* start at the first byte of the first word (bus_width size) */
  1786. write_p = address & ~(bank->bus_width - 1);
  1787. if ((align = address - write_p) != 0)
  1788. {
  1789. LOG_INFO("Fixup %d unaligned head bytes", align);
  1790. /* read a complete word from flash */
  1791. if ((retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word)) != ERROR_OK)
  1792. return retval;
  1793. /* replace only bytes that must be written */
  1794. for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
  1795. current_word[i] = *buffer++;
  1796. retval = cfi_write_word(bank, current_word, write_p);
  1797. if (retval != ERROR_OK)
  1798. return retval;
  1799. write_p += bank->bus_width;
  1800. }
  1801. /* handle blocks of bus_size aligned bytes */
  1802. blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
  1803. switch (cfi_info->pri_id)
  1804. {
  1805. /* try block writes (fails without working area) */
  1806. case 1:
  1807. case 3:
  1808. retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
  1809. break;
  1810. case 2:
  1811. retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
  1812. break;
  1813. default:
  1814. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  1815. retval = ERROR_FLASH_OPERATION_FAILED;
  1816. break;
  1817. }
  1818. if (retval == ERROR_OK)
  1819. {
  1820. /* Increment pointers and decrease count on succesful block write */
  1821. buffer += blk_count;
  1822. write_p += blk_count;
  1823. count -= blk_count;
  1824. }
  1825. else
  1826. {
  1827. if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
  1828. {
  1829. /* Calculate buffer size and boundary mask */
  1830. /* buffersize is (buffer size per chip) * (number of chips) */
  1831. /* bufferwsize is buffersize in words */
  1832. uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
  1833. uint32_t buffermask = buffersize-1;
  1834. uint32_t bufferwsize = buffersize / bank->bus_width;
  1835. /* fall back to memory writes */
  1836. while (count >= (uint32_t)bank->bus_width)
  1837. {
  1838. int fallback;
  1839. if ((write_p & 0xff) == 0)
  1840. {
  1841. LOG_INFO("Programming at %08" PRIx32 ", count %08" PRIx32 " bytes remaining", write_p, count);
  1842. }
  1843. fallback = 1;
  1844. if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
  1845. {
  1846. retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
  1847. if (retval == ERROR_OK)
  1848. {
  1849. buffer += buffersize;
  1850. write_p += buffersize;
  1851. count -= buffersize;
  1852. fallback = 0;
  1853. }
  1854. }
  1855. /* try the slow way? */
  1856. if (fallback)
  1857. {
  1858. for (i = 0; i < bank->bus_width; i++)
  1859. current_word[i] = *buffer++;
  1860. retval = cfi_write_word(bank, current_word, write_p);
  1861. if (retval != ERROR_OK)
  1862. return retval;
  1863. write_p += bank->bus_width;
  1864. count -= bank->bus_width;
  1865. }
  1866. }
  1867. }
  1868. else
  1869. return retval;
  1870. }
  1871. /* return to read array mode, so we can read from flash again for padding */
  1872. if ((retval = cfi_reset(bank)) != ERROR_OK)
  1873. {
  1874. return retval;
  1875. }
  1876. /* handle unaligned tail bytes */
  1877. if (count > 0)
  1878. {
  1879. LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
  1880. /* read a complete word from flash */
  1881. if ((retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word)) != ERROR_OK)
  1882. return retval;
  1883. /* replace only bytes that must be written */
  1884. for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
  1885. current_word[i] = *buffer++;
  1886. retval = cfi_write_word(bank, current_word, write_p);
  1887. if (retval != ERROR_OK)
  1888. return retval;
  1889. }
  1890. /* return to read array mode */
  1891. return cfi_reset(bank);
  1892. }
  1893. static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *bank, void *param)
  1894. {
  1895. (void) param;
  1896. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1897. struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
  1898. pri_ext->_reversed_geometry = 1;
  1899. }
  1900. static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
  1901. {
  1902. int i;
  1903. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1904. struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
  1905. (void) param;
  1906. if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
  1907. {
  1908. LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
  1909. for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
  1910. {
  1911. int j = (cfi_info->num_erase_regions - 1) - i;
  1912. uint32_t swap;
  1913. swap = cfi_info->erase_region_info[i];
  1914. cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
  1915. cfi_info->erase_region_info[j] = swap;
  1916. }
  1917. }
  1918. }
  1919. static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
  1920. {
  1921. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1922. struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
  1923. struct cfi_unlock_addresses *unlock_addresses = param;
  1924. pri_ext->_unlock1 = unlock_addresses->unlock1;
  1925. pri_ext->_unlock2 = unlock_addresses->unlock2;
  1926. }
  1927. static int cfi_query_string(struct flash_bank *bank, int address)
  1928. {
  1929. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1930. int retval;
  1931. if ((retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address))) != ERROR_OK)
  1932. {
  1933. return retval;
  1934. }
  1935. retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
  1936. if (retval != ERROR_OK)
  1937. return retval;
  1938. retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
  1939. if (retval != ERROR_OK)
  1940. return retval;
  1941. retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
  1942. if (retval != ERROR_OK)
  1943. return retval;
  1944. LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
  1945. if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
  1946. {
  1947. if ((retval = cfi_reset(bank)) != ERROR_OK)
  1948. {
  1949. return retval;
  1950. }
  1951. LOG_ERROR("Could not probe bank: no QRY");
  1952. return ERROR_FLASH_BANK_INVALID;
  1953. }
  1954. return ERROR_OK;
  1955. }
  1956. static int cfi_probe(struct flash_bank *bank)
  1957. {
  1958. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  1959. struct target *target = bank->target;
  1960. int num_sectors = 0;
  1961. int i;
  1962. int sector = 0;
  1963. uint32_t unlock1 = 0x555;
  1964. uint32_t unlock2 = 0x2aa;
  1965. int retval;
  1966. uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
  1967. if (bank->target->state != TARGET_HALTED)
  1968. {
  1969. LOG_ERROR("Target not halted");
  1970. return ERROR_TARGET_NOT_HALTED;
  1971. }
  1972. cfi_info->probed = 0;
  1973. if (bank->sectors)
  1974. {
  1975. free(bank->sectors);
  1976. bank->sectors = NULL;
  1977. }
  1978. if(cfi_info->erase_region_info)
  1979. {
  1980. free(cfi_info->erase_region_info);
  1981. cfi_info->erase_region_info = NULL;
  1982. }
  1983. /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
  1984. * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
  1985. */
  1986. if (cfi_info->jedec_probe)
  1987. {
  1988. unlock1 = 0x5555;
  1989. unlock2 = 0x2aaa;
  1990. }
  1991. /* switch to read identifier codes mode ("AUTOSELECT") */
  1992. if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1))) != ERROR_OK)
  1993. {
  1994. return retval;
  1995. }
  1996. if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2))) != ERROR_OK)
  1997. {
  1998. return retval;
  1999. }
  2000. if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1))) != ERROR_OK)
  2001. {
  2002. return retval;
  2003. }
  2004. if ((retval = target_read_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, value_buf0)) != ERROR_OK)
  2005. {
  2006. return retval;
  2007. }
  2008. if ((retval = target_read_memory(target, flash_address(bank, 0, 0x01), bank->bus_width, 1, value_buf1)) != ERROR_OK)
  2009. {
  2010. return retval;
  2011. }
  2012. switch (bank->chip_width) {
  2013. case 1:
  2014. cfi_info->manufacturer = *value_buf0;
  2015. cfi_info->device_id = *value_buf1;
  2016. break;
  2017. case 2:
  2018. cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
  2019. cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
  2020. break;
  2021. case 4:
  2022. cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
  2023. cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
  2024. break;
  2025. default:
  2026. LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory", bank->chip_width);
  2027. return ERROR_FLASH_OPERATION_FAILED;
  2028. }
  2029. LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x", cfi_info->manufacturer, cfi_info->device_id);
  2030. /* switch back to read array mode */
  2031. if ((retval = cfi_reset(bank)) != ERROR_OK)
  2032. {
  2033. return retval;
  2034. }
  2035. /* check device/manufacturer ID for known non-CFI flashes. */
  2036. cfi_fixup_non_cfi(bank);
  2037. /* query only if this is a CFI compatible flash,
  2038. * otherwise the relevant info has already been filled in
  2039. */
  2040. if (cfi_info->not_cfi == 0)
  2041. {
  2042. /* enter CFI query mode
  2043. * according to JEDEC Standard No. 68.01,
  2044. * a single bus sequence with address = 0x55, data = 0x98 should put
  2045. * the device into CFI query mode.
  2046. *
  2047. * SST flashes clearly violate this, and we will consider them incompatbile for now
  2048. */
  2049. retval = cfi_query_string(bank, 0x55);
  2050. if (retval != ERROR_OK)
  2051. {
  2052. /*
  2053. * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
  2054. * be harmless enough:
  2055. *
  2056. * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
  2057. */
  2058. LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
  2059. retval = cfi_query_string(bank, 0x555);
  2060. }
  2061. if (retval != ERROR_OK)
  2062. return retval;
  2063. retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
  2064. if (retval != ERROR_OK)
  2065. return retval;
  2066. retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
  2067. if (retval != ERROR_OK)
  2068. return retval;
  2069. retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
  2070. if (retval != ERROR_OK)
  2071. return retval;
  2072. retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
  2073. if (retval != ERROR_OK)
  2074. return retval;
  2075. LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
  2076. retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
  2077. if (retval != ERROR_OK)
  2078. return retval;
  2079. retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
  2080. if (retval != ERROR_OK)
  2081. return retval;
  2082. retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
  2083. if (retval != ERROR_OK)
  2084. return retval;
  2085. retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
  2086. if (retval != ERROR_OK)
  2087. return retval;
  2088. retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
  2089. if (retval != ERROR_OK)
  2090. return retval;
  2091. retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
  2092. if (retval != ERROR_OK)
  2093. return retval;
  2094. retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
  2095. if (retval != ERROR_OK)
  2096. return retval;
  2097. retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
  2098. if (retval != ERROR_OK)
  2099. return retval;
  2100. retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
  2101. if (retval != ERROR_OK)
  2102. return retval;
  2103. retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
  2104. if (retval != ERROR_OK)
  2105. return retval;
  2106. retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
  2107. if (retval != ERROR_OK)
  2108. return retval;
  2109. retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
  2110. if (retval != ERROR_OK)
  2111. return retval;
  2112. LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
  2113. (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
  2114. (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
  2115. (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
  2116. (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
  2117. LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
  2118. 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
  2119. LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
  2120. (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
  2121. (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
  2122. (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
  2123. uint8_t data;
  2124. retval = cfi_query_u8(bank, 0, 0x27, &data);
  2125. if (retval != ERROR_OK)
  2126. return retval;
  2127. cfi_info->dev_size = 1 << data;
  2128. retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
  2129. if (retval != ERROR_OK)
  2130. return retval;
  2131. retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
  2132. if (retval != ERROR_OK)
  2133. return retval;
  2134. retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
  2135. if (retval != ERROR_OK)
  2136. return retval;
  2137. LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x", cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
  2138. if (cfi_info->num_erase_regions)
  2139. {
  2140. cfi_info->erase_region_info = malloc(4 * cfi_info->num_erase_regions);
  2141. for (i = 0; i < cfi_info->num_erase_regions; i++)
  2142. {
  2143. retval = cfi_query_u32(bank, 0, 0x2d + (4 * i), &cfi_info->erase_region_info[i]);
  2144. if (retval != ERROR_OK)
  2145. return retval;
  2146. LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
  2147. i,
  2148. (cfi_info->erase_region_info[i] & 0xffff) + 1,
  2149. (cfi_info->erase_region_info[i] >> 16) * 256);
  2150. }
  2151. }
  2152. else
  2153. {
  2154. cfi_info->erase_region_info = NULL;
  2155. }
  2156. /* We need to read the primary algorithm extended query table before calculating
  2157. * the sector layout to be able to apply fixups
  2158. */
  2159. switch (cfi_info->pri_id)
  2160. {
  2161. /* Intel command set (standard and extended) */
  2162. case 0x0001:
  2163. case 0x0003:
  2164. cfi_read_intel_pri_ext(bank);
  2165. break;
  2166. /* AMD/Spansion, Atmel, ... command set */
  2167. case 0x0002:
  2168. cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */
  2169. cfi_read_0002_pri_ext(bank);
  2170. break;
  2171. default:
  2172. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  2173. break;
  2174. }
  2175. /* return to read array mode
  2176. * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
  2177. */
  2178. if ((retval = cfi_reset(bank)) != ERROR_OK)
  2179. {
  2180. return retval;
  2181. }
  2182. } /* end CFI case */
  2183. /* apply fixups depending on the primary command set */
  2184. switch (cfi_info->pri_id)
  2185. {
  2186. /* Intel command set (standard and extended) */
  2187. case 0x0001:
  2188. case 0x0003:
  2189. cfi_fixup(bank, cfi_0001_fixups);
  2190. break;
  2191. /* AMD/Spansion, Atmel, ... command set */
  2192. case 0x0002:
  2193. cfi_fixup(bank, cfi_0002_fixups);
  2194. break;
  2195. default:
  2196. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  2197. break;
  2198. }
  2199. if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size)
  2200. {
  2201. LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32 " size flash was found", bank->size, cfi_info->dev_size);
  2202. }
  2203. if (cfi_info->num_erase_regions == 0)
  2204. {
  2205. /* a device might have only one erase block, spanning the whole device */
  2206. bank->num_sectors = 1;
  2207. bank->sectors = malloc(sizeof(struct flash_sector));
  2208. bank->sectors[sector].offset = 0x0;
  2209. bank->sectors[sector].size = bank->size;
  2210. bank->sectors[sector].is_erased = -1;
  2211. bank->sectors[sector].is_protected = -1;
  2212. }
  2213. else
  2214. {
  2215. uint32_t offset = 0;
  2216. for (i = 0; i < cfi_info->num_erase_regions; i++)
  2217. {
  2218. num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
  2219. }
  2220. bank->num_sectors = num_sectors;
  2221. bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
  2222. for (i = 0; i < cfi_info->num_erase_regions; i++)
  2223. {
  2224. uint32_t j;
  2225. for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
  2226. {
  2227. bank->sectors[sector].offset = offset;
  2228. bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width;
  2229. offset += bank->sectors[sector].size;
  2230. bank->sectors[sector].is_erased = -1;
  2231. bank->sectors[sector].is_protected = -1;
  2232. sector++;
  2233. }
  2234. }
  2235. if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width))
  2236. {
  2237. LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
  2238. (cfi_info->dev_size * bank->bus_width / bank->chip_width), offset);
  2239. }
  2240. }
  2241. cfi_info->probed = 1;
  2242. return ERROR_OK;
  2243. }
  2244. static int cfi_auto_probe(struct flash_bank *bank)
  2245. {
  2246. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  2247. if (cfi_info->probed)
  2248. return ERROR_OK;
  2249. return cfi_probe(bank);
  2250. }
  2251. static int cfi_intel_protect_check(struct flash_bank *bank)
  2252. {
  2253. int retval;
  2254. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  2255. struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
  2256. int i;
  2257. /* check if block lock bits are supported on this device */
  2258. if (!(pri_ext->blk_status_reg_mask & 0x1))
  2259. return ERROR_FLASH_OPERATION_FAILED;
  2260. if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
  2261. {
  2262. return retval;
  2263. }
  2264. for (i = 0; i < bank->num_sectors; i++)
  2265. {
  2266. uint8_t block_status;
  2267. retval = cfi_get_u8(bank, i, 0x2, &block_status);
  2268. if (retval != ERROR_OK)
  2269. return retval;
  2270. if (block_status & 1)
  2271. bank->sectors[i].is_protected = 1;
  2272. else
  2273. bank->sectors[i].is_protected = 0;
  2274. }
  2275. return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
  2276. }
  2277. static int cfi_spansion_protect_check(struct flash_bank *bank)
  2278. {
  2279. int retval;
  2280. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  2281. struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
  2282. int i;
  2283. if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
  2284. {
  2285. return retval;
  2286. }
  2287. if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
  2288. {
  2289. return retval;
  2290. }
  2291. if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
  2292. {
  2293. return retval;
  2294. }
  2295. for (i = 0; i < bank->num_sectors; i++)
  2296. {
  2297. uint8_t block_status;
  2298. retval = cfi_get_u8(bank, i, 0x2, &block_status);
  2299. if (retval != ERROR_OK)
  2300. return retval;
  2301. if (block_status & 1)
  2302. bank->sectors[i].is_protected = 1;
  2303. else
  2304. bank->sectors[i].is_protected = 0;
  2305. }
  2306. return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
  2307. }
  2308. static int cfi_protect_check(struct flash_bank *bank)
  2309. {
  2310. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  2311. if (bank->target->state != TARGET_HALTED)
  2312. {
  2313. LOG_ERROR("Target not halted");
  2314. return ERROR_TARGET_NOT_HALTED;
  2315. }
  2316. if (cfi_info->qry[0] != 'Q')
  2317. return ERROR_FLASH_BANK_NOT_PROBED;
  2318. switch (cfi_info->pri_id)
  2319. {
  2320. case 1:
  2321. case 3:
  2322. return cfi_intel_protect_check(bank);
  2323. break;
  2324. case 2:
  2325. return cfi_spansion_protect_check(bank);
  2326. break;
  2327. default:
  2328. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  2329. break;
  2330. }
  2331. return ERROR_OK;
  2332. }
  2333. static int get_cfi_info(struct flash_bank *bank, char *buf, int buf_size)
  2334. {
  2335. int printed;
  2336. struct cfi_flash_bank *cfi_info = bank->driver_priv;
  2337. if (cfi_info->qry[0] == 0xff)
  2338. {
  2339. printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
  2340. return ERROR_OK;
  2341. }
  2342. if (cfi_info->not_cfi == 0)
  2343. printed = snprintf(buf, buf_size, "\ncfi information:\n");
  2344. else
  2345. printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n");
  2346. buf += printed;
  2347. buf_size -= printed;
  2348. printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n",
  2349. cfi_info->manufacturer, cfi_info->device_id);
  2350. buf += printed;
  2351. buf_size -= printed;
  2352. if (cfi_info->not_cfi == 0)
  2353. {
  2354. printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
  2355. buf += printed;
  2356. buf_size -= printed;
  2357. printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x\n",
  2358. (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
  2359. (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
  2360. (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
  2361. (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
  2362. buf += printed;
  2363. buf_size -= printed;
  2364. printed = snprintf(buf, buf_size, "typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n",
  2365. 1 << cfi_info->word_write_timeout_typ,
  2366. 1 << cfi_info->buf_write_timeout_typ,
  2367. 1 << cfi_info->block_erase_timeout_typ,
  2368. 1 << cfi_info->chip_erase_timeout_typ);
  2369. buf += printed;
  2370. buf_size -= printed;
  2371. printed = snprintf(buf, buf_size, "max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n",
  2372. (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
  2373. (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
  2374. (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
  2375. (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
  2376. buf += printed;
  2377. buf_size -= printed;
  2378. printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x\n",
  2379. cfi_info->dev_size,
  2380. cfi_info->interface_desc,
  2381. 1 << cfi_info->max_buf_write_size);
  2382. buf += printed;
  2383. buf_size -= printed;
  2384. switch (cfi_info->pri_id)
  2385. {
  2386. case 1:
  2387. case 3:
  2388. cfi_intel_info(bank, buf, buf_size);
  2389. break;
  2390. case 2:
  2391. cfi_spansion_info(bank, buf, buf_size);
  2392. break;
  2393. default:
  2394. LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
  2395. break;
  2396. }
  2397. }
  2398. return ERROR_OK;
  2399. }
  2400. struct flash_driver cfi_flash = {
  2401. .name = "cfi",
  2402. .flash_bank_command = cfi_flash_bank_command,
  2403. .erase = cfi_erase,
  2404. .protect = cfi_protect,
  2405. .write = cfi_write,
  2406. .read = cfi_read,
  2407. .probe = cfi_probe,
  2408. .auto_probe = cfi_auto_probe,
  2409. /* FIXME: access flash at bus_width size */
  2410. .erase_check = default_flash_blank_check,
  2411. .protect_check = cfi_protect_check,
  2412. .info = get_cfi_info,
  2413. };