You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1577 lines
59 KiB

  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename openocd.info
  4. @settitle Open On-Chip Debugger (OpenOCD)
  5. @dircategory Development
  6. @direntry
  7. * OpenOCD: (openocd). Open On-Chip Debugger.
  8. @end direntry
  9. @c %**end of header
  10. @include version.texi
  11. @copying
  12. Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
  13. @quotation
  14. Permission is granted to copy, distribute and/or modify this document
  15. under the terms of the GNU Free Documentation License, Version 1.2 or
  16. any later version published by the Free Software Foundation; with no
  17. Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
  18. Texts. A copy of the license is included in the section entitled ``GNU
  19. Free Documentation License''.
  20. @end quotation
  21. @end copying
  22. @titlepage
  23. @title Open On-Chip Debugger (OpenOCD)
  24. @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
  25. @subtitle @value{UPDATED}
  26. @page
  27. @vskip 0pt plus 1filll
  28. @insertcopying
  29. @end titlepage
  30. @contents
  31. @node Top, About, , (dir)
  32. @top OpenOCD
  33. This manual documents edition @value{EDITION} of the Open On-Chip Debugger
  34. (OpenOCD) version @value{VERSION}, @value{UPDATED}.
  35. @insertcopying
  36. @menu
  37. * About:: About OpenOCD.
  38. * Developers:: OpenOCD developers
  39. * Building:: Building OpenOCD
  40. * Running:: Running OpenOCD
  41. * Configuration:: OpenOCD Configuration.
  42. * Target library:: Target library
  43. * Commands:: OpenOCD Commands
  44. * Sample Scripts:: Sample Target Scripts
  45. * GDB and OpenOCD:: Using GDB and OpenOCD
  46. * TCL and OpenOCD:: Using TCL and OpenOCD
  47. * TCL scripting API:: Tcl scripting API
  48. * Upgrading:: Deprecated/Removed Commands
  49. * FAQ:: Frequently Asked Questions
  50. * License:: GNU Free Documentation License
  51. * Index:: Main index.
  52. @end menu
  53. @node About
  54. @unnumbered About
  55. @cindex about
  56. The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
  57. and boundary-scan testing for embedded target devices. The targets are interfaced
  58. using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
  59. connection types in the future.
  60. OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
  61. Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
  62. ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
  63. Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
  64. Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
  65. command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
  66. and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
  67. @node Developers
  68. @chapter Developers
  69. @cindex developers
  70. OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
  71. University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
  72. Others interested in improving the state of free and open debug and testing technology
  73. are welcome to participate.
  74. Other developers have contributed support for additional targets and flashes as well
  75. as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
  76. The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
  77. @node Building
  78. @chapter Building
  79. @cindex building OpenOCD
  80. You can download the current SVN version with SVN client of your choice from the
  81. following repositories:
  82. (@uref{svn://svn.berlios.de/openocd/trunk})
  83. or
  84. (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
  85. Using the SVN command line client, you can use the following command to fetch the
  86. latest version (make sure there is no (non-svn) directory called "openocd" in the
  87. current directory):
  88. @smallexample
  89. svn checkout svn://svn.berlios.de/openocd/trunk openocd
  90. @end smallexample
  91. Building OpenOCD requires a recent version of the GNU autotools.
  92. On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
  93. you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
  94. other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
  95. paths, resulting in obscure dependency errors (This is an observation I've gathered
  96. from the logs of one user - correct me if I'm wrong).
  97. You further need the appropriate driver files, if you want to build support for
  98. a FTDI FT2232 based interface:
  99. @itemize @bullet
  100. @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
  101. @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
  102. @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
  103. homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
  104. @end itemize
  105. libftdi is supported under windows. Versions earlier than 0.13 will require patching.
  106. see contrib/libftdi for more details.
  107. In general, the D2XX driver provides superior performance (several times as fast),
  108. but has the draw-back of being binary-only - though that isn't that bad, as it isn't
  109. a kernel module, only a user space library.
  110. To build OpenOCD (on both Linux and Cygwin), use the following commands:
  111. @smallexample
  112. ./bootstrap
  113. @end smallexample
  114. Bootstrap generates the configure script, and prepares building on your system.
  115. @smallexample
  116. ./configure
  117. @end smallexample
  118. Configure generates the Makefiles used to build OpenOCD.
  119. @smallexample
  120. make
  121. @end smallexample
  122. Make builds OpenOCD, and places the final executable in ./src/.
  123. The configure script takes several options, specifying which JTAG interfaces
  124. should be included:
  125. @itemize @bullet
  126. @item
  127. @option{--enable-parport}
  128. @item
  129. @option{--enable-parport_ppdev}
  130. @item
  131. @option{--enable-parport_giveio}
  132. @item
  133. @option{--enable-amtjtagaccel}
  134. @item
  135. @option{--enable-ft2232_ftd2xx}
  136. @footnote{Using the latest D2XX drivers from FTDI and following their installation
  137. instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
  138. build properly.}
  139. @item
  140. @option{--enable-ft2232_libftdi}
  141. @item
  142. @option{--with-ftd2xx=/path/to/d2xx/}
  143. @item
  144. @option{--enable-gw16012}
  145. @item
  146. @option{--enable-usbprog}
  147. @item
  148. @option{--enable-presto_libftdi}
  149. @item
  150. @option{--enable-presto_ftd2xx}
  151. @item
  152. @option{--enable-jlink}
  153. @end itemize
  154. If you want to access the parallel port using the PPDEV interface you have to specify
  155. both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
  156. the @option{--enable-parport_ppdev} option actually is an option to the parport driver
  157. (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
  158. Cygwin users have to specify the location of the FTDI D2XX package. This should be an
  159. absolute path containing no spaces.
  160. Linux users should copy the various parts of the D2XX package to the appropriate
  161. locations, i.e. /usr/include, /usr/lib.
  162. Miscellaneous configure options
  163. @itemize @bullet
  164. @item
  165. @option{--enable-gccwarnings} - enable extra gcc warnings during build
  166. @end itemize
  167. @node Running
  168. @chapter Running
  169. @cindex running OpenOCD
  170. @cindex --configfile
  171. @cindex --debug_level
  172. @cindex --logfile
  173. @cindex --search
  174. OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
  175. Run with @option{--help} or @option{-h} to view the available command line switches.
  176. It reads its configuration by default from the file openocd.cfg located in the current
  177. working directory. This may be overwritten with the @option{-f <configfile>} command line
  178. switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
  179. are executed in order.
  180. Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
  181. To enable debug output (when reporting problems or working on OpenOCD itself), use
  182. the @option{-d} command line switch. This sets the debug_level to "3", outputting
  183. the most information, including debug messages. The default setting is "2", outputting
  184. only informational messages, warnings and errors. You can also change this setting
  185. from within a telnet or gdb session (@option{debug_level <n>}).
  186. You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
  187. Search paths for config/script files can be added to OpenOCD by using
  188. the @option{-s <search>} switch. The current directory and the OpenOCD target library
  189. is in the search path by default.
  190. Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
  191. with the target. In general, it is possible for the JTAG controller to be unresponsive until
  192. the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
  193. @node Configuration
  194. @chapter Configuration
  195. @cindex configuration
  196. OpenOCD runs as a daemon, and reads it current configuration
  197. by default from the file openocd.cfg in the current directory. A different configuration
  198. file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
  199. The configuration file is used to specify on which ports the daemon listens for new
  200. connections, the JTAG interface used to connect to the target, the layout of the JTAG
  201. chain, the targets that should be debugged, and connected flashes.
  202. @section Daemon configuration
  203. @itemize @bullet
  204. @item @b{init} This command terminates the configuration stage and enters the normal
  205. command mode. This can be useful to add commands to the startup scripts and commands
  206. such as resetting the target, programming flash, etc. To reset the CPU upon startup,
  207. add "init" and "reset" at the end of the config script or at the end of the
  208. OpenOCD command line using the @option{-c} command line switch.
  209. @cindex init
  210. @item @b{telnet_port} <@var{number}>
  211. @cindex telnet_port
  212. Port on which to listen for incoming telnet connections
  213. @item @b{gdb_port} <@var{number}>
  214. @cindex gdb_port
  215. First port on which to listen for incoming GDB connections. The GDB port for the
  216. first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
  217. @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
  218. @cindex gdb_detach
  219. Configures what OpenOCD will do when gdb detaches from the daeman.
  220. Default behaviour is <@var{resume}>
  221. @item @b{gdb_memory_map} <@var{enable|disable}>
  222. @cindex gdb_memory_map
  223. Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
  224. requested. gdb will then know when to set hardware breakpoints, and program flash
  225. using the gdb load command. @option{gdb_flash_program enable} will also need enabling
  226. for flash programming to work.
  227. Default behaviour is <@var{enable}>
  228. @item @b{gdb_flash_program} <@var{enable|disable}>
  229. @cindex gdb_flash_program
  230. Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
  231. vFlash packet is received.
  232. Default behaviour is <@var{enable}>
  233. at item @b{tcl_port} <@var{number}>
  234. at cindex tcl_port
  235. Port on which to listen for incoming TCL syntax. This port is intended as
  236. a simplified RPC connection that can be used by clients to issue commands
  237. and get the output from the TCL engine.
  238. @end itemize
  239. @section JTAG interface configuration
  240. @itemize @bullet
  241. @item @b{interface} <@var{name}>
  242. @cindex interface
  243. Use the interface driver <@var{name}> to connect to the target. Currently supported
  244. interfaces are
  245. @itemize @minus
  246. @item @b{parport}
  247. PC parallel port bit-banging (Wigglers, PLD download cable, ...)
  248. @end itemize
  249. @itemize @minus
  250. @item @b{amt_jtagaccel}
  251. Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
  252. mode parallel port
  253. @end itemize
  254. @itemize @minus
  255. @item @b{ft2232}
  256. FTDI FT2232 based devices using either the open-source libftdi or the binary only
  257. FTD2XX driver. The FTD2XX is superior in performance, but not available on every
  258. platform. The libftdi uses libusb, and should be portable to all systems that provide
  259. libusb.
  260. @end itemize
  261. @itemize @minus
  262. @item @b{ep93xx}
  263. Cirrus Logic EP93xx based single-board computer bit-banging (in development)
  264. @end itemize
  265. @itemize @minus
  266. @item @b{presto}
  267. ASIX PRESTO USB JTAG programmer.
  268. @end itemize
  269. @itemize @minus
  270. @item @b{usbprog}
  271. usbprog is a freely programmable USB adapter.
  272. @end itemize
  273. @itemize @minus
  274. @item @b{gw16012}
  275. Gateworks GW16012 JTAG programmer.
  276. @end itemize
  277. @itemize @minus
  278. @item @b{jlink}
  279. Segger jlink usb adapter
  280. @end itemize
  281. @end itemize
  282. @itemize @bullet
  283. @item @b{jtag_speed} <@var{reset speed}>
  284. @cindex jtag_speed
  285. Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
  286. speed. The actual effect of this option depends on the JTAG interface used.
  287. The speed used during reset can be adjusted using setting jtag_speed during
  288. pre_reset and post_reset events.
  289. @itemize @minus
  290. @item wiggler: maximum speed / @var{number}
  291. @item ft2232: 6MHz / (@var{number}+1)
  292. @item amt jtagaccel: 8 / 2**@var{number}
  293. @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
  294. @end itemize
  295. Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
  296. especially true for synthesized cores (-S).
  297. @item @b{jtag_khz} <@var{reset speed kHz}>
  298. @cindex jtag_khz
  299. Same as jtag_speed, except that the speed is specified in maximum kHz. If
  300. the device can not support the rate asked for, or can not translate from
  301. kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
  302. is not supported, then an error is reported.
  303. @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
  304. @cindex reset_config
  305. The configuration of the reset signals available on the JTAG interface AND the target.
  306. If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
  307. then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
  308. @option{srst_only} or @option{trst_and_srst}.
  309. [@var{combination}] is an optional value specifying broken reset signal implementations.
  310. @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
  311. the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
  312. that the system is reset together with the test logic (only hypothetical, I haven't
  313. seen hardware with such a bug, and can be worked around).
  314. @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
  315. The default behaviour if no option given is @option{separate}.
  316. The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
  317. reset lines to be specified. Possible values are @option{trst_push_pull} (default)
  318. and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
  319. (default) and @option{srst_push_pull} for the system reset. These values only affect
  320. JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
  321. @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
  322. @cindex jtag_device
  323. Describes the devices that form the JTAG daisy chain, with the first device being
  324. the one closest to TDO. The parameters are the length of the instruction register
  325. (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
  326. of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
  327. The IDCODE instruction will in future be used to query devices for their JTAG
  328. identification code. This line is the same for all ARM7 and ARM9 devices.
  329. Other devices, like CPLDs, require different parameters. An example configuration
  330. line for a Xilinx XC9500 CPLD would look like this:
  331. @smallexample
  332. jtag_device 8 0x01 0x0e3 0xfe
  333. @end smallexample
  334. The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
  335. the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
  336. The IDCODE instruction is 0xfe.
  337. @item @b{jtag_nsrst_delay} <@var{ms}>
  338. @cindex jtag_nsrst_delay
  339. How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
  340. starting new JTAG operations.
  341. @item @b{jtag_ntrst_delay} <@var{ms}>
  342. @cindex jtag_ntrst_delay
  343. How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
  344. starting new JTAG operations.
  345. The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
  346. or on-chip features) keep a reset line asserted for some time after the external reset
  347. got deasserted.
  348. @end itemize
  349. @section parport options
  350. @itemize @bullet
  351. @item @b{parport_port} <@var{number}>
  352. @cindex parport_port
  353. Either the address of the I/O port (default: 0x378 for LPT1) or the number of
  354. the @file{/dev/parport} device
  355. When using PPDEV to access the parallel port, use the number of the parallel port:
  356. @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
  357. you may encounter a problem.
  358. @item @b{parport_cable} <@var{name}>
  359. @cindex parport_cable
  360. The layout of the parallel port cable used to connect to the target.
  361. Currently supported cables are
  362. @itemize @minus
  363. @item @b{wiggler}
  364. @cindex wiggler
  365. The original Wiggler layout, also supported by several clones, such
  366. as the Olimex ARM-JTAG
  367. @item @b{old_amt_wiggler}
  368. @cindex old_amt_wiggler
  369. The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
  370. version available from the website uses the original Wiggler layout ('@var{wiggler}')
  371. @item @b{chameleon}
  372. @cindex chameleon
  373. The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
  374. @item @b{dlc5}
  375. @cindex dlc5
  376. The Xilinx Parallel cable III.
  377. @item @b{triton}
  378. @cindex triton
  379. The parallel port adapter found on the 'Karo Triton 1 Development Board'.
  380. This is also the layout used by the HollyGates design
  381. (see @uref{http://www.lartmaker.nl/projects/jtag/}).
  382. @item @b{flashlink}
  383. @cindex flashlink
  384. The ST Parallel cable.
  385. @end itemize
  386. @item @b{parport_write_on_exit} <@var{on|off}>
  387. @cindex parport_write_on_exit
  388. This will configure the parallel driver to write a known value to the parallel
  389. interface on exiting OpenOCD
  390. @end itemize
  391. @section amt_jtagaccel options
  392. @itemize @bullet
  393. @item @b{parport_port} <@var{number}>
  394. @cindex parport_port
  395. Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
  396. @file{/dev/parport} device
  397. @end itemize
  398. @section ft2232 options
  399. @itemize @bullet
  400. @item @b{ft2232_device_desc} <@var{description}>
  401. @cindex ft2232_device_desc
  402. The USB device description of the FTDI FT2232 device. If not specified, the FTDI
  403. default value is used. This setting is only valid if compiled with FTD2XX support.
  404. @item @b{ft2232_layout} <@var{name}>
  405. @cindex ft2232_layout
  406. The layout of the FT2232 GPIO signals used to control output-enables and reset
  407. signals. Valid layouts are
  408. @itemize @minus
  409. @item @b{usbjtag}
  410. "USBJTAG-1" layout described in the original OpenOCD diploma thesis
  411. @item @b{jtagkey}
  412. Amontec JTAGkey and JTAGkey-tiny
  413. @item @b{signalyzer}
  414. Signalyzer
  415. @item @b{olimex-jtag}
  416. Olimex ARM-USB-OCD
  417. @item @b{m5960}
  418. American Microsystems M5960
  419. @item @b{evb_lm3s811}
  420. Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
  421. SRST signals on external connector
  422. @item @b{comstick}
  423. Hitex STR9 comstick
  424. @item @b{stm32stick}
  425. Hitex STM32 Performance Stick
  426. @item @b{flyswatter}
  427. Tin Can Tools Flyswatter
  428. @item @b{turtelizer2}
  429. egnite Software turtelizer2
  430. @item @b{oocdlink}
  431. OOCDLink
  432. @end itemize
  433. @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
  434. The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
  435. default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
  436. @smallexample
  437. ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
  438. @end smallexample
  439. @item @b{ft2232_latency} <@var{ms}>
  440. On some systems using ft2232 based JTAG interfaces the FT_Read function call in
  441. ft2232_read() fails to return the expected number of bytes. This can be caused by
  442. USB communication delays and has proved hard to reproduce and debug. Setting the
  443. FT2232 latency timer to a larger value increases delays for short USB packages but it
  444. also reduces the risk of timeouts before receiving the expected number of bytes.
  445. The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
  446. @end itemize
  447. @section ep93xx options
  448. @cindex ep93xx options
  449. Currently, there are no options available for the ep93xx interface.
  450. @page
  451. @section Target configuration
  452. @itemize @bullet
  453. @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
  454. <@var{variant}>
  455. @cindex target
  456. Defines a target that should be debugged. Currently supported types are:
  457. @itemize @minus
  458. @item @b{arm7tdmi}
  459. @item @b{arm720t}
  460. @item @b{arm9tdmi}
  461. @item @b{arm920t}
  462. @item @b{arm922t}
  463. @item @b{arm926ejs}
  464. @item @b{arm966e}
  465. @item @b{cortex_m3}
  466. @item @b{feroceon}
  467. @item @b{xscale}
  468. @end itemize
  469. If you want to use a target board that is not on this list, see Adding a new
  470. target board
  471. Endianess may be @option{little} or @option{big}.
  472. @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
  473. @cindex target_script
  474. Event is one of the following:
  475. @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
  476. @option{pre_resume} or @option{gdb_program_config}.
  477. @option{post_reset} and @option{reset} will produce the same results.
  478. @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
  479. <@var{backup}|@var{nobackup}>
  480. @cindex working_area
  481. Specifies a working area for the debugger to use. This may be used to speed-up
  482. downloads to target memory and flash operations, or to perform otherwise unavailable
  483. operations (some coprocessor operations on ARM7/9 systems, for example). The last
  484. parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
  485. a working_area that doesn't need to be backed up, as performing a backup slows down operation.
  486. @end itemize
  487. @subsection arm7tdmi options
  488. @cindex arm7tdmi options
  489. target arm7tdmi <@var{endianess}> <@var{jtag#}>
  490. The arm7tdmi target definition requires at least one additional argument, specifying
  491. the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
  492. The optional [@var{variant}] parameter has been removed in recent versions.
  493. The correct feature set is determined at runtime.
  494. @subsection arm720t options
  495. @cindex arm720t options
  496. ARM720t options are similar to ARM7TDMI options.
  497. @subsection arm9tdmi options
  498. @cindex arm9tdmi options
  499. ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
  500. @option{arm920t}, @option{arm922t} and @option{arm940t}.
  501. This enables the hardware single-stepping support found on these cores.
  502. @subsection arm920t options
  503. @cindex arm920t options
  504. ARM920t options are similar to ARM9TDMI options.
  505. @subsection arm966e options
  506. @cindex arm966e options
  507. ARM966e options are similar to ARM9TDMI options.
  508. @subsection cortex_m3 options
  509. @cindex cortex_m3 options
  510. use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
  511. openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
  512. the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
  513. be detected and the normal reset behaviour used.
  514. @subsection xscale options
  515. @cindex xscale options
  516. Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
  517. @option{pxa250}, @option{pxa255}, @option{pxa26x}.
  518. @section Flash configuration
  519. @cindex Flash configuration
  520. @itemize @bullet
  521. @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
  522. <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
  523. @cindex flash bank
  524. Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
  525. and <@var{bus_width}> bytes using the selected flash <driver>.
  526. @end itemize
  527. @subsection lpc2000 options
  528. @cindex lpc2000 options
  529. @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  530. <@var{clock}> [@var{calc_checksum}]
  531. LPC flashes don't require the chip and bus width to be specified. Additional
  532. parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
  533. or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
  534. of the target this flash belongs to (first is 0), the frequency at which the core
  535. is currently running (in kHz - must be an integral number), and the optional keyword
  536. @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
  537. vector table.
  538. @subsection cfi options
  539. @cindex cfi options
  540. @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
  541. <@var{target#}>
  542. CFI flashes require the number of the target they're connected to as an additional
  543. argument. The CFI driver makes use of a working area (specified for the target)
  544. to significantly speed up operation.
  545. @var{chip_width} and @var{bus_width} are specified in bytes.
  546. @subsection at91sam7 options
  547. @cindex at91sam7 options
  548. @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
  549. AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
  550. reading the chip-id and type.
  551. @subsection str7 options
  552. @cindex str7 options
  553. @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
  554. variant can be either STR71x, STR73x or STR75x.
  555. @subsection str9 options
  556. @cindex str9 options
  557. @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  558. The str9 needs the flash controller to be configured prior to Flash programming, eg.
  559. @smallexample
  560. str9x flash_config 0 4 2 0 0x80000
  561. @end smallexample
  562. This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
  563. @subsection str9 options (str9xpec driver)
  564. @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  565. Before using the flash commands the turbo mode will need enabling using str9xpec
  566. @option{enable_turbo} <@var{num>.}
  567. Only use this driver for locking/unlocking the device or configuring the option bytes.
  568. Use the standard str9 driver for programming.
  569. @subsection stellaris (LM3Sxxx) options
  570. @cindex stellaris (LM3Sxxx) options
  571. @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  572. stellaris flash plugin only require the @var{target#}.
  573. @subsection stm32x options
  574. @cindex stm32x options
  575. @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
  576. stm32x flash plugin only require the @var{target#}.
  577. @node Target library
  578. @chapter Target library
  579. @cindex Target library
  580. OpenOCD comes with a target configuration script library. These scripts can be
  581. used as-is or serve as a starting point.
  582. The target library is published together with the openocd executable and
  583. the path to the target library is in the OpenOCD script search path.
  584. Similarly there are example scripts for configuring the JTAG interface.
  585. The command line below uses the example parport configuration scripts
  586. that ship with OpenOCD, then configures the str710.cfg target and
  587. finally issues the init and reset command. The communication speed
  588. is set to 10kHz for reset and 8MHz for post reset.
  589. @smallexample
  590. openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
  591. @end smallexample
  592. To list the target scripts available:
  593. @smallexample
  594. $ ls /usr/local/lib/openocd/target
  595. arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
  596. at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
  597. at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
  598. at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
  599. @end smallexample
  600. @node Commands
  601. @chapter Commands
  602. @cindex commands
  603. OpenOCD allows user interaction through a GDB server (default: port 3333),
  604. a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
  605. is available from both the telnet interface and a GDB session. To issue commands to the
  606. interpreter from within a GDB session, use the @option{monitor} command, e.g. use
  607. @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
  608. GDB session.
  609. The TCL interface is used as a simplified RPC mechanism that feeds all the
  610. input into the TCL interpreter and returns the output from the evaluation of
  611. the commands.
  612. @section Daemon
  613. @itemize @bullet
  614. @item @b{sleep} <@var{msec}>
  615. @cindex sleep
  616. Wait for n milliseconds before resuming. Useful in connection with script files
  617. (@var{script} command and @var{target_script} configuration).
  618. @item @b{shutdown}
  619. @cindex shutdown
  620. Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
  621. @item @b{debug_level} [@var{n}]
  622. @cindex debug_level
  623. Display or adjust debug level to n<0-3>
  624. @item @b{fast} [@var{enable/disable}]
  625. @cindex fast
  626. Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
  627. downloads and fast memory access will work if the JTAG interface isn't too fast and
  628. the core doesn't run at a too low frequency. Note that this option only changes the default
  629. and that the indvidual options, like DCC memory downloads, can be enabled and disabled
  630. individually.
  631. The target specific "dangerous" optimisation tweaking options may come and go
  632. as more robust and user friendly ways are found to ensure maximum throughput
  633. and robustness with a minimum of configuration.
  634. Typically the "fast enable" is specified first on the command line:
  635. @smallexample
  636. openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
  637. @end smallexample
  638. @item @b{log_output} <@var{file}>
  639. @cindex log_output
  640. Redirect logging to <file> (default: stderr)
  641. @item @b{script} <@var{file}>
  642. @cindex script
  643. Execute commands from <file>
  644. @end itemize
  645. @subsection Target state handling
  646. @itemize @bullet
  647. @item @b{poll} [@option{on}|@option{off}]
  648. @cindex poll
  649. Poll the target for its current state. If the target is in debug mode, architecture
  650. specific information about the current state is printed. An optional parameter
  651. allows continuous polling to be enabled and disabled.
  652. @item @b{halt} [@option{ms}]
  653. @cindex halt
  654. Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
  655. Default [@option{ms}] is 5 seconds if no arg given.
  656. Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
  657. will stop OpenOCD from waiting.
  658. @item @b{wait_halt} [@option{ms}]
  659. @cindex wait_halt
  660. Wait for the target to enter debug mode. Optional [@option{ms}] is
  661. a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
  662. arg given.
  663. @item @b{resume} [@var{address}]
  664. @cindex resume
  665. Resume the target at its current code position, or at an optional address.
  666. OpenOCD will wait 5 seconds for the target to resume.
  667. @item @b{step} [@var{address}]
  668. @cindex step
  669. Single-step the target at its current code position, or at an optional address.
  670. @item @b{reset} [@option{run}|@option{halt}|@option{init}]
  671. @cindex reset
  672. Perform a hard-reset. The optional parameter specifies what should happen after the reset.
  673. With no arguments a "reset run" is executed
  674. @itemize @minus
  675. @item @b{run}
  676. @cindex reset run
  677. Let the target run.
  678. @item @b{halt}
  679. @cindex reset halt
  680. Immediately halt the target (works only with certain configurations).
  681. @item @b{init}
  682. @cindex reset init
  683. Immediately halt the target, and execute the reset script (works only with certain
  684. configurations)
  685. @end itemize
  686. @end itemize
  687. @subsection Memory access commands
  688. These commands allow accesses of a specific size to the memory system:
  689. @itemize @bullet
  690. @item @b{mdw} <@var{addr}> [@var{count}]
  691. @cindex mdw
  692. display memory words
  693. @item @b{mdh} <@var{addr}> [@var{count}]
  694. @cindex mdh
  695. display memory half-words
  696. @item @b{mdb} <@var{addr}> [@var{count}]
  697. @cindex mdb
  698. display memory bytes
  699. @item @b{mww} <@var{addr}> <@var{value}>
  700. @cindex mww
  701. write memory word
  702. @item @b{mwh} <@var{addr}> <@var{value}>
  703. @cindex mwh
  704. write memory half-word
  705. @item @b{mwb} <@var{addr}> <@var{value}>
  706. @cindex mwb
  707. write memory byte
  708. @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  709. @cindex load_image
  710. Load image <@var{file}> to target memory at <@var{address}>
  711. @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
  712. @cindex dump_image
  713. Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
  714. (binary) <@var{file}>.
  715. @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
  716. @cindex verify_image
  717. Verify <@var{file}> against target memory starting at <@var{address}>.
  718. This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
  719. @end itemize
  720. @subsection Flash commands
  721. @cindex Flash commands
  722. @itemize @bullet
  723. @item @b{flash banks}
  724. @cindex flash banks
  725. List configured flash banks
  726. @item @b{flash info} <@var{num}>
  727. @cindex flash info
  728. Print info about flash bank <@option{num}>
  729. @item @b{flash probe} <@var{num}>
  730. @cindex flash probe
  731. Identify the flash, or validate the parameters of the configured flash. Operation
  732. depends on the flash type.
  733. @item @b{flash erase_check} <@var{num}>
  734. @cindex flash erase_check
  735. Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
  736. updates the erase state information displayed by @option{flash info}. That means you have
  737. to issue an @option{erase_check} command after erasing or programming the device to get
  738. updated information.
  739. @item @b{flash protect_check} <@var{num}>
  740. @cindex flash protect_check
  741. Check protection state of sectors in flash bank <num>.
  742. @option{flash erase_sector} using the same syntax.
  743. @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
  744. @cindex flash erase_sector
  745. Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
  746. <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
  747. require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
  748. the CFI driver).
  749. @item @b{flash erase_address} <@var{address}> <@var{length}>
  750. @cindex flash erase_address
  751. Erase sectors starting at <@var{address}> for <@var{length}> bytes
  752. @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
  753. @cindex flash write_bank
  754. Write the binary <@var{file}> to flash bank <@var{num}>, starting at
  755. <@option{offset}> bytes from the beginning of the bank.
  756. @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
  757. @cindex flash write_image
  758. Write the image <@var{file}> to the current target's flash bank(s). A relocation
  759. [@var{offset}] can be specified and the file [@var{type}] can be specified
  760. explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
  761. (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
  762. if the @option{erase} parameter is given.
  763. @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
  764. @cindex flash protect
  765. Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
  766. <@var{last}> of @option{flash bank} <@var{num}>.
  767. @end itemize
  768. @page
  769. @section Target Specific Commands
  770. @cindex Target Specific Commands
  771. @subsection AT91SAM7 specific commands
  772. @cindex AT91SAM7 specific commands
  773. The flash configuration is deduced from the chip identification register. The flash
  774. controller handles erases automatically on a page (128/265 byte) basis so erase is
  775. not necessary for flash programming. AT91SAM7 processors with less than 512K flash
  776. only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
  777. that can be erased separatly. Only an EraseAll command is supported by the controller
  778. for each flash plane and this is called with
  779. @itemize @bullet
  780. @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
  781. bulk erase flash planes first_plane to last_plane.
  782. @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
  783. @cindex at91sam7 gpnvm
  784. set or clear a gpnvm bit for the processor
  785. @end itemize
  786. @subsection STR9 specific commands
  787. @cindex STR9 specific commands
  788. These are flash specific commands when using the str9xpec driver.
  789. @itemize @bullet
  790. @item @b{str9xpec enable_turbo} <@var{num}>
  791. @cindex str9xpec enable_turbo
  792. enable turbo mode, simply this will remove the str9 from the chain and talk
  793. directly to the embedded flash controller.
  794. @item @b{str9xpec disable_turbo} <@var{num}>
  795. @cindex str9xpec disable_turbo
  796. restore the str9 into jtag chain.
  797. @item @b{str9xpec lock} <@var{num}>
  798. @cindex str9xpec lock
  799. lock str9 device. The str9 will only respond to an unlock command that will
  800. erase the device.
  801. @item @b{str9xpec unlock} <@var{num}>
  802. @cindex str9xpec unlock
  803. unlock str9 device.
  804. @item @b{str9xpec options_read} <@var{num}>
  805. @cindex str9xpec options_read
  806. read str9 option bytes.
  807. @item @b{str9xpec options_write} <@var{num}>
  808. @cindex str9xpec options_write
  809. write str9 option bytes.
  810. @end itemize
  811. @subsection STR9 configuration
  812. @cindex STR9 configuration
  813. @itemize @bullet
  814. @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
  815. <@var{BBADR}> <@var{NBBADR}>
  816. @cindex str9x flash_config
  817. Configure str9 flash controller.
  818. @smallexample
  819. eg. str9x flash_config 0 4 2 0 0x80000
  820. This will setup
  821. BBSR - Boot Bank Size register
  822. NBBSR - Non Boot Bank Size register
  823. BBADR - Boot Bank Start Address register
  824. NBBADR - Boot Bank Start Address register
  825. @end smallexample
  826. @end itemize
  827. @subsection STR9 option byte configuration
  828. @cindex STR9 option byte configuration
  829. @itemize @bullet
  830. @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
  831. @cindex str9xpec options_cmap
  832. configure str9 boot bank.
  833. @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
  834. @cindex str9xpec options_lvdthd
  835. configure str9 lvd threshold.
  836. @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
  837. @cindex str9xpec options_lvdsel
  838. configure str9 lvd source.
  839. @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
  840. @cindex str9xpec options_lvdwarn
  841. configure str9 lvd reset warning source.
  842. @end itemize
  843. @subsection STM32x specific commands
  844. @cindex STM32x specific commands
  845. These are flash specific commands when using the stm32x driver.
  846. @itemize @bullet
  847. @item @b{stm32x lock} <@var{num}>
  848. @cindex stm32x lock
  849. lock stm32 device.
  850. @item @b{stm32x unlock} <@var{num}>
  851. @cindex stm32x unlock
  852. unlock stm32 device.
  853. @item @b{stm32x options_read} <@var{num}>
  854. @cindex stm32x options_read
  855. read stm32 option bytes.
  856. @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
  857. <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
  858. @cindex stm32x options_write
  859. write stm32 option bytes.
  860. @item @b{stm32x mass_erase} <@var{num}>
  861. @cindex stm32x mass_erase
  862. mass erase flash memory.
  863. @end itemize
  864. @subsection Stellaris specific commands
  865. @cindex Stellaris specific commands
  866. These are flash specific commands when using the Stellaris driver.
  867. @itemize @bullet
  868. @item @b{stellaris mass_erase} <@var{num}>
  869. @cindex stellaris mass_erase
  870. mass erase flash memory.
  871. @end itemize
  872. @page
  873. @section Architecture Specific Commands
  874. @cindex Architecture Specific Commands
  875. @subsection ARMV4/5 specific commands
  876. @cindex ARMV4/5 specific commands
  877. These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
  878. or Intel XScale (XScale isn't supported yet).
  879. @itemize @bullet
  880. @item @b{armv4_5 reg}
  881. @cindex armv4_5 reg
  882. Display a list of all banked core registers, fetching the current value from every
  883. core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
  884. register value.
  885. @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
  886. @cindex armv4_5 core_mode
  887. Displays the core_mode, optionally changing it to either ARM or Thumb mode.
  888. The target is resumed in the currently set @option{core_mode}.
  889. @end itemize
  890. @subsection ARM7/9 specific commands
  891. @cindex ARM7/9 specific commands
  892. These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
  893. ARM920t or ARM926EJ-S.
  894. @itemize @bullet
  895. @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
  896. @cindex arm7_9 sw_bkpts
  897. Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
  898. one of the watchpoint registers to implement software breakpoints. Disabling
  899. SW Bkpts frees that register again.
  900. @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
  901. @cindex arm7_9 force_hw_bkpts
  902. When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
  903. breakpoints are turned into hardware breakpoints.
  904. @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
  905. @cindex arm7_9 dbgrq
  906. Enable use of the DBGRQ bit to force entry into debug mode. This should be
  907. safe for all but ARM7TDMI--S cores (like Philips LPC).
  908. @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
  909. @cindex arm7_9 fast_memory_access
  910. Allow OpenOCD to read and write memory without checking completion of
  911. the operation. This provides a huge speed increase, especially with USB JTAG
  912. cables (FT2232), but might be unsafe if used with targets running at a very low
  913. speed, like the 32kHz startup clock of an AT91RM9200.
  914. @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
  915. @cindex arm7_9 dcc_downloads
  916. Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
  917. amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
  918. unsafe, especially with targets running at a very low speed. This command was introduced
  919. with OpenOCD rev. 60.
  920. @end itemize
  921. @subsection ARM720T specific commands
  922. @cindex ARM720T specific commands
  923. @itemize @bullet
  924. @item @b{arm720t cp15} <@var{num}> [@var{value}]
  925. @cindex arm720t cp15
  926. display/modify cp15 register <@option{num}> [@option{value}].
  927. @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
  928. @cindex arm720t md<bhw>_phys
  929. Display memory at physical address addr.
  930. @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
  931. @cindex arm720t mw<bhw>_phys
  932. Write memory at physical address addr.
  933. @item @b{arm720t virt2phys} <@var{va}>
  934. @cindex arm720t virt2phys
  935. Translate a virtual address to a physical address.
  936. @end itemize
  937. @subsection ARM9TDMI specific commands
  938. @cindex ARM9TDMI specific commands
  939. @itemize @bullet
  940. @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
  941. @cindex arm9tdmi vector_catch
  942. Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
  943. @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
  944. @option{irq} @option{fiq}.
  945. Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
  946. @end itemize
  947. @subsection ARM966E specific commands
  948. @cindex ARM966E specific commands
  949. @itemize @bullet
  950. @item @b{arm966e cp15} <@var{num}> [@var{value}]
  951. @cindex arm966e cp15
  952. display/modify cp15 register <@option{num}> [@option{value}].
  953. @end itemize
  954. @subsection ARM920T specific commands
  955. @cindex ARM920T specific commands
  956. @itemize @bullet
  957. @item @b{arm920t cp15} <@var{num}> [@var{value}]
  958. @cindex arm920t cp15
  959. display/modify cp15 register <@option{num}> [@option{value}].
  960. @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
  961. @cindex arm920t cp15i
  962. display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
  963. @item @b{arm920t cache_info}
  964. @cindex arm920t cache_info
  965. Print information about the caches found. This allows you to see if your target
  966. is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
  967. @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
  968. @cindex arm920t md<bhw>_phys
  969. Display memory at physical address addr.
  970. @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
  971. @cindex arm920t mw<bhw>_phys
  972. Write memory at physical address addr.
  973. @item @b{arm920t read_cache} <@var{filename}>
  974. @cindex arm920t read_cache
  975. Dump the content of ICache and DCache to a file.
  976. @item @b{arm920t read_mmu} <@var{filename}>
  977. @cindex arm920t read_mmu
  978. Dump the content of the ITLB and DTLB to a file.
  979. @item @b{arm920t virt2phys} <@var{va}>
  980. @cindex arm920t virt2phys
  981. Translate a virtual address to a physical address.
  982. @end itemize
  983. @subsection ARM926EJS specific commands
  984. @cindex ARM926EJS specific commands
  985. @itemize @bullet
  986. @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
  987. @cindex arm926ejs cp15
  988. display/modify cp15 register <@option{num}> [@option{value}].
  989. @item @b{arm926ejs cache_info}
  990. @cindex arm926ejs cache_info
  991. Print information about the caches found.
  992. @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
  993. @cindex arm926ejs md<bhw>_phys
  994. Display memory at physical address addr.
  995. @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
  996. @cindex arm926ejs mw<bhw>_phys
  997. Write memory at physical address addr.
  998. @item @b{arm926ejs virt2phys} <@var{va}>
  999. @cindex arm926ejs virt2phys
  1000. Translate a virtual address to a physical address.
  1001. @end itemize
  1002. @page
  1003. @section Debug commands
  1004. @cindex Debug commands
  1005. The following commands give direct access to the core, and are most likely
  1006. only useful while debugging OpenOCD.
  1007. @itemize @bullet
  1008. @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
  1009. @cindex arm7_9 write_xpsr
  1010. Immediately write either the current program status register (CPSR) or the saved
  1011. program status register (SPSR), without changing the register cache (as displayed
  1012. by the @option{reg} and @option{armv4_5 reg} commands).
  1013. @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
  1014. <@var{0=cpsr},@var{1=spsr}>
  1015. @cindex arm7_9 write_xpsr_im8
  1016. Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
  1017. operation (similar to @option{write_xpsr}).
  1018. @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
  1019. @cindex arm7_9 write_core_reg
  1020. Write a core register, without changing the register cache (as displayed by the
  1021. @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
  1022. encoding of the [M4:M0] bits of the PSR.
  1023. @end itemize
  1024. @page
  1025. @section JTAG commands
  1026. @cindex JTAG commands
  1027. @itemize @bullet
  1028. @item @b{scan_chain}
  1029. @cindex scan_chain
  1030. Print current scan chain configuration.
  1031. @item @b{jtag_reset} <@var{trst}> <@var{srst}>
  1032. @cindex jtag_reset
  1033. Toggle reset lines.
  1034. @item @b{endstate} <@var{tap_state}>
  1035. @cindex endstate
  1036. Finish JTAG operations in <@var{tap_state}>.
  1037. @item @b{runtest} <@var{num_cycles}>
  1038. @cindex runtest
  1039. Move to Run-Test/Idle, and execute <@var{num_cycles}>
  1040. @item @b{statemove} [@var{tap_state}]
  1041. @cindex statemove
  1042. Move to current endstate or [@var{tap_state}]
  1043. @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  1044. @cindex irscan
  1045. Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
  1046. @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
  1047. @cindex drscan
  1048. Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
  1049. @item @b{verify_ircapture} <@option{enable}|@option{disable}>
  1050. @cindex verify_ircapture
  1051. Verify value captured during Capture-IR. Default is enabled.
  1052. @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  1053. @cindex var
  1054. Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
  1055. @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
  1056. @cindex field
  1057. Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
  1058. @end itemize
  1059. @page
  1060. @section Target Requests
  1061. @cindex Target Requests
  1062. OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
  1063. See libdcc in the contrib dir for more details.
  1064. @itemize @bullet
  1065. @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
  1066. @cindex target_request debugmsgs
  1067. Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
  1068. @end itemize
  1069. @node Sample Scripts
  1070. @chapter Sample Scripts
  1071. @cindex scripts
  1072. This page shows how to use the target library.
  1073. The configuration script can be divided in the following section:
  1074. @itemize @bullet
  1075. @item daemon configuration
  1076. @item interface
  1077. @item jtag scan chain
  1078. @item target configuration
  1079. @item flash configuration
  1080. @end itemize
  1081. Detailed information about each section can be found at OpenOCD configuration.
  1082. @section AT91R40008 example
  1083. @cindex AT91R40008 example
  1084. To start OpenOCD with a target script for the AT91R40008 CPU and reset
  1085. the CPU upon startup of the OpenOCD daemon.
  1086. @smallexample
  1087. openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
  1088. @end smallexample
  1089. @node GDB and OpenOCD
  1090. @chapter GDB and OpenOCD
  1091. @cindex GDB and OpenOCD
  1092. OpenOCD complies with the remote gdbserver protocol, and as such can be used
  1093. to debug remote targets.
  1094. @section Connecting to gdb
  1095. @cindex Connecting to gdb
  1096. A connection is typically started as follows:
  1097. @smallexample
  1098. target remote localhost:3333
  1099. @end smallexample
  1100. This would cause gdb to connect to the gdbserver on the local pc using port 3333.
  1101. To see a list of available OpenOCD commands type @option{monitor help} on the
  1102. gdb commandline.
  1103. OpenOCD supports the gdb @option{qSupported} packet, this enables information
  1104. to be sent by the gdb server (openocd) to gdb. Typical information includes
  1105. packet size and device memory map.
  1106. Previous versions of OpenOCD required the following gdb options to increase
  1107. the packet size and speed up gdb communication.
  1108. @smallexample
  1109. set remote memory-write-packet-size 1024
  1110. set remote memory-write-packet-size fixed
  1111. set remote memory-read-packet-size 1024
  1112. set remote memory-read-packet-size fixed
  1113. @end smallexample
  1114. This is now handled in the @option{qSupported} PacketSize.
  1115. @section Programming using gdb
  1116. @cindex Programming using gdb
  1117. By default the target memory map is sent to gdb, this can be disabled by
  1118. the following OpenOCD config option:
  1119. @smallexample
  1120. gdb_memory_map disable
  1121. @end smallexample
  1122. For this to function correctly a valid flash config must also be configured
  1123. in OpenOCD. For faster performance you should also configure a valid
  1124. working area.
  1125. Informing gdb of the memory map of the target will enable gdb to protect any
  1126. flash area of the target and use hardware breakpoints by default. This means
  1127. that the OpenOCD option @option{arm7_9 force_hw_bkpts} is not required when
  1128. using a memory map.
  1129. To view the configured memory map in gdb, use the gdb command @option{info mem}
  1130. All other unasigned addresses within gdb are treated as RAM.
  1131. GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
  1132. this can be changed to the old behaviour by using the following gdb command.
  1133. @smallexample
  1134. set mem inaccessible-by-default off
  1135. @end smallexample
  1136. If @option{gdb_flash_program enable} is also used, gdb will be able to
  1137. program any flash memory using the vFlash interface.
  1138. gdb will look at the target memory map when a load command is given, if any
  1139. areas to be programmed lie within the target flash area the vFlash packets
  1140. will be used.
  1141. If the target needs configuring before gdb programming, a script can be executed.
  1142. @smallexample
  1143. target_script 0 gdb_program_config config.script
  1144. @end smallexample
  1145. To verify any flash programming the gdb command @option{compare-sections}
  1146. can be used.
  1147. @node TCL and OpenOCD
  1148. @chapter TCL and OpenOCD
  1149. @cindex TCL and OpenOCD
  1150. OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
  1151. support.
  1152. The TCL interpreter can be invoked from the interactive command line, files, and a network port.
  1153. The command and file interfaces are fairly straightforward, while the network
  1154. port is geared toward intergration with external clients. A small example
  1155. of an external TCL script that can connect to openocd is shown below.
  1156. @verbatim
  1157. # Simple tcl client to connect to openocd
  1158. puts "Use empty line to exit"
  1159. set fo [socket 127.0.0.1 6666]
  1160. puts -nonewline stdout "> "
  1161. flush stdout
  1162. while {[gets stdin line] >= 0} {
  1163. if {$line eq {}} break
  1164. puts $fo $line
  1165. flush $fo
  1166. gets $fo line
  1167. puts $line
  1168. puts -nonewline stdout "> "
  1169. flush stdout
  1170. }
  1171. close $fo
  1172. @end verbatim
  1173. This script can easily be modified to front various GUIs or be a sub
  1174. component of a larger framework for control and interaction.
  1175. @node TCL scripting API
  1176. @chapter TCL scripting API
  1177. @cindex TCL scripting API
  1178. API rules
  1179. The commands are stateless. E.g. the telnet command line has a concept
  1180. of currently active target, the Tcl API proc's take this sort of state
  1181. information as an argument to each proc.
  1182. There are three main types of return values: single value, name value
  1183. pair list and lists.
  1184. Name value pair. The proc 'foo' below returns a name/value pair
  1185. list.
  1186. @verbatim
  1187. > set foo(me) Duane
  1188. > set foo(you) Oyvind
  1189. > set foo(mouse) Micky
  1190. > set foo(duck) Donald
  1191. If one does this:
  1192. > set foo
  1193. The result is:
  1194. me Duane you Oyvind mouse Micky duck Donald
  1195. Thus, to get the names of the associative array is easy:
  1196. foreach { name value } [set foo] {
  1197. puts "Name: $name, Value: $value"
  1198. }
  1199. @end verbatim
  1200. Lists returned must be relatively small. Otherwise a range
  1201. should be passed in to the proc in question.
  1202. Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
  1203. is the low level API upon which "flash banks" is implemented.
  1204. OpenOCD commands can consist of two words, e.g. "flash banks". The
  1205. startup.tcl "unknown" proc will translate this into a tcl proc
  1206. called "flash_banks".
  1207. @node Upgrading
  1208. @chapter Deprecated/Removed Commands
  1209. @cindex Deprecated/Removed Commands
  1210. Certain OpenOCD commands have been deprecated/removed during the various revisions.
  1211. @itemize @bullet
  1212. @item @b{load_binary}
  1213. @cindex load_binary
  1214. use @option{load_image} command with same args
  1215. @item @b{dump_binary}
  1216. @cindex dump_binary
  1217. use @option{dump_image} command with same args
  1218. @item @b{flash erase}
  1219. @cindex flash erase
  1220. use @option{flash erase_sector} command with same args
  1221. @item @b{flash write}
  1222. @cindex flash write
  1223. use @option{flash write_bank} command with same args
  1224. @item @b{flash write_binary}
  1225. @cindex flash write_binary
  1226. use @option{flash write_bank} command with same args
  1227. @item @b{arm7_9 fast_writes}
  1228. @cindex arm7_9 fast_writes
  1229. use @option{arm7_9 fast_memory_access} command with same args
  1230. @item @b{flash auto_erase}
  1231. @cindex flash auto_erase
  1232. use @option{flash write_image} command passing @option{erase} as the first parameter.
  1233. @item @b{daemon_startup}
  1234. @cindex daemon_startup
  1235. this config option has been removed, simply adding @option{init} and @option{reset halt} to
  1236. the end of your config script will give the same behaviour as using @option{daemon_startup reset}
  1237. and @option{target cortex_m3 little reset_halt 0}.
  1238. @item @b{run_and_halt_time}
  1239. @cindex run_and_halt_time
  1240. This command has been removed for simpler reset behaviour, it can be simulated with the
  1241. following commands:
  1242. @smallexample
  1243. reset run
  1244. sleep 100
  1245. halt
  1246. @end smallexample
  1247. @end itemize
  1248. @node FAQ
  1249. @chapter FAQ
  1250. @cindex faq
  1251. @enumerate
  1252. @item OpenOCD complains about a missing cygwin1.dll.
  1253. Make sure you have Cygwin installed, or at least a version of OpenOCD that
  1254. claims to come with all the necessary dlls. When using Cygwin, try launching
  1255. OpenOCD from the Cygwin shell.
  1256. @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
  1257. Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
  1258. arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
  1259. GDB issues software breakpoints when a normal breakpoint is requested, or to implement
  1260. source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
  1261. software breakpoints consume one of the two available hardware breakpoints,
  1262. and are therefore disabled by default. If your code is running from RAM, you
  1263. can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
  1264. your code resides in Flash, you can't use software breakpoints, but you can force
  1265. OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
  1266. @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
  1267. and works sometimes fine.
  1268. Make sure the core frequency specified in the @option{flash lpc2000} line matches the
  1269. clock at the time you're programming the flash. If you've specified the crystal's
  1270. frequency, make sure the PLL is disabled, if you've specified the full core speed
  1271. (e.g. 60MHz), make sure the PLL is enabled.
  1272. @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
  1273. I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
  1274. out while waiting for end of scan, rtck was disabled".
  1275. Make sure your PC's parallel port operates in EPP mode. You might have to try several
  1276. settings in your PC BIOS (ECP, EPP, and different versions of those).
  1277. @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
  1278. I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
  1279. memory read caused data abort".
  1280. The errors are non-fatal, and are the result of GDB trying to trace stack frames
  1281. beyond the last valid frame. It might be possible to prevent this by setting up
  1282. a proper "initial" stack frame, if you happen to know what exactly has to
  1283. be done, feel free to add this here.
  1284. @item I get the following message in the OpenOCD console (or log file):
  1285. "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
  1286. This warning doesn't indicate any serious problem, as long as you don't want to
  1287. debug your core right out of reset. Your .cfg file specified @option{jtag_reset
  1288. trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
  1289. your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
  1290. independently. With this setup, it's not possible to halt the core right out of
  1291. reset, everything else should work fine.
  1292. @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
  1293. Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
  1294. unstable. When single-stepping over large blocks of code, GDB and OpenOCD
  1295. quit with an error message. Is there a stability issue with OpenOCD?
  1296. No, this is not a stability issue concerning OpenOCD. Most users have solved
  1297. this issue by simply using a self-powered USB hub, which they connect their
  1298. Amontec JTAGkey to. Apparently, some computers do not provide a USB power
  1299. supply stable enough for the Amontec JTAGkey to be operated.
  1300. @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
  1301. following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
  1302. 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
  1303. What does that mean and what might be the reason for this?
  1304. First of all, the reason might be the USB power supply. Try using a self-powered
  1305. hub instead of a direct connection to your computer. Secondly, the error code 4
  1306. corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
  1307. chip ran into some sort of error - this points us to a USB problem.
  1308. @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
  1309. error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
  1310. What does that mean and what might be the reason for this?
  1311. Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
  1312. has closed the connection to OpenOCD. This might be a GDB issue.
  1313. @item In the configuration file in the section where flash device configurations
  1314. are described, there is a parameter for specifying the clock frequency for
  1315. LPC2000 internal flash devices (e.g.
  1316. @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
  1317. which must be specified in kilohertz. However, I do have a quartz crystal of a
  1318. frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
  1319. Is it possible to specify real numbers for the clock frequency?
  1320. No. The clock frequency specified here must be given as an integral number.
  1321. However, this clock frequency is used by the In-Application-Programming (IAP)
  1322. routines of the LPC2000 family only, which seems to be very tolerant concerning
  1323. the given clock frequency, so a slight difference between the specified clock
  1324. frequency and the actual clock frequency will not cause any trouble.
  1325. @item Do I have to keep a specific order for the commands in the configuration file?
  1326. Well, yes and no. Commands can be given in arbitrary order, yet the devices
  1327. listed for the JTAG scan chain must be given in the right order (jtag_device),
  1328. with the device closest to the TDO-Pin being listed first. In general,
  1329. whenever objects of the same type exist which require an index number, then
  1330. these objects must be given in the right order (jtag_devices, targets and flash
  1331. banks - a target references a jtag_device and a flash bank references a target).
  1332. @item Sometimes my debugging session terminates with an error. When I look into the
  1333. log file, I can see these error messages: Error: arm7_9_common.c:561
  1334. arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
  1335. TODO.
  1336. @end enumerate
  1337. @include fdl.texi
  1338. @node Index
  1339. @unnumbered Index
  1340. @printindex cp
  1341. @bye