You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2210 lines
80 KiB

  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename openocd.info
  4. @settitle Open On-Chip Debugger (OpenOCD)
  5. @dircategory Development
  6. @direntry
  7. * OpenOCD: (openocd). Open On-Chip Debugger.
  8. @end direntry
  9. @c %**end of header
  10. @include version.texi
  11. @copying
  12. Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}@*
  13. Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
  14. @quotation
  15. Permission is granted to copy, distribute and/or modify this document
  16. under the terms of the GNU Free Documentation License, Version 1.2 or
  17. any later version published by the Free Software Foundation; with no
  18. Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
  19. Texts. A copy of the license is included in the section entitled ``GNU
  20. Free Documentation License''.
  21. @end quotation
  22. @end copying
  23. @titlepage
  24. @title Open On-Chip Debugger (OpenOCD)
  25. @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
  26. @subtitle @value{UPDATED}
  27. @page
  28. @vskip 0pt plus 1filll
  29. @insertcopying
  30. @end titlepage
  31. @contents
  32. @node Top, About, , (dir)
  33. @top OpenOCD
  34. This manual documents edition @value{EDITION} of the Open On-Chip Debugger
  35. (OpenOCD) version @value{VERSION}, @value{UPDATED}.
  36. @insertcopying
  37. @menu
  38. * About:: About OpenOCD.
  39. * Developers:: OpenOCD developers
  40. * Building:: Building OpenOCD
  41. * Running:: Running OpenOCD
  42. * Configuration:: OpenOCD Configuration.
  43. * Target library:: Target library
  44. * Commands:: OpenOCD Commands
  45. * Sample Scripts:: Sample Target Scripts
  46. * TFTP:: TFTP
  47. * GDB and OpenOCD:: Using GDB and OpenOCD
  48. * TCL and OpenOCD:: Using TCL and OpenOCD
  49. * TCL scripting API:: Tcl scripting API
  50. * Upgrading:: Deprecated/Removed Commands
  51. * FAQ:: Frequently Asked Questions
  52. * License:: GNU Free Documentation License
  53. * Index:: Main index.
  54. @end menu
  55. @node About
  56. @unnumbered About
  57. @cindex about
  58. The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
  59. and boundary-scan testing for embedded target devices. The targets are interfaced
  60. using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
  61. connection types in the future.
  62. OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
  63. Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
  64. ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
  65. Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
  66. Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
  67. command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
  68. and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
  69. @node Developers
  70. @chapter Developers
  71. @cindex developers
  72. OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
  73. University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
  74. Others interested in improving the state of free and open debug and testing technology
  75. are welcome to participate.
  76. Other developers have contributed support for additional targets and flashes as well
  77. as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
  78. The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
  79. @node Building
  80. @chapter Building
  81. @cindex building OpenOCD
  82. If you are interested in getting actual work done rather than building
  83. OpenOCD, then check if your interface supplier provides binaries for
  84. you. Chances are that that binary is from some SVN version that is more
  85. stable than SVN trunk where bleeding edge development takes place.
  86. You can download the current SVN version with SVN client of your choice from the
  87. following repositories:
  88. (@uref{svn://svn.berlios.de/openocd/trunk})
  89. or
  90. (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
  91. Using the SVN command line client, you can use the following command to fetch the
  92. latest version (make sure there is no (non-svn) directory called "openocd" in the
  93. current directory):
  94. @smallexample
  95. svn checkout svn://svn.berlios.de/openocd/trunk openocd
  96. @end smallexample
  97. Building OpenOCD requires a recent version of the GNU autotools.
  98. On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
  99. you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
  100. other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
  101. paths, resulting in obscure dependency errors (This is an observation I've gathered
  102. from the logs of one user - correct me if I'm wrong).
  103. You further need the appropriate driver files, if you want to build support for
  104. a FTDI FT2232 based interface:
  105. @itemize @bullet
  106. @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
  107. @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
  108. @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
  109. homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
  110. @end itemize
  111. libftdi is supported under windows. Versions earlier than 0.13 will require patching.
  112. see contrib/libftdi for more details.
  113. In general, the D2XX driver provides superior performance (several times as fast),
  114. but has the draw-back of being binary-only - though that isn't that bad, as it isn't
  115. a kernel module, only a user space library.
  116. To build OpenOCD (on both Linux and Cygwin), use the following commands:
  117. @smallexample
  118. ./bootstrap
  119. @end smallexample
  120. Bootstrap generates the configure script, and prepares building on your system.
  121. @smallexample
  122. ./configure
  123. @end smallexample
  124. Configure generates the Makefiles used to build OpenOCD.
  125. @smallexample
  126. make
  127. @end smallexample
  128. Make builds OpenOCD, and places the final executable in ./src/.
  129. The configure script takes several options, specifying which JTAG interfaces
  130. should be included:
  131. @itemize @bullet
  132. @item
  133. @option{--enable-parport}
  134. @item
  135. @option{--enable-parport_ppdev}
  136. @item
  137. @option{--enable-parport_giveio}
  138. @item
  139. @option{--enable-amtjtagaccel}
  140. @item
  141. @option{--enable-ft2232_ftd2xx}
  142. @footnote{Using the latest D2XX drivers from FTDI and following their installation
  143. instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
  144. build properly.}
  145. @item
  146. @option{--enable-ft2232_libftdi}
  147. @item
  148. @option{--with-ftd2xx=/path/to/d2xx/}
  149. @item
  150. @option{--enable-gw16012}
  151. @item
  152. @option{--enable-usbprog}
  153. @item
  154. @option{--enable-presto_libftdi}
  155. @item
  156. @option{--enable-presto_ftd2xx}
  157. @item
  158. @option{--enable-jlink}
  159. @end itemize
  160. If you want to access the parallel port using the PPDEV interface you have to specify
  161. both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
  162. the @option{--enable-parport_ppdev} option actually is an option to the parport driver
  163. (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
  164. Cygwin users have to specify the location of the FTDI D2XX package. This should be an
  165. absolute path containing no spaces.
  166. Linux users should copy the various parts of the D2XX package to the appropriate
  167. locations, i.e. /usr/include, /usr/lib.
  168. Miscellaneous configure options
  169. @itemize @bullet
  170. @item
  171. @option{--enable-gccwarnings} - enable extra gcc warnings during build
  172. @end itemize
  173. @node Running
  174. @chapter Running
  175. @cindex running OpenOCD
  176. @cindex --configfile
  177. @cindex --debug_level
  178. @cindex --logfile
  179. @cindex --search
  180. OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
  181. Run with @option{--help} or @option{-h} to view the available command line switches.
  182. It reads its configuration by default from the file openocd.cfg located in the current
  183. working directory. This may be overwritten with the @option{-f <configfile>} command line
  184. switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
  185. are executed in order.
  186. Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
  187. To enable debug output (when reporting problems or working on OpenOCD itself), use
  188. the @option{-d} command line switch. This sets the @option{debug_level} to "3", outputting
  189. the most information, including debug messages. The default setting is "2", outputting
  190. only informational messages, warnings and errors. You can also change this setting
  191. from within a telnet or gdb session using @option{debug_level <n>} @xref{debug_level}.
  192. You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
  193. Search paths for config/script files can be added to OpenOCD by using
  194. the @option{-s <search>} switch. The current directory and the OpenOCD target library
  195. is in the search path by default.
  196. Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
  197. with the target. In general, it is possible for the JTAG controller to be unresponsive until
  198. the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
  199. @node Configuration
  200. @chapter Configuration
  201. @cindex configuration
  202. OpenOCD runs as a daemon, and reads it current configuration
  203. by default from the file openocd.cfg in the current directory. A different configuration
  204. file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
  205. The configuration file is used to specify on which ports the daemon listens for new
  206. connections, the JTAG interface used to connect to the target, the layout of the JTAG
  207. chain, the targets that should be debugged, and connected flashes.
  208. @section Daemon configuration
  209. @itemize @bullet
  210. @item @b{init}
  211. @*This command terminates the configuration stage and enters the normal
  212. command mode. This can be useful to add commands to the startup scripts and commands
  213. such as resetting the target, programming flash, etc. To reset the CPU upon startup,
  214. add "init" and "reset" at the end of the config script or at the end of the
  215. OpenOCD command line using the @option{-c} command line switch.
  216. @cindex init
  217. @item @b{telnet_port} <@var{number}>
  218. @cindex telnet_port
  219. @*Port on which to listen for incoming telnet connections
  220. @item @b{telnet_async} <@var{enable/disable}>
  221. @cindex telnet_async
  222. @*Enable/disable asynchronous messages. Default off. Slows down debugging
  223. if enabled and telnet session is open while stepping.
  224. @item @b{tcl_port} <@var{number}>
  225. @cindex tcl_port
  226. @*Port on which to listen for incoming TCL syntax. This port is intended as
  227. a simplified RPC connection that can be used by clients to issue commands
  228. and get the output from the TCL engine.
  229. @item @b{gdb_port} <@var{number}>
  230. @cindex gdb_port
  231. @*First port on which to listen for incoming GDB connections. The GDB port for the
  232. first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
  233. @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
  234. @cindex gdb_breakpoint_override
  235. @anchor{gdb_breakpoint_override}
  236. @*Force breakpoint type for gdb 'break' commands.
  237. The raison d'etre for this option is to support GDB GUI's without
  238. a hard/soft breakpoint concept where the default OpenOCD and
  239. GDB behaviour is not sufficient. Note that GDB will use hardware
  240. breakpoints if the memory map has been set up for flash regions.
  241. This option replaces older arm7_9 target commands that addressed
  242. the same issue.
  243. @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
  244. @cindex gdb_detach
  245. @*Configures what OpenOCD will do when gdb detaches from the daeman.
  246. Default behaviour is <@var{resume}>
  247. @item @b{gdb_memory_map} <@var{enable|disable}>
  248. @cindex gdb_memory_map
  249. @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
  250. requested. gdb will then know when to set hardware breakpoints, and program flash
  251. using the gdb load command. @option{gdb_flash_program enable} will also need enabling
  252. for flash programming to work.
  253. Default behaviour is <@var{enable}>
  254. @xref{gdb_flash_program}.
  255. @item @b{gdb_flash_program} <@var{enable|disable}>
  256. @cindex gdb_flash_program
  257. @anchor{gdb_flash_program}
  258. @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
  259. vFlash packet is received.
  260. Default behaviour is <@var{enable}>
  261. @end itemize
  262. @section JTAG interface configuration
  263. @itemize @bullet
  264. @item @b{interface} <@var{name}>
  265. @cindex interface
  266. @*Use the interface driver <@var{name}> to connect to the target. Currently supported
  267. interfaces are
  268. @itemize @minus
  269. @item @b{parport}
  270. PC parallel port bit-banging (Wigglers, PLD download cable, ...)
  271. @end itemize
  272. @itemize @minus
  273. @item @b{amt_jtagaccel}
  274. Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
  275. mode parallel port
  276. @end itemize
  277. @itemize @minus
  278. @item @b{ft2232}
  279. FTDI FT2232 based devices using either the open-source libftdi or the binary only
  280. FTD2XX driver. The FTD2XX is superior in performance, but not available on every
  281. platform. The libftdi uses libusb, and should be portable to all systems that provide
  282. libusb.
  283. @end itemize
  284. @itemize @minus
  285. @item @b{ep93xx}
  286. Cirrus Logic EP93xx based single-board computer bit-banging (in development)
  287. @end itemize
  288. @itemize @minus
  289. @item @b{presto}
  290. ASIX PRESTO USB JTAG programmer.
  291. @end itemize
  292. @itemize @minus
  293. @item @b{usbprog}
  294. usbprog is a freely programmable USB adapter.
  295. @end itemize
  296. @itemize @minus
  297. @item @b{gw16012}
  298. Gateworks GW16012 JTAG programmer.
  299. @end itemize
  300. @itemize @minus
  301. @item @b{jlink}
  302. Segger jlink usb adapter
  303. @end itemize
  304. @end itemize
  305. @itemize @bullet
  306. @item @b{jtag_speed} <@var{reset speed}>
  307. @cindex jtag_speed
  308. @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
  309. speed. The actual effect of this option depends on the JTAG interface used.
  310. The speed used during reset can be adjusted using setting jtag_speed during
  311. pre_reset and post_reset events.
  312. @itemize @minus
  313. @item wiggler: maximum speed / @var{number}
  314. @item ft2232: 6MHz / (@var{number}+1)
  315. @item amt jtagaccel: 8 / 2**@var{number}
  316. @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
  317. @end itemize
  318. Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
  319. especially true for synthesized cores (-S).
  320. @item @b{jtag_khz} <@var{reset speed kHz}>
  321. @cindex jtag_khz
  322. @*Same as jtag_speed, except that the speed is specified in maximum kHz. If
  323. the device can not support the rate asked for, or can not translate from
  324. kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
  325. is not supported, then an error is reported.
  326. @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
  327. @cindex reset_config
  328. @*The configuration of the reset signals available on the JTAG interface AND the target.
  329. If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
  330. then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
  331. @option{srst_only} or @option{trst_and_srst}.
  332. [@var{combination}] is an optional value specifying broken reset signal implementations.
  333. @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
  334. the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
  335. that the system is reset together with the test logic (only hypothetical, I haven't
  336. seen hardware with such a bug, and can be worked around).
  337. @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
  338. The default behaviour if no option given is @option{separate}.
  339. The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
  340. reset lines to be specified. Possible values are @option{trst_push_pull} (default)
  341. and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
  342. (default) and @option{srst_push_pull} for the system reset. These values only affect
  343. JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
  344. @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
  345. @cindex jtag_device
  346. @*Describes the devices that form the JTAG daisy chain, with the first device being
  347. the one closest to TDO. The parameters are the length of the instruction register
  348. (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
  349. of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
  350. The IDCODE instruction will in future be used to query devices for their JTAG
  351. identification code. This line is the same for all ARM7 and ARM9 devices.
  352. Other devices, like CPLDs, require different parameters. An example configuration
  353. line for a Xilinx XC9500 CPLD would look like this:
  354. @smallexample
  355. jtag_device 8 0x01 0x0e3 0xfe
  356. @end smallexample
  357. The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
  358. the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
  359. The IDCODE instruction is 0xfe.
  360. @item @b{jtag_nsrst_delay} <@var{ms}>
  361. @cindex jtag_nsrst_delay
  362. @*How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
  363. starting new JTAG operations.
  364. @item @b{jtag_ntrst_delay} <@var{ms}>
  365. @cindex jtag_ntrst_delay
  366. @*Same @b{jtag_nsrst_delay}, but for nTRST
  367. The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
  368. or on-chip features) keep a reset line asserted for some time after the external reset
  369. got deasserted.
  370. @end itemize
  371. @section parport options
  372. @itemize @bullet
  373. @item @b{parport_port} <@var{number}>
  374. @cindex parport_port
  375. @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
  376. the @file{/dev/parport} device
  377. When using PPDEV to access the parallel port, use the number of the parallel port:
  378. @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
  379. you may encounter a problem.
  380. @item @b{parport_cable} <@var{name}>
  381. @cindex parport_cable
  382. @*The layout of the parallel port cable used to connect to the target.
  383. Currently supported cables are
  384. @itemize @minus
  385. @item @b{wiggler}
  386. @cindex wiggler
  387. The original Wiggler layout, also supported by several clones, such
  388. as the Olimex ARM-JTAG
  389. @item @b{wiggler2}
  390. @cindex wiggler2
  391. Same as original wiggler except an led is fitted on D5.
  392. @item @b{wiggler_ntrst_inverted}
  393. @cindex wiggler_ntrst_inverted
  394. Same as original wiggler except TRST is inverted.
  395. @item @b{old_amt_wiggler}
  396. @cindex old_amt_wiggler
  397. The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
  398. version available from the website uses the original Wiggler layout ('@var{wiggler}')
  399. @item @b{chameleon}
  400. @cindex chameleon
  401. The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
  402. program the Chameleon itself, not a connected target.
  403. @item @b{dlc5}
  404. @cindex dlc5
  405. The Xilinx Parallel cable III.
  406. @item @b{triton}
  407. @cindex triton
  408. The parallel port adapter found on the 'Karo Triton 1 Development Board'.
  409. This is also the layout used by the HollyGates design
  410. (see @uref{http://www.lartmaker.nl/projects/jtag/}).
  411. @item @b{flashlink}
  412. @cindex flashlink
  413. The ST Parallel cable.
  414. @item @b{arm-jtag}
  415. @cindex arm-jtag
  416. Same as original wiggler except SRST and TRST connections reversed and
  417. TRST is also inverted.
  418. @item @b{altium}
  419. @cindex altium
  420. Altium Universal JTAG cable.
  421. @end itemize
  422. @item @b{parport_write_on_exit} <@var{on}|@var{off}>
  423. @cindex parport_write_on_exit
  424. @*This will configure the parallel driver to write a known value to the parallel
  425. interface on exiting OpenOCD
  426. @end itemize
  427. @section amt_jtagaccel options
  428. @itemize @bullet
  429. @item @b{parport_port} <@var{number}>
  430. @cindex parport_port
  431. @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
  432. @file{/dev/parport} device
  433. @end itemize
  434. @section ft2232 options
  435. @itemize @bullet
  436. @item @b{ft2232_device_desc} <@var{description}>
  437. @cindex ft2232_device_desc
  438. @*The USB device description of the FTDI FT2232 device. If not specified, the FTDI
  439. default value is used. This setting is only valid if compiled with FTD2XX support.
  440. @item @b{ft2232_serial} <@var{serial-number}>
  441. @cindex ft2232_serial
  442. @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
  443. values are used.
  444. @item @b{ft2232_layout} <@var{name}>
  445. @cindex ft2232_layout
  446. @*The layout of the FT2232 GPIO signals used to control output-enables and reset
  447. signals. Valid layouts are
  448. @itemize @minus
  449. @item @b{usbjtag}
  450. "USBJTAG-1" layout described in the original OpenOCD diploma thesis
  451. @item @b{jtagkey}
  452. Amontec JTAGkey and JTAGkey-tiny
  453. @item @b{signalyzer}
  454. Signalyzer
  455. @item @b{olimex-jtag}
  456. Olimex ARM-USB-OCD
  457. @item @b{m5960}
  458. American Microsystems M5960
  459. @item @b{evb_lm3s811}
  460. Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
  461. SRST signals on external connector
  462. @item @b{comstick}
  463. Hitex STR9 comstick
  464. @item @b{stm32stick}
  465. Hitex STM32 Performance Stick
  466. @item @b{flyswatter}
  467. Tin Can Tools Flyswatter
  468. @item @b{turtelizer2}
  469. egnite Software turtelizer2
  470. @item @b{oocdlink}
  471. OOCDLink
  472. @end itemize
  473. @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
  474. @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
  475. default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
  476. @smallexample
  477. ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
  478. @end smallexample
  479. @item @b{ft2232_latency} <@var{ms}>
  480. @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
  481. ft2232_read() fails to return the expected number of bytes. This can be caused by
  482. USB communication delays and has proved hard to reproduce and debug. Setting the
  483. FT2232 latency timer to a larger value increases delays for short USB packages but it
  484. also reduces the risk of timeouts before receiving the expected number of bytes.
  485. The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
  486. @end itemize
  487. @section ep93xx options
  488. @cindex ep93xx options
  489. Currently, there are no options available for the ep93xx interface.
  490. @page
  491. @section Target configuration
  492. @itemize @bullet
  493. @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
  494. <@var{variant}>
  495. @cindex target
  496. @*Defines a target that should be debugged. Currently supported types are:
  497. @itemize @minus
  498. @item @b{arm7tdmi}
  499. @item @b{arm720t}
  500. @item @b{arm9tdmi}
  501. @item @b{arm920t}
  502. @item @b{arm922t}
  503. @item @b{arm926ejs}
  504. @item @b{arm966e}
  505. @item @b{cortex_m3}
  506. @item @b{feroceon}
  507. @item @b{xscale}
  508. @item @b{mips_m4k}
  509. @end itemize
  510. If you want to use a target board that is not on this list, see Adding a new
  511. target board
  512. Endianess may be @option{little} or @option{big}.
  513. @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
  514. @cindex target_script
  515. @*Event is one of the following:
  516. @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
  517. @option{pre_resume} or @option{gdb_program_config}.
  518. @option{post_reset} and @option{reset} will produce the same results.
  519. @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}> <@var{backup}|@var{nobackup}> [@option{virtual address}]
  520. @cindex working_area
  521. @*Specifies a working area for the debugger to use. This may be used to speed-up
  522. downloads to target memory and flash operations, or to perform otherwise unavailable
  523. operations (some coprocessor operations on ARM7/9 systems, for example). The last
  524. parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
  525. a working_area that doesn't need to be backed up, as performing a backup slows down operation.
  526. @end itemize
  527. @subsection arm7tdmi options
  528. @cindex arm7tdmi options
  529. target arm7tdmi <@var{endianess}> <@var{jtag#}>
  530. @*The arm7tdmi target definition requires at least one additional argument, specifying
  531. the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
  532. The optional [@var{variant}] parameter has been removed in recent versions.
  533. The correct feature set is determined at runtime.
  534. @subsection arm720t options
  535. @cindex arm720t options
  536. ARM720t options are similar to ARM7TDMI options.
  537. @subsection arm9tdmi options
  538. @cindex arm9tdmi options
  539. ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
  540. @option{arm920t}, @option{arm922t} and @option{arm940t}.
  541. This enables the hardware single-stepping support found on these cores.
  542. @subsection arm920t options
  543. @cindex arm920t options
  544. ARM920t options are similar to ARM9TDMI options.
  545. @subsection arm966e options
  546. @cindex arm966e options
  547. ARM966e options are similar to ARM9TDMI options.
  548. @subsection cortex_m3 options
  549. @cindex cortex_m3 options
  550. use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
  551. openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
  552. the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
  553. be detected and the normal reset behaviour used.
  554. @subsection xscale options
  555. @cindex xscale options
  556. Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
  557. @option{pxa250}, @option{pxa255}, @option{pxa26x}.
  558. @section Flash configuration
  559. @cindex Flash configuration
  560. @itemize @bullet
  561. @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
  562. <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
  563. @cindex flash bank
  564. @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
  565. and <@var{bus_width}> bytes using the selected flash <driver>.
  566. @end itemize
  567. @subsection lpc2000 options
  568. @cindex lpc2000 options
  569. @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  570. <@var{clock}> [@var{calc_checksum}]
  571. @*LPC flashes don't require the chip and bus width to be specified. Additional
  572. parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
  573. or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
  574. of the target this flash belongs to (first is 0), the frequency at which the core
  575. is currently running (in kHz - must be an integral number), and the optional keyword
  576. @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
  577. vector table.
  578. @subsection cfi options
  579. @cindex cfi options
  580. @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
  581. <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
  582. @*CFI flashes require the number of the target they're connected to as an additional
  583. argument. The CFI driver makes use of a working area (specified for the target)
  584. to significantly speed up operation.
  585. @var{chip_width} and @var{bus_width} are specified in bytes.
  586. The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
  587. @var{x16_as_x8} ???
  588. @subsection at91sam7 options
  589. @cindex at91sam7 options
  590. @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
  591. @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
  592. reading the chip-id and type.
  593. @subsection str7 options
  594. @cindex str7 options
  595. @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  596. @*variant can be either STR71x, STR73x or STR75x.
  597. @subsection str9 options
  598. @cindex str9 options
  599. @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  600. @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
  601. @smallexample
  602. str9x flash_config 0 4 2 0 0x80000
  603. @end smallexample
  604. This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
  605. @subsection str9 options (str9xpec driver)
  606. @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  607. @*Before using the flash commands the turbo mode will need enabling using str9xpec
  608. @option{enable_turbo} <@var{num>.}
  609. Only use this driver for locking/unlocking the device or configuring the option bytes.
  610. Use the standard str9 driver for programming.
  611. @subsection stellaris (LM3Sxxx) options
  612. @cindex stellaris (LM3Sxxx) options
  613. @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  614. @*stellaris flash plugin only require the @var{target#}.
  615. @subsection stm32x options
  616. @cindex stm32x options
  617. @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  618. @*stm32x flash plugin only require the @var{target#}.
  619. @subsection aduc702x options
  620. @cindex aduc702x options
  621. @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  622. @*aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
  623. @section mFlash configuration
  624. @cindex mFlash configuration
  625. @itemize @bullet
  626. @item @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
  627. <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
  628. @cindex mflash bank
  629. @*Configures a mflash for <@var{soc}> host bank at <@var{base}>. <@var{chip_width}> and
  630. <@var{bus_width}> are bytes order. Pin number format is dependent on host GPIO calling convention.
  631. If WP or DPD pin was not used, write -1. Currently, mflash bank support s3c2440 and pxa270.
  632. @end itemize
  633. (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
  634. @smallexample
  635. mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
  636. @end smallexample
  637. (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
  638. @smallexample
  639. mflash bank pxa270 0x08000000 2 2 43 -1 51 0
  640. @end smallexample
  641. @node Target library
  642. @chapter Target library
  643. @cindex Target library
  644. OpenOCD comes with a target configuration script library. These scripts can be
  645. used as-is or serve as a starting point.
  646. The target library is published together with the openocd executable and
  647. the path to the target library is in the OpenOCD script search path.
  648. Similarly there are example scripts for configuring the JTAG interface.
  649. The command line below uses the example parport configuration scripts
  650. that ship with OpenOCD, then configures the str710.cfg target and
  651. finally issues the init and reset command. The communication speed
  652. is set to 10kHz for reset and 8MHz for post reset.
  653. @smallexample
  654. openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
  655. @end smallexample
  656. To list the target scripts available:
  657. @smallexample
  658. $ ls /usr/local/lib/openocd/target
  659. arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
  660. at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
  661. at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
  662. at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
  663. @end smallexample
  664. @node Commands
  665. @chapter Commands
  666. @cindex commands
  667. OpenOCD allows user interaction through a GDB server (default: port 3333),
  668. a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
  669. is available from both the telnet interface and a GDB session. To issue commands to the
  670. interpreter from within a GDB session, use the @option{monitor} command, e.g. use
  671. @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
  672. GDB session.
  673. The TCL interface is used as a simplified RPC mechanism that feeds all the
  674. input into the TCL interpreter and returns the output from the evaluation of
  675. the commands.
  676. @section Daemon
  677. @itemize @bullet
  678. @item @b{sleep} <@var{msec}>
  679. @cindex sleep
  680. @*Wait for n milliseconds before resuming. Useful in connection with script files
  681. (@var{script} command and @var{target_script} configuration).
  682. @item @b{shutdown}
  683. @cindex shutdown
  684. @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
  685. @item @b{debug_level} [@var{n}]
  686. @cindex debug_level
  687. @anchor{debug_level}
  688. @*Display or adjust debug level to n<0-3>
  689. @item @b{fast} [@var{enable|disable}]
  690. @cindex fast
  691. @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
  692. downloads and fast memory access will work if the JTAG interface isn't too fast and
  693. the core doesn't run at a too low frequency. Note that this option only changes the default
  694. and that the indvidual options, like DCC memory downloads, can be enabled and disabled
  695. individually.
  696. The target specific "dangerous" optimisation tweaking options may come and go
  697. as more robust and user friendly ways are found to ensure maximum throughput
  698. and robustness with a minimum of configuration.
  699. Typically the "fast enable" is specified first on the command line:
  700. @smallexample
  701. openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
  702. @end smallexample
  703. @item @b{log_output} <@var{file}>
  704. @cindex log_output
  705. @*Redirect logging to <file> (default: stderr)
  706. @item @b{script} <@var{file}>
  707. @cindex script
  708. @*Execute commands from <file>
  709. @end itemize
  710. @subsection Target state handling
  711. @itemize @bullet
  712. @item @b{power} <@var{on}|@var{off}>
  713. @cindex reg
  714. @*Turn power switch to target on/off.
  715. No arguments: print status.
  716. @item @b{reg} [@option{#}|@option{name}] [value]
  717. @cindex reg
  718. @*Access a single register by its number[@option{#}] or by its [@option{name}].
  719. No arguments: list all available registers for the current target.
  720. Number or name argument: display a register
  721. Number or name and value arguments: set register value
  722. @item @b{poll} [@option{on}|@option{off}]
  723. @cindex poll
  724. @*Poll the target for its current state. If the target is in debug mode, architecture
  725. specific information about the current state is printed. An optional parameter
  726. allows continuous polling to be enabled and disabled.
  727. @item @b{halt} [@option{ms}]
  728. @cindex halt
  729. @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
  730. Default [@option{ms}] is 5 seconds if no arg given.
  731. Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
  732. will stop OpenOCD from waiting.
  733. @item @b{wait_halt} [@option{ms}]
  734. @cindex wait_halt
  735. @*Wait for the target to enter debug mode. Optional [@option{ms}] is
  736. a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
  737. arg given.
  738. @item @b{resume} [@var{address}]
  739. @cindex resume
  740. @*Resume the target at its current code position, or at an optional address.
  741. OpenOCD will wait 5 seconds for the target to resume.
  742. @item @b{step} [@var{address}]
  743. @cindex step
  744. @*Single-step the target at its current code position, or at an optional address.
  745. @item @b{reset} [@option{run}|@option{halt}|@option{init}]
  746. @cindex reset
  747. @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
  748. With no arguments a "reset run" is executed
  749. @itemize @minus
  750. @item @b{run}
  751. @cindex reset run
  752. @*Let the target run.
  753. @item @b{halt}
  754. @cindex reset halt
  755. @*Immediately halt the target (works only with certain configurations).
  756. @item @b{init}
  757. @cindex reset init
  758. @*Immediately halt the target, and execute the reset script (works only with certain
  759. configurations)
  760. @end itemize
  761. @item @b{soft_reset_halt}
  762. @cindex reset
  763. @*Requesting target halt and executing a soft reset.
  764. @end itemize
  765. @subsection Memory access commands
  766. @itemize @bullet
  767. @item @b{meminfo}
  768. display available ram memory.
  769. @end itemize
  770. These commands allow accesses of a specific size to the memory system:
  771. @itemize @bullet
  772. @item @b{mdw} <@var{addr}> [@var{count}]
  773. @cindex mdw
  774. @*display memory words
  775. @item @b{mdh} <@var{addr}> [@var{count}]
  776. @cindex mdh
  777. @*display memory half-words
  778. @item @b{mdb} <@var{addr}> [@var{count}]
  779. @cindex mdb
  780. @*display memory bytes
  781. @item @b{mww} <@var{addr}> <@var{value}>
  782. @cindex mww
  783. @*write memory word
  784. @item @b{mwh} <@var{addr}> <@var{value}>
  785. @cindex mwh
  786. @*write memory half-word
  787. @item @b{mwb} <@var{addr}> <@var{value}>
  788. @cindex mwb
  789. @*write memory byte
  790. @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  791. @cindex load_image
  792. @anchor{load_image}
  793. @*Load image <@var{file}> to target memory at <@var{address}>
  794. @item @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  795. @cindex fast_load_image
  796. @anchor{fast_load_image}
  797. @*Normally you should be using @b{load_image} or GDB load. However, for
  798. testing purposes or when IO overhead is significant(OpenOCD running on embedded
  799. host), then storing the image in memory and uploading the image to the target
  800. can be a way to upload e.g. multiple debug sessions when the binary does not change.
  801. Arguments as @b{load_image}, but image is stored in OpenOCD host
  802. memory, i.e. does not affect target. This approach is also useful when profiling
  803. target programming performance as IO and target programming can easily be profiled
  804. seperately.
  805. @item @b{fast_load}
  806. @cindex fast_image
  807. @anchor{fast_image}
  808. @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
  809. @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
  810. @cindex dump_image
  811. @anchor{dump_image}
  812. @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
  813. (binary) <@var{file}>.
  814. @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  815. @cindex verify_image
  816. @*Verify <@var{file}> against target memory starting at <@var{address}>.
  817. This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
  818. @end itemize
  819. @subsection Breakpoint commands
  820. @cindex Breakpoint commands
  821. @itemize @bullet
  822. @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
  823. @cindex bp
  824. @*set breakpoint <address> <length> [hw]
  825. @item @b{rbp} <@var{addr}>
  826. @cindex rbp
  827. @*remove breakpoint <adress>
  828. @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
  829. @cindex wp
  830. @*set watchpoint <address> <length> <r/w/a> [value] [mask]
  831. @item @b{rwp} <@var{addr}>
  832. @cindex rwp
  833. @*remove watchpoint <adress>
  834. @end itemize
  835. @subsection Flash commands
  836. @cindex Flash commands
  837. @itemize @bullet
  838. @item @b{flash banks}
  839. @cindex flash banks
  840. @*List configured flash banks
  841. @item @b{flash info} <@var{num}>
  842. @cindex flash info
  843. @*Print info about flash bank <@option{num}>
  844. @item @b{flash probe} <@var{num}>
  845. @cindex flash probe
  846. @*Identify the flash, or validate the parameters of the configured flash. Operation
  847. depends on the flash type.
  848. @item @b{flash erase_check} <@var{num}>
  849. @cindex flash erase_check
  850. @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
  851. updates the erase state information displayed by @option{flash info}. That means you have
  852. to issue an @option{erase_check} command after erasing or programming the device to get
  853. updated information.
  854. @item @b{flash protect_check} <@var{num}>
  855. @cindex flash protect_check
  856. @*Check protection state of sectors in flash bank <num>.
  857. @option{flash erase_sector} using the same syntax.
  858. @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
  859. @cindex flash erase_sector
  860. @anchor{flash erase_sector}
  861. @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
  862. <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
  863. require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
  864. the CFI driver).
  865. @item @b{flash erase_address} <@var{address}> <@var{length}>
  866. @cindex flash erase_address
  867. @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
  868. @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
  869. @cindex flash write_bank
  870. @anchor{flash write_bank}
  871. @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
  872. <@option{offset}> bytes from the beginning of the bank.
  873. @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
  874. @cindex flash write_image
  875. @anchor{flash write_image}
  876. @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
  877. [@var{offset}] can be specified and the file [@var{type}] can be specified
  878. explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
  879. (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
  880. if the @option{erase} parameter is given.
  881. @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
  882. @cindex flash protect
  883. @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
  884. <@var{last}> of @option{flash bank} <@var{num}>.
  885. @end itemize
  886. @subsection mFlash commands
  887. @cindex mFlash commands
  888. @itemize @bullet
  889. @item @b{mflash probe}
  890. @cindex mflash probe
  891. Probe mflash.
  892. @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
  893. @cindex mflash write
  894. Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
  895. <@var{offset}> bytes from the beginning of the bank.
  896. @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
  897. @cindex mflash dump
  898. Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
  899. to a <@var{file}>.
  900. @end itemize
  901. @page
  902. @section Target Commands
  903. @cindex Target Commands
  904. @subsection Overview
  905. @cindex Overview
  906. Pre "TCL" - many commands in OpenOCD where implemented as C functions. Post "TCL"
  907. (Jim-Tcl to be more exact, June 2008) TCL became a bigger part of OpenOCD.
  908. One of the biggest changes is the introduction of 'target specific'
  909. commands. When every time you create a target, a special command name is
  910. created specifically for that target.
  911. For example - in TCL/TK - if you create a button (or any other screen object) you
  912. can specify various "button configuration parameters". One of those parameters is
  913. the "object cmd/name" [ In TK - this is referred to as the object path ]. Later
  914. you can use that 'path' as a command to modify the button, for example to make it
  915. "grey", or change the color. In effect, the "path" function is an 'object
  916. oriented command'. The TCL change in OpenOCD follows the same principle, you create
  917. a target, and a specific "targetname" command is created.
  918. There are two methods of creating a target:
  919. @enumerate
  920. @item
  921. Using the old syntax (deprecated). Target names are autogenerated as:
  922. "target0", "target1", etc.;
  923. @cindex old syntax
  924. @item
  925. Using the new syntax, you can specify the name of the target.
  926. @cindex new syntax
  927. @end enumerate
  928. As most users will have a single JTAG target, and by default the command name will
  929. probably default to "target0", thus for reasons of simplicity the instructions below
  930. use the name "target0".
  931. @subsection Commands
  932. @cindex Commands
  933. OpenOCD has the following 'target' or 'target-like' commands:
  934. @enumerate
  935. @item
  936. @b{targets (plural)} - lists all known targets and a little bit of information about each
  937. target, most importantly the target *COMMAND*NAME* (it also lists the target number);
  938. @cindex targets
  939. @item
  940. @b{target (singular)} - used to create, configure list, etc the targets;
  941. @cindex target
  942. @item
  943. @b{target0} - the command object for the first target. Unless you specified another name.
  944. @cindex target0
  945. @end enumerate
  946. @subsubsection Targets Command
  947. @cindex Targets Command
  948. The "targets" command has 2 functions:
  949. @itemize
  950. @item
  951. With a parameter, you can change the current command line target.
  952. NOTE: "with a parameter" is really only useful with 'multiple JTAG targets' not something
  953. you normally encounter (ie: If you had 2 arm chips - sharing the same JTAG chain).
  954. @verbatim
  955. # using a target name.
  956. (gdb) mon targets target0
  957. # or a target by number.
  958. (gdb) mon targets 3
  959. @end verbatim
  960. @cindex with a parameter
  961. @item
  962. Plain, without any parameter lists targets, for example:
  963. @verbatim
  964. (gdb) mon targets
  965. CmdName Type Endian ChainPos State
  966. -- ---------- ---------- ---------- -------- ----------
  967. 0: target0 arm7tdmi little 0 halted
  968. @end verbatim
  969. This shows:
  970. @enumerate a
  971. @item
  972. in this example, a single target;
  973. @item
  974. target number 0 (1st column);
  975. @item
  976. the 'object name' is target0 (the default name);
  977. @item
  978. it is an arm7tdmi;
  979. @item
  980. little endian;
  981. @item
  982. the position in the JTAG chain;
  983. @item
  984. and is currently halted.
  985. @end enumerate
  986. @cindex without any parameter
  987. @end itemize
  988. @subsubsection Target Command
  989. @cindex Target Command
  990. The "target" command has the following options:
  991. @itemize
  992. @item
  993. target create
  994. @verbatim
  995. target create CMDNAME TYPE ... config options ...
  996. argv[0] = 'target'
  997. argv[1] = 'create'
  998. argv[2] = the 'object command'
  999. (normally, target0, see (3) above)
  1000. argv[3] = the target type, ie: arm7tdmi
  1001. argv[4..N] = configuration parameters
  1002. @end verbatim
  1003. @item
  1004. target types
  1005. Lists all supported target types; ie: arm7tdmi, xscale, fericon, cortex-m3.
  1006. The result TCL list of all known target types (and is human readable).
  1007. @item
  1008. target names
  1009. Returns a TCL list of all known target commands (and is human readable).
  1010. Example:
  1011. @verbatim
  1012. foreach t [target names] {
  1013. puts [format "Target: %s\n" $t]
  1014. }
  1015. @end verbatim
  1016. @item
  1017. target current
  1018. Returns the TCL command name of the current target.
  1019. Example:
  1020. @verbatim
  1021. set ct [target current]
  1022. set t [$ct cget -type]
  1023. puts "Current target name is: $ct, and is a: $t"
  1024. @end verbatim
  1025. @item
  1026. target number <VALUE>
  1027. Returns the TCL command name of the specified target.
  1028. Example
  1029. @verbatim
  1030. set thename [target number $x]
  1031. puts [format "Target %d is: %s\n" $x $thename]
  1032. @end verbatim
  1033. For instance, assuming the defaults
  1034. @verbatim
  1035. target number 0
  1036. @end verbatim
  1037. Would return 'target0' (or whatever you called it)
  1038. @item
  1039. target count
  1040. Returns the larget+1 target number.
  1041. Example:
  1042. @verbatim
  1043. set c [target count]
  1044. for { set x 0 } { $x < $c } { incr x } {
  1045. # Assuming you have this function..
  1046. print_target_details $x
  1047. }
  1048. @end verbatim
  1049. @end itemize
  1050. @subsubsection Target0 Command
  1051. @cindex Target0 Command
  1052. The "target0" command (the "Target Object" command):
  1053. Once a target is 'created' a command object by that targets name is created, for example
  1054. @verbatim
  1055. target create BiGRed arm7tdmi -endian little -chain-position 3
  1056. @end verbatim
  1057. Would create a [case sensitive] "command" BiGRed
  1058. If you use the old [deprecated] syntax, the name is automatically
  1059. generated and is in the form:
  1060. @verbatim
  1061. target0, target1, target2, target3, ... etc.
  1062. @end verbatim
  1063. @subsubsection Target CREATE, CONFIGURE and CGET Options Command
  1064. @cindex Target CREATE, CONFIGURE and CGET Options Command
  1065. The commands:
  1066. @verbatim
  1067. target create CMDNAME TYPE [configure-options]
  1068. CMDNAME configure [configure-options]
  1069. CMDNAME cget [configure-options]
  1070. @end verbatim
  1071. @itemize
  1072. @item
  1073. In the 'create' case, one is creating the target and can specify any
  1074. number of configuration parameters.
  1075. @item
  1076. In the 'CMDNAME configure' case, one can change the setting [Not all things can, or should be changed].
  1077. @item
  1078. In the 'CMDNAME cget' case, the goal is to query the target for a
  1079. specific configuration option.
  1080. @end itemize
  1081. In the above, the "default" name target0 is 'target0'.
  1082. Example:
  1083. From the (gdb) prompt, one can type this:
  1084. @verbatim
  1085. (gdb) mon target0 configure -endian big
  1086. @end verbatim
  1087. And change target0 to 'big-endian'. This is a contrived example,
  1088. specifically for this document - don't expect changing endian
  1089. 'mid-operation' to work you should set the endian at creation.
  1090. Known options [30/august/2008] are:
  1091. @itemize
  1092. @item
  1093. [Mandatory 'create' Options]
  1094. @itemize
  1095. @item
  1096. type arm7tdmi|arm720|etc ...
  1097. @item
  1098. chain-position NUMBER
  1099. @item
  1100. endian ENDIAN
  1101. @end itemize
  1102. @item
  1103. Optional
  1104. @itemize
  1105. @item
  1106. event EVENTNAME "tcl-action"
  1107. @item
  1108. reset RESETACTION
  1109. @item
  1110. work-area-virt ADDR
  1111. @item
  1112. work-area-phys ADDR
  1113. @item
  1114. work-area-size ADDR
  1115. @item
  1116. work-area-backup BOOLEAN
  1117. @end itemize
  1118. @end itemize
  1119. Hint: To get a list of available options, try this:
  1120. @verbatim
  1121. (gdb) mon target0 cget -BLAHBLAHBLAH
  1122. @end verbatim
  1123. the above causes an error - and a helpful list of valid options.
  1124. One can query any of the above options at run time, for example:
  1125. @verbatim
  1126. (gdb) mon target0 cget -OPTION [param]
  1127. @end verbatim
  1128. Example TCL script
  1129. @verbatim
  1130. # For all targets...
  1131. set c [target count]
  1132. for { set x 0 } { $x < $c } { incr x ] {
  1133. set n [target number $x]
  1134. set t [$n cget -type]
  1135. set e [$n cget -endian]
  1136. puts [format "%d: %s, %s, endian: %s\n" $x $n $t $n]
  1137. }
  1138. @end verbatim
  1139. Might produce:
  1140. @verbatim
  1141. 0: pic32chip, mips_m4k, endain: little
  1142. 1: arm7, arm7tdmi, endian: big
  1143. 2: blackfin, bf534, endian: little
  1144. @end verbatim
  1145. Notice the above example is not target0, target1, target2 Why? Because in this contrived multi-target example -
  1146. more human understandable target names might be helpful.
  1147. For example these two are the same:
  1148. @verbatim
  1149. (gdb) mon blackfin configure -event FOO {puts "Hi mom"}
  1150. @end verbatim
  1151. or:
  1152. @verbatim
  1153. (gdb) mon [target number 2] configure -event FOO {puts "Hi mom"}
  1154. @end verbatim
  1155. In the second case, we use [] to get the command name of target #2, in this contrived example - it is "blackfin".
  1156. Two important configuration options are:
  1157. "-event" and "-reset"
  1158. The "-reset" option specifies what should happen when the chip is reset, for example should it 'halt', 're-init',
  1159. or what.
  1160. The "-event" option less you specify a TCL command to occur when a specific event occurs.
  1161. @subsubsection Other Target Commands
  1162. @cindex Other Target Commands
  1163. @itemize
  1164. @item @b{profile} <@var{seconds}> <@var{gmon.out}>
  1165. Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
  1166. @end itemize
  1167. @subsection Target Events
  1168. @cindex Target Events
  1169. @subsubsection Overview
  1170. @cindex Overview
  1171. At various points in time - certain 'target' events happen. You can create a custom event action to occur at that time.
  1172. For example - after reset, the PLLs and CLOCKs may need to be reconfigured, or perhaps the SDRAM needs to be re-initialized.
  1173. Often the easiest way to do that is to create a simple script file containing the series of (mww [poke memory]) commands
  1174. you would type by hand, to reconfigure the target clocks. You could specify the "event action" like this:
  1175. @verbatim
  1176. (gdb) mon target0 configure -event reset-init "script cfg.clocks"
  1177. @end verbatim
  1178. In the above example, when the event "reset-init" occurs, the "action-string" will be evaluated as if you typed it at the
  1179. console:
  1180. @itemize
  1181. @item @b{Option1} - The simple approach (above) is to create a script file with lots of "mww" (memory write word) commands
  1182. to configure your targets clocks and/or external memory;
  1183. @item @b{Option2} - You can instead create a fancy TCL procedure and invoke that procedure instead of sourcing a file [In fact,
  1184. "script" is a TCL procedure that loads a file].
  1185. @end itemize
  1186. @subsubsection Details
  1187. @cindex Details
  1188. There are many events one could use, to get a current list of events type the following invalid command, you'll get a helpful
  1189. "runtime error" message, see below [list valid as of 30/august/2008]:
  1190. @verbatim
  1191. (gdb) mon target0 cget -event FAFA
  1192. Runtime error, file "../../../openocd23/src/helper/command.c", line 433:
  1193. -event: Unknown: FAFA, try one of: old-pre_reset,
  1194. old-gdb_program_config, old-post_reset, halted,
  1195. resumed, resume-start, resume-end, reset-start,
  1196. reset-assert-pre, reset-assert-post,
  1197. reset-deassert-pre, reset-deassert-post,
  1198. reset-halt-pre, reset-halt-post, reset-wait-pre,
  1199. reset-wait-post, reset-init, reset-end,
  1200. examine-start, examine-end, debug-halted,
  1201. debug-resumed, gdb-attach, gdb-detach,
  1202. gdb-flash-write-start, gdb-flash-write-end,
  1203. gdb-flash-erase-start, gdb-flash-erase-end,
  1204. resume-start, resume-ok, or resume-end
  1205. @end verbatim
  1206. NOTE: The event-names "old-*" are deprecated and exist only to help old scripts continue to function, and the old "target_script"
  1207. command to work. Please do not rely on them.
  1208. These are some other important names:
  1209. @itemize
  1210. @item gdb-flash-erase-start
  1211. @item gdb-flash-erase-end
  1212. @item gdb-flash-write-start
  1213. @item gdb-flash-write-end
  1214. @end itemize
  1215. These occur when GDB/OpenOCD attempts to erase & program the FLASH chip via GDB. For example - some PCBs may have a simple GPIO
  1216. pin that acts like a "flash write protect" you might need to write a script that disables "write protect".
  1217. To get a list of current 'event actions', type the following command:
  1218. @verbatim
  1219. (gdb) mon target0 eventlist
  1220. Event actions for target (0) target0
  1221. Event | Body
  1222. ------------------------- | ----------------------------------------
  1223. old-post_reset | script event/sam7x256_reset.script
  1224. @end verbatim
  1225. Here is a simple example for all targets:
  1226. @verbatim
  1227. (gdb) mon foreach x [target names] { $x eventlist }
  1228. @end verbatim
  1229. The above uses some TCL tricks:
  1230. @enumerate a
  1231. @item foreach VARIABLE LIST BODY
  1232. @item to generate the list, we use [target names]
  1233. @item the BODY, contains $x - the loop variable and expands to the target specific name
  1234. @end enumerate
  1235. Recalling the earlier discussion - the "object command" there are other things you can
  1236. do besides "configure" the target.
  1237. Note: Many of these commands exist as "global" commands, and they also exist as target
  1238. specific commands. For example, the "mww" (memory write word) operates on the current
  1239. target if you have more then 1 target, you must switch. In contrast to the normal
  1240. commands, these commands operate on the specific target. For example, the command "mww"
  1241. writes data to the *current* command line target.
  1242. Often, you have only a single target - but if you have multiple targets (ie: a PIC32
  1243. and an at91sam7 - your reset-init scripts might get a bit more complicated, ie: you must
  1244. specify which of the two chips you want to write to. Writing 'pic32' clock configuration
  1245. to an at91sam7 does not work).
  1246. The commands are [as of 30/august/2008]:
  1247. @verbatim
  1248. TNAME mww ADDRESS VALUE
  1249. TNAME mwh ADDRESS VALUE
  1250. TNAME mwb ADDRESS VALUE
  1251. Write(poke): 32, 16, 8bit values to memory.
  1252. TNAME mdw ADDRESS VALUE
  1253. TNAME mdh ADDRESS VALUE
  1254. TNAME mdb ADDRESS VALUE
  1255. Human 'hexdump' with ascii 32, 16, 8bit values
  1256. TNAME mem2array [see mem2array command]
  1257. TNAME array2mem [see array2mem command]
  1258. TNAME curstate
  1259. Returns the current state of the target.
  1260. TNAME examine
  1261. See 'advanced target reset'
  1262. TNAME poll
  1263. See 'advanced target reset'
  1264. TNAME reset assert
  1265. See 'advanced target reset'
  1266. TNAME reset deassert
  1267. See 'advanced target reset'
  1268. TNAME halt
  1269. See 'advanced target reset'
  1270. TNAME waitstate STATENAME
  1271. See 'advanced target reset'
  1272. @end verbatim
  1273. @page
  1274. @section Target Specific Commands
  1275. @cindex Target Specific Commands
  1276. @subsection AT91SAM7 specific commands
  1277. @cindex AT91SAM7 specific commands
  1278. The flash configuration is deduced from the chip identification register. The flash
  1279. controller handles erases automatically on a page (128/265 byte) basis so erase is
  1280. not necessary for flash programming. AT91SAM7 processors with less than 512K flash
  1281. only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
  1282. that can be erased separatly. Only an EraseAll command is supported by the controller
  1283. for each flash plane and this is called with
  1284. @itemize @bullet
  1285. @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
  1286. @*bulk erase flash planes first_plane to last_plane.
  1287. @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
  1288. @cindex at91sam7 gpnvm
  1289. @*set or clear a gpnvm bit for the processor
  1290. @end itemize
  1291. @subsection STR9 specific commands
  1292. @cindex STR9 specific commands
  1293. These are flash specific commands when using the str9xpec driver.
  1294. @itemize @bullet
  1295. @item @b{str9xpec enable_turbo} <@var{num}>
  1296. @cindex str9xpec enable_turbo
  1297. @*enable turbo mode, simply this will remove the str9 from the chain and talk
  1298. directly to the embedded flash controller.
  1299. @item @b{str9xpec disable_turbo} <@var{num}>
  1300. @cindex str9xpec disable_turbo
  1301. @*restore the str9 into jtag chain.
  1302. @item @b{str9xpec lock} <@var{num}>
  1303. @cindex str9xpec lock
  1304. @*lock str9 device. The str9 will only respond to an unlock command that will
  1305. erase the device.
  1306. @item @b{str9xpec unlock} <@var{num}>
  1307. @cindex str9xpec unlock
  1308. @*unlock str9 device.
  1309. @item @b{str9xpec options_read} <@var{num}>
  1310. @cindex str9xpec options_read
  1311. @*read str9 option bytes.
  1312. @item @b{str9xpec options_write} <@var{num}>
  1313. @cindex str9xpec options_write
  1314. @*write str9 option bytes.
  1315. @end itemize
  1316. @subsection STR9 configuration
  1317. @cindex STR9 configuration
  1318. @itemize @bullet
  1319. @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
  1320. <@var{BBADR}> <@var{NBBADR}>
  1321. @cindex str9x flash_config
  1322. @*Configure str9 flash controller.
  1323. @smallexample
  1324. eg. str9x flash_config 0 4 2 0 0x80000
  1325. This will setup
  1326. BBSR - Boot Bank Size register
  1327. NBBSR - Non Boot Bank Size register
  1328. BBADR - Boot Bank Start Address register
  1329. NBBADR - Boot Bank Start Address register
  1330. @end smallexample
  1331. @end itemize
  1332. @subsection STR9 option byte configuration
  1333. @cindex STR9 option byte configuration
  1334. @itemize @bullet
  1335. @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
  1336. @cindex str9xpec options_cmap
  1337. @*configure str9 boot bank.
  1338. @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
  1339. @cindex str9xpec options_lvdthd
  1340. @*configure str9 lvd threshold.
  1341. @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
  1342. @cindex str9xpec options_lvdsel
  1343. @*configure str9 lvd source.
  1344. @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
  1345. @cindex str9xpec options_lvdwarn
  1346. @*configure str9 lvd reset warning source.
  1347. @end itemize
  1348. @subsection STM32x specific commands
  1349. @cindex STM32x specific commands
  1350. These are flash specific commands when using the stm32x driver.
  1351. @itemize @bullet
  1352. @item @b{stm32x lock} <@var{num}>
  1353. @cindex stm32x lock
  1354. @*lock stm32 device.
  1355. @item @b{stm32x unlock} <@var{num}>
  1356. @cindex stm32x unlock
  1357. @*unlock stm32 device.
  1358. @item @b{stm32x options_read} <@var{num}>
  1359. @cindex stm32x options_read
  1360. @*read stm32 option bytes.
  1361. @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
  1362. <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
  1363. @cindex stm32x options_write
  1364. @*write stm32 option bytes.
  1365. @item @b{stm32x mass_erase} <@var{num}>
  1366. @cindex stm32x mass_erase
  1367. @*mass erase flash memory.
  1368. @end itemize
  1369. @subsection Stellaris specific commands
  1370. @cindex Stellaris specific commands
  1371. These are flash specific commands when using the Stellaris driver.
  1372. @itemize @bullet
  1373. @item @b{stellaris mass_erase} <@var{num}>
  1374. @cindex stellaris mass_erase
  1375. @*mass erase flash memory.
  1376. @end itemize
  1377. @page
  1378. @section Architecture Specific Commands
  1379. @cindex Architecture Specific Commands
  1380. @subsection ARMV4/5 specific commands
  1381. @cindex ARMV4/5 specific commands
  1382. These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
  1383. or Intel XScale (XScale isn't supported yet).
  1384. @itemize @bullet
  1385. @item @b{armv4_5 reg}
  1386. @cindex armv4_5 reg
  1387. @*Display a list of all banked core registers, fetching the current value from every
  1388. core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
  1389. register value.
  1390. @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
  1391. @cindex armv4_5 core_mode
  1392. @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
  1393. The target is resumed in the currently set @option{core_mode}.
  1394. @end itemize
  1395. @subsection ARM7/9 specific commands
  1396. @cindex ARM7/9 specific commands
  1397. These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
  1398. ARM920t or ARM926EJ-S.
  1399. @itemize @bullet
  1400. @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
  1401. @cindex arm7_9 dbgrq
  1402. @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
  1403. safe for all but ARM7TDMI--S cores (like Philips LPC).
  1404. @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
  1405. @cindex arm7_9 fast_memory_access
  1406. @anchor{arm7_9 fast_memory_access}
  1407. @*Allow OpenOCD to read and write memory without checking completion of
  1408. the operation. This provides a huge speed increase, especially with USB JTAG
  1409. cables (FT2232), but might be unsafe if used with targets running at a very low
  1410. speed, like the 32kHz startup clock of an AT91RM9200.
  1411. @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
  1412. @cindex arm7_9 dcc_downloads
  1413. @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
  1414. amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
  1415. unsafe, especially with targets running at a very low speed. This command was introduced
  1416. with OpenOCD rev. 60.
  1417. @end itemize
  1418. @subsection ARM720T specific commands
  1419. @cindex ARM720T specific commands
  1420. @itemize @bullet
  1421. @item @b{arm720t cp15} <@var{num}> [@var{value}]
  1422. @cindex arm720t cp15
  1423. @*display/modify cp15 register <@option{num}> [@option{value}].
  1424. @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
  1425. @cindex arm720t md<bhw>_phys
  1426. @*Display memory at physical address addr.
  1427. @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
  1428. @cindex arm720t mw<bhw>_phys
  1429. @*Write memory at physical address addr.
  1430. @item @b{arm720t virt2phys} <@var{va}>
  1431. @cindex arm720t virt2phys
  1432. @*Translate a virtual address to a physical address.
  1433. @end itemize
  1434. @subsection ARM9TDMI specific commands
  1435. @cindex ARM9TDMI specific commands
  1436. @itemize @bullet
  1437. @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
  1438. @cindex arm9tdmi vector_catch
  1439. @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
  1440. @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
  1441. @option{irq} @option{fiq}.
  1442. Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
  1443. @end itemize
  1444. @subsection ARM966E specific commands
  1445. @cindex ARM966E specific commands
  1446. @itemize @bullet
  1447. @item @b{arm966e cp15} <@var{num}> [@var{value}]
  1448. @cindex arm966e cp15
  1449. @*display/modify cp15 register <@option{num}> [@option{value}].
  1450. @end itemize
  1451. @subsection ARM920T specific commands
  1452. @cindex ARM920T specific commands
  1453. @itemize @bullet
  1454. @item @b{arm920t cp15} <@var{num}> [@var{value}]
  1455. @cindex arm920t cp15
  1456. @*display/modify cp15 register <@option{num}> [@option{value}].
  1457. @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
  1458. @cindex arm920t cp15i
  1459. @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
  1460. @item @b{arm920t cache_info}
  1461. @cindex arm920t cache_info
  1462. @*Print information about the caches found. This allows you to see if your target
  1463. is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
  1464. @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
  1465. @cindex arm920t md<bhw>_phys
  1466. @*Display memory at physical address addr.
  1467. @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
  1468. @cindex arm920t mw<bhw>_phys
  1469. @*Write memory at physical address addr.
  1470. @item @b{arm920t read_cache} <@var{filename}>
  1471. @cindex arm920t read_cache
  1472. @*Dump the content of ICache and DCache to a file.
  1473. @item @b{arm920t read_mmu} <@var{filename}>
  1474. @cindex arm920t read_mmu
  1475. @*Dump the content of the ITLB and DTLB to a file.
  1476. @item @b{arm920t virt2phys} <@var{va}>
  1477. @cindex arm920t virt2phys
  1478. @*Translate a virtual address to a physical address.
  1479. @end itemize
  1480. @subsection ARM926EJS specific commands
  1481. @cindex ARM926EJS specific commands
  1482. @itemize @bullet
  1483. @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
  1484. @cindex arm926ejs cp15
  1485. @*display/modify cp15 register <@option{num}> [@option{value}].
  1486. @item @b{arm926ejs cache_info}
  1487. @cindex arm926ejs cache_info
  1488. @*Print information about the caches found.
  1489. @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
  1490. @cindex arm926ejs md<bhw>_phys
  1491. @*Display memory at physical address addr.
  1492. @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
  1493. @cindex arm926ejs mw<bhw>_phys
  1494. @*Write memory at physical address addr.
  1495. @item @b{arm926ejs virt2phys} <@var{va}>
  1496. @cindex arm926ejs virt2phys
  1497. @*Translate a virtual address to a physical address.
  1498. @end itemize
  1499. @page
  1500. @section Debug commands
  1501. @cindex Debug commands
  1502. The following commands give direct access to the core, and are most likely
  1503. only useful while debugging OpenOCD.
  1504. @itemize @bullet
  1505. @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
  1506. @cindex arm7_9 write_xpsr
  1507. @*Immediately write either the current program status register (CPSR) or the saved
  1508. program status register (SPSR), without changing the register cache (as displayed
  1509. by the @option{reg} and @option{armv4_5 reg} commands).
  1510. @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
  1511. <@var{0=cpsr},@var{1=spsr}>
  1512. @cindex arm7_9 write_xpsr_im8
  1513. @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
  1514. operation (similar to @option{write_xpsr}).
  1515. @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
  1516. @cindex arm7_9 write_core_reg
  1517. @*Write a core register, without changing the register cache (as displayed by the
  1518. @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
  1519. encoding of the [M4:M0] bits of the PSR.
  1520. @end itemize
  1521. @page
  1522. @section JTAG commands
  1523. @cindex JTAG commands
  1524. @itemize @bullet
  1525. @item @b{scan_chain}
  1526. @cindex scan_chain
  1527. @*Print current scan chain configuration.
  1528. @item @b{jtag_reset} <@var{trst}> <@var{srst}>
  1529. @cindex jtag_reset
  1530. @*Toggle reset lines.
  1531. @item @b{endstate} <@var{tap_state}>
  1532. @cindex endstate
  1533. @*Finish JTAG operations in <@var{tap_state}>.
  1534. @item @b{runtest} <@var{num_cycles}>
  1535. @cindex runtest
  1536. @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
  1537. @item @b{statemove} [@var{tap_state}]
  1538. @cindex statemove
  1539. @*Move to current endstate or [@var{tap_state}]
  1540. @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  1541. @cindex irscan
  1542. @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  1543. @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
  1544. @cindex drscan
  1545. @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
  1546. @item @b{verify_ircapture} <@option{enable}|@option{disable}>
  1547. @cindex verify_ircapture
  1548. @*Verify value captured during Capture-IR. Default is enabled.
  1549. @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  1550. @cindex var
  1551. @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  1552. @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
  1553. @cindex field
  1554. Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
  1555. @end itemize
  1556. @page
  1557. @section Target Requests
  1558. @cindex Target Requests
  1559. OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
  1560. See libdcc in the contrib dir for more details.
  1561. @itemize @bullet
  1562. @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
  1563. @cindex target_request debugmsgs
  1564. @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
  1565. @end itemize
  1566. @node TFTP
  1567. @chapter TFTP
  1568. @cindex TFTP
  1569. If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
  1570. be used to access files on PCs(either developer PC or some other PC).
  1571. The way this works is to prefix a filename by "/tftp/ip/" and append
  1572. the tftp path on the tftp server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf"
  1573. will load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
  1574. if the file was hosted on the embedded host.
  1575. In order to achieve decent performance, you must choose a tftp server
  1576. that supports a packet size bigger than the default packet size(512 bytes). There
  1577. are numerous tftp servers out there(free and commercial) and you will have to do
  1578. a bit of googling to find something that fits your requirements.
  1579. @node Sample Scripts
  1580. @chapter Sample Scripts
  1581. @cindex scripts
  1582. This page shows how to use the target library.
  1583. The configuration script can be divided in the following section:
  1584. @itemize @bullet
  1585. @item daemon configuration
  1586. @item interface
  1587. @item jtag scan chain
  1588. @item target configuration
  1589. @item flash configuration
  1590. @end itemize
  1591. Detailed information about each section can be found at OpenOCD configuration.
  1592. @section AT91R40008 example
  1593. @cindex AT91R40008 example
  1594. To start OpenOCD with a target script for the AT91R40008 CPU and reset
  1595. the CPU upon startup of the OpenOCD daemon.
  1596. @smallexample
  1597. openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
  1598. @end smallexample
  1599. @node GDB and OpenOCD
  1600. @chapter GDB and OpenOCD
  1601. @cindex GDB and OpenOCD
  1602. OpenOCD complies with the remote gdbserver protocol, and as such can be used
  1603. to debug remote targets.
  1604. @section Connecting to gdb
  1605. @cindex Connecting to gdb
  1606. Use GDB 6.7 or newer with OpenOCD if you run into trouble. For instance 6.3 has a
  1607. known bug where it produces bogus memory access errors, which has since
  1608. been fixed: look up 1836 in http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb
  1609. A connection is typically started as follows:
  1610. @smallexample
  1611. target remote localhost:3333
  1612. @end smallexample
  1613. This would cause gdb to connect to the gdbserver on the local pc using port 3333.
  1614. To see a list of available OpenOCD commands type @option{monitor help} on the
  1615. gdb commandline.
  1616. OpenOCD supports the gdb @option{qSupported} packet, this enables information
  1617. to be sent by the gdb server (openocd) to gdb. Typical information includes
  1618. packet size and device memory map.
  1619. Previous versions of OpenOCD required the following gdb options to increase
  1620. the packet size and speed up gdb communication.
  1621. @smallexample
  1622. set remote memory-write-packet-size 1024
  1623. set remote memory-write-packet-size fixed
  1624. set remote memory-read-packet-size 1024
  1625. set remote memory-read-packet-size fixed
  1626. @end smallexample
  1627. This is now handled in the @option{qSupported} PacketSize.
  1628. @section Programming using gdb
  1629. @cindex Programming using gdb
  1630. By default the target memory map is sent to gdb, this can be disabled by
  1631. the following OpenOCD config option:
  1632. @smallexample
  1633. gdb_memory_map disable
  1634. @end smallexample
  1635. For this to function correctly a valid flash config must also be configured
  1636. in OpenOCD. For faster performance you should also configure a valid
  1637. working area.
  1638. Informing gdb of the memory map of the target will enable gdb to protect any
  1639. flash area of the target and use hardware breakpoints by default. This means
  1640. that the OpenOCD option @option{gdb_breakpoint_override} is not required when
  1641. using a memory map. @xref{gdb_breakpoint_override}.
  1642. To view the configured memory map in gdb, use the gdb command @option{info mem}
  1643. All other unasigned addresses within gdb are treated as RAM.
  1644. GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
  1645. this can be changed to the old behaviour by using the following gdb command.
  1646. @smallexample
  1647. set mem inaccessible-by-default off
  1648. @end smallexample
  1649. If @option{gdb_flash_program enable} is also used, gdb will be able to
  1650. program any flash memory using the vFlash interface.
  1651. gdb will look at the target memory map when a load command is given, if any
  1652. areas to be programmed lie within the target flash area the vFlash packets
  1653. will be used.
  1654. If the target needs configuring before gdb programming, a script can be executed.
  1655. @smallexample
  1656. target_script 0 gdb_program_config config.script
  1657. @end smallexample
  1658. To verify any flash programming the gdb command @option{compare-sections}
  1659. can be used.
  1660. @node TCL and OpenOCD
  1661. @chapter TCL and OpenOCD
  1662. @cindex TCL and OpenOCD
  1663. OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
  1664. support.
  1665. The TCL interpreter can be invoked from the interactive command line, files, and a network port.
  1666. The command and file interfaces are fairly straightforward, while the network
  1667. port is geared toward intergration with external clients. A small example
  1668. of an external TCL script that can connect to openocd is shown below.
  1669. @verbatim
  1670. # Simple tcl client to connect to openocd
  1671. puts "Use empty line to exit"
  1672. set fo [socket 127.0.0.1 6666]
  1673. puts -nonewline stdout "> "
  1674. flush stdout
  1675. while {[gets stdin line] >= 0} {
  1676. if {$line eq {}} break
  1677. puts $fo $line
  1678. flush $fo
  1679. gets $fo line
  1680. puts $line
  1681. puts -nonewline stdout "> "
  1682. flush stdout
  1683. }
  1684. close $fo
  1685. @end verbatim
  1686. This script can easily be modified to front various GUIs or be a sub
  1687. component of a larger framework for control and interaction.
  1688. @node TCL scripting API
  1689. @chapter TCL scripting API
  1690. @cindex TCL scripting API
  1691. API rules
  1692. The commands are stateless. E.g. the telnet command line has a concept
  1693. of currently active target, the Tcl API proc's take this sort of state
  1694. information as an argument to each proc.
  1695. There are three main types of return values: single value, name value
  1696. pair list and lists.
  1697. Name value pair. The proc 'foo' below returns a name/value pair
  1698. list.
  1699. @verbatim
  1700. > set foo(me) Duane
  1701. > set foo(you) Oyvind
  1702. > set foo(mouse) Micky
  1703. > set foo(duck) Donald
  1704. If one does this:
  1705. > set foo
  1706. The result is:
  1707. me Duane you Oyvind mouse Micky duck Donald
  1708. Thus, to get the names of the associative array is easy:
  1709. foreach { name value } [set foo] {
  1710. puts "Name: $name, Value: $value"
  1711. }
  1712. @end verbatim
  1713. Lists returned must be relatively small. Otherwise a range
  1714. should be passed in to the proc in question.
  1715. Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
  1716. is the low level API upon which "flash banks" is implemented.
  1717. @itemize @bullet
  1718. @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
  1719. Read memory and return as a TCL array for script processing
  1720. @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
  1721. Convert a TCL array to memory locations and write the values
  1722. @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
  1723. Return information about the flash banks
  1724. @end itemize
  1725. OpenOCD commands can consist of two words, e.g. "flash banks". The
  1726. startup.tcl "unknown" proc will translate this into a tcl proc
  1727. called "flash_banks".
  1728. @node Upgrading
  1729. @chapter Deprecated/Removed Commands
  1730. @cindex Deprecated/Removed Commands
  1731. Certain OpenOCD commands have been deprecated/removed during the various revisions.
  1732. @itemize @bullet
  1733. @item @b{load_binary}
  1734. @cindex load_binary
  1735. @*use @option{load_image} command with same args. @xref{load_image}.
  1736. @item @b{target}
  1737. @cindex target
  1738. @*@option{target} no longer take the reset_init, reset_run, run_and_halt, run_and_init. The @option{reset} command
  1739. always does a @option{reset run} when passed no arguments.
  1740. @item @b{dump_binary}
  1741. @cindex dump_binary
  1742. @*use @option{dump_image} command with same args. @xref{dump_image}.
  1743. @item @b{flash erase}
  1744. @cindex flash erase
  1745. @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
  1746. @item @b{flash write}
  1747. @cindex flash write
  1748. @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
  1749. @item @b{flash write_binary}
  1750. @cindex flash write_binary
  1751. @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
  1752. @item @b{arm7_9 fast_writes}
  1753. @cindex arm7_9 fast_writes
  1754. @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
  1755. @item @b{flash auto_erase}
  1756. @cindex flash auto_erase
  1757. @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
  1758. @item @b{daemon_startup}
  1759. @cindex daemon_startup
  1760. @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
  1761. the end of your config script will give the same behaviour as using @option{daemon_startup reset}
  1762. and @option{target cortex_m3 little reset_halt 0}.
  1763. @item @b{arm7_9 sw_bkpts}
  1764. @cindex arm7_9 sw_bkpts
  1765. @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
  1766. @item @b{arm7_9 force_hw_bkpts}
  1767. @cindex arm7_9 force_hw_bkpts
  1768. @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
  1769. for flash if the gdb memory map has been set up(default when flash is declared in
  1770. target configuration). @xref{gdb_breakpoint_override}.
  1771. @item @b{run_and_halt_time}
  1772. @cindex run_and_halt_time
  1773. @*This command has been removed for simpler reset behaviour, it can be simulated with the
  1774. following commands:
  1775. @smallexample
  1776. reset run
  1777. sleep 100
  1778. halt
  1779. @end smallexample
  1780. @end itemize
  1781. @node FAQ
  1782. @chapter FAQ
  1783. @cindex faq
  1784. @enumerate
  1785. @item OpenOCD complains about a missing cygwin1.dll.
  1786. Make sure you have Cygwin installed, or at least a version of OpenOCD that
  1787. claims to come with all the necessary dlls. When using Cygwin, try launching
  1788. OpenOCD from the Cygwin shell.
  1789. @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
  1790. Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
  1791. arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
  1792. GDB issues software breakpoints when a normal breakpoint is requested, or to implement
  1793. source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
  1794. software breakpoints consume one of the two available hardware breakpoints.
  1795. @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
  1796. and works sometimes fine.
  1797. Make sure the core frequency specified in the @option{flash lpc2000} line matches the
  1798. clock at the time you're programming the flash. If you've specified the crystal's
  1799. frequency, make sure the PLL is disabled, if you've specified the full core speed
  1800. (e.g. 60MHz), make sure the PLL is enabled.
  1801. @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
  1802. I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
  1803. out while waiting for end of scan, rtck was disabled".
  1804. Make sure your PC's parallel port operates in EPP mode. You might have to try several
  1805. settings in your PC BIOS (ECP, EPP, and different versions of those).
  1806. @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
  1807. I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
  1808. memory read caused data abort".
  1809. The errors are non-fatal, and are the result of GDB trying to trace stack frames
  1810. beyond the last valid frame. It might be possible to prevent this by setting up
  1811. a proper "initial" stack frame, if you happen to know what exactly has to
  1812. be done, feel free to add this here.
  1813. @item I get the following message in the OpenOCD console (or log file):
  1814. "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
  1815. This warning doesn't indicate any serious problem, as long as you don't want to
  1816. debug your core right out of reset. Your .cfg file specified @option{jtag_reset
  1817. trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
  1818. your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
  1819. independently. With this setup, it's not possible to halt the core right out of
  1820. reset, everything else should work fine.
  1821. @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
  1822. Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
  1823. unstable. When single-stepping over large blocks of code, GDB and OpenOCD
  1824. quit with an error message. Is there a stability issue with OpenOCD?
  1825. No, this is not a stability issue concerning OpenOCD. Most users have solved
  1826. this issue by simply using a self-powered USB hub, which they connect their
  1827. Amontec JTAGkey to. Apparently, some computers do not provide a USB power
  1828. supply stable enough for the Amontec JTAGkey to be operated.
  1829. @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
  1830. following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
  1831. 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
  1832. What does that mean and what might be the reason for this?
  1833. First of all, the reason might be the USB power supply. Try using a self-powered
  1834. hub instead of a direct connection to your computer. Secondly, the error code 4
  1835. corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
  1836. chip ran into some sort of error - this points us to a USB problem.
  1837. @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
  1838. error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
  1839. What does that mean and what might be the reason for this?
  1840. Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
  1841. has closed the connection to OpenOCD. This might be a GDB issue.
  1842. @item In the configuration file in the section where flash device configurations
  1843. are described, there is a parameter for specifying the clock frequency for
  1844. LPC2000 internal flash devices (e.g.
  1845. @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
  1846. which must be specified in kilohertz. However, I do have a quartz crystal of a
  1847. frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
  1848. Is it possible to specify real numbers for the clock frequency?
  1849. No. The clock frequency specified here must be given as an integral number.
  1850. However, this clock frequency is used by the In-Application-Programming (IAP)
  1851. routines of the LPC2000 family only, which seems to be very tolerant concerning
  1852. the given clock frequency, so a slight difference between the specified clock
  1853. frequency and the actual clock frequency will not cause any trouble.
  1854. @item Do I have to keep a specific order for the commands in the configuration file?
  1855. Well, yes and no. Commands can be given in arbitrary order, yet the devices
  1856. listed for the JTAG scan chain must be given in the right order (jtag_device),
  1857. with the device closest to the TDO-Pin being listed first. In general,
  1858. whenever objects of the same type exist which require an index number, then
  1859. these objects must be given in the right order (jtag_devices, targets and flash
  1860. banks - a target references a jtag_device and a flash bank references a target).
  1861. @item Sometimes my debugging session terminates with an error. When I look into the
  1862. log file, I can see these error messages: Error: arm7_9_common.c:561
  1863. arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
  1864. TODO.
  1865. @end enumerate
  1866. @include fdl.texi
  1867. @node Index
  1868. @unnumbered Index
  1869. @printindex cp
  1870. @bye