You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

961 lines
29 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2009 by Alexei Babich *
  3. * Rezonans plc., Chelyabinsk, Russia *
  4. * impatt@mail.ru *
  5. * *
  6. * Copyright (C) 2010 by Gaetan CARLIER *
  7. * Trump s.a., Belgium *
  8. * *
  9. * Copyright (C) 2011 by Erik Ahlen *
  10. * Avalon Innovation, Sweden *
  11. * *
  12. * This program is free software; you can redistribute it and/or modify *
  13. * it under the terms of the GNU General Public License as published by *
  14. * the Free Software Foundation; either version 2 of the License, or *
  15. * (at your option) any later version. *
  16. * *
  17. * This program is distributed in the hope that it will be useful, *
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  20. * GNU General Public License for more details. *
  21. * *
  22. * You should have received a copy of the GNU General Public License *
  23. * along with this program. If not, see <http://www.gnu.org/licenses/>. *
  24. ***************************************************************************/
  25. /*
  26. * Freescale iMX OpenOCD NAND Flash controller support.
  27. * based on Freescale iMX2* and iMX3* OpenOCD NAND Flash controller support.
  28. */
  29. /*
  30. * driver tested with Samsung K9F2G08UXA and Numonyx/ST NAND02G-B2D @mxc
  31. * tested "nand probe #", "nand erase # 0 #", "nand dump # file 0 #",
  32. * "nand write # file 0", "nand verify"
  33. *
  34. * get_next_halfword_from_sram_buffer() not tested
  35. * !! all function only tested with 2k page nand device; mxc_write_page
  36. * writes the 4 MAIN_BUFFER's and is not compatible with < 2k page
  37. * !! oob must be be used due to NFS bug
  38. * !! oob must be 64 bytes per 2KiB page
  39. */
  40. #ifdef HAVE_CONFIG_H
  41. #include "config.h"
  42. #endif
  43. #include "imp.h"
  44. #include "mxc.h"
  45. #include <target/target.h>
  46. #define OOB_SIZE 64
  47. #define nfc_is_v1() (mxc_nf_info->mxc_version == MXC_VERSION_MX27 || \
  48. mxc_nf_info->mxc_version == MXC_VERSION_MX31)
  49. #define nfc_is_v2() (mxc_nf_info->mxc_version == MXC_VERSION_MX25 || \
  50. mxc_nf_info->mxc_version == MXC_VERSION_MX35)
  51. /* This permits to print (in LOG_INFO) how much bytes
  52. * has been written after a page read or write.
  53. * This is useful when OpenOCD is used with a graphical
  54. * front-end to estimate progression of the global read/write
  55. */
  56. #undef _MXC_PRINT_STAT
  57. /* #define _MXC_PRINT_STAT */
  58. static const char target_not_halted_err_msg[] =
  59. "target must be halted to use mxc NAND flash controller";
  60. static const char data_block_size_err_msg[] =
  61. "minimal granularity is one half-word, %" PRId32 " is incorrect";
  62. static const char sram_buffer_bounds_err_msg[] =
  63. "trying to access out of SRAM buffer bound (addr=0x%" PRIx32 ")";
  64. static const char get_status_register_err_msg[] = "can't get NAND status";
  65. static uint32_t in_sram_address;
  66. static unsigned char sign_of_sequental_byte_read;
  67. static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr);
  68. static int initialize_nf_controller(struct nand_device *nand);
  69. static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value);
  70. static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value);
  71. static int poll_for_complete_op(struct nand_device *nand, const char *text);
  72. static int validate_target_state(struct nand_device *nand);
  73. static int do_data_output(struct nand_device *nand);
  74. static int mxc_command(struct nand_device *nand, uint8_t command);
  75. static int mxc_address(struct nand_device *nand, uint8_t address);
  76. NAND_DEVICE_COMMAND_HANDLER(mxc_nand_device_command)
  77. {
  78. struct mxc_nf_controller *mxc_nf_info;
  79. int hwecc_needed;
  80. mxc_nf_info = malloc(sizeof(struct mxc_nf_controller));
  81. if (mxc_nf_info == NULL) {
  82. LOG_ERROR("no memory for nand controller");
  83. return ERROR_FAIL;
  84. }
  85. nand->controller_priv = mxc_nf_info;
  86. if (CMD_ARGC < 4) {
  87. LOG_ERROR("use \"nand device mxc target mx25|mx27|mx31|mx35 noecc|hwecc [biswap]\"");
  88. return ERROR_FAIL;
  89. }
  90. /*
  91. * check board type
  92. */
  93. if (strcmp(CMD_ARGV[2], "mx25") == 0) {
  94. mxc_nf_info->mxc_version = MXC_VERSION_MX25;
  95. mxc_nf_info->mxc_base_addr = 0xBB000000;
  96. mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00;
  97. } else if (strcmp(CMD_ARGV[2], "mx27") == 0) {
  98. mxc_nf_info->mxc_version = MXC_VERSION_MX27;
  99. mxc_nf_info->mxc_base_addr = 0xD8000000;
  100. mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00;
  101. } else if (strcmp(CMD_ARGV[2], "mx31") == 0) {
  102. mxc_nf_info->mxc_version = MXC_VERSION_MX31;
  103. mxc_nf_info->mxc_base_addr = 0xB8000000;
  104. mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00;
  105. } else if (strcmp(CMD_ARGV[2], "mx35") == 0) {
  106. mxc_nf_info->mxc_version = MXC_VERSION_MX35;
  107. mxc_nf_info->mxc_base_addr = 0xBB000000;
  108. mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00;
  109. }
  110. /*
  111. * check hwecc requirements
  112. */
  113. hwecc_needed = strcmp(CMD_ARGV[3], "hwecc");
  114. if (hwecc_needed == 0)
  115. mxc_nf_info->flags.hw_ecc_enabled = 1;
  116. else
  117. mxc_nf_info->flags.hw_ecc_enabled = 0;
  118. mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
  119. mxc_nf_info->fin = MXC_NF_FIN_NONE;
  120. mxc_nf_info->flags.target_little_endian =
  121. (nand->target->endianness == TARGET_LITTLE_ENDIAN);
  122. /*
  123. * should factory bad block indicator be swaped
  124. * as a workaround for how the nfc handles pages.
  125. */
  126. if (CMD_ARGC > 4 && strcmp(CMD_ARGV[4], "biswap") == 0) {
  127. LOG_DEBUG("BI-swap enabled");
  128. mxc_nf_info->flags.biswap_enabled = 1;
  129. }
  130. return ERROR_OK;
  131. }
  132. COMMAND_HANDLER(handle_mxc_biswap_command)
  133. {
  134. struct nand_device *nand = NULL;
  135. struct mxc_nf_controller *mxc_nf_info = NULL;
  136. if (CMD_ARGC < 1 || CMD_ARGC > 2)
  137. return ERROR_COMMAND_SYNTAX_ERROR;
  138. int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &nand);
  139. if (retval != ERROR_OK) {
  140. command_print(CMD_CTX, "invalid nand device number or name: %s", CMD_ARGV[0]);
  141. return ERROR_COMMAND_ARGUMENT_INVALID;
  142. }
  143. mxc_nf_info = nand->controller_priv;
  144. if (CMD_ARGC == 2) {
  145. if (strcmp(CMD_ARGV[1], "enable") == 0)
  146. mxc_nf_info->flags.biswap_enabled = true;
  147. else
  148. mxc_nf_info->flags.biswap_enabled = false;
  149. }
  150. if (mxc_nf_info->flags.biswap_enabled)
  151. command_print(CMD_CTX, "BI-swapping enabled on %s", nand->name);
  152. else
  153. command_print(CMD_CTX, "BI-swapping disabled on %s", nand->name);
  154. return ERROR_OK;
  155. }
  156. static const struct command_registration mxc_sub_command_handlers[] = {
  157. {
  158. .name = "biswap",
  159. .handler = handle_mxc_biswap_command,
  160. .help = "Turns on/off bad block information swaping from main area, "
  161. "without parameter query status.",
  162. .usage = "bank_id ['enable'|'disable']",
  163. },
  164. COMMAND_REGISTRATION_DONE
  165. };
  166. static const struct command_registration mxc_nand_command_handler[] = {
  167. {
  168. .name = "mxc",
  169. .mode = COMMAND_ANY,
  170. .help = "MXC NAND flash controller commands",
  171. .chain = mxc_sub_command_handlers
  172. },
  173. COMMAND_REGISTRATION_DONE
  174. };
  175. static int mxc_init(struct nand_device *nand)
  176. {
  177. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  178. struct target *target = nand->target;
  179. int validate_target_result;
  180. uint16_t buffsize_register_content;
  181. uint32_t sreg_content;
  182. uint32_t SREG = MX2_FMCR;
  183. uint32_t SEL_16BIT = MX2_FMCR_NF_16BIT_SEL;
  184. uint32_t SEL_FMS = MX2_FMCR_NF_FMS;
  185. int retval;
  186. uint16_t nand_status_content;
  187. /*
  188. * validate target state
  189. */
  190. validate_target_result = validate_target_state(nand);
  191. if (validate_target_result != ERROR_OK)
  192. return validate_target_result;
  193. if (nfc_is_v1()) {
  194. target_read_u16(target, MXC_NF_BUFSIZ, &buffsize_register_content);
  195. mxc_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f);
  196. } else
  197. mxc_nf_info->flags.one_kb_sram = 0;
  198. if (mxc_nf_info->mxc_version == MXC_VERSION_MX31) {
  199. SREG = MX3_PCSR;
  200. SEL_16BIT = MX3_PCSR_NF_16BIT_SEL;
  201. SEL_FMS = MX3_PCSR_NF_FMS;
  202. } else if (mxc_nf_info->mxc_version == MXC_VERSION_MX25) {
  203. SREG = MX25_RCSR;
  204. SEL_16BIT = MX25_RCSR_NF_16BIT_SEL;
  205. SEL_FMS = MX25_RCSR_NF_FMS;
  206. } else if (mxc_nf_info->mxc_version == MXC_VERSION_MX35) {
  207. SREG = MX35_RCSR;
  208. SEL_16BIT = MX35_RCSR_NF_16BIT_SEL;
  209. SEL_FMS = MX35_RCSR_NF_FMS;
  210. }
  211. target_read_u32(target, SREG, &sreg_content);
  212. if (!nand->bus_width) {
  213. /* bus_width not yet defined. Read it from MXC_FMCR */
  214. nand->bus_width = (sreg_content & SEL_16BIT) ? 16 : 8;
  215. } else {
  216. /* bus_width forced in soft. Sync it to MXC_FMCR */
  217. sreg_content |= ((nand->bus_width == 16) ? SEL_16BIT : 0x00000000);
  218. target_write_u32(target, SREG, sreg_content);
  219. }
  220. if (nand->bus_width == 16)
  221. LOG_DEBUG("MXC_NF : bus is 16-bit width");
  222. else
  223. LOG_DEBUG("MXC_NF : bus is 8-bit width");
  224. if (!nand->page_size)
  225. nand->page_size = (sreg_content & SEL_FMS) ? 2048 : 512;
  226. else {
  227. sreg_content |= ((nand->page_size == 2048) ? SEL_FMS : 0x00000000);
  228. target_write_u32(target, SREG, sreg_content);
  229. }
  230. if (mxc_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) {
  231. LOG_ERROR("NAND controller have only 1 kb SRAM, so "
  232. "pagesize 2048 is incompatible with it");
  233. } else
  234. LOG_DEBUG("MXC_NF : NAND controller can handle pagesize of 2048");
  235. if (nfc_is_v2() && sreg_content & MX35_RCSR_NF_4K)
  236. LOG_ERROR("MXC driver does not have support for 4k pagesize.");
  237. initialize_nf_controller(nand);
  238. retval = ERROR_OK;
  239. retval |= mxc_command(nand, NAND_CMD_STATUS);
  240. retval |= mxc_address(nand, 0x00);
  241. retval |= do_data_output(nand);
  242. if (retval != ERROR_OK) {
  243. LOG_ERROR(get_status_register_err_msg);
  244. return ERROR_FAIL;
  245. }
  246. target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content);
  247. if (!(nand_status_content & 0x0080)) {
  248. LOG_INFO("NAND read-only");
  249. mxc_nf_info->flags.nand_readonly = 1;
  250. } else
  251. mxc_nf_info->flags.nand_readonly = 0;
  252. return ERROR_OK;
  253. }
  254. static int mxc_read_data(struct nand_device *nand, void *data)
  255. {
  256. int validate_target_result;
  257. int try_data_output_from_nand_chip;
  258. /*
  259. * validate target state
  260. */
  261. validate_target_result = validate_target_state(nand);
  262. if (validate_target_result != ERROR_OK)
  263. return validate_target_result;
  264. /*
  265. * get data from nand chip
  266. */
  267. try_data_output_from_nand_chip = do_data_output(nand);
  268. if (try_data_output_from_nand_chip != ERROR_OK) {
  269. LOG_ERROR("mxc_read_data : read data failed : '%x'",
  270. try_data_output_from_nand_chip);
  271. return try_data_output_from_nand_chip;
  272. }
  273. if (nand->bus_width == 16)
  274. get_next_halfword_from_sram_buffer(nand, data);
  275. else
  276. get_next_byte_from_sram_buffer(nand, data);
  277. return ERROR_OK;
  278. }
  279. static int mxc_write_data(struct nand_device *nand, uint16_t data)
  280. {
  281. LOG_ERROR("write_data() not implemented");
  282. return ERROR_NAND_OPERATION_FAILED;
  283. }
  284. static int mxc_reset(struct nand_device *nand)
  285. {
  286. /*
  287. * validate target state
  288. */
  289. int validate_target_result;
  290. validate_target_result = validate_target_state(nand);
  291. if (validate_target_result != ERROR_OK)
  292. return validate_target_result;
  293. initialize_nf_controller(nand);
  294. return ERROR_OK;
  295. }
  296. static int mxc_command(struct nand_device *nand, uint8_t command)
  297. {
  298. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  299. struct target *target = nand->target;
  300. int validate_target_result;
  301. int poll_result;
  302. /*
  303. * validate target state
  304. */
  305. validate_target_result = validate_target_state(nand);
  306. if (validate_target_result != ERROR_OK)
  307. return validate_target_result;
  308. switch (command) {
  309. case NAND_CMD_READOOB:
  310. command = NAND_CMD_READ0;
  311. /* set read point for data_read() and read_block_data() to
  312. * spare area in SRAM buffer
  313. */
  314. if (nfc_is_v1())
  315. in_sram_address = MXC_NF_V1_SPARE_BUFFER0;
  316. else
  317. in_sram_address = MXC_NF_V2_SPARE_BUFFER0;
  318. break;
  319. case NAND_CMD_READ1:
  320. command = NAND_CMD_READ0;
  321. /*
  322. * offset == one half of page size
  323. */
  324. in_sram_address = MXC_NF_MAIN_BUFFER0 + (nand->page_size >> 1);
  325. break;
  326. default:
  327. in_sram_address = MXC_NF_MAIN_BUFFER0;
  328. break;
  329. }
  330. target_write_u16(target, MXC_NF_FCMD, command);
  331. /*
  332. * start command input operation (set MXC_NF_BIT_OP_DONE==0)
  333. */
  334. target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FCI);
  335. poll_result = poll_for_complete_op(nand, "command");
  336. if (poll_result != ERROR_OK)
  337. return poll_result;
  338. /*
  339. * reset cursor to begin of the buffer
  340. */
  341. sign_of_sequental_byte_read = 0;
  342. /* Handle special read command and adjust NF_CFG2(FDO) */
  343. switch (command) {
  344. case NAND_CMD_READID:
  345. mxc_nf_info->optype = MXC_NF_DATAOUT_NANDID;
  346. mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
  347. break;
  348. case NAND_CMD_STATUS:
  349. mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS;
  350. mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
  351. target_write_u16 (target, MXC_NF_BUFADDR, 0);
  352. in_sram_address = 0;
  353. break;
  354. case NAND_CMD_READ0:
  355. mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
  356. mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
  357. break;
  358. default:
  359. /* Ohter command use the default 'One page data out' FDO */
  360. mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
  361. break;
  362. }
  363. return ERROR_OK;
  364. }
  365. static int mxc_address(struct nand_device *nand, uint8_t address)
  366. {
  367. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  368. struct target *target = nand->target;
  369. int validate_target_result;
  370. int poll_result;
  371. /*
  372. * validate target state
  373. */
  374. validate_target_result = validate_target_state(nand);
  375. if (validate_target_result != ERROR_OK)
  376. return validate_target_result;
  377. target_write_u16(target, MXC_NF_FADDR, address);
  378. /*
  379. * start address input operation (set MXC_NF_BIT_OP_DONE==0)
  380. */
  381. target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FAI);
  382. poll_result = poll_for_complete_op(nand, "address");
  383. if (poll_result != ERROR_OK)
  384. return poll_result;
  385. return ERROR_OK;
  386. }
  387. static int mxc_nand_ready(struct nand_device *nand, int tout)
  388. {
  389. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  390. struct target *target = nand->target;
  391. uint16_t poll_complete_status;
  392. int validate_target_result;
  393. /*
  394. * validate target state
  395. */
  396. validate_target_result = validate_target_state(nand);
  397. if (validate_target_result != ERROR_OK)
  398. return validate_target_result;
  399. do {
  400. target_read_u16(target, MXC_NF_CFG2, &poll_complete_status);
  401. if (poll_complete_status & MXC_NF_BIT_OP_DONE)
  402. return tout;
  403. alive_sleep(1);
  404. } while (tout-- > 0);
  405. return tout;
  406. }
  407. static int mxc_write_page(struct nand_device *nand, uint32_t page,
  408. uint8_t *data, uint32_t data_size,
  409. uint8_t *oob, uint32_t oob_size)
  410. {
  411. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  412. struct target *target = nand->target;
  413. int retval;
  414. uint16_t nand_status_content;
  415. uint16_t swap1, swap2, new_swap1;
  416. uint8_t bufs;
  417. int poll_result;
  418. if (data_size % 2) {
  419. LOG_ERROR(data_block_size_err_msg, data_size);
  420. return ERROR_NAND_OPERATION_FAILED;
  421. }
  422. if (oob_size % 2) {
  423. LOG_ERROR(data_block_size_err_msg, oob_size);
  424. return ERROR_NAND_OPERATION_FAILED;
  425. }
  426. if (!data) {
  427. LOG_ERROR("nothing to program");
  428. return ERROR_NAND_OPERATION_FAILED;
  429. }
  430. /*
  431. * validate target state
  432. */
  433. retval = validate_target_state(nand);
  434. if (retval != ERROR_OK)
  435. return retval;
  436. in_sram_address = MXC_NF_MAIN_BUFFER0;
  437. sign_of_sequental_byte_read = 0;
  438. retval = ERROR_OK;
  439. retval |= mxc_command(nand, NAND_CMD_SEQIN);
  440. retval |= mxc_address(nand, 0); /* col */
  441. retval |= mxc_address(nand, 0); /* col */
  442. retval |= mxc_address(nand, page & 0xff); /* page address */
  443. retval |= mxc_address(nand, (page >> 8) & 0xff);/* page address */
  444. retval |= mxc_address(nand, (page >> 16) & 0xff); /* page address */
  445. target_write_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
  446. if (oob) {
  447. if (mxc_nf_info->flags.hw_ecc_enabled) {
  448. /*
  449. * part of spare block will be overrided by hardware
  450. * ECC generator
  451. */
  452. LOG_DEBUG("part of spare block will be overrided "
  453. "by hardware ECC generator");
  454. }
  455. if (nfc_is_v1())
  456. target_write_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob);
  457. else {
  458. uint32_t addr = MXC_NF_V2_SPARE_BUFFER0;
  459. while (oob_size > 0) {
  460. uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN);
  461. target_write_buffer(target, addr, len, oob);
  462. addr = align_address_v2(nand, addr + len);
  463. oob += len;
  464. oob_size -= len;
  465. }
  466. }
  467. }
  468. if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) {
  469. /* BI-swap - work-around of i.MX NFC for NAND device with page == 2kb*/
  470. target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
  471. if (oob) {
  472. LOG_ERROR("Due to NFC Bug, oob is not correctly implemented in mxc driver");
  473. return ERROR_NAND_OPERATION_FAILED;
  474. }
  475. swap2 = 0xffff; /* Spare buffer unused forced to 0xffff */
  476. new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
  477. swap2 = (swap1 << 8) | (swap2 & 0xFF);
  478. target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
  479. if (nfc_is_v1())
  480. target_write_u16(target, MXC_NF_V1_SPARE_BUFFER3 + 4, swap2);
  481. else
  482. target_write_u16(target, MXC_NF_V2_SPARE_BUFFER3, swap2);
  483. }
  484. /*
  485. * start data input operation (set MXC_NF_BIT_OP_DONE==0)
  486. */
  487. if (nfc_is_v1() && nand->page_size > 512)
  488. bufs = 4;
  489. else
  490. bufs = 1;
  491. for (uint8_t i = 0; i < bufs; ++i) {
  492. target_write_u16(target, MXC_NF_BUFADDR, i);
  493. target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI);
  494. poll_result = poll_for_complete_op(nand, "data input");
  495. if (poll_result != ERROR_OK)
  496. return poll_result;
  497. }
  498. retval |= mxc_command(nand, NAND_CMD_PAGEPROG);
  499. if (retval != ERROR_OK)
  500. return retval;
  501. /*
  502. * check status register
  503. */
  504. retval = ERROR_OK;
  505. retval |= mxc_command(nand, NAND_CMD_STATUS);
  506. target_write_u16 (target, MXC_NF_BUFADDR, 0);
  507. mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS;
  508. mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
  509. retval |= do_data_output(nand);
  510. if (retval != ERROR_OK) {
  511. LOG_ERROR(get_status_register_err_msg);
  512. return retval;
  513. }
  514. target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content);
  515. if (nand_status_content & 0x0001) {
  516. /*
  517. * page not correctly written
  518. */
  519. return ERROR_NAND_OPERATION_FAILED;
  520. }
  521. #ifdef _MXC_PRINT_STAT
  522. LOG_INFO("%d bytes newly written", data_size);
  523. #endif
  524. return ERROR_OK;
  525. }
  526. static int mxc_read_page(struct nand_device *nand, uint32_t page,
  527. uint8_t *data, uint32_t data_size,
  528. uint8_t *oob, uint32_t oob_size)
  529. {
  530. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  531. struct target *target = nand->target;
  532. int retval;
  533. uint8_t bufs;
  534. uint16_t swap1, swap2, new_swap1;
  535. if (data_size % 2) {
  536. LOG_ERROR(data_block_size_err_msg, data_size);
  537. return ERROR_NAND_OPERATION_FAILED;
  538. }
  539. if (oob_size % 2) {
  540. LOG_ERROR(data_block_size_err_msg, oob_size);
  541. return ERROR_NAND_OPERATION_FAILED;
  542. }
  543. /*
  544. * validate target state
  545. */
  546. retval = validate_target_state(nand);
  547. if (retval != ERROR_OK)
  548. return retval;
  549. /* Reset address_cycles before mxc_command ?? */
  550. retval = mxc_command(nand, NAND_CMD_READ0);
  551. if (retval != ERROR_OK)
  552. return retval;
  553. retval = mxc_address(nand, 0); /* col */
  554. if (retval != ERROR_OK)
  555. return retval;
  556. retval = mxc_address(nand, 0); /* col */
  557. if (retval != ERROR_OK)
  558. return retval;
  559. retval = mxc_address(nand, page & 0xff);/* page address */
  560. if (retval != ERROR_OK)
  561. return retval;
  562. retval = mxc_address(nand, (page >> 8) & 0xff); /* page address */
  563. if (retval != ERROR_OK)
  564. return retval;
  565. retval = mxc_address(nand, (page >> 16) & 0xff);/* page address */
  566. if (retval != ERROR_OK)
  567. return retval;
  568. retval = mxc_command(nand, NAND_CMD_READSTART);
  569. if (retval != ERROR_OK)
  570. return retval;
  571. if (nfc_is_v1() && nand->page_size > 512)
  572. bufs = 4;
  573. else
  574. bufs = 1;
  575. for (uint8_t i = 0; i < bufs; ++i) {
  576. target_write_u16(target, MXC_NF_BUFADDR, i);
  577. mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
  578. retval = do_data_output(nand);
  579. if (retval != ERROR_OK) {
  580. LOG_ERROR("MXC_NF : Error reading page %d", i);
  581. return retval;
  582. }
  583. }
  584. if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) {
  585. uint32_t SPARE_BUFFER3;
  586. /* BI-swap - work-around of mxc NFC for NAND device with page == 2k */
  587. target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
  588. if (nfc_is_v1())
  589. SPARE_BUFFER3 = MXC_NF_V1_SPARE_BUFFER3 + 4;
  590. else
  591. SPARE_BUFFER3 = MXC_NF_V2_SPARE_BUFFER3;
  592. target_read_u16(target, SPARE_BUFFER3, &swap2);
  593. new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
  594. swap2 = (swap1 << 8) | (swap2 & 0xFF);
  595. target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
  596. target_write_u16(target, SPARE_BUFFER3, swap2);
  597. }
  598. if (data)
  599. target_read_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
  600. if (oob) {
  601. if (nfc_is_v1())
  602. target_read_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob);
  603. else {
  604. uint32_t addr = MXC_NF_V2_SPARE_BUFFER0;
  605. while (oob_size > 0) {
  606. uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN);
  607. target_read_buffer(target, addr, len, oob);
  608. addr = align_address_v2(nand, addr + len);
  609. oob += len;
  610. oob_size -= len;
  611. }
  612. }
  613. }
  614. #ifdef _MXC_PRINT_STAT
  615. if (data_size > 0) {
  616. /* When Operation Status is read (when page is erased),
  617. * this function is used but data_size is null.
  618. */
  619. LOG_INFO("%d bytes newly read", data_size);
  620. }
  621. #endif
  622. return ERROR_OK;
  623. }
  624. static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr)
  625. {
  626. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  627. uint32_t ret = addr;
  628. if (addr > MXC_NF_V2_SPARE_BUFFER0 &&
  629. (addr & 0x1F) == MXC_NF_SPARE_BUFFER_LEN)
  630. ret += MXC_NF_SPARE_BUFFER_MAX - MXC_NF_SPARE_BUFFER_LEN;
  631. else if (addr >= (mxc_nf_info->mxc_base_addr + (uint32_t)nand->page_size))
  632. ret = MXC_NF_V2_SPARE_BUFFER0;
  633. return ret;
  634. }
  635. static int initialize_nf_controller(struct nand_device *nand)
  636. {
  637. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  638. struct target *target = nand->target;
  639. uint16_t work_mode = 0;
  640. uint16_t temp;
  641. /*
  642. * resets NAND flash controller in zero time ? I dont know.
  643. */
  644. target_write_u16(target, MXC_NF_CFG1, MXC_NF_BIT_RESET_EN);
  645. if (mxc_nf_info->mxc_version == MXC_VERSION_MX27)
  646. work_mode = MXC_NF_BIT_INT_DIS; /* disable interrupt */
  647. if (target->endianness == TARGET_BIG_ENDIAN) {
  648. LOG_DEBUG("MXC_NF : work in Big Endian mode");
  649. work_mode |= MXC_NF_BIT_BE_EN;
  650. } else
  651. LOG_DEBUG("MXC_NF : work in Little Endian mode");
  652. if (mxc_nf_info->flags.hw_ecc_enabled) {
  653. LOG_DEBUG("MXC_NF : work with ECC mode");
  654. work_mode |= MXC_NF_BIT_ECC_EN;
  655. } else
  656. LOG_DEBUG("MXC_NF : work without ECC mode");
  657. if (nfc_is_v2()) {
  658. target_write_u16(target, MXC_NF_V2_SPAS, OOB_SIZE / 2);
  659. if (nand->page_size) {
  660. uint16_t pages_per_block = nand->erase_size / nand->page_size;
  661. work_mode |= MXC_NF_V2_CFG1_PPB(ffs(pages_per_block) - 6);
  662. }
  663. work_mode |= MXC_NF_BIT_ECC_4BIT;
  664. }
  665. target_write_u16(target, MXC_NF_CFG1, work_mode);
  666. /*
  667. * unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock"
  668. */
  669. target_write_u16(target, MXC_NF_BUFCFG, 2);
  670. target_read_u16(target, MXC_NF_FWP, &temp);
  671. if ((temp & 0x0007) == 1) {
  672. LOG_ERROR("NAND flash is tight-locked, reset needed");
  673. return ERROR_FAIL;
  674. }
  675. /*
  676. * unlock NAND flash for write
  677. */
  678. if (nfc_is_v1()) {
  679. target_write_u16(target, MXC_NF_V1_UNLOCKSTART, 0x0000);
  680. target_write_u16(target, MXC_NF_V1_UNLOCKEND, 0xFFFF);
  681. } else {
  682. target_write_u16(target, MXC_NF_V2_UNLOCKSTART0, 0x0000);
  683. target_write_u16(target, MXC_NF_V2_UNLOCKSTART1, 0x0000);
  684. target_write_u16(target, MXC_NF_V2_UNLOCKSTART2, 0x0000);
  685. target_write_u16(target, MXC_NF_V2_UNLOCKSTART3, 0x0000);
  686. target_write_u16(target, MXC_NF_V2_UNLOCKEND0, 0xFFFF);
  687. target_write_u16(target, MXC_NF_V2_UNLOCKEND1, 0xFFFF);
  688. target_write_u16(target, MXC_NF_V2_UNLOCKEND2, 0xFFFF);
  689. target_write_u16(target, MXC_NF_V2_UNLOCKEND3, 0xFFFF);
  690. }
  691. target_write_u16(target, MXC_NF_FWP, 4);
  692. /*
  693. * 0x0000 means that first SRAM buffer @base_addr will be used
  694. */
  695. target_write_u16(target, MXC_NF_BUFADDR, 0x0000);
  696. /*
  697. * address of SRAM buffer
  698. */
  699. in_sram_address = MXC_NF_MAIN_BUFFER0;
  700. sign_of_sequental_byte_read = 0;
  701. return ERROR_OK;
  702. }
  703. static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value)
  704. {
  705. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  706. struct target *target = nand->target;
  707. static uint8_t even_byte;
  708. uint16_t temp;
  709. /*
  710. * host-big_endian ??
  711. */
  712. if (sign_of_sequental_byte_read == 0)
  713. even_byte = 0;
  714. if (in_sram_address > (nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) {
  715. LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
  716. *value = 0;
  717. sign_of_sequental_byte_read = 0;
  718. even_byte = 0;
  719. return ERROR_NAND_OPERATION_FAILED;
  720. } else {
  721. if (nfc_is_v2())
  722. in_sram_address = align_address_v2(nand, in_sram_address);
  723. target_read_u16(target, in_sram_address, &temp);
  724. if (even_byte) {
  725. *value = temp >> 8;
  726. even_byte = 0;
  727. in_sram_address += 2;
  728. } else {
  729. *value = temp & 0xff;
  730. even_byte = 1;
  731. }
  732. }
  733. sign_of_sequental_byte_read = 1;
  734. return ERROR_OK;
  735. }
  736. static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value)
  737. {
  738. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  739. struct target *target = nand->target;
  740. if (in_sram_address > (nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) {
  741. LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
  742. *value = 0;
  743. return ERROR_NAND_OPERATION_FAILED;
  744. } else {
  745. if (nfc_is_v2())
  746. in_sram_address = align_address_v2(nand, in_sram_address);
  747. target_read_u16(target, in_sram_address, value);
  748. in_sram_address += 2;
  749. }
  750. return ERROR_OK;
  751. }
  752. static int poll_for_complete_op(struct nand_device *nand, const char *text)
  753. {
  754. if (mxc_nand_ready(nand, 1000) == -1) {
  755. LOG_ERROR("%s sending timeout", text);
  756. return ERROR_NAND_OPERATION_FAILED;
  757. }
  758. return ERROR_OK;
  759. }
  760. static int validate_target_state(struct nand_device *nand)
  761. {
  762. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  763. struct target *target = nand->target;
  764. if (target->state != TARGET_HALTED) {
  765. LOG_ERROR(target_not_halted_err_msg);
  766. return ERROR_NAND_OPERATION_FAILED;
  767. }
  768. if (mxc_nf_info->flags.target_little_endian !=
  769. (target->endianness == TARGET_LITTLE_ENDIAN)) {
  770. /*
  771. * endianness changed after NAND controller probed
  772. */
  773. return ERROR_NAND_OPERATION_FAILED;
  774. }
  775. return ERROR_OK;
  776. }
  777. int ecc_status_v1(struct nand_device *nand)
  778. {
  779. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  780. struct target *target = nand->target;
  781. uint16_t ecc_status;
  782. target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
  783. switch (ecc_status & 0x000c) {
  784. case 1 << 2:
  785. LOG_INFO("main area read with 1 (correctable) error");
  786. break;
  787. case 2 << 2:
  788. LOG_INFO("main area read with more than 1 (incorrectable) error");
  789. return ERROR_NAND_OPERATION_FAILED;
  790. break;
  791. }
  792. switch (ecc_status & 0x0003) {
  793. case 1:
  794. LOG_INFO("spare area read with 1 (correctable) error");
  795. break;
  796. case 2:
  797. LOG_INFO("main area read with more than 1 (incorrectable) error");
  798. return ERROR_NAND_OPERATION_FAILED;
  799. break;
  800. }
  801. return ERROR_OK;
  802. }
  803. int ecc_status_v2(struct nand_device *nand)
  804. {
  805. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  806. struct target *target = nand->target;
  807. uint16_t ecc_status;
  808. uint8_t no_subpages;
  809. uint8_t err;
  810. no_subpages = nand->page_size >> 9;
  811. target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
  812. do {
  813. err = ecc_status & 0xF;
  814. if (err > 4) {
  815. LOG_INFO("UnCorrectable RS-ECC Error");
  816. return ERROR_NAND_OPERATION_FAILED;
  817. } else if (err > 0)
  818. LOG_INFO("%d Symbol Correctable RS-ECC Error", err);
  819. ecc_status >>= 4;
  820. } while (--no_subpages);
  821. return ERROR_OK;
  822. }
  823. static int do_data_output(struct nand_device *nand)
  824. {
  825. struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
  826. struct target *target = nand->target;
  827. int poll_result;
  828. switch (mxc_nf_info->fin) {
  829. case MXC_NF_FIN_DATAOUT:
  830. /*
  831. * start data output operation (set MXC_NF_BIT_OP_DONE==0)
  832. */
  833. target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_DATAOUT_TYPE(mxc_nf_info->optype));
  834. poll_result = poll_for_complete_op(nand, "data output");
  835. if (poll_result != ERROR_OK)
  836. return poll_result;
  837. mxc_nf_info->fin = MXC_NF_FIN_NONE;
  838. /*
  839. * ECC stuff
  840. */
  841. if (mxc_nf_info->optype == MXC_NF_DATAOUT_PAGE && mxc_nf_info->flags.hw_ecc_enabled) {
  842. int ecc_status;
  843. if (nfc_is_v1())
  844. ecc_status = ecc_status_v1(nand);
  845. else
  846. ecc_status = ecc_status_v2(nand);
  847. if (ecc_status != ERROR_OK)
  848. return ecc_status;
  849. }
  850. break;
  851. case MXC_NF_FIN_NONE:
  852. break;
  853. }
  854. return ERROR_OK;
  855. }
  856. struct nand_flash_controller mxc_nand_flash_controller = {
  857. .name = "mxc",
  858. .nand_device_command = &mxc_nand_device_command,
  859. .commands = mxc_nand_command_handler,
  860. .init = &mxc_init,
  861. .reset = &mxc_reset,
  862. .command = &mxc_command,
  863. .address = &mxc_address,
  864. .write_data = &mxc_write_data,
  865. .read_data = &mxc_read_data,
  866. .write_page = &mxc_write_page,
  867. .read_page = &mxc_read_page,
  868. .nand_ready = &mxc_nand_ready,
  869. };