You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1001 lines
35 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2011 by Marc Willam, Holger Wech *
  3. * openOCD.fseu(AT)de.fujitsu.com *
  4. * Copyright (C) 2011 Ronny Strutz *
  5. * *
  6. * Copyright (C) 2013 Nemui Trinomius *
  7. * nemuisan_kawausogasuki@live.jp *
  8. * *
  9. * This program is free software; you can redistribute it and/or modify *
  10. * it under the terms of the GNU General Public License as published by *
  11. * the Free Software Foundation; either version 2 of the License, or *
  12. * (at your option) any later version. *
  13. * *
  14. * This program is distributed in the hope that it will be useful, *
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  17. * GNU General Public License for more details. *
  18. * *
  19. * You should have received a copy of the GNU General Public License *
  20. * along with this program. If not, see <http://www.gnu.org/licenses/>. *
  21. ***************************************************************************/
  22. #ifdef HAVE_CONFIG_H
  23. #include "config.h"
  24. #endif
  25. #include "imp.h"
  26. #include <helper/binarybuffer.h>
  27. #include <target/algorithm.h>
  28. #include <target/armv7m.h>
  29. #define FLASH_DQ6 0x40 /* Data toggle flag bit (TOGG) position */
  30. #define FLASH_DQ5 0x20 /* Time limit exceeding flag bit (TLOV) position */
  31. enum fm3_variant {
  32. mb9bfxx1, /* Flash Type '1' */
  33. mb9bfxx2,
  34. mb9bfxx3,
  35. mb9bfxx4,
  36. mb9bfxx5,
  37. mb9bfxx6,
  38. mb9bfxx7,
  39. mb9bfxx8,
  40. mb9afxx1, /* Flash Type '2' */
  41. mb9afxx2,
  42. mb9afxx3,
  43. mb9afxx4,
  44. mb9afxx5,
  45. mb9afxx6,
  46. mb9afxx7,
  47. mb9afxx8,
  48. };
  49. enum fm3_flash_type {
  50. fm3_no_flash_type = 0,
  51. fm3_flash_type1 = 1,
  52. fm3_flash_type2 = 2
  53. };
  54. struct fm3_flash_bank {
  55. enum fm3_variant variant;
  56. enum fm3_flash_type flashtype;
  57. int probed;
  58. };
  59. FLASH_BANK_COMMAND_HANDLER(fm3_flash_bank_command)
  60. {
  61. struct fm3_flash_bank *fm3_info;
  62. if (CMD_ARGC < 6)
  63. return ERROR_COMMAND_SYNTAX_ERROR;
  64. fm3_info = malloc(sizeof(struct fm3_flash_bank));
  65. bank->driver_priv = fm3_info;
  66. /* Flash type '1' */
  67. if (strcmp(CMD_ARGV[5], "mb9bfxx1.cpu") == 0) {
  68. fm3_info->variant = mb9bfxx1;
  69. fm3_info->flashtype = fm3_flash_type1;
  70. } else if (strcmp(CMD_ARGV[5], "mb9bfxx2.cpu") == 0) {
  71. fm3_info->variant = mb9bfxx2;
  72. fm3_info->flashtype = fm3_flash_type1;
  73. } else if (strcmp(CMD_ARGV[5], "mb9bfxx3.cpu") == 0) {
  74. fm3_info->variant = mb9bfxx3;
  75. fm3_info->flashtype = fm3_flash_type1;
  76. } else if (strcmp(CMD_ARGV[5], "mb9bfxx4.cpu") == 0) {
  77. fm3_info->variant = mb9bfxx4;
  78. fm3_info->flashtype = fm3_flash_type1;
  79. } else if (strcmp(CMD_ARGV[5], "mb9bfxx5.cpu") == 0) {
  80. fm3_info->variant = mb9bfxx5;
  81. fm3_info->flashtype = fm3_flash_type1;
  82. } else if (strcmp(CMD_ARGV[5], "mb9bfxx6.cpu") == 0) {
  83. fm3_info->variant = mb9bfxx6;
  84. fm3_info->flashtype = fm3_flash_type1;
  85. } else if (strcmp(CMD_ARGV[5], "mb9bfxx7.cpu") == 0) {
  86. fm3_info->variant = mb9bfxx7;
  87. fm3_info->flashtype = fm3_flash_type1;
  88. } else if (strcmp(CMD_ARGV[5], "mb9bfxx8.cpu") == 0) {
  89. fm3_info->variant = mb9bfxx8;
  90. fm3_info->flashtype = fm3_flash_type1;
  91. } else if (strcmp(CMD_ARGV[5], "mb9afxx1.cpu") == 0) { /* Flash type '2' */
  92. fm3_info->variant = mb9afxx1;
  93. fm3_info->flashtype = fm3_flash_type2;
  94. } else if (strcmp(CMD_ARGV[5], "mb9afxx2.cpu") == 0) {
  95. fm3_info->variant = mb9afxx2;
  96. fm3_info->flashtype = fm3_flash_type2;
  97. } else if (strcmp(CMD_ARGV[5], "mb9afxx3.cpu") == 0) {
  98. fm3_info->variant = mb9afxx3;
  99. fm3_info->flashtype = fm3_flash_type2;
  100. } else if (strcmp(CMD_ARGV[5], "mb9afxx4.cpu") == 0) {
  101. fm3_info->variant = mb9afxx4;
  102. fm3_info->flashtype = fm3_flash_type2;
  103. } else if (strcmp(CMD_ARGV[5], "mb9afxx5.cpu") == 0) {
  104. fm3_info->variant = mb9afxx5;
  105. fm3_info->flashtype = fm3_flash_type2;
  106. } else if (strcmp(CMD_ARGV[5], "mb9afxx6.cpu") == 0) {
  107. fm3_info->variant = mb9afxx6;
  108. fm3_info->flashtype = fm3_flash_type2;
  109. } else if (strcmp(CMD_ARGV[5], "mb9afxx7.cpu") == 0) {
  110. fm3_info->variant = mb9afxx7;
  111. fm3_info->flashtype = fm3_flash_type2;
  112. } else if (strcmp(CMD_ARGV[5], "mb9afxx8.cpu") == 0) {
  113. fm3_info->variant = mb9afxx8;
  114. fm3_info->flashtype = fm3_flash_type2;
  115. }
  116. /* unknown Flash type */
  117. else {
  118. LOG_ERROR("unknown fm3 variant: %s", CMD_ARGV[5]);
  119. free(fm3_info);
  120. return ERROR_FLASH_BANK_INVALID;
  121. }
  122. fm3_info->probed = 0;
  123. return ERROR_OK;
  124. }
  125. /* Data polling algorithm */
  126. static int fm3_busy_wait(struct target *target, uint32_t offset, int timeout_ms)
  127. {
  128. int retval = ERROR_OK;
  129. uint8_t state1, state2;
  130. int ms = 0;
  131. /* While(1) loop exit via "break" and "return" on error */
  132. while (1) {
  133. /* dummy-read - see flash manual */
  134. retval = target_read_u8(target, offset, &state1);
  135. if (retval != ERROR_OK)
  136. return retval;
  137. /* Data polling 1 */
  138. retval = target_read_u8(target, offset, &state1);
  139. if (retval != ERROR_OK)
  140. return retval;
  141. /* Data polling 2 */
  142. retval = target_read_u8(target, offset, &state2);
  143. if (retval != ERROR_OK)
  144. return retval;
  145. /* Flash command finished via polled data equal? */
  146. if ((state1 & FLASH_DQ6) == (state2 & FLASH_DQ6))
  147. break;
  148. /* Timeout Flag? */
  149. else if (state1 & FLASH_DQ5) {
  150. /* Retry data polling */
  151. /* Data polling 1 */
  152. retval = target_read_u8(target, offset, &state1);
  153. if (retval != ERROR_OK)
  154. return retval;
  155. /* Data polling 2 */
  156. retval = target_read_u8(target, offset, &state2);
  157. if (retval != ERROR_OK)
  158. return retval;
  159. /* Flash command finished via polled data equal? */
  160. if ((state1 & FLASH_DQ6) != (state2 & FLASH_DQ6))
  161. return ERROR_FLASH_OPERATION_FAILED;
  162. /* finish anyway */
  163. break;
  164. }
  165. usleep(1000);
  166. ++ms;
  167. /* Polling time exceeded? */
  168. if (ms > timeout_ms) {
  169. LOG_ERROR("Polling data reading timed out!");
  170. return ERROR_FLASH_OPERATION_FAILED;
  171. }
  172. }
  173. if (retval == ERROR_OK)
  174. LOG_DEBUG("fm3_busy_wait(%" PRIx32 ") needs about %d ms", offset, ms);
  175. return retval;
  176. }
  177. static int fm3_erase(struct flash_bank *bank, int first, int last)
  178. {
  179. struct fm3_flash_bank *fm3_info = bank->driver_priv;
  180. struct target *target = bank->target;
  181. int retval = ERROR_OK;
  182. uint32_t u32DummyRead;
  183. int sector, odd;
  184. uint32_t u32FlashType;
  185. uint32_t u32FlashSeqAddress1;
  186. uint32_t u32FlashSeqAddress2;
  187. struct working_area *write_algorithm;
  188. struct reg_param reg_params[3];
  189. struct armv7m_algorithm armv7m_info;
  190. u32FlashType = (uint32_t) fm3_info->flashtype;
  191. if (u32FlashType == fm3_flash_type1) {
  192. u32FlashSeqAddress1 = 0x00001550;
  193. u32FlashSeqAddress2 = 0x00000AA8;
  194. } else if (u32FlashType == fm3_flash_type2) {
  195. u32FlashSeqAddress1 = 0x00000AA8;
  196. u32FlashSeqAddress2 = 0x00000554;
  197. } else {
  198. LOG_ERROR("Flash/Device type unknown!");
  199. return ERROR_FLASH_OPERATION_FAILED;
  200. }
  201. if (target->state != TARGET_HALTED) {
  202. LOG_ERROR("Target not halted");
  203. return ERROR_TARGET_NOT_HALTED;
  204. }
  205. /* RAMCODE used for fm3 Flash sector erase: */
  206. /* R0 keeps Flash Sequence address 1 (u32FlashSeq1) */
  207. /* R1 keeps Flash Sequence address 2 (u32FlashSeq2) */
  208. /* R2 keeps Flash Offset address (ofs) */
  209. static const uint8_t fm3_flash_erase_sector_code[] = {
  210. /* *(uint16_t*)u32FlashSeq1 = 0xAA; */
  211. 0xAA, 0x24, /* MOVS R4, #0xAA */
  212. 0x04, 0x80, /* STRH R4, [R0, #0] */
  213. /* *(uint16_t*)u32FlashSeq2 = 0x55; */
  214. 0x55, 0x23, /* MOVS R3, #0x55 */
  215. 0x0B, 0x80, /* STRH R3, [R1, #0] */
  216. /* *(uint16_t*)u32FlashSeq1 = 0x80; */
  217. 0x80, 0x25, /* MOVS R5, #0x80 */
  218. 0x05, 0x80, /* STRH R5, [R0, #0] */
  219. /* *(uint16_t*)u32FlashSeq1 = 0xAA; */
  220. 0x04, 0x80, /* STRH R4, [R0, #0] */
  221. /* *(uint16_t*)u32FlashSeq2 = 0x55; */
  222. 0x0B, 0x80, /* STRH R3, [R1, #0] */
  223. /* Sector_Erase Command (0x30) */
  224. /* *(uint16_t*)ofs = 0x30; */
  225. 0x30, 0x20, /* MOVS R0, #0x30 */
  226. 0x10, 0x80, /* STRH R0, [R2, #0] */
  227. /* End Code */
  228. 0x00, 0xBE, /* BKPT #0 */
  229. };
  230. LOG_INFO("Fujitsu MB9[A/B]FXXX: Sector Erase ... (%d to %d)", first, last);
  231. /* disable HW watchdog */
  232. retval = target_write_u32(target, 0x40011C00, 0x1ACCE551);
  233. if (retval != ERROR_OK)
  234. return retval;
  235. retval = target_write_u32(target, 0x40011C00, 0xE5331AAE);
  236. if (retval != ERROR_OK)
  237. return retval;
  238. retval = target_write_u32(target, 0x40011008, 0x00000000);
  239. if (retval != ERROR_OK)
  240. return retval;
  241. /* FASZR = 0x01, Enables CPU Programming Mode (16-bit Flash acccess) */
  242. retval = target_write_u32(target, 0x40000000, 0x0001);
  243. if (retval != ERROR_OK)
  244. return retval;
  245. /* dummy read of FASZR */
  246. retval = target_read_u32(target, 0x40000000, &u32DummyRead);
  247. if (retval != ERROR_OK)
  248. return retval;
  249. /* allocate working area with flash sector erase code */
  250. if (target_alloc_working_area(target, sizeof(fm3_flash_erase_sector_code),
  251. &write_algorithm) != ERROR_OK) {
  252. LOG_WARNING("no working area available, can't do block memory writes");
  253. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  254. }
  255. retval = target_write_buffer(target, write_algorithm->address,
  256. sizeof(fm3_flash_erase_sector_code), fm3_flash_erase_sector_code);
  257. if (retval != ERROR_OK)
  258. return retval;
  259. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  260. armv7m_info.core_mode = ARM_MODE_THREAD;
  261. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* u32FlashSeqAddress1 */
  262. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* u32FlashSeqAddress2 */
  263. init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* offset */
  264. /* write code buffer and use Flash sector erase code within fm3 */
  265. for (sector = first ; sector <= last ; sector++) {
  266. uint32_t offset = bank->sectors[sector].offset;
  267. for (odd = 0; odd < 2 ; odd++) {
  268. if (odd)
  269. offset += 4;
  270. buf_set_u32(reg_params[0].value, 0, 32, u32FlashSeqAddress1);
  271. buf_set_u32(reg_params[1].value, 0, 32, u32FlashSeqAddress2);
  272. buf_set_u32(reg_params[2].value, 0, 32, offset);
  273. retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
  274. write_algorithm->address, 0, 100000, &armv7m_info);
  275. if (retval != ERROR_OK) {
  276. LOG_ERROR("Error executing flash erase programming algorithm");
  277. retval = ERROR_FLASH_OPERATION_FAILED;
  278. return retval;
  279. }
  280. retval = fm3_busy_wait(target, offset, 500);
  281. if (retval != ERROR_OK)
  282. return retval;
  283. }
  284. bank->sectors[sector].is_erased = 1;
  285. }
  286. target_free_working_area(target, write_algorithm);
  287. destroy_reg_param(&reg_params[0]);
  288. destroy_reg_param(&reg_params[1]);
  289. destroy_reg_param(&reg_params[2]);
  290. /* FASZR = 0x02, Enables CPU Run Mode (32-bit Flash acccess) */
  291. retval = target_write_u32(target, 0x40000000, 0x0002);
  292. if (retval != ERROR_OK)
  293. return retval;
  294. retval = target_read_u32(target, 0x40000000, &u32DummyRead); /* dummy read of FASZR */
  295. return retval;
  296. }
  297. static int fm3_write_block(struct flash_bank *bank, const uint8_t *buffer,
  298. uint32_t offset, uint32_t count)
  299. {
  300. struct fm3_flash_bank *fm3_info = bank->driver_priv;
  301. struct target *target = bank->target;
  302. uint32_t buffer_size = 2048; /* Default minimum value */
  303. struct working_area *write_algorithm;
  304. struct working_area *source;
  305. uint32_t address = bank->base + offset;
  306. struct reg_param reg_params[6];
  307. struct armv7m_algorithm armv7m_info;
  308. int retval = ERROR_OK;
  309. uint32_t u32FlashType;
  310. uint32_t u32FlashSeqAddress1;
  311. uint32_t u32FlashSeqAddress2;
  312. /* Increase buffer_size if needed */
  313. if (buffer_size < (target->working_area_size / 2))
  314. buffer_size = (target->working_area_size / 2);
  315. u32FlashType = (uint32_t) fm3_info->flashtype;
  316. if (u32FlashType == fm3_flash_type1) {
  317. u32FlashSeqAddress1 = 0x00001550;
  318. u32FlashSeqAddress2 = 0x00000AA8;
  319. } else if (u32FlashType == fm3_flash_type2) {
  320. u32FlashSeqAddress1 = 0x00000AA8;
  321. u32FlashSeqAddress2 = 0x00000554;
  322. } else {
  323. LOG_ERROR("Flash/Device type unknown!");
  324. return ERROR_FLASH_OPERATION_FAILED;
  325. }
  326. /* RAMCODE used for fm3 Flash programming: */
  327. /* R0 keeps source start address (u32Source) */
  328. /* R1 keeps target start address (u32Target) */
  329. /* R2 keeps number of halfwords to write (u32Count) */
  330. /* R3 keeps Flash Sequence address 1 (u32FlashSeq1) */
  331. /* R4 keeps Flash Sequence address 2 (u32FlashSeq2) */
  332. /* R5 returns result value (u32FlashResult) */
  333. static const uint8_t fm3_flash_write_code[] = {
  334. /* fm3_FLASH_IF->FASZ &= 0xFFFD; */
  335. 0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
  336. 0x2D, 0x68, /* LDR R5, [R5] */
  337. 0x4F, 0xF6, 0xFD, 0x76, /* MOVW R6, #0xFFFD */
  338. 0x35, 0x40, /* ANDS R5, R5, R6 */
  339. 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
  340. 0x35, 0x60, /* STR R5, [R6] */
  341. /* fm3_FLASH_IF->FASZ |= 1; */
  342. 0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
  343. 0x2D, 0x68, /* LDR R5, [R3] */
  344. 0x55, 0xF0, 0x01, 0x05, /* ORRS.W R5, R5, #1 */
  345. 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
  346. 0x35, 0x60, /* STR R5, [R6] */
  347. /* u32DummyRead = fm3_FLASH_IF->FASZ; */
  348. 0x28, 0x4D, /* LDR.N R5, ??u32DummyRead */
  349. 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
  350. 0x36, 0x68, /* LDR R6, [R6] */
  351. 0x2E, 0x60, /* STR R6, [R5] */
  352. /* u32FlashResult = FLASH_WRITE_NO_RESULT */
  353. 0x26, 0x4D, /* LDR.N R5, ??u32FlashResult */
  354. 0x00, 0x26, /* MOVS R6, #0 */
  355. 0x2E, 0x60, /* STR R6, [R5] */
  356. /* while ((u32Count > 0 ) */
  357. /* && (u32FlashResult */
  358. /* == FLASH_WRITE_NO_RESULT)) */
  359. 0x01, 0x2A, /* L0: CMP R2, #1 */
  360. 0x2C, 0xDB, /* BLT.N L1 */
  361. 0x24, 0x4D, /* LDR.N R5, ??u32FlashResult */
  362. 0x2D, 0x68, /* LDR R5, [R5] */
  363. 0x00, 0x2D, /* CMP R5, #0 */
  364. 0x28, 0xD1, /* BNE.N L1 */
  365. /* *u32FlashSeq1 = FLASH_WRITE_1; */
  366. 0xAA, 0x25, /* MOVS R5, #0xAA */
  367. 0x1D, 0x60, /* STR R5, [R3] */
  368. /* *u32FlashSeq2 = FLASH_WRITE_2; */
  369. 0x55, 0x25, /* MOVS R5, #0x55 */
  370. 0x25, 0x60, /* STR R5, [R4] */
  371. /* *u32FlashSeq1 = FLASH_WRITE_3; */
  372. 0xA0, 0x25, /* MOVS R5, #0xA0 */
  373. 0x1D, 0x60, /* STRH R5, [R3] */
  374. /* *(volatile uint16_t*)u32Target */
  375. /* = *(volatile uint16_t*)u32Source; */
  376. 0x05, 0x88, /* LDRH R5, [R0] */
  377. 0x0D, 0x80, /* STRH R5, [R1] */
  378. /* while (u32FlashResult */
  379. /* == FLASH_WRITE_NO_RESTULT) */
  380. 0x1E, 0x4D, /* L2: LDR.N R5, ??u32FlashResult */
  381. 0x2D, 0x68, /* LDR R5, [R5] */
  382. 0x00, 0x2D, /* CMP R5, #0 */
  383. 0x11, 0xD1, /* BNE.N L3 */
  384. /* if ((*(volatile uint16_t*)u32Target */
  385. /* & FLASH_DQ5) == FLASH_DQ5) */
  386. 0x0D, 0x88, /* LDRH R5, [R1] */
  387. 0xAD, 0x06, /* LSLS R5, R5, #0x1A */
  388. 0x02, 0xD5, /* BPL.N L4 */
  389. /* u32FlashResult = FLASH_WRITE_TIMEOUT */
  390. 0x1A, 0x4D, /* LDR.N R5, ??u32FlashResult */
  391. 0x02, 0x26, /* MOVS R6, #2 */
  392. 0x2E, 0x60, /* STR R6, [R5] */
  393. /* if ((*(volatile uint16_t *)u32Target */
  394. /* & FLASH_DQ7) */
  395. /* == (*(volatile uint16_t*)u32Source */
  396. /* & FLASH_DQ7)) */
  397. 0x0D, 0x88, /* L4: LDRH R5, [R1] */
  398. 0x15, 0xF0, 0x80, 0x05, /* ANDS.W R5, R5, #0x80 */
  399. 0x06, 0x88, /* LDRH R6, [R0] */
  400. 0x16, 0xF0, 0x80, 0x06, /* ANDS.W R6, R6, #0x80 */
  401. 0xB5, 0x42, /* CMP R5, R6 */
  402. 0xED, 0xD1, /* BNE.N L2 */
  403. /* u32FlashResult = FLASH_WRITE_OKAY */
  404. 0x15, 0x4D, /* LDR.N R5, ??u32FlashResult */
  405. 0x01, 0x26, /* MOVS R6, #1 */
  406. 0x2E, 0x60, /* STR R6, [R5] */
  407. 0xE9, 0xE7, /* B.N L2 */
  408. /* if (u32FlashResult */
  409. /* != FLASH_WRITE_TIMEOUT) */
  410. 0x13, 0x4D, /* LDR.N R5, ??u32FlashResult */
  411. 0x2D, 0x68, /* LDR R5, [R5] */
  412. 0x02, 0x2D, /* CMP R5, #2 */
  413. 0x02, 0xD0, /* BEQ.N L5 */
  414. /* u32FlashResult = FLASH_WRITE_NO_RESULT */
  415. 0x11, 0x4D, /* LDR.N R5, ??u32FlashResult */
  416. 0x00, 0x26, /* MOVS R6, #0 */
  417. 0x2E, 0x60, /* STR R6, [R5] */
  418. /* u32Count--; */
  419. 0x52, 0x1E, /* L5: SUBS R2, R2, #1 */
  420. /* u32Source += 2; */
  421. 0x80, 0x1C, /* ADDS R0, R0, #2 */
  422. /* u32Target += 2; */
  423. 0x89, 0x1C, /* ADDS R1, R1, #2 */
  424. 0xD0, 0xE7, /* B.N L0 */
  425. /* fm3_FLASH_IF->FASZ &= 0xFFFE; */
  426. 0x5F, 0xF0, 0x80, 0x45, /* L1: MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
  427. 0x2D, 0x68, /* LDR R5, [R5] */
  428. 0x4F, 0xF6, 0xFE, 0x76, /* MOVW R6, #0xFFFE */
  429. 0x35, 0x40, /* ANDS R5, R5, R6 */
  430. 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
  431. 0x35, 0x60, /* STR R5, [R6] */
  432. /* fm3_FLASH_IF->FASZ |= 2; */
  433. 0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
  434. 0x2D, 0x68, /* LDR R5, [R5] */
  435. 0x55, 0xF0, 0x02, 0x05, /* ORRS.W R5, R5, #2 */
  436. 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
  437. 0x35, 0x60, /* STR R5, [R6] */
  438. /* u32DummyRead = fm3_FLASH_IF->FASZ; */
  439. 0x04, 0x4D, /* LDR.N R5, ??u32DummyRead */
  440. 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
  441. 0x36, 0x68, /* LDR R6, [R6] */
  442. 0x2E, 0x60, /* STR R6, [R5] */
  443. /* copy u32FlashResult to R3 for return */
  444. /* value */
  445. 0xDF, 0xF8, 0x08, 0x50, /* LDR.W R5, ??u32FlashResult */
  446. 0x2D, 0x68, /* LDR R5, [R5] */
  447. /* Breakpoint here */
  448. 0x00, 0xBE, /* BKPT #0 */
  449. /* The following address pointers assume, that the code is running from */
  450. /* SRAM basic-address + 8.These address pointers will be patched, if a */
  451. /* different start address in RAM is used (e.g. for Flash type 2)! */
  452. /* Default SRAM basic-address is 0x20000000. */
  453. 0x00, 0x00, 0x00, 0x20, /* u32DummyRead address in RAM (0x20000000) */
  454. 0x04, 0x00, 0x00, 0x20 /* u32FlashResult address in RAM (0x20000004) */
  455. };
  456. LOG_INFO("Fujitsu MB9[A/B]FXXX: FLASH Write ...");
  457. /* disable HW watchdog */
  458. retval = target_write_u32(target, 0x40011C00, 0x1ACCE551);
  459. if (retval != ERROR_OK)
  460. return retval;
  461. retval = target_write_u32(target, 0x40011C00, 0xE5331AAE);
  462. if (retval != ERROR_OK)
  463. return retval;
  464. retval = target_write_u32(target, 0x40011008, 0x00000000);
  465. if (retval != ERROR_OK)
  466. return retval;
  467. count = count / 2; /* number bytes -> number halfwords */
  468. /* check code alignment */
  469. if (offset & 0x1) {
  470. LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
  471. return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
  472. }
  473. /* allocate working area and variables with flash programming code */
  474. if (target_alloc_working_area(target, sizeof(fm3_flash_write_code) + 8,
  475. &write_algorithm) != ERROR_OK) {
  476. LOG_WARNING("no working area available, can't do block memory writes");
  477. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  478. }
  479. retval = target_write_buffer(target, write_algorithm->address + 8,
  480. sizeof(fm3_flash_write_code), fm3_flash_write_code);
  481. if (retval != ERROR_OK)
  482. return retval;
  483. /* Patching 'local variable address' */
  484. /* Algorithm: u32DummyRead: */
  485. retval = target_write_u32(target, (write_algorithm->address + 8)
  486. + sizeof(fm3_flash_write_code) - 8, (write_algorithm->address));
  487. if (retval != ERROR_OK)
  488. return retval;
  489. /* Algorithm: u32FlashResult: */
  490. retval = target_write_u32(target, (write_algorithm->address + 8)
  491. + sizeof(fm3_flash_write_code) - 4, (write_algorithm->address) + 4);
  492. if (retval != ERROR_OK)
  493. return retval;
  494. /* memory buffer */
  495. while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
  496. buffer_size /= 2;
  497. if (buffer_size <= 256) {
  498. /* free working area, write algorithm already allocated */
  499. target_free_working_area(target, write_algorithm);
  500. LOG_WARNING("No large enough working area available, can't do block memory writes");
  501. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  502. }
  503. }
  504. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  505. armv7m_info.core_mode = ARM_MODE_THREAD;
  506. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* source start address */
  507. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* target start address */
  508. init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* number of halfwords to program */
  509. init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* Flash Sequence address 1 */
  510. init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* Flash Sequence address 1 */
  511. init_reg_param(&reg_params[5], "r5", 32, PARAM_IN); /* result */
  512. /* write code buffer and use Flash programming code within fm3 */
  513. /* Set breakpoint to 0 with time-out of 1000 ms */
  514. while (count > 0) {
  515. uint32_t thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count;
  516. retval = target_write_buffer(target, source->address, thisrun_count * 2, buffer);
  517. if (retval != ERROR_OK)
  518. break;
  519. buf_set_u32(reg_params[0].value, 0, 32, source->address);
  520. buf_set_u32(reg_params[1].value, 0, 32, address);
  521. buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
  522. buf_set_u32(reg_params[3].value, 0, 32, u32FlashSeqAddress1);
  523. buf_set_u32(reg_params[4].value, 0, 32, u32FlashSeqAddress2);
  524. retval = target_run_algorithm(target, 0, NULL, 6, reg_params,
  525. (write_algorithm->address + 8), 0, 1000, &armv7m_info);
  526. if (retval != ERROR_OK) {
  527. LOG_ERROR("Error executing fm3 Flash programming algorithm");
  528. retval = ERROR_FLASH_OPERATION_FAILED;
  529. break;
  530. }
  531. if (buf_get_u32(reg_params[5].value, 0, 32) != ERROR_OK) {
  532. LOG_ERROR("Fujitsu MB9[A/B]FXXX: Flash programming ERROR (Timeout) -> Reg R3: %" PRIx32,
  533. buf_get_u32(reg_params[5].value, 0, 32));
  534. retval = ERROR_FLASH_OPERATION_FAILED;
  535. break;
  536. }
  537. buffer += thisrun_count * 2;
  538. address += thisrun_count * 2;
  539. count -= thisrun_count;
  540. }
  541. target_free_working_area(target, source);
  542. target_free_working_area(target, write_algorithm);
  543. destroy_reg_param(&reg_params[0]);
  544. destroy_reg_param(&reg_params[1]);
  545. destroy_reg_param(&reg_params[2]);
  546. destroy_reg_param(&reg_params[3]);
  547. destroy_reg_param(&reg_params[4]);
  548. destroy_reg_param(&reg_params[5]);
  549. return retval;
  550. }
  551. static int fm3_probe(struct flash_bank *bank)
  552. {
  553. struct fm3_flash_bank *fm3_info = bank->driver_priv;
  554. uint16_t num_pages;
  555. if (bank->target->state != TARGET_HALTED) {
  556. LOG_ERROR("Target not halted");
  557. return ERROR_TARGET_NOT_HALTED;
  558. }
  559. /*
  560. -- page-- start -- blocksize - mpu - totalFlash --
  561. page0 0x00000 16k
  562. page1 0x04000 16k
  563. page2 0x08000 96k ___ fxx3 128k Flash
  564. page3 0x20000 128k ___ fxx4 256k Flash
  565. page4 0x40000 128k ___ fxx5 384k Flash
  566. page5 0x60000 128k ___ fxx6 512k Flash
  567. -----------------------
  568. page6 0x80000 128k
  569. page7 0xa0000 128k ___ fxx7 256k Flash
  570. page8 0xc0000 128k
  571. page9 0xe0000 128k ___ fxx8 256k Flash
  572. */
  573. num_pages = 10; /* max number of Flash pages for malloc */
  574. fm3_info->probed = 0;
  575. bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
  576. bank->base = 0x00000000;
  577. bank->size = 32 * 1024; /* bytes */
  578. bank->sectors[0].offset = 0;
  579. bank->sectors[0].size = 16 * 1024;
  580. bank->sectors[0].is_erased = -1;
  581. bank->sectors[0].is_protected = -1;
  582. bank->sectors[1].offset = 0x4000;
  583. bank->sectors[1].size = 16 * 1024;
  584. bank->sectors[1].is_erased = -1;
  585. bank->sectors[1].is_protected = -1;
  586. if ((fm3_info->variant == mb9bfxx1)
  587. || (fm3_info->variant == mb9afxx1)) {
  588. num_pages = 3;
  589. bank->size = 64 * 1024; /* bytes */
  590. bank->num_sectors = num_pages;
  591. bank->sectors[2].offset = 0x8000;
  592. bank->sectors[2].size = 32 * 1024;
  593. bank->sectors[2].is_erased = -1;
  594. bank->sectors[2].is_protected = -1;
  595. }
  596. if ((fm3_info->variant == mb9bfxx2)
  597. || (fm3_info->variant == mb9bfxx4)
  598. || (fm3_info->variant == mb9bfxx5)
  599. || (fm3_info->variant == mb9bfxx6)
  600. || (fm3_info->variant == mb9bfxx7)
  601. || (fm3_info->variant == mb9bfxx8)
  602. || (fm3_info->variant == mb9afxx2)
  603. || (fm3_info->variant == mb9afxx4)
  604. || (fm3_info->variant == mb9afxx5)
  605. || (fm3_info->variant == mb9afxx6)
  606. || (fm3_info->variant == mb9afxx7)
  607. || (fm3_info->variant == mb9afxx8)) {
  608. num_pages = 3;
  609. bank->size = 128 * 1024; /* bytes */
  610. bank->num_sectors = num_pages;
  611. bank->sectors[2].offset = 0x8000;
  612. bank->sectors[2].size = 96 * 1024;
  613. bank->sectors[2].is_erased = -1;
  614. bank->sectors[2].is_protected = -1;
  615. }
  616. if ((fm3_info->variant == mb9bfxx4)
  617. || (fm3_info->variant == mb9bfxx5)
  618. || (fm3_info->variant == mb9bfxx6)
  619. || (fm3_info->variant == mb9bfxx7)
  620. || (fm3_info->variant == mb9bfxx8)
  621. || (fm3_info->variant == mb9afxx4)
  622. || (fm3_info->variant == mb9afxx5)
  623. || (fm3_info->variant == mb9afxx6)
  624. || (fm3_info->variant == mb9afxx7)
  625. || (fm3_info->variant == mb9afxx8)) {
  626. num_pages = 4;
  627. bank->size = 256 * 1024; /* bytes */
  628. bank->num_sectors = num_pages;
  629. bank->sectors[3].offset = 0x20000;
  630. bank->sectors[3].size = 128 * 1024;
  631. bank->sectors[3].is_erased = -1;
  632. bank->sectors[3].is_protected = -1;
  633. }
  634. if ((fm3_info->variant == mb9bfxx5)
  635. || (fm3_info->variant == mb9bfxx6)
  636. || (fm3_info->variant == mb9bfxx7)
  637. || (fm3_info->variant == mb9bfxx8)
  638. || (fm3_info->variant == mb9afxx5)
  639. || (fm3_info->variant == mb9afxx6)
  640. || (fm3_info->variant == mb9afxx7)
  641. || (fm3_info->variant == mb9afxx8)) {
  642. num_pages = 5;
  643. bank->size = 384 * 1024; /* bytes */
  644. bank->num_sectors = num_pages;
  645. bank->sectors[4].offset = 0x40000;
  646. bank->sectors[4].size = 128 * 1024;
  647. bank->sectors[4].is_erased = -1;
  648. bank->sectors[4].is_protected = -1;
  649. }
  650. if ((fm3_info->variant == mb9bfxx6)
  651. || (fm3_info->variant == mb9bfxx7)
  652. || (fm3_info->variant == mb9bfxx8)
  653. || (fm3_info->variant == mb9afxx6)
  654. || (fm3_info->variant == mb9afxx7)
  655. || (fm3_info->variant == mb9afxx8)) {
  656. num_pages = 6;
  657. bank->size = 512 * 1024; /* bytes */
  658. bank->num_sectors = num_pages;
  659. bank->sectors[5].offset = 0x60000;
  660. bank->sectors[5].size = 128 * 1024;
  661. bank->sectors[5].is_erased = -1;
  662. bank->sectors[5].is_protected = -1;
  663. }
  664. if ((fm3_info->variant == mb9bfxx7)
  665. || (fm3_info->variant == mb9bfxx8)
  666. || (fm3_info->variant == mb9afxx7)
  667. || (fm3_info->variant == mb9afxx8)) {
  668. num_pages = 8;
  669. bank->size = 768 * 1024; /* bytes */
  670. bank->num_sectors = num_pages;
  671. bank->sectors[6].offset = 0x80000;
  672. bank->sectors[6].size = 128 * 1024;
  673. bank->sectors[6].is_erased = -1;
  674. bank->sectors[6].is_protected = -1;
  675. bank->sectors[7].offset = 0xa0000;
  676. bank->sectors[7].size = 128 * 1024;
  677. bank->sectors[7].is_erased = -1;
  678. bank->sectors[7].is_protected = -1;
  679. }
  680. if ((fm3_info->variant == mb9bfxx8)
  681. || (fm3_info->variant == mb9afxx8)) {
  682. num_pages = 10;
  683. bank->size = 1024 * 1024; /* bytes */
  684. bank->num_sectors = num_pages;
  685. bank->sectors[8].offset = 0xc0000;
  686. bank->sectors[8].size = 128 * 1024;
  687. bank->sectors[8].is_erased = -1;
  688. bank->sectors[8].is_protected = -1;
  689. bank->sectors[9].offset = 0xe0000;
  690. bank->sectors[9].size = 128 * 1024;
  691. bank->sectors[9].is_erased = -1;
  692. bank->sectors[9].is_protected = -1;
  693. }
  694. fm3_info->probed = 1;
  695. return ERROR_OK;
  696. }
  697. static int fm3_auto_probe(struct flash_bank *bank)
  698. {
  699. struct fm3_flash_bank *fm3_info = bank->driver_priv;
  700. if (fm3_info->probed)
  701. return ERROR_OK;
  702. return fm3_probe(bank);
  703. }
  704. /* Chip erase */
  705. static int fm3_chip_erase(struct flash_bank *bank)
  706. {
  707. struct target *target = bank->target;
  708. struct fm3_flash_bank *fm3_info2 = bank->driver_priv;
  709. int retval = ERROR_OK;
  710. uint32_t u32DummyRead;
  711. uint32_t u32FlashType;
  712. uint32_t u32FlashSeqAddress1;
  713. uint32_t u32FlashSeqAddress2;
  714. struct working_area *write_algorithm;
  715. struct reg_param reg_params[3];
  716. struct armv7m_algorithm armv7m_info;
  717. u32FlashType = (uint32_t) fm3_info2->flashtype;
  718. if (u32FlashType == fm3_flash_type1) {
  719. LOG_INFO("*** Erasing mb9bfxxx type");
  720. u32FlashSeqAddress1 = 0x00001550;
  721. u32FlashSeqAddress2 = 0x00000AA8;
  722. } else if (u32FlashType == fm3_flash_type2) {
  723. LOG_INFO("*** Erasing mb9afxxx type");
  724. u32FlashSeqAddress1 = 0x00000AA8;
  725. u32FlashSeqAddress2 = 0x00000554;
  726. } else {
  727. LOG_ERROR("Flash/Device type unknown!");
  728. return ERROR_FLASH_OPERATION_FAILED;
  729. }
  730. if (target->state != TARGET_HALTED) {
  731. LOG_ERROR("Target not halted");
  732. return ERROR_TARGET_NOT_HALTED;
  733. }
  734. /* RAMCODE used for fm3 Flash chip erase: */
  735. /* R0 keeps Flash Sequence address 1 (u32FlashSeq1) */
  736. /* R1 keeps Flash Sequence address 2 (u32FlashSeq2) */
  737. static const uint8_t fm3_flash_erase_chip_code[] = {
  738. /* *(uint16_t*)u32FlashSeq1 = 0xAA; */
  739. 0xAA, 0x22, /* MOVS R2, #0xAA */
  740. 0x02, 0x80, /* STRH R2, [R0, #0] */
  741. /* *(uint16_t*)u32FlashSeq2 = 0x55; */
  742. 0x55, 0x23, /* MOVS R3, #0x55 */
  743. 0x0B, 0x80, /* STRH R3, [R1, #0] */
  744. /* *(uint16_t*)u32FlashSeq1 = 0x80; */
  745. 0x80, 0x24, /* MOVS R4, #0x80 */
  746. 0x04, 0x80, /* STRH R4, [R0, #0] */
  747. /* *(uint16_t*)u32FlashSeq1 = 0xAA; */
  748. 0x02, 0x80, /* STRH R2, [R0, #0] */
  749. /* *(uint16_t*)u32FlashSeq2 = 0x55; */
  750. 0x0B, 0x80, /* STRH R3, [R1, #0] */
  751. /* Chip_Erase Command 0x10 */
  752. /* *(uint16_t*)u32FlashSeq1 = 0x10; */
  753. 0x10, 0x21, /* MOVS R1, #0x10 */
  754. 0x01, 0x80, /* STRH R1, [R0, #0] */
  755. /* End Code */
  756. 0x00, 0xBE, /* BKPT #0 */
  757. };
  758. LOG_INFO("Fujitsu MB9[A/B]xxx: Chip Erase ... (may take several seconds)");
  759. /* disable HW watchdog */
  760. retval = target_write_u32(target, 0x40011C00, 0x1ACCE551);
  761. if (retval != ERROR_OK)
  762. return retval;
  763. retval = target_write_u32(target, 0x40011C00, 0xE5331AAE);
  764. if (retval != ERROR_OK)
  765. return retval;
  766. retval = target_write_u32(target, 0x40011008, 0x00000000);
  767. if (retval != ERROR_OK)
  768. return retval;
  769. /* FASZR = 0x01, Enables CPU Programming Mode (16-bit Flash access) */
  770. retval = target_write_u32(target, 0x40000000, 0x0001);
  771. if (retval != ERROR_OK)
  772. return retval;
  773. /* dummy read of FASZR */
  774. retval = target_read_u32(target, 0x40000000, &u32DummyRead);
  775. if (retval != ERROR_OK)
  776. return retval;
  777. /* allocate working area with flash chip erase code */
  778. if (target_alloc_working_area(target, sizeof(fm3_flash_erase_chip_code),
  779. &write_algorithm) != ERROR_OK) {
  780. LOG_WARNING("no working area available, can't do block memory writes");
  781. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  782. }
  783. retval = target_write_buffer(target, write_algorithm->address,
  784. sizeof(fm3_flash_erase_chip_code), fm3_flash_erase_chip_code);
  785. if (retval != ERROR_OK)
  786. return retval;
  787. armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
  788. armv7m_info.core_mode = ARM_MODE_THREAD;
  789. init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* u32FlashSeqAddress1 */
  790. init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* u32FlashSeqAddress2 */
  791. buf_set_u32(reg_params[0].value, 0, 32, u32FlashSeqAddress1);
  792. buf_set_u32(reg_params[1].value, 0, 32, u32FlashSeqAddress2);
  793. retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
  794. write_algorithm->address, 0, 100000, &armv7m_info);
  795. if (retval != ERROR_OK) {
  796. LOG_ERROR("Error executing flash erase programming algorithm");
  797. retval = ERROR_FLASH_OPERATION_FAILED;
  798. return retval;
  799. }
  800. target_free_working_area(target, write_algorithm);
  801. destroy_reg_param(&reg_params[0]);
  802. destroy_reg_param(&reg_params[1]);
  803. retval = fm3_busy_wait(target, u32FlashSeqAddress2, 20000); /* 20s timeout */
  804. if (retval != ERROR_OK)
  805. return retval;
  806. /* FASZR = 0x02, Re-enables CPU Run Mode (32-bit Flash access) */
  807. retval = target_write_u32(target, 0x40000000, 0x0002);
  808. if (retval != ERROR_OK)
  809. return retval;
  810. retval = target_read_u32(target, 0x40000000, &u32DummyRead); /* dummy read of FASZR */
  811. return retval;
  812. }
  813. COMMAND_HANDLER(fm3_handle_chip_erase_command)
  814. {
  815. int i;
  816. if (CMD_ARGC < 1)
  817. return ERROR_COMMAND_SYNTAX_ERROR;
  818. struct flash_bank *bank;
  819. int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
  820. if (ERROR_OK != retval)
  821. return retval;
  822. if (fm3_chip_erase(bank) == ERROR_OK) {
  823. /* set all sectors as erased */
  824. for (i = 0; i < bank->num_sectors; i++)
  825. bank->sectors[i].is_erased = 1;
  826. command_print(CMD_CTX, "fm3 chip erase complete");
  827. } else {
  828. command_print(CMD_CTX, "fm3 chip erase failed");
  829. }
  830. return ERROR_OK;
  831. }
  832. static const struct command_registration fm3_exec_command_handlers[] = {
  833. {
  834. .name = "chip_erase",
  835. .usage = "<bank>",
  836. .handler = fm3_handle_chip_erase_command,
  837. .mode = COMMAND_EXEC,
  838. .help = "Erase entire Flash device.",
  839. },
  840. COMMAND_REGISTRATION_DONE
  841. };
  842. static const struct command_registration fm3_command_handlers[] = {
  843. {
  844. .name = "fm3",
  845. .mode = COMMAND_ANY,
  846. .help = "fm3 Flash command group",
  847. .usage = "",
  848. .chain = fm3_exec_command_handlers,
  849. },
  850. COMMAND_REGISTRATION_DONE
  851. };
  852. struct flash_driver fm3_flash = {
  853. .name = "fm3",
  854. .commands = fm3_command_handlers,
  855. .flash_bank_command = fm3_flash_bank_command,
  856. .erase = fm3_erase,
  857. .write = fm3_write_block,
  858. .probe = fm3_probe,
  859. .auto_probe = fm3_auto_probe,
  860. .erase_check = default_flash_blank_check,
  861. };