You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

445 lines
12 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2008 by Spencer Oliver *
  3. * spen@spen-soft.co.uk *
  4. * *
  5. * Copyright (C) 2008 by David T.L. Wong *
  6. * *
  7. * Copyright (C) 2007,2008 Øyvind Harboe *
  8. * oyvind.harboe@zylin.com *
  9. * *
  10. * This program is free software; you can redistribute it and/or modify *
  11. * it under the terms of the GNU General Public License as published by *
  12. * the Free Software Foundation; either version 2 of the License, or *
  13. * (at your option) any later version. *
  14. * *
  15. * This program is distributed in the hope that it will be useful, *
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  18. * GNU General Public License for more details. *
  19. * *
  20. * You should have received a copy of the GNU General Public License *
  21. * along with this program; if not, write to the *
  22. * Free Software Foundation, Inc., *
  23. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  24. ***************************************************************************/
  25. #ifdef HAVE_CONFIG_H
  26. #include "config.h"
  27. #endif
  28. #include "mips32.h"
  29. #include "register.h"
  30. char* mips32_core_reg_list[] =
  31. {
  32. "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
  33. "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
  34. "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
  35. "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra",
  36. "status", "lo", "hi", "badvaddr", "cause", "pc"
  37. };
  38. struct mips32_core_reg mips32_core_reg_list_arch_info[MIPS32NUMCOREREGS] =
  39. {
  40. {0, NULL, NULL},
  41. {1, NULL, NULL},
  42. {2, NULL, NULL},
  43. {3, NULL, NULL},
  44. {4, NULL, NULL},
  45. {5, NULL, NULL},
  46. {6, NULL, NULL},
  47. {7, NULL, NULL},
  48. {8, NULL, NULL},
  49. {9, NULL, NULL},
  50. {10, NULL, NULL},
  51. {11, NULL, NULL},
  52. {12, NULL, NULL},
  53. {13, NULL, NULL},
  54. {14, NULL, NULL},
  55. {15, NULL, NULL},
  56. {16, NULL, NULL},
  57. {17, NULL, NULL},
  58. {18, NULL, NULL},
  59. {19, NULL, NULL},
  60. {20, NULL, NULL},
  61. {21, NULL, NULL},
  62. {22, NULL, NULL},
  63. {23, NULL, NULL},
  64. {24, NULL, NULL},
  65. {25, NULL, NULL},
  66. {26, NULL, NULL},
  67. {27, NULL, NULL},
  68. {28, NULL, NULL},
  69. {29, NULL, NULL},
  70. {30, NULL, NULL},
  71. {31, NULL, NULL},
  72. {32, NULL, NULL},
  73. {33, NULL, NULL},
  74. {34, NULL, NULL},
  75. {35, NULL, NULL},
  76. {36, NULL, NULL},
  77. {37, NULL, NULL},
  78. };
  79. /* number of mips dummy fp regs fp0 - fp31 + fsr and fir
  80. * we also add 18 unknown registers to handle gdb requests */
  81. #define MIPS32NUMFPREGS 34 + 18
  82. uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
  83. struct reg mips32_gdb_dummy_fp_reg =
  84. {
  85. .name = "GDB dummy floating-point register",
  86. .value = mips32_gdb_dummy_fp_value,
  87. .dirty = 0,
  88. .valid = 1,
  89. .size = 32,
  90. .arch_info = NULL,
  91. };
  92. int mips32_get_core_reg(struct reg *reg)
  93. {
  94. int retval;
  95. struct mips32_core_reg *mips32_reg = reg->arch_info;
  96. struct target *target = mips32_reg->target;
  97. struct mips32_common *mips32_target = target->arch_info;
  98. if (target->state != TARGET_HALTED)
  99. {
  100. return ERROR_TARGET_NOT_HALTED;
  101. }
  102. retval = mips32_target->read_core_reg(target, mips32_reg->num);
  103. return retval;
  104. }
  105. int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
  106. {
  107. struct mips32_core_reg *mips32_reg = reg->arch_info;
  108. struct target *target = mips32_reg->target;
  109. uint32_t value = buf_get_u32(buf, 0, 32);
  110. if (target->state != TARGET_HALTED)
  111. {
  112. return ERROR_TARGET_NOT_HALTED;
  113. }
  114. buf_set_u32(reg->value, 0, 32, value);
  115. reg->dirty = 1;
  116. reg->valid = 1;
  117. return ERROR_OK;
  118. }
  119. int mips32_read_core_reg(struct target *target, int num)
  120. {
  121. uint32_t reg_value;
  122. struct mips32_core_reg *mips_core_reg;
  123. /* get pointers to arch-specific information */
  124. struct mips32_common *mips32 = target->arch_info;
  125. if ((num < 0) || (num >= MIPS32NUMCOREREGS))
  126. return ERROR_INVALID_ARGUMENTS;
  127. mips_core_reg = mips32->core_cache->reg_list[num].arch_info;
  128. reg_value = mips32->core_regs[num];
  129. buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
  130. mips32->core_cache->reg_list[num].valid = 1;
  131. mips32->core_cache->reg_list[num].dirty = 0;
  132. return ERROR_OK;
  133. }
  134. int mips32_write_core_reg(struct target *target, int num)
  135. {
  136. uint32_t reg_value;
  137. struct mips32_core_reg *mips_core_reg;
  138. /* get pointers to arch-specific information */
  139. struct mips32_common *mips32 = target->arch_info;
  140. if ((num < 0) || (num >= MIPS32NUMCOREREGS))
  141. return ERROR_INVALID_ARGUMENTS;
  142. reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
  143. mips_core_reg = mips32->core_cache->reg_list[num].arch_info;
  144. mips32->core_regs[num] = reg_value;
  145. LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
  146. mips32->core_cache->reg_list[num].valid = 1;
  147. mips32->core_cache->reg_list[num].dirty = 0;
  148. return ERROR_OK;
  149. }
  150. int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
  151. {
  152. /* get pointers to arch-specific information */
  153. struct mips32_common *mips32 = target->arch_info;
  154. int i;
  155. /* include floating point registers */
  156. *reg_list_size = MIPS32NUMCOREREGS + MIPS32NUMFPREGS;
  157. *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
  158. for (i = 0; i < MIPS32NUMCOREREGS; i++)
  159. {
  160. (*reg_list)[i] = &mips32->core_cache->reg_list[i];
  161. }
  162. /* add dummy floating points regs */
  163. for (i = MIPS32NUMCOREREGS; i < (MIPS32NUMCOREREGS + MIPS32NUMFPREGS); i++)
  164. {
  165. (*reg_list)[i] = &mips32_gdb_dummy_fp_reg;
  166. }
  167. return ERROR_OK;
  168. }
  169. int mips32_save_context(struct target *target)
  170. {
  171. int i;
  172. /* get pointers to arch-specific information */
  173. struct mips32_common *mips32 = target->arch_info;
  174. struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
  175. /* read core registers */
  176. mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
  177. for (i = 0; i < MIPS32NUMCOREREGS; i++)
  178. {
  179. if (!mips32->core_cache->reg_list[i].valid)
  180. {
  181. mips32->read_core_reg(target, i);
  182. }
  183. }
  184. return ERROR_OK;
  185. }
  186. int mips32_restore_context(struct target *target)
  187. {
  188. int i;
  189. /* get pointers to arch-specific information */
  190. struct mips32_common *mips32 = target->arch_info;
  191. struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
  192. for (i = 0; i < MIPS32NUMCOREREGS; i++)
  193. {
  194. if (mips32->core_cache->reg_list[i].dirty)
  195. {
  196. mips32->write_core_reg(target, i);
  197. }
  198. }
  199. /* write core regs */
  200. mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
  201. return ERROR_OK;
  202. }
  203. int mips32_arch_state(struct target *target)
  204. {
  205. struct mips32_common *mips32 = target->arch_info;
  206. if (mips32->common_magic != MIPS32_COMMON_MAGIC)
  207. {
  208. LOG_ERROR("BUG: called for a non-MIPS32 target");
  209. return ERROR_FAIL;
  210. }
  211. LOG_USER("target halted due to %s, pc: 0x%8.8" PRIx32 "",
  212. Jim_Nvp_value2name_simple(nvp_target_debug_reason, target->debug_reason)->name ,
  213. buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
  214. return ERROR_OK;
  215. }
  216. static const struct reg_arch_type mips32_reg_type = {
  217. .get = mips32_get_core_reg,
  218. .set = mips32_set_core_reg,
  219. };
  220. struct reg_cache *mips32_build_reg_cache(struct target *target)
  221. {
  222. /* get pointers to arch-specific information */
  223. struct mips32_common *mips32 = target->arch_info;
  224. int num_regs = MIPS32NUMCOREREGS;
  225. struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
  226. struct reg_cache *cache = malloc(sizeof(struct reg_cache));
  227. struct reg *reg_list = malloc(sizeof(struct reg) * num_regs);
  228. struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
  229. int i;
  230. register_init_dummy(&mips32_gdb_dummy_fp_reg);
  231. /* Build the process context cache */
  232. cache->name = "mips32 registers";
  233. cache->next = NULL;
  234. cache->reg_list = reg_list;
  235. cache->num_regs = num_regs;
  236. (*cache_p) = cache;
  237. mips32->core_cache = cache;
  238. for (i = 0; i < num_regs; i++)
  239. {
  240. arch_info[i] = mips32_core_reg_list_arch_info[i];
  241. arch_info[i].target = target;
  242. arch_info[i].mips32_common = mips32;
  243. reg_list[i].name = mips32_core_reg_list[i];
  244. reg_list[i].size = 32;
  245. reg_list[i].value = calloc(1, 4);
  246. reg_list[i].dirty = 0;
  247. reg_list[i].valid = 0;
  248. reg_list[i].type = &mips32_reg_type;
  249. reg_list[i].arch_info = &arch_info[i];
  250. }
  251. return cache;
  252. }
  253. int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
  254. {
  255. target->arch_info = mips32;
  256. mips32->common_magic = MIPS32_COMMON_MAGIC;
  257. /* has breakpoint/watchpint unit been scanned */
  258. mips32->bp_scanned = 0;
  259. mips32->data_break_list = NULL;
  260. mips32->ejtag_info.tap = tap;
  261. mips32->read_core_reg = mips32_read_core_reg;
  262. mips32->write_core_reg = mips32_write_core_reg;
  263. return ERROR_OK;
  264. }
  265. int mips32_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
  266. {
  267. /*TODO*/
  268. return ERROR_OK;
  269. }
  270. int mips32_examine(struct target *target)
  271. {
  272. struct mips32_common *mips32 = target->arch_info;
  273. if (!target_was_examined(target))
  274. {
  275. target_set_examined(target);
  276. /* we will configure later */
  277. mips32->bp_scanned = 0;
  278. mips32->num_inst_bpoints = 0;
  279. mips32->num_data_bpoints = 0;
  280. mips32->num_inst_bpoints_avail = 0;
  281. mips32->num_data_bpoints_avail = 0;
  282. }
  283. return ERROR_OK;
  284. }
  285. int mips32_configure_break_unit(struct target *target)
  286. {
  287. /* get pointers to arch-specific information */
  288. struct mips32_common *mips32 = target->arch_info;
  289. int retval;
  290. uint32_t dcr, bpinfo;
  291. int i;
  292. if (mips32->bp_scanned)
  293. return ERROR_OK;
  294. /* get info about breakpoint support */
  295. if ((retval = target_read_u32(target, EJTAG_DCR, &dcr)) != ERROR_OK)
  296. return retval;
  297. if (dcr & (1 << 16))
  298. {
  299. /* get number of inst breakpoints */
  300. if ((retval = target_read_u32(target, EJTAG_IBS, &bpinfo)) != ERROR_OK)
  301. return retval;
  302. mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
  303. mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
  304. mips32->inst_break_list = calloc(mips32->num_inst_bpoints, sizeof(struct mips32_comparator));
  305. for (i = 0; i < mips32->num_inst_bpoints; i++)
  306. {
  307. mips32->inst_break_list[i].reg_address = EJTAG_IBA1 + (0x100 * i);
  308. }
  309. /* clear IBIS reg */
  310. if ((retval = target_write_u32(target, EJTAG_IBS, 0)) != ERROR_OK)
  311. return retval;
  312. }
  313. if (dcr & (1 << 17))
  314. {
  315. /* get number of data breakpoints */
  316. if ((retval = target_read_u32(target, EJTAG_DBS, &bpinfo)) != ERROR_OK)
  317. return retval;
  318. mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
  319. mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
  320. mips32->data_break_list = calloc(mips32->num_data_bpoints, sizeof(struct mips32_comparator));
  321. for (i = 0; i < mips32->num_data_bpoints; i++)
  322. {
  323. mips32->data_break_list[i].reg_address = EJTAG_DBA1 + (0x100 * i);
  324. }
  325. /* clear DBIS reg */
  326. if ((retval = target_write_u32(target, EJTAG_DBS, 0)) != ERROR_OK)
  327. return retval;
  328. }
  329. LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints, mips32->num_data_bpoints);
  330. mips32->bp_scanned = 1;
  331. return ERROR_OK;
  332. }
  333. int mips32_enable_interrupts(struct target *target, int enable)
  334. {
  335. int retval;
  336. int update = 0;
  337. uint32_t dcr;
  338. /* read debug control register */
  339. if ((retval = target_read_u32(target, EJTAG_DCR, &dcr)) != ERROR_OK)
  340. return retval;
  341. if (enable)
  342. {
  343. if (!(dcr & (1 << 4)))
  344. {
  345. /* enable interrupts */
  346. dcr |= (1 << 4);
  347. update = 1;
  348. }
  349. }
  350. else
  351. {
  352. if (dcr & (1 << 4))
  353. {
  354. /* disable interrupts */
  355. dcr &= ~(1 << 4);
  356. update = 1;
  357. }
  358. }
  359. if (update)
  360. {
  361. if ((retval = target_write_u32(target, EJTAG_DCR, dcr)) != ERROR_OK)
  362. return retval;
  363. }
  364. return ERROR_OK;
  365. }