You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2874 lines
84 KiB

  1. /***************************************************************************
  2. * Copyright (C) 2005 by Dominic Rath *
  3. * Dominic.Rath@gmx.de *
  4. * *
  5. * Copyright (C) 2006 by Magnus Lundin *
  6. * lundin@mlu.mine.nu *
  7. * *
  8. * Copyright (C) 2008 by Spencer Oliver *
  9. * spen@spen-soft.co.uk *
  10. * *
  11. * Copyright (C) 2009 by Dirk Behme *
  12. * dirk.behme@gmail.com - copy from cortex_m3 *
  13. * *
  14. * Copyright (C) 2010 Øyvind Harboe *
  15. * oyvind.harboe@zylin.com *
  16. * *
  17. * Copyright (C) ST-Ericsson SA 2011 *
  18. * michel.jaouen@stericsson.com : smp minimum support *
  19. * *
  20. * Copyright (C) Broadcom 2012 *
  21. * ehunter@broadcom.com : Cortex R4 support *
  22. * *
  23. * This program is free software; you can redistribute it and/or modify *
  24. * it under the terms of the GNU General Public License as published by *
  25. * the Free Software Foundation; either version 2 of the License, or *
  26. * (at your option) any later version. *
  27. * *
  28. * This program is distributed in the hope that it will be useful, *
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  31. * GNU General Public License for more details. *
  32. * *
  33. * You should have received a copy of the GNU General Public License *
  34. * along with this program; if not, write to the *
  35. * Free Software Foundation, Inc., *
  36. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
  37. * *
  38. * Cortex-A8(tm) TRM, ARM DDI 0344H *
  39. * Cortex-A9(tm) TRM, ARM DDI 0407F *
  40. * Cortex-A4(tm) TRM, ARM DDI 0363E *
  41. * *
  42. ***************************************************************************/
  43. #ifdef HAVE_CONFIG_H
  44. #include "config.h"
  45. #endif
  46. #include "breakpoints.h"
  47. #include "cortex_a.h"
  48. #include "register.h"
  49. #include "target_request.h"
  50. #include "target_type.h"
  51. #include "arm_opcodes.h"
  52. #include <helper/time_support.h>
  53. static int cortex_a8_poll(struct target *target);
  54. static int cortex_a8_debug_entry(struct target *target);
  55. static int cortex_a8_restore_context(struct target *target, bool bpwp);
  56. static int cortex_a8_set_breakpoint(struct target *target,
  57. struct breakpoint *breakpoint, uint8_t matchmode);
  58. static int cortex_a8_set_context_breakpoint(struct target *target,
  59. struct breakpoint *breakpoint, uint8_t matchmode);
  60. static int cortex_a8_set_hybrid_breakpoint(struct target *target,
  61. struct breakpoint *breakpoint);
  62. static int cortex_a8_unset_breakpoint(struct target *target,
  63. struct breakpoint *breakpoint);
  64. static int cortex_a8_dap_read_coreregister_u32(struct target *target,
  65. uint32_t *value, int regnum);
  66. static int cortex_a8_dap_write_coreregister_u32(struct target *target,
  67. uint32_t value, int regnum);
  68. static int cortex_a8_mmu(struct target *target, int *enabled);
  69. static int cortex_a8_virt2phys(struct target *target,
  70. uint32_t virt, uint32_t *phys);
  71. static int cortex_a8_read_apb_ab_memory(struct target *target,
  72. uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
  73. /* restore cp15_control_reg at resume */
  74. static int cortex_a8_restore_cp15_control_reg(struct target *target)
  75. {
  76. int retval = ERROR_OK;
  77. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  78. struct armv7a_common *armv7a = target_to_armv7a(target);
  79. if (cortex_a8->cp15_control_reg != cortex_a8->cp15_control_reg_curr) {
  80. cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
  81. /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg); */
  82. retval = armv7a->arm.mcr(target, 15,
  83. 0, 0, /* op1, op2 */
  84. 1, 0, /* CRn, CRm */
  85. cortex_a8->cp15_control_reg);
  86. }
  87. return retval;
  88. }
  89. /* check address before cortex_a8_apb read write access with mmu on
  90. * remove apb predictible data abort */
  91. static int cortex_a8_check_address(struct target *target, uint32_t address)
  92. {
  93. struct armv7a_common *armv7a = target_to_armv7a(target);
  94. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  95. uint32_t os_border = armv7a->armv7a_mmu.os_border;
  96. if ((address < os_border) &&
  97. (armv7a->arm.core_mode == ARM_MODE_SVC)) {
  98. LOG_ERROR("%" PRIx32 " access in userspace and target in supervisor", address);
  99. return ERROR_FAIL;
  100. }
  101. if ((address >= os_border) &&
  102. (cortex_a8->curr_mode != ARM_MODE_SVC)) {
  103. dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
  104. cortex_a8->curr_mode = ARM_MODE_SVC;
  105. LOG_INFO("%" PRIx32 " access in kernel space and target not in supervisor",
  106. address);
  107. return ERROR_OK;
  108. }
  109. if ((address < os_border) &&
  110. (cortex_a8->curr_mode == ARM_MODE_SVC)) {
  111. dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
  112. cortex_a8->curr_mode = ARM_MODE_ANY;
  113. }
  114. return ERROR_OK;
  115. }
  116. /* modify cp15_control_reg in order to enable or disable mmu for :
  117. * - virt2phys address conversion
  118. * - read or write memory in phys or virt address */
  119. static int cortex_a8_mmu_modify(struct target *target, int enable)
  120. {
  121. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  122. struct armv7a_common *armv7a = target_to_armv7a(target);
  123. int retval = ERROR_OK;
  124. if (enable) {
  125. /* if mmu enabled at target stop and mmu not enable */
  126. if (!(cortex_a8->cp15_control_reg & 0x1U)) {
  127. LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
  128. return ERROR_FAIL;
  129. }
  130. if (!(cortex_a8->cp15_control_reg_curr & 0x1U)) {
  131. cortex_a8->cp15_control_reg_curr |= 0x1U;
  132. retval = armv7a->arm.mcr(target, 15,
  133. 0, 0, /* op1, op2 */
  134. 1, 0, /* CRn, CRm */
  135. cortex_a8->cp15_control_reg_curr);
  136. }
  137. } else {
  138. if (cortex_a8->cp15_control_reg_curr & 0x4U) {
  139. /* data cache is active */
  140. cortex_a8->cp15_control_reg_curr &= ~0x4U;
  141. /* flush data cache armv7 function to be called */
  142. if (armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache)
  143. armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache(target);
  144. }
  145. if ((cortex_a8->cp15_control_reg_curr & 0x1U)) {
  146. cortex_a8->cp15_control_reg_curr &= ~0x1U;
  147. retval = armv7a->arm.mcr(target, 15,
  148. 0, 0, /* op1, op2 */
  149. 1, 0, /* CRn, CRm */
  150. cortex_a8->cp15_control_reg_curr);
  151. }
  152. }
  153. return retval;
  154. }
  155. /*
  156. * Cortex-A8 Basic debug access, very low level assumes state is saved
  157. */
  158. static int cortex_a8_init_debug_access(struct target *target)
  159. {
  160. struct armv7a_common *armv7a = target_to_armv7a(target);
  161. struct adiv5_dap *swjdp = armv7a->arm.dap;
  162. int retval;
  163. uint32_t dummy;
  164. LOG_DEBUG(" ");
  165. /* Unlocking the debug registers for modification
  166. * The debugport might be uninitialised so try twice */
  167. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  168. armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
  169. if (retval != ERROR_OK) {
  170. /* try again */
  171. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  172. armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
  173. if (retval == ERROR_OK)
  174. LOG_USER(
  175. "Locking debug access failed on first, but succeeded on second try.");
  176. }
  177. if (retval != ERROR_OK)
  178. return retval;
  179. /* Clear Sticky Power Down status Bit in PRSR to enable access to
  180. the registers in the Core Power Domain */
  181. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  182. armv7a->debug_base + CPUDBG_PRSR, &dummy);
  183. if (retval != ERROR_OK)
  184. return retval;
  185. /* Enabling of instruction execution in debug mode is done in debug_entry code */
  186. /* Resync breakpoint registers */
  187. /* Since this is likely called from init or reset, update target state information*/
  188. return cortex_a8_poll(target);
  189. }
  190. /* To reduce needless round-trips, pass in a pointer to the current
  191. * DSCR value. Initialize it to zero if you just need to know the
  192. * value on return from this function; or DSCR_INSTR_COMP if you
  193. * happen to know that no instruction is pending.
  194. */
  195. static int cortex_a8_exec_opcode(struct target *target,
  196. uint32_t opcode, uint32_t *dscr_p)
  197. {
  198. uint32_t dscr;
  199. int retval;
  200. struct armv7a_common *armv7a = target_to_armv7a(target);
  201. struct adiv5_dap *swjdp = armv7a->arm.dap;
  202. dscr = dscr_p ? *dscr_p : 0;
  203. LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
  204. /* Wait for InstrCompl bit to be set */
  205. long long then = timeval_ms();
  206. while ((dscr & DSCR_INSTR_COMP) == 0) {
  207. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  208. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  209. if (retval != ERROR_OK) {
  210. LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
  211. return retval;
  212. }
  213. if (timeval_ms() > then + 1000) {
  214. LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
  215. return ERROR_FAIL;
  216. }
  217. }
  218. retval = mem_ap_sel_write_u32(swjdp, armv7a->debug_ap,
  219. armv7a->debug_base + CPUDBG_ITR, opcode);
  220. if (retval != ERROR_OK)
  221. return retval;
  222. then = timeval_ms();
  223. do {
  224. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  225. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  226. if (retval != ERROR_OK) {
  227. LOG_ERROR("Could not read DSCR register");
  228. return retval;
  229. }
  230. if (timeval_ms() > then + 1000) {
  231. LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
  232. return ERROR_FAIL;
  233. }
  234. } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
  235. if (dscr_p)
  236. *dscr_p = dscr;
  237. return retval;
  238. }
  239. /**************************************************************************
  240. Read core register with very few exec_opcode, fast but needs work_area.
  241. This can cause problems with MMU active.
  242. **************************************************************************/
  243. static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
  244. uint32_t *regfile)
  245. {
  246. int retval = ERROR_OK;
  247. struct armv7a_common *armv7a = target_to_armv7a(target);
  248. struct adiv5_dap *swjdp = armv7a->arm.dap;
  249. retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
  250. if (retval != ERROR_OK)
  251. return retval;
  252. retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
  253. if (retval != ERROR_OK)
  254. return retval;
  255. retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
  256. if (retval != ERROR_OK)
  257. return retval;
  258. retval = mem_ap_sel_read_buf_u32(swjdp, armv7a->memory_ap,
  259. (uint8_t *)(&regfile[1]), 4*15, address);
  260. return retval;
  261. }
  262. static int cortex_a8_dap_read_coreregister_u32(struct target *target,
  263. uint32_t *value, int regnum)
  264. {
  265. int retval = ERROR_OK;
  266. uint8_t reg = regnum&0xFF;
  267. uint32_t dscr = 0;
  268. struct armv7a_common *armv7a = target_to_armv7a(target);
  269. struct adiv5_dap *swjdp = armv7a->arm.dap;
  270. if (reg > 17)
  271. return retval;
  272. if (reg < 15) {
  273. /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
  274. retval = cortex_a8_exec_opcode(target,
  275. ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
  276. &dscr);
  277. if (retval != ERROR_OK)
  278. return retval;
  279. } else if (reg == 15) {
  280. /* "MOV r0, r15"; then move r0 to DCCTX */
  281. retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
  282. if (retval != ERROR_OK)
  283. return retval;
  284. retval = cortex_a8_exec_opcode(target,
  285. ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
  286. &dscr);
  287. if (retval != ERROR_OK)
  288. return retval;
  289. } else {
  290. /* "MRS r0, CPSR" or "MRS r0, SPSR"
  291. * then move r0 to DCCTX
  292. */
  293. retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
  294. if (retval != ERROR_OK)
  295. return retval;
  296. retval = cortex_a8_exec_opcode(target,
  297. ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
  298. &dscr);
  299. if (retval != ERROR_OK)
  300. return retval;
  301. }
  302. /* Wait for DTRRXfull then read DTRRTX */
  303. long long then = timeval_ms();
  304. while ((dscr & DSCR_DTR_TX_FULL) == 0) {
  305. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  306. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  307. if (retval != ERROR_OK)
  308. return retval;
  309. if (timeval_ms() > then + 1000) {
  310. LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
  311. return ERROR_FAIL;
  312. }
  313. }
  314. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  315. armv7a->debug_base + CPUDBG_DTRTX, value);
  316. LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
  317. return retval;
  318. }
  319. static int cortex_a8_dap_write_coreregister_u32(struct target *target,
  320. uint32_t value, int regnum)
  321. {
  322. int retval = ERROR_OK;
  323. uint8_t Rd = regnum&0xFF;
  324. uint32_t dscr;
  325. struct armv7a_common *armv7a = target_to_armv7a(target);
  326. struct adiv5_dap *swjdp = armv7a->arm.dap;
  327. LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
  328. /* Check that DCCRX is not full */
  329. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  330. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  331. if (retval != ERROR_OK)
  332. return retval;
  333. if (dscr & DSCR_DTR_RX_FULL) {
  334. LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
  335. /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
  336. retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
  337. &dscr);
  338. if (retval != ERROR_OK)
  339. return retval;
  340. }
  341. if (Rd > 17)
  342. return retval;
  343. /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
  344. LOG_DEBUG("write DCC 0x%08" PRIx32, value);
  345. retval = mem_ap_sel_write_u32(swjdp, armv7a->debug_ap,
  346. armv7a->debug_base + CPUDBG_DTRRX, value);
  347. if (retval != ERROR_OK)
  348. return retval;
  349. if (Rd < 15) {
  350. /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
  351. retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
  352. &dscr);
  353. if (retval != ERROR_OK)
  354. return retval;
  355. } else if (Rd == 15) {
  356. /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
  357. * then "mov r15, r0"
  358. */
  359. retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
  360. &dscr);
  361. if (retval != ERROR_OK)
  362. return retval;
  363. retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
  364. if (retval != ERROR_OK)
  365. return retval;
  366. } else {
  367. /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
  368. * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
  369. */
  370. retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
  371. &dscr);
  372. if (retval != ERROR_OK)
  373. return retval;
  374. retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
  375. &dscr);
  376. if (retval != ERROR_OK)
  377. return retval;
  378. /* "Prefetch flush" after modifying execution status in CPSR */
  379. if (Rd == 16) {
  380. retval = cortex_a8_exec_opcode(target,
  381. ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
  382. &dscr);
  383. if (retval != ERROR_OK)
  384. return retval;
  385. }
  386. }
  387. return retval;
  388. }
  389. /* Write to memory mapped registers directly with no cache or mmu handling */
  390. static int cortex_a8_dap_write_memap_register_u32(struct target *target,
  391. uint32_t address,
  392. uint32_t value)
  393. {
  394. int retval;
  395. struct armv7a_common *armv7a = target_to_armv7a(target);
  396. struct adiv5_dap *swjdp = armv7a->arm.dap;
  397. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, address, value);
  398. return retval;
  399. }
  400. /*
  401. * Cortex-A8 implementation of Debug Programmer's Model
  402. *
  403. * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
  404. * so there's no need to poll for it before executing an instruction.
  405. *
  406. * NOTE that in several of these cases the "stall" mode might be useful.
  407. * It'd let us queue a few operations together... prepare/finish might
  408. * be the places to enable/disable that mode.
  409. */
  410. static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
  411. {
  412. return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
  413. }
  414. static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
  415. {
  416. LOG_DEBUG("write DCC 0x%08" PRIx32, data);
  417. return mem_ap_sel_write_u32(a8->armv7a_common.arm.dap,
  418. a8->armv7a_common.debug_ap, a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
  419. }
  420. static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
  421. uint32_t *dscr_p)
  422. {
  423. struct adiv5_dap *swjdp = a8->armv7a_common.arm.dap;
  424. uint32_t dscr = DSCR_INSTR_COMP;
  425. int retval;
  426. if (dscr_p)
  427. dscr = *dscr_p;
  428. /* Wait for DTRRXfull */
  429. long long then = timeval_ms();
  430. while ((dscr & DSCR_DTR_TX_FULL) == 0) {
  431. retval = mem_ap_sel_read_atomic_u32(swjdp, a8->armv7a_common.debug_ap,
  432. a8->armv7a_common.debug_base + CPUDBG_DSCR,
  433. &dscr);
  434. if (retval != ERROR_OK)
  435. return retval;
  436. if (timeval_ms() > then + 1000) {
  437. LOG_ERROR("Timeout waiting for read dcc");
  438. return ERROR_FAIL;
  439. }
  440. }
  441. retval = mem_ap_sel_read_atomic_u32(swjdp, a8->armv7a_common.debug_ap,
  442. a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
  443. if (retval != ERROR_OK)
  444. return retval;
  445. /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
  446. if (dscr_p)
  447. *dscr_p = dscr;
  448. return retval;
  449. }
  450. static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
  451. {
  452. struct cortex_a8_common *a8 = dpm_to_a8(dpm);
  453. struct adiv5_dap *swjdp = a8->armv7a_common.arm.dap;
  454. uint32_t dscr;
  455. int retval;
  456. /* set up invariant: INSTR_COMP is set after ever DPM operation */
  457. long long then = timeval_ms();
  458. for (;; ) {
  459. retval = mem_ap_sel_read_atomic_u32(swjdp, a8->armv7a_common.debug_ap,
  460. a8->armv7a_common.debug_base + CPUDBG_DSCR,
  461. &dscr);
  462. if (retval != ERROR_OK)
  463. return retval;
  464. if ((dscr & DSCR_INSTR_COMP) != 0)
  465. break;
  466. if (timeval_ms() > then + 1000) {
  467. LOG_ERROR("Timeout waiting for dpm prepare");
  468. return ERROR_FAIL;
  469. }
  470. }
  471. /* this "should never happen" ... */
  472. if (dscr & DSCR_DTR_RX_FULL) {
  473. LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
  474. /* Clear DCCRX */
  475. retval = cortex_a8_exec_opcode(
  476. a8->armv7a_common.arm.target,
  477. ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
  478. &dscr);
  479. if (retval != ERROR_OK)
  480. return retval;
  481. }
  482. return retval;
  483. }
  484. static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
  485. {
  486. /* REVISIT what could be done here? */
  487. return ERROR_OK;
  488. }
  489. static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
  490. uint32_t opcode, uint32_t data)
  491. {
  492. struct cortex_a8_common *a8 = dpm_to_a8(dpm);
  493. int retval;
  494. uint32_t dscr = DSCR_INSTR_COMP;
  495. retval = cortex_a8_write_dcc(a8, data);
  496. if (retval != ERROR_OK)
  497. return retval;
  498. return cortex_a8_exec_opcode(
  499. a8->armv7a_common.arm.target,
  500. opcode,
  501. &dscr);
  502. }
  503. static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
  504. uint32_t opcode, uint32_t data)
  505. {
  506. struct cortex_a8_common *a8 = dpm_to_a8(dpm);
  507. uint32_t dscr = DSCR_INSTR_COMP;
  508. int retval;
  509. retval = cortex_a8_write_dcc(a8, data);
  510. if (retval != ERROR_OK)
  511. return retval;
  512. /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
  513. retval = cortex_a8_exec_opcode(
  514. a8->armv7a_common.arm.target,
  515. ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
  516. &dscr);
  517. if (retval != ERROR_OK)
  518. return retval;
  519. /* then the opcode, taking data from R0 */
  520. retval = cortex_a8_exec_opcode(
  521. a8->armv7a_common.arm.target,
  522. opcode,
  523. &dscr);
  524. return retval;
  525. }
  526. static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
  527. {
  528. struct target *target = dpm->arm->target;
  529. uint32_t dscr = DSCR_INSTR_COMP;
  530. /* "Prefetch flush" after modifying execution status in CPSR */
  531. return cortex_a8_exec_opcode(target,
  532. ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
  533. &dscr);
  534. }
  535. static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
  536. uint32_t opcode, uint32_t *data)
  537. {
  538. struct cortex_a8_common *a8 = dpm_to_a8(dpm);
  539. int retval;
  540. uint32_t dscr = DSCR_INSTR_COMP;
  541. /* the opcode, writing data to DCC */
  542. retval = cortex_a8_exec_opcode(
  543. a8->armv7a_common.arm.target,
  544. opcode,
  545. &dscr);
  546. if (retval != ERROR_OK)
  547. return retval;
  548. return cortex_a8_read_dcc(a8, data, &dscr);
  549. }
  550. static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
  551. uint32_t opcode, uint32_t *data)
  552. {
  553. struct cortex_a8_common *a8 = dpm_to_a8(dpm);
  554. uint32_t dscr = DSCR_INSTR_COMP;
  555. int retval;
  556. /* the opcode, writing data to R0 */
  557. retval = cortex_a8_exec_opcode(
  558. a8->armv7a_common.arm.target,
  559. opcode,
  560. &dscr);
  561. if (retval != ERROR_OK)
  562. return retval;
  563. /* write R0 to DCC */
  564. retval = cortex_a8_exec_opcode(
  565. a8->armv7a_common.arm.target,
  566. ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
  567. &dscr);
  568. if (retval != ERROR_OK)
  569. return retval;
  570. return cortex_a8_read_dcc(a8, data, &dscr);
  571. }
  572. static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
  573. uint32_t addr, uint32_t control)
  574. {
  575. struct cortex_a8_common *a8 = dpm_to_a8(dpm);
  576. uint32_t vr = a8->armv7a_common.debug_base;
  577. uint32_t cr = a8->armv7a_common.debug_base;
  578. int retval;
  579. switch (index_t) {
  580. case 0 ... 15: /* breakpoints */
  581. vr += CPUDBG_BVR_BASE;
  582. cr += CPUDBG_BCR_BASE;
  583. break;
  584. case 16 ... 31: /* watchpoints */
  585. vr += CPUDBG_WVR_BASE;
  586. cr += CPUDBG_WCR_BASE;
  587. index_t -= 16;
  588. break;
  589. default:
  590. return ERROR_FAIL;
  591. }
  592. vr += 4 * index_t;
  593. cr += 4 * index_t;
  594. LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
  595. (unsigned) vr, (unsigned) cr);
  596. retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
  597. vr, addr);
  598. if (retval != ERROR_OK)
  599. return retval;
  600. retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
  601. cr, control);
  602. return retval;
  603. }
  604. static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
  605. {
  606. struct cortex_a8_common *a8 = dpm_to_a8(dpm);
  607. uint32_t cr;
  608. switch (index_t) {
  609. case 0 ... 15:
  610. cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
  611. break;
  612. case 16 ... 31:
  613. cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
  614. index_t -= 16;
  615. break;
  616. default:
  617. return ERROR_FAIL;
  618. }
  619. cr += 4 * index_t;
  620. LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
  621. /* clear control register */
  622. return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
  623. }
  624. static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
  625. {
  626. struct arm_dpm *dpm = &a8->armv7a_common.dpm;
  627. int retval;
  628. dpm->arm = &a8->armv7a_common.arm;
  629. dpm->didr = didr;
  630. dpm->prepare = cortex_a8_dpm_prepare;
  631. dpm->finish = cortex_a8_dpm_finish;
  632. dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
  633. dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
  634. dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
  635. dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
  636. dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
  637. dpm->bpwp_enable = cortex_a8_bpwp_enable;
  638. dpm->bpwp_disable = cortex_a8_bpwp_disable;
  639. retval = arm_dpm_setup(dpm);
  640. if (retval == ERROR_OK)
  641. retval = arm_dpm_initialize(dpm);
  642. return retval;
  643. }
  644. static struct target *get_cortex_a8(struct target *target, int32_t coreid)
  645. {
  646. struct target_list *head;
  647. struct target *curr;
  648. head = target->head;
  649. while (head != (struct target_list *)NULL) {
  650. curr = head->target;
  651. if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
  652. return curr;
  653. head = head->next;
  654. }
  655. return target;
  656. }
  657. static int cortex_a8_halt(struct target *target);
  658. static int cortex_a8_halt_smp(struct target *target)
  659. {
  660. int retval = 0;
  661. struct target_list *head;
  662. struct target *curr;
  663. head = target->head;
  664. while (head != (struct target_list *)NULL) {
  665. curr = head->target;
  666. if ((curr != target) && (curr->state != TARGET_HALTED))
  667. retval += cortex_a8_halt(curr);
  668. head = head->next;
  669. }
  670. return retval;
  671. }
  672. static int update_halt_gdb(struct target *target)
  673. {
  674. int retval = 0;
  675. if (target->gdb_service->core[0] == -1) {
  676. target->gdb_service->target = target;
  677. target->gdb_service->core[0] = target->coreid;
  678. retval += cortex_a8_halt_smp(target);
  679. }
  680. return retval;
  681. }
  682. /*
  683. * Cortex-A8 Run control
  684. */
  685. static int cortex_a8_poll(struct target *target)
  686. {
  687. int retval = ERROR_OK;
  688. uint32_t dscr;
  689. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  690. struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
  691. struct adiv5_dap *swjdp = armv7a->arm.dap;
  692. enum target_state prev_target_state = target->state;
  693. /* toggle to another core is done by gdb as follow */
  694. /* maint packet J core_id */
  695. /* continue */
  696. /* the next polling trigger an halt event sent to gdb */
  697. if ((target->state == TARGET_HALTED) && (target->smp) &&
  698. (target->gdb_service) &&
  699. (target->gdb_service->target == NULL)) {
  700. target->gdb_service->target =
  701. get_cortex_a8(target, target->gdb_service->core[1]);
  702. target_call_event_callbacks(target, TARGET_EVENT_HALTED);
  703. return retval;
  704. }
  705. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  706. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  707. if (retval != ERROR_OK)
  708. return retval;
  709. cortex_a8->cpudbg_dscr = dscr;
  710. if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
  711. if (prev_target_state != TARGET_HALTED) {
  712. /* We have a halting debug event */
  713. LOG_DEBUG("Target halted");
  714. target->state = TARGET_HALTED;
  715. if ((prev_target_state == TARGET_RUNNING)
  716. || (prev_target_state == TARGET_UNKNOWN)
  717. || (prev_target_state == TARGET_RESET)) {
  718. retval = cortex_a8_debug_entry(target);
  719. if (retval != ERROR_OK)
  720. return retval;
  721. if (target->smp) {
  722. retval = update_halt_gdb(target);
  723. if (retval != ERROR_OK)
  724. return retval;
  725. }
  726. target_call_event_callbacks(target,
  727. TARGET_EVENT_HALTED);
  728. }
  729. if (prev_target_state == TARGET_DEBUG_RUNNING) {
  730. LOG_DEBUG(" ");
  731. retval = cortex_a8_debug_entry(target);
  732. if (retval != ERROR_OK)
  733. return retval;
  734. if (target->smp) {
  735. retval = update_halt_gdb(target);
  736. if (retval != ERROR_OK)
  737. return retval;
  738. }
  739. target_call_event_callbacks(target,
  740. TARGET_EVENT_DEBUG_HALTED);
  741. }
  742. }
  743. } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
  744. target->state = TARGET_RUNNING;
  745. else {
  746. LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
  747. target->state = TARGET_UNKNOWN;
  748. }
  749. return retval;
  750. }
  751. static int cortex_a8_halt(struct target *target)
  752. {
  753. int retval = ERROR_OK;
  754. uint32_t dscr;
  755. struct armv7a_common *armv7a = target_to_armv7a(target);
  756. struct adiv5_dap *swjdp = armv7a->arm.dap;
  757. /*
  758. * Tell the core to be halted by writing DRCR with 0x1
  759. * and then wait for the core to be halted.
  760. */
  761. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  762. armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
  763. if (retval != ERROR_OK)
  764. return retval;
  765. /*
  766. * enter halting debug mode
  767. */
  768. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  769. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  770. if (retval != ERROR_OK)
  771. return retval;
  772. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  773. armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
  774. if (retval != ERROR_OK)
  775. return retval;
  776. long long then = timeval_ms();
  777. for (;; ) {
  778. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  779. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  780. if (retval != ERROR_OK)
  781. return retval;
  782. if ((dscr & DSCR_CORE_HALTED) != 0)
  783. break;
  784. if (timeval_ms() > then + 1000) {
  785. LOG_ERROR("Timeout waiting for halt");
  786. return ERROR_FAIL;
  787. }
  788. }
  789. target->debug_reason = DBG_REASON_DBGRQ;
  790. return ERROR_OK;
  791. }
  792. static int cortex_a8_internal_restore(struct target *target, int current,
  793. uint32_t *address, int handle_breakpoints, int debug_execution)
  794. {
  795. struct armv7a_common *armv7a = target_to_armv7a(target);
  796. struct arm *arm = &armv7a->arm;
  797. int retval;
  798. uint32_t resume_pc;
  799. if (!debug_execution)
  800. target_free_all_working_areas(target);
  801. #if 0
  802. if (debug_execution) {
  803. /* Disable interrupts */
  804. /* We disable interrupts in the PRIMASK register instead of
  805. * masking with C_MASKINTS,
  806. * This is probably the same issue as Cortex-M3 Errata 377493:
  807. * C_MASKINTS in parallel with disabled interrupts can cause
  808. * local faults to not be taken. */
  809. buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
  810. armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
  811. armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
  812. /* Make sure we are in Thumb mode */
  813. buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
  814. buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
  815. 32) | (1 << 24));
  816. armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
  817. armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
  818. }
  819. #endif
  820. /* current = 1: continue on current pc, otherwise continue at <address> */
  821. resume_pc = buf_get_u32(arm->pc->value, 0, 32);
  822. if (!current)
  823. resume_pc = *address;
  824. else
  825. *address = resume_pc;
  826. /* Make sure that the Armv7 gdb thumb fixups does not
  827. * kill the return address
  828. */
  829. switch (arm->core_state) {
  830. case ARM_STATE_ARM:
  831. resume_pc &= 0xFFFFFFFC;
  832. break;
  833. case ARM_STATE_THUMB:
  834. case ARM_STATE_THUMB_EE:
  835. /* When the return address is loaded into PC
  836. * bit 0 must be 1 to stay in Thumb state
  837. */
  838. resume_pc |= 0x1;
  839. break;
  840. case ARM_STATE_JAZELLE:
  841. LOG_ERROR("How do I resume into Jazelle state??");
  842. return ERROR_FAIL;
  843. }
  844. LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
  845. buf_set_u32(arm->pc->value, 0, 32, resume_pc);
  846. arm->pc->dirty = 1;
  847. arm->pc->valid = 1;
  848. /* restore dpm_mode at system halt */
  849. dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
  850. /* called it now before restoring context because it uses cpu
  851. * register r0 for restoring cp15 control register */
  852. retval = cortex_a8_restore_cp15_control_reg(target);
  853. if (retval != ERROR_OK)
  854. return retval;
  855. retval = cortex_a8_restore_context(target, handle_breakpoints);
  856. if (retval != ERROR_OK)
  857. return retval;
  858. target->debug_reason = DBG_REASON_NOTHALTED;
  859. target->state = TARGET_RUNNING;
  860. /* registers are now invalid */
  861. register_cache_invalidate(arm->core_cache);
  862. #if 0
  863. /* the front-end may request us not to handle breakpoints */
  864. if (handle_breakpoints) {
  865. /* Single step past breakpoint at current address */
  866. breakpoint = breakpoint_find(target, resume_pc);
  867. if (breakpoint) {
  868. LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
  869. cortex_m3_unset_breakpoint(target, breakpoint);
  870. cortex_m3_single_step_core(target);
  871. cortex_m3_set_breakpoint(target, breakpoint);
  872. }
  873. }
  874. #endif
  875. return retval;
  876. }
  877. static int cortex_a8_internal_restart(struct target *target)
  878. {
  879. struct armv7a_common *armv7a = target_to_armv7a(target);
  880. struct arm *arm = &armv7a->arm;
  881. struct adiv5_dap *swjdp = arm->dap;
  882. int retval;
  883. uint32_t dscr;
  884. /*
  885. * * Restart core and wait for it to be started. Clear ITRen and sticky
  886. * * exception flags: see ARMv7 ARM, C5.9.
  887. *
  888. * REVISIT: for single stepping, we probably want to
  889. * disable IRQs by default, with optional override...
  890. */
  891. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  892. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  893. if (retval != ERROR_OK)
  894. return retval;
  895. if ((dscr & DSCR_INSTR_COMP) == 0)
  896. LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
  897. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  898. armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
  899. if (retval != ERROR_OK)
  900. return retval;
  901. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  902. armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
  903. DRCR_CLEAR_EXCEPTIONS);
  904. if (retval != ERROR_OK)
  905. return retval;
  906. long long then = timeval_ms();
  907. for (;; ) {
  908. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  909. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  910. if (retval != ERROR_OK)
  911. return retval;
  912. if ((dscr & DSCR_CORE_RESTARTED) != 0)
  913. break;
  914. if (timeval_ms() > then + 1000) {
  915. LOG_ERROR("Timeout waiting for resume");
  916. return ERROR_FAIL;
  917. }
  918. }
  919. target->debug_reason = DBG_REASON_NOTHALTED;
  920. target->state = TARGET_RUNNING;
  921. /* registers are now invalid */
  922. register_cache_invalidate(arm->core_cache);
  923. return ERROR_OK;
  924. }
  925. static int cortex_a8_restore_smp(struct target *target, int handle_breakpoints)
  926. {
  927. int retval = 0;
  928. struct target_list *head;
  929. struct target *curr;
  930. uint32_t address;
  931. head = target->head;
  932. while (head != (struct target_list *)NULL) {
  933. curr = head->target;
  934. if ((curr != target) && (curr->state != TARGET_RUNNING)) {
  935. /* resume current address , not in step mode */
  936. retval += cortex_a8_internal_restore(curr, 1, &address,
  937. handle_breakpoints, 0);
  938. retval += cortex_a8_internal_restart(curr);
  939. }
  940. head = head->next;
  941. }
  942. return retval;
  943. }
  944. static int cortex_a8_resume(struct target *target, int current,
  945. uint32_t address, int handle_breakpoints, int debug_execution)
  946. {
  947. int retval = 0;
  948. /* dummy resume for smp toggle in order to reduce gdb impact */
  949. if ((target->smp) && (target->gdb_service->core[1] != -1)) {
  950. /* simulate a start and halt of target */
  951. target->gdb_service->target = NULL;
  952. target->gdb_service->core[0] = target->gdb_service->core[1];
  953. /* fake resume at next poll we play the target core[1], see poll*/
  954. target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
  955. return 0;
  956. }
  957. cortex_a8_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
  958. if (target->smp) {
  959. target->gdb_service->core[0] = -1;
  960. retval = cortex_a8_restore_smp(target, handle_breakpoints);
  961. if (retval != ERROR_OK)
  962. return retval;
  963. }
  964. cortex_a8_internal_restart(target);
  965. if (!debug_execution) {
  966. target->state = TARGET_RUNNING;
  967. target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
  968. LOG_DEBUG("target resumed at 0x%" PRIx32, address);
  969. } else {
  970. target->state = TARGET_DEBUG_RUNNING;
  971. target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
  972. LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
  973. }
  974. return ERROR_OK;
  975. }
  976. static int cortex_a8_debug_entry(struct target *target)
  977. {
  978. int i;
  979. uint32_t regfile[16], cpsr, dscr;
  980. int retval = ERROR_OK;
  981. struct working_area *regfile_working_area = NULL;
  982. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  983. struct armv7a_common *armv7a = target_to_armv7a(target);
  984. struct arm *arm = &armv7a->arm;
  985. struct adiv5_dap *swjdp = armv7a->arm.dap;
  986. struct reg *reg;
  987. LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
  988. /* REVISIT surely we should not re-read DSCR !! */
  989. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  990. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  991. if (retval != ERROR_OK)
  992. return retval;
  993. /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
  994. * imprecise data aborts get discarded by issuing a Data
  995. * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
  996. */
  997. /* Enable the ITR execution once we are in debug mode */
  998. dscr |= DSCR_ITR_EN;
  999. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1000. armv7a->debug_base + CPUDBG_DSCR, dscr);
  1001. if (retval != ERROR_OK)
  1002. return retval;
  1003. /* Examine debug reason */
  1004. arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
  1005. /* save address of instruction that triggered the watchpoint? */
  1006. if (target->debug_reason == DBG_REASON_WATCHPOINT) {
  1007. uint32_t wfar;
  1008. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  1009. armv7a->debug_base + CPUDBG_WFAR,
  1010. &wfar);
  1011. if (retval != ERROR_OK)
  1012. return retval;
  1013. arm_dpm_report_wfar(&armv7a->dpm, wfar);
  1014. }
  1015. /* REVISIT fast_reg_read is never set ... */
  1016. /* Examine target state and mode */
  1017. if (cortex_a8->fast_reg_read)
  1018. target_alloc_working_area(target, 64, &regfile_working_area);
  1019. /* First load register acessible through core debug port*/
  1020. if (!regfile_working_area)
  1021. retval = arm_dpm_read_current_registers(&armv7a->dpm);
  1022. else {
  1023. retval = cortex_a8_read_regs_through_mem(target,
  1024. regfile_working_area->address, regfile);
  1025. target_free_working_area(target, regfile_working_area);
  1026. if (retval != ERROR_OK)
  1027. return retval;
  1028. /* read Current PSR */
  1029. retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
  1030. /* store current cpsr */
  1031. if (retval != ERROR_OK)
  1032. return retval;
  1033. LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
  1034. arm_set_cpsr(arm, cpsr);
  1035. /* update cache */
  1036. for (i = 0; i <= ARM_PC; i++) {
  1037. reg = arm_reg_current(arm, i);
  1038. buf_set_u32(reg->value, 0, 32, regfile[i]);
  1039. reg->valid = 1;
  1040. reg->dirty = 0;
  1041. }
  1042. /* Fixup PC Resume Address */
  1043. if (cpsr & (1 << 5)) {
  1044. /* T bit set for Thumb or ThumbEE state */
  1045. regfile[ARM_PC] -= 4;
  1046. } else {
  1047. /* ARM state */
  1048. regfile[ARM_PC] -= 8;
  1049. }
  1050. reg = arm->pc;
  1051. buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
  1052. reg->dirty = reg->valid;
  1053. }
  1054. #if 0
  1055. /* TODO, Move this */
  1056. uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
  1057. cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
  1058. LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
  1059. cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
  1060. LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
  1061. cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
  1062. LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
  1063. #endif
  1064. /* Are we in an exception handler */
  1065. /* armv4_5->exception_number = 0; */
  1066. if (armv7a->post_debug_entry) {
  1067. retval = armv7a->post_debug_entry(target);
  1068. if (retval != ERROR_OK)
  1069. return retval;
  1070. }
  1071. return retval;
  1072. }
  1073. static int cortex_a8_post_debug_entry(struct target *target)
  1074. {
  1075. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  1076. struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
  1077. int retval;
  1078. /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
  1079. retval = armv7a->arm.mrc(target, 15,
  1080. 0, 0, /* op1, op2 */
  1081. 1, 0, /* CRn, CRm */
  1082. &cortex_a8->cp15_control_reg);
  1083. if (retval != ERROR_OK)
  1084. return retval;
  1085. LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
  1086. cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
  1087. if (armv7a->armv7a_mmu.armv7a_cache.ctype == -1)
  1088. armv7a_identify_cache(target);
  1089. if (armv7a->is_armv7r) {
  1090. armv7a->armv7a_mmu.mmu_enabled = 0;
  1091. } else {
  1092. armv7a->armv7a_mmu.mmu_enabled =
  1093. (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
  1094. }
  1095. armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
  1096. (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
  1097. armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
  1098. (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
  1099. cortex_a8->curr_mode = armv7a->arm.core_mode;
  1100. return ERROR_OK;
  1101. }
  1102. static int cortex_a8_step(struct target *target, int current, uint32_t address,
  1103. int handle_breakpoints)
  1104. {
  1105. struct armv7a_common *armv7a = target_to_armv7a(target);
  1106. struct arm *arm = &armv7a->arm;
  1107. struct breakpoint *breakpoint = NULL;
  1108. struct breakpoint stepbreakpoint;
  1109. struct reg *r;
  1110. int retval;
  1111. if (target->state != TARGET_HALTED) {
  1112. LOG_WARNING("target not halted");
  1113. return ERROR_TARGET_NOT_HALTED;
  1114. }
  1115. /* current = 1: continue on current pc, otherwise continue at <address> */
  1116. r = arm->pc;
  1117. if (!current)
  1118. buf_set_u32(r->value, 0, 32, address);
  1119. else
  1120. address = buf_get_u32(r->value, 0, 32);
  1121. /* The front-end may request us not to handle breakpoints.
  1122. * But since Cortex-A8 uses breakpoint for single step,
  1123. * we MUST handle breakpoints.
  1124. */
  1125. handle_breakpoints = 1;
  1126. if (handle_breakpoints) {
  1127. breakpoint = breakpoint_find(target, address);
  1128. if (breakpoint)
  1129. cortex_a8_unset_breakpoint(target, breakpoint);
  1130. }
  1131. /* Setup single step breakpoint */
  1132. stepbreakpoint.address = address;
  1133. stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
  1134. ? 2 : 4;
  1135. stepbreakpoint.type = BKPT_HARD;
  1136. stepbreakpoint.set = 0;
  1137. /* Break on IVA mismatch */
  1138. cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
  1139. target->debug_reason = DBG_REASON_SINGLESTEP;
  1140. retval = cortex_a8_resume(target, 1, address, 0, 0);
  1141. if (retval != ERROR_OK)
  1142. return retval;
  1143. long long then = timeval_ms();
  1144. while (target->state != TARGET_HALTED) {
  1145. retval = cortex_a8_poll(target);
  1146. if (retval != ERROR_OK)
  1147. return retval;
  1148. if (timeval_ms() > then + 1000) {
  1149. LOG_ERROR("timeout waiting for target halt");
  1150. return ERROR_FAIL;
  1151. }
  1152. }
  1153. cortex_a8_unset_breakpoint(target, &stepbreakpoint);
  1154. target->debug_reason = DBG_REASON_BREAKPOINT;
  1155. if (breakpoint)
  1156. cortex_a8_set_breakpoint(target, breakpoint, 0);
  1157. if (target->state != TARGET_HALTED)
  1158. LOG_DEBUG("target stepped");
  1159. return ERROR_OK;
  1160. }
  1161. static int cortex_a8_restore_context(struct target *target, bool bpwp)
  1162. {
  1163. struct armv7a_common *armv7a = target_to_armv7a(target);
  1164. LOG_DEBUG(" ");
  1165. if (armv7a->pre_restore_context)
  1166. armv7a->pre_restore_context(target);
  1167. return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
  1168. }
  1169. /*
  1170. * Cortex-A8 Breakpoint and watchpoint functions
  1171. */
  1172. /* Setup hardware Breakpoint Register Pair */
  1173. static int cortex_a8_set_breakpoint(struct target *target,
  1174. struct breakpoint *breakpoint, uint8_t matchmode)
  1175. {
  1176. int retval;
  1177. int brp_i = 0;
  1178. uint32_t control;
  1179. uint8_t byte_addr_select = 0x0F;
  1180. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  1181. struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
  1182. struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
  1183. if (breakpoint->set) {
  1184. LOG_WARNING("breakpoint already set");
  1185. return ERROR_OK;
  1186. }
  1187. if (breakpoint->type == BKPT_HARD) {
  1188. while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
  1189. brp_i++;
  1190. if (brp_i >= cortex_a8->brp_num) {
  1191. LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
  1192. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1193. }
  1194. breakpoint->set = brp_i + 1;
  1195. if (breakpoint->length == 2)
  1196. byte_addr_select = (3 << (breakpoint->address & 0x02));
  1197. control = ((matchmode & 0x7) << 20)
  1198. | (byte_addr_select << 5)
  1199. | (3 << 1) | 1;
  1200. brp_list[brp_i].used = 1;
  1201. brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
  1202. brp_list[brp_i].control = control;
  1203. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1204. + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
  1205. brp_list[brp_i].value);
  1206. if (retval != ERROR_OK)
  1207. return retval;
  1208. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1209. + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
  1210. brp_list[brp_i].control);
  1211. if (retval != ERROR_OK)
  1212. return retval;
  1213. LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
  1214. brp_list[brp_i].control,
  1215. brp_list[brp_i].value);
  1216. } else if (breakpoint->type == BKPT_SOFT) {
  1217. uint8_t code[4];
  1218. if (breakpoint->length == 2)
  1219. buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
  1220. else
  1221. buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
  1222. retval = target_read_memory(target,
  1223. breakpoint->address & 0xFFFFFFFE,
  1224. breakpoint->length, 1,
  1225. breakpoint->orig_instr);
  1226. if (retval != ERROR_OK)
  1227. return retval;
  1228. retval = target_write_memory(target,
  1229. breakpoint->address & 0xFFFFFFFE,
  1230. breakpoint->length, 1, code);
  1231. if (retval != ERROR_OK)
  1232. return retval;
  1233. breakpoint->set = 0x11; /* Any nice value but 0 */
  1234. }
  1235. return ERROR_OK;
  1236. }
  1237. static int cortex_a8_set_context_breakpoint(struct target *target,
  1238. struct breakpoint *breakpoint, uint8_t matchmode)
  1239. {
  1240. int retval = ERROR_FAIL;
  1241. int brp_i = 0;
  1242. uint32_t control;
  1243. uint8_t byte_addr_select = 0x0F;
  1244. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  1245. struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
  1246. struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
  1247. if (breakpoint->set) {
  1248. LOG_WARNING("breakpoint already set");
  1249. return retval;
  1250. }
  1251. /*check available context BRPs*/
  1252. while ((brp_list[brp_i].used ||
  1253. (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a8->brp_num))
  1254. brp_i++;
  1255. if (brp_i >= cortex_a8->brp_num) {
  1256. LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
  1257. return ERROR_FAIL;
  1258. }
  1259. breakpoint->set = brp_i + 1;
  1260. control = ((matchmode & 0x7) << 20)
  1261. | (byte_addr_select << 5)
  1262. | (3 << 1) | 1;
  1263. brp_list[brp_i].used = 1;
  1264. brp_list[brp_i].value = (breakpoint->asid);
  1265. brp_list[brp_i].control = control;
  1266. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1267. + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
  1268. brp_list[brp_i].value);
  1269. if (retval != ERROR_OK)
  1270. return retval;
  1271. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1272. + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
  1273. brp_list[brp_i].control);
  1274. if (retval != ERROR_OK)
  1275. return retval;
  1276. LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
  1277. brp_list[brp_i].control,
  1278. brp_list[brp_i].value);
  1279. return ERROR_OK;
  1280. }
  1281. static int cortex_a8_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
  1282. {
  1283. int retval = ERROR_FAIL;
  1284. int brp_1 = 0; /* holds the contextID pair */
  1285. int brp_2 = 0; /* holds the IVA pair */
  1286. uint32_t control_CTX, control_IVA;
  1287. uint8_t CTX_byte_addr_select = 0x0F;
  1288. uint8_t IVA_byte_addr_select = 0x0F;
  1289. uint8_t CTX_machmode = 0x03;
  1290. uint8_t IVA_machmode = 0x01;
  1291. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  1292. struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
  1293. struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
  1294. if (breakpoint->set) {
  1295. LOG_WARNING("breakpoint already set");
  1296. return retval;
  1297. }
  1298. /*check available context BRPs*/
  1299. while ((brp_list[brp_1].used ||
  1300. (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a8->brp_num))
  1301. brp_1++;
  1302. printf("brp(CTX) found num: %d\n", brp_1);
  1303. if (brp_1 >= cortex_a8->brp_num) {
  1304. LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
  1305. return ERROR_FAIL;
  1306. }
  1307. while ((brp_list[brp_2].used ||
  1308. (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a8->brp_num))
  1309. brp_2++;
  1310. printf("brp(IVA) found num: %d\n", brp_2);
  1311. if (brp_2 >= cortex_a8->brp_num) {
  1312. LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
  1313. return ERROR_FAIL;
  1314. }
  1315. breakpoint->set = brp_1 + 1;
  1316. breakpoint->linked_BRP = brp_2;
  1317. control_CTX = ((CTX_machmode & 0x7) << 20)
  1318. | (brp_2 << 16)
  1319. | (0 << 14)
  1320. | (CTX_byte_addr_select << 5)
  1321. | (3 << 1) | 1;
  1322. brp_list[brp_1].used = 1;
  1323. brp_list[brp_1].value = (breakpoint->asid);
  1324. brp_list[brp_1].control = control_CTX;
  1325. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1326. + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
  1327. brp_list[brp_1].value);
  1328. if (retval != ERROR_OK)
  1329. return retval;
  1330. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1331. + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
  1332. brp_list[brp_1].control);
  1333. if (retval != ERROR_OK)
  1334. return retval;
  1335. control_IVA = ((IVA_machmode & 0x7) << 20)
  1336. | (brp_1 << 16)
  1337. | (IVA_byte_addr_select << 5)
  1338. | (3 << 1) | 1;
  1339. brp_list[brp_2].used = 1;
  1340. brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
  1341. brp_list[brp_2].control = control_IVA;
  1342. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1343. + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
  1344. brp_list[brp_2].value);
  1345. if (retval != ERROR_OK)
  1346. return retval;
  1347. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1348. + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
  1349. brp_list[brp_2].control);
  1350. if (retval != ERROR_OK)
  1351. return retval;
  1352. return ERROR_OK;
  1353. }
  1354. static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
  1355. {
  1356. int retval;
  1357. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  1358. struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
  1359. struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
  1360. if (!breakpoint->set) {
  1361. LOG_WARNING("breakpoint not set");
  1362. return ERROR_OK;
  1363. }
  1364. if (breakpoint->type == BKPT_HARD) {
  1365. if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
  1366. int brp_i = breakpoint->set - 1;
  1367. int brp_j = breakpoint->linked_BRP;
  1368. if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num)) {
  1369. LOG_DEBUG("Invalid BRP number in breakpoint");
  1370. return ERROR_OK;
  1371. }
  1372. LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
  1373. brp_list[brp_i].control, brp_list[brp_i].value);
  1374. brp_list[brp_i].used = 0;
  1375. brp_list[brp_i].value = 0;
  1376. brp_list[brp_i].control = 0;
  1377. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1378. + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
  1379. brp_list[brp_i].control);
  1380. if (retval != ERROR_OK)
  1381. return retval;
  1382. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1383. + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
  1384. brp_list[brp_i].value);
  1385. if (retval != ERROR_OK)
  1386. return retval;
  1387. if ((brp_j < 0) || (brp_j >= cortex_a8->brp_num)) {
  1388. LOG_DEBUG("Invalid BRP number in breakpoint");
  1389. return ERROR_OK;
  1390. }
  1391. LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
  1392. brp_list[brp_j].control, brp_list[brp_j].value);
  1393. brp_list[brp_j].used = 0;
  1394. brp_list[brp_j].value = 0;
  1395. brp_list[brp_j].control = 0;
  1396. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1397. + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
  1398. brp_list[brp_j].control);
  1399. if (retval != ERROR_OK)
  1400. return retval;
  1401. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1402. + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
  1403. brp_list[brp_j].value);
  1404. if (retval != ERROR_OK)
  1405. return retval;
  1406. breakpoint->linked_BRP = 0;
  1407. breakpoint->set = 0;
  1408. return ERROR_OK;
  1409. } else {
  1410. int brp_i = breakpoint->set - 1;
  1411. if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num)) {
  1412. LOG_DEBUG("Invalid BRP number in breakpoint");
  1413. return ERROR_OK;
  1414. }
  1415. LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
  1416. brp_list[brp_i].control, brp_list[brp_i].value);
  1417. brp_list[brp_i].used = 0;
  1418. brp_list[brp_i].value = 0;
  1419. brp_list[brp_i].control = 0;
  1420. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1421. + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
  1422. brp_list[brp_i].control);
  1423. if (retval != ERROR_OK)
  1424. return retval;
  1425. retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
  1426. + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
  1427. brp_list[brp_i].value);
  1428. if (retval != ERROR_OK)
  1429. return retval;
  1430. breakpoint->set = 0;
  1431. return ERROR_OK;
  1432. }
  1433. } else {
  1434. /* restore original instruction (kept in target endianness) */
  1435. if (breakpoint->length == 4) {
  1436. retval = target_write_memory(target,
  1437. breakpoint->address & 0xFFFFFFFE,
  1438. 4, 1, breakpoint->orig_instr);
  1439. if (retval != ERROR_OK)
  1440. return retval;
  1441. } else {
  1442. retval = target_write_memory(target,
  1443. breakpoint->address & 0xFFFFFFFE,
  1444. 2, 1, breakpoint->orig_instr);
  1445. if (retval != ERROR_OK)
  1446. return retval;
  1447. }
  1448. }
  1449. breakpoint->set = 0;
  1450. return ERROR_OK;
  1451. }
  1452. static int cortex_a8_add_breakpoint(struct target *target,
  1453. struct breakpoint *breakpoint)
  1454. {
  1455. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  1456. if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
  1457. LOG_INFO("no hardware breakpoint available");
  1458. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1459. }
  1460. if (breakpoint->type == BKPT_HARD)
  1461. cortex_a8->brp_num_available--;
  1462. return cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
  1463. }
  1464. static int cortex_a8_add_context_breakpoint(struct target *target,
  1465. struct breakpoint *breakpoint)
  1466. {
  1467. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  1468. if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
  1469. LOG_INFO("no hardware breakpoint available");
  1470. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1471. }
  1472. if (breakpoint->type == BKPT_HARD)
  1473. cortex_a8->brp_num_available--;
  1474. return cortex_a8_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
  1475. }
  1476. static int cortex_a8_add_hybrid_breakpoint(struct target *target,
  1477. struct breakpoint *breakpoint)
  1478. {
  1479. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  1480. if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
  1481. LOG_INFO("no hardware breakpoint available");
  1482. return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
  1483. }
  1484. if (breakpoint->type == BKPT_HARD)
  1485. cortex_a8->brp_num_available--;
  1486. return cortex_a8_set_hybrid_breakpoint(target, breakpoint); /* ??? */
  1487. }
  1488. static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
  1489. {
  1490. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  1491. #if 0
  1492. /* It is perfectly possible to remove breakpoints while the target is running */
  1493. if (target->state != TARGET_HALTED) {
  1494. LOG_WARNING("target not halted");
  1495. return ERROR_TARGET_NOT_HALTED;
  1496. }
  1497. #endif
  1498. if (breakpoint->set) {
  1499. cortex_a8_unset_breakpoint(target, breakpoint);
  1500. if (breakpoint->type == BKPT_HARD)
  1501. cortex_a8->brp_num_available++;
  1502. }
  1503. return ERROR_OK;
  1504. }
  1505. /*
  1506. * Cortex-A8 Reset functions
  1507. */
  1508. static int cortex_a8_assert_reset(struct target *target)
  1509. {
  1510. struct armv7a_common *armv7a = target_to_armv7a(target);
  1511. LOG_DEBUG(" ");
  1512. /* FIXME when halt is requested, make it work somehow... */
  1513. /* Issue some kind of warm reset. */
  1514. if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
  1515. target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
  1516. else if (jtag_get_reset_config() & RESET_HAS_SRST) {
  1517. /* REVISIT handle "pulls" cases, if there's
  1518. * hardware that needs them to work.
  1519. */
  1520. jtag_add_reset(0, 1);
  1521. } else {
  1522. LOG_ERROR("%s: how to reset?", target_name(target));
  1523. return ERROR_FAIL;
  1524. }
  1525. /* registers are now invalid */
  1526. register_cache_invalidate(armv7a->arm.core_cache);
  1527. target->state = TARGET_RESET;
  1528. return ERROR_OK;
  1529. }
  1530. static int cortex_a8_deassert_reset(struct target *target)
  1531. {
  1532. int retval;
  1533. LOG_DEBUG(" ");
  1534. /* be certain SRST is off */
  1535. jtag_add_reset(0, 0);
  1536. retval = cortex_a8_poll(target);
  1537. if (retval != ERROR_OK)
  1538. return retval;
  1539. if (target->reset_halt) {
  1540. if (target->state != TARGET_HALTED) {
  1541. LOG_WARNING("%s: ran after reset and before halt ...",
  1542. target_name(target));
  1543. retval = target_halt(target);
  1544. if (retval != ERROR_OK)
  1545. return retval;
  1546. }
  1547. }
  1548. return ERROR_OK;
  1549. }
  1550. static int cortex_a8_write_apb_ab_memory(struct target *target,
  1551. uint32_t address, uint32_t size,
  1552. uint32_t count, const uint8_t *buffer)
  1553. {
  1554. /* write memory through APB-AP */
  1555. int retval = ERROR_COMMAND_SYNTAX_ERROR;
  1556. struct armv7a_common *armv7a = target_to_armv7a(target);
  1557. struct arm *arm = &armv7a->arm;
  1558. struct adiv5_dap *swjdp = armv7a->arm.dap;
  1559. int total_bytes = count * size;
  1560. int total_u32;
  1561. int start_byte = address & 0x3;
  1562. int end_byte = (address + total_bytes) & 0x3;
  1563. struct reg *reg;
  1564. uint32_t dscr;
  1565. uint8_t *tmp_buff = NULL;
  1566. if (target->state != TARGET_HALTED) {
  1567. LOG_WARNING("target not halted");
  1568. return ERROR_TARGET_NOT_HALTED;
  1569. }
  1570. total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
  1571. /* Mark register R0 as dirty, as it will be used
  1572. * for transferring the data.
  1573. * It will be restored automatically when exiting
  1574. * debug mode
  1575. */
  1576. reg = arm_reg_current(arm, 0);
  1577. reg->dirty = true;
  1578. /* clear any abort */
  1579. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, armv7a->debug_base + CPUDBG_DRCR, 1<<2);
  1580. if (retval != ERROR_OK)
  1581. return retval;
  1582. /* This algorithm comes from either :
  1583. * Cortex-A8 TRM Example 12-25
  1584. * Cortex-R4 TRM Example 11-26
  1585. * (slight differences)
  1586. */
  1587. /* The algorithm only copies 32 bit words, so the buffer
  1588. * should be expanded to include the words at either end.
  1589. * The first and last words will be read first to avoid
  1590. * corruption if needed.
  1591. */
  1592. tmp_buff = (uint8_t *) malloc(total_u32 << 2);
  1593. if ((start_byte != 0) && (total_u32 > 1)) {
  1594. /* First bytes not aligned - read the 32 bit word to avoid corrupting
  1595. * the other bytes in the word.
  1596. */
  1597. retval = cortex_a8_read_apb_ab_memory(target, (address & ~0x3), 4, 1, tmp_buff);
  1598. if (retval != ERROR_OK)
  1599. goto error_free_buff_w;
  1600. }
  1601. /* If end of write is not aligned, or the write is less than 4 bytes */
  1602. if ((end_byte != 0) ||
  1603. ((total_u32 == 1) && (total_bytes != 4))) {
  1604. /* Read the last word to avoid corruption during 32 bit write */
  1605. int mem_offset = (total_u32-1) << 4;
  1606. retval = cortex_a8_read_apb_ab_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
  1607. if (retval != ERROR_OK)
  1608. goto error_free_buff_w;
  1609. }
  1610. /* Copy the write buffer over the top of the temporary buffer */
  1611. memcpy(&tmp_buff[start_byte], buffer, total_bytes);
  1612. /* We now have a 32 bit aligned buffer that can be written */
  1613. /* Read DSCR */
  1614. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  1615. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  1616. if (retval != ERROR_OK)
  1617. goto error_free_buff_w;
  1618. /* Set DTR mode to Fast (2) */
  1619. dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_FAST_MODE;
  1620. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1621. armv7a->debug_base + CPUDBG_DSCR, dscr);
  1622. if (retval != ERROR_OK)
  1623. goto error_free_buff_w;
  1624. /* Copy the destination address into R0 */
  1625. /* - pend an instruction MRC p14, 0, R0, c5, c0 */
  1626. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1627. armv7a->debug_base + CPUDBG_ITR, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
  1628. if (retval != ERROR_OK)
  1629. goto error_unset_dtr_w;
  1630. /* Write address into DTRRX, which triggers previous instruction */
  1631. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1632. armv7a->debug_base + CPUDBG_DTRRX, address & (~0x3));
  1633. if (retval != ERROR_OK)
  1634. goto error_unset_dtr_w;
  1635. /* Write the data transfer instruction into the ITR
  1636. * (STC p14, c5, [R0], 4)
  1637. */
  1638. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1639. armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
  1640. if (retval != ERROR_OK)
  1641. goto error_unset_dtr_w;
  1642. /* Do the write */
  1643. retval = mem_ap_sel_write_buf_u32_noincr(swjdp, armv7a->debug_ap,
  1644. tmp_buff, (total_u32)<<2, armv7a->debug_base + CPUDBG_DTRRX);
  1645. if (retval != ERROR_OK)
  1646. goto error_unset_dtr_w;
  1647. /* Switch DTR mode back to non-blocking (0) */
  1648. dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
  1649. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1650. armv7a->debug_base + CPUDBG_DSCR, dscr);
  1651. if (retval != ERROR_OK)
  1652. goto error_unset_dtr_w;
  1653. /* Check for sticky abort flags in the DSCR */
  1654. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  1655. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  1656. if (retval != ERROR_OK)
  1657. goto error_free_buff_w;
  1658. if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
  1659. /* Abort occurred - clear it and exit */
  1660. LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
  1661. mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1662. armv7a->debug_base + CPUDBG_DRCR, 1<<2);
  1663. goto error_free_buff_w;
  1664. }
  1665. /* Done */
  1666. free(tmp_buff);
  1667. return ERROR_OK;
  1668. error_unset_dtr_w:
  1669. /* Unset DTR mode */
  1670. mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  1671. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  1672. dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
  1673. mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1674. armv7a->debug_base + CPUDBG_DSCR, dscr);
  1675. error_free_buff_w:
  1676. LOG_ERROR("error");
  1677. free(tmp_buff);
  1678. return ERROR_FAIL;
  1679. }
  1680. static int cortex_a8_read_apb_ab_memory(struct target *target,
  1681. uint32_t address, uint32_t size,
  1682. uint32_t count, uint8_t *buffer)
  1683. {
  1684. /* read memory through APB-AP */
  1685. int retval = ERROR_COMMAND_SYNTAX_ERROR;
  1686. struct armv7a_common *armv7a = target_to_armv7a(target);
  1687. struct adiv5_dap *swjdp = armv7a->arm.dap;
  1688. struct arm *arm = &armv7a->arm;
  1689. int total_bytes = count * size;
  1690. int total_u32;
  1691. int start_byte = address & 0x3;
  1692. struct reg *reg;
  1693. uint32_t dscr;
  1694. uint32_t *tmp_buff;
  1695. uint32_t buff32[2];
  1696. if (target->state != TARGET_HALTED) {
  1697. LOG_WARNING("target not halted");
  1698. return ERROR_TARGET_NOT_HALTED;
  1699. }
  1700. total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
  1701. /* Due to offset word alignment, the buffer may not have space
  1702. * to read the full first and last int32 words,
  1703. * hence, malloc space to read into, then copy and align into the buffer.
  1704. */
  1705. tmp_buff = malloc(total_u32 * 4);
  1706. if (tmp_buff == NULL)
  1707. return ERROR_FAIL;
  1708. /* Mark register R0 as dirty, as it will be used
  1709. * for transferring the data.
  1710. * It will be restored automatically when exiting
  1711. * debug mode
  1712. */
  1713. reg = arm_reg_current(arm, 0);
  1714. reg->dirty = true;
  1715. /* clear any abort */
  1716. retval =
  1717. mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, armv7a->debug_base + CPUDBG_DRCR, 1<<2);
  1718. if (retval != ERROR_OK)
  1719. goto error_free_buff_r;
  1720. /* Read DSCR */
  1721. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  1722. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  1723. /* This algorithm comes from either :
  1724. * Cortex-A8 TRM Example 12-24
  1725. * Cortex-R4 TRM Example 11-25
  1726. * (slight differences)
  1727. */
  1728. /* Set DTR access mode to stall mode b01 */
  1729. dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_STALL_MODE;
  1730. retval += mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1731. armv7a->debug_base + CPUDBG_DSCR, dscr);
  1732. /* Write R0 with value 'address' using write procedure for stall mode */
  1733. /* - Write the address for read access into DTRRX */
  1734. retval += mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1735. armv7a->debug_base + CPUDBG_DTRRX, address & ~0x3);
  1736. /* - Copy value from DTRRX to R0 using instruction mrc p14, 0, r0, c5, c0 */
  1737. cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
  1738. /* Write the data transfer instruction (ldc p14, c5, [r0],4)
  1739. * and the DTR mode setting to fast mode
  1740. * in one combined write (since they are adjacent registers)
  1741. */
  1742. buff32[0] = ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4);
  1743. dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_FAST_MODE;
  1744. buff32[1] = dscr;
  1745. /* group the 2 access CPUDBG_ITR 0x84 and CPUDBG_DSCR 0x88 */
  1746. retval += mem_ap_sel_write_buf_u32(swjdp, armv7a->debug_ap, (uint8_t *)buff32, 8,
  1747. armv7a->debug_base + CPUDBG_ITR);
  1748. if (retval != ERROR_OK)
  1749. goto error_unset_dtr_r;
  1750. /* The last word needs to be handled separately - read all other words in one go.
  1751. */
  1752. if (total_u32 > 1) {
  1753. /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
  1754. * Abort flags are sticky, so can be read at end of transactions
  1755. *
  1756. * This data is read in aligned to 32 bit boundary, hence may need shifting later.
  1757. */
  1758. retval = mem_ap_sel_read_buf_u32_noincr(swjdp, armv7a->debug_ap, (uint8_t *)tmp_buff, (total_u32-1) * 4,
  1759. armv7a->debug_base + CPUDBG_DTRTX);
  1760. if (retval != ERROR_OK)
  1761. goto error_unset_dtr_r;
  1762. }
  1763. /* set DTR access mode back to non blocking b00 */
  1764. dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
  1765. retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1766. armv7a->debug_base + CPUDBG_DSCR, dscr);
  1767. if (retval != ERROR_OK)
  1768. goto error_free_buff_r;
  1769. /* Wait for the final read instruction to finish */
  1770. do {
  1771. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  1772. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  1773. if (retval != ERROR_OK)
  1774. goto error_free_buff_r;
  1775. } while ((dscr & DSCR_INSTR_COMP) == 0);
  1776. /* Check for sticky abort flags in the DSCR */
  1777. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  1778. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  1779. if (retval != ERROR_OK)
  1780. goto error_free_buff_r;
  1781. if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
  1782. /* Abort occurred - clear it and exit */
  1783. LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
  1784. mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1785. armv7a->debug_base + CPUDBG_DRCR, 1<<2);
  1786. goto error_free_buff_r;
  1787. }
  1788. /* Read the last word */
  1789. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  1790. armv7a->debug_base + CPUDBG_DTRTX, &tmp_buff[total_u32 - 1]);
  1791. if (retval != ERROR_OK)
  1792. goto error_free_buff_r;
  1793. /* Copy and align the data into the output buffer */
  1794. memcpy(buffer, (uint8_t *)tmp_buff + start_byte, total_bytes);
  1795. free(tmp_buff);
  1796. /* Done */
  1797. return ERROR_OK;
  1798. error_unset_dtr_r:
  1799. /* Unset DTR mode */
  1800. mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  1801. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  1802. dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
  1803. mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
  1804. armv7a->debug_base + CPUDBG_DSCR, dscr);
  1805. error_free_buff_r:
  1806. LOG_ERROR("error");
  1807. free(tmp_buff);
  1808. return ERROR_FAIL;
  1809. }
  1810. /*
  1811. * Cortex-A8 Memory access
  1812. *
  1813. * This is same Cortex M3 but we must also use the correct
  1814. * ap number for every access.
  1815. */
  1816. static int cortex_a8_read_phys_memory(struct target *target,
  1817. uint32_t address, uint32_t size,
  1818. uint32_t count, uint8_t *buffer)
  1819. {
  1820. struct armv7a_common *armv7a = target_to_armv7a(target);
  1821. struct adiv5_dap *swjdp = armv7a->arm.dap;
  1822. int retval = ERROR_COMMAND_SYNTAX_ERROR;
  1823. uint8_t apsel = swjdp->apsel;
  1824. LOG_DEBUG("Reading memory at real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32,
  1825. address, size, count);
  1826. if (count && buffer) {
  1827. if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
  1828. /* read memory through AHB-AP */
  1829. switch (size) {
  1830. case 4:
  1831. retval = mem_ap_sel_read_buf_u32(swjdp, armv7a->memory_ap,
  1832. buffer, 4 * count, address);
  1833. break;
  1834. case 2:
  1835. retval = mem_ap_sel_read_buf_u16(swjdp, armv7a->memory_ap,
  1836. buffer, 2 * count, address);
  1837. break;
  1838. case 1:
  1839. retval = mem_ap_sel_read_buf_u8(swjdp, armv7a->memory_ap,
  1840. buffer, count, address);
  1841. break;
  1842. }
  1843. } else {
  1844. /* read memory through APB-AP */
  1845. if (!armv7a->is_armv7r) {
  1846. /* disable mmu */
  1847. retval = cortex_a8_mmu_modify(target, 0);
  1848. if (retval != ERROR_OK)
  1849. return retval;
  1850. }
  1851. retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
  1852. }
  1853. }
  1854. return retval;
  1855. }
  1856. static int cortex_a8_read_memory(struct target *target, uint32_t address,
  1857. uint32_t size, uint32_t count, uint8_t *buffer)
  1858. {
  1859. int enabled = 0;
  1860. uint32_t virt, phys;
  1861. int retval;
  1862. struct armv7a_common *armv7a = target_to_armv7a(target);
  1863. struct adiv5_dap *swjdp = armv7a->arm.dap;
  1864. uint8_t apsel = swjdp->apsel;
  1865. /* cortex_a8 handles unaligned memory access */
  1866. LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
  1867. size, count);
  1868. if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
  1869. if (!armv7a->is_armv7r) {
  1870. retval = cortex_a8_mmu(target, &enabled);
  1871. if (retval != ERROR_OK)
  1872. return retval;
  1873. if (enabled) {
  1874. virt = address;
  1875. retval = cortex_a8_virt2phys(target, virt, &phys);
  1876. if (retval != ERROR_OK)
  1877. return retval;
  1878. LOG_DEBUG("Reading at virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
  1879. virt, phys);
  1880. address = phys;
  1881. }
  1882. }
  1883. retval = cortex_a8_read_phys_memory(target, address, size, count, buffer);
  1884. } else {
  1885. if (!armv7a->is_armv7r) {
  1886. retval = cortex_a8_check_address(target, address);
  1887. if (retval != ERROR_OK)
  1888. return retval;
  1889. /* enable mmu */
  1890. retval = cortex_a8_mmu_modify(target, 1);
  1891. if (retval != ERROR_OK)
  1892. return retval;
  1893. }
  1894. retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
  1895. }
  1896. return retval;
  1897. }
  1898. static int cortex_a8_write_phys_memory(struct target *target,
  1899. uint32_t address, uint32_t size,
  1900. uint32_t count, const uint8_t *buffer)
  1901. {
  1902. struct armv7a_common *armv7a = target_to_armv7a(target);
  1903. struct adiv5_dap *swjdp = armv7a->arm.dap;
  1904. int retval = ERROR_COMMAND_SYNTAX_ERROR;
  1905. uint8_t apsel = swjdp->apsel;
  1906. LOG_DEBUG("Writing memory to real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
  1907. size, count);
  1908. if (count && buffer) {
  1909. if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
  1910. /* write memory through AHB-AP */
  1911. switch (size) {
  1912. case 4:
  1913. retval = mem_ap_sel_write_buf_u32(swjdp, armv7a->memory_ap,
  1914. buffer, 4 * count, address);
  1915. break;
  1916. case 2:
  1917. retval = mem_ap_sel_write_buf_u16(swjdp, armv7a->memory_ap,
  1918. buffer, 2 * count, address);
  1919. break;
  1920. case 1:
  1921. retval = mem_ap_sel_write_buf_u8(swjdp, armv7a->memory_ap,
  1922. buffer, count, address);
  1923. break;
  1924. }
  1925. } else {
  1926. /* write memory through APB-AP */
  1927. if (!armv7a->is_armv7r) {
  1928. retval = cortex_a8_mmu_modify(target, 0);
  1929. if (retval != ERROR_OK)
  1930. return retval;
  1931. }
  1932. return cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
  1933. }
  1934. }
  1935. /* REVISIT this op is generic ARMv7-A/R stuff */
  1936. if (retval == ERROR_OK && target->state == TARGET_HALTED) {
  1937. struct arm_dpm *dpm = armv7a->arm.dpm;
  1938. retval = dpm->prepare(dpm);
  1939. if (retval != ERROR_OK)
  1940. return retval;
  1941. /* The Cache handling will NOT work with MMU active, the
  1942. * wrong addresses will be invalidated!
  1943. *
  1944. * For both ICache and DCache, walk all cache lines in the
  1945. * address range. Cortex-A8 has fixed 64 byte line length.
  1946. *
  1947. * REVISIT per ARMv7, these may trigger watchpoints ...
  1948. */
  1949. /* invalidate I-Cache */
  1950. if (armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled) {
  1951. /* ICIMVAU - Invalidate Cache single entry
  1952. * with MVA to PoU
  1953. * MCR p15, 0, r0, c7, c5, 1
  1954. */
  1955. for (uint32_t cacheline = address;
  1956. cacheline < address + size * count;
  1957. cacheline += 64) {
  1958. retval = dpm->instr_write_data_r0(dpm,
  1959. ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
  1960. cacheline);
  1961. if (retval != ERROR_OK)
  1962. return retval;
  1963. }
  1964. }
  1965. /* invalidate D-Cache */
  1966. if (armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled) {
  1967. /* DCIMVAC - Invalidate data Cache line
  1968. * with MVA to PoC
  1969. * MCR p15, 0, r0, c7, c6, 1
  1970. */
  1971. for (uint32_t cacheline = address;
  1972. cacheline < address + size * count;
  1973. cacheline += 64) {
  1974. retval = dpm->instr_write_data_r0(dpm,
  1975. ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
  1976. cacheline);
  1977. if (retval != ERROR_OK)
  1978. return retval;
  1979. }
  1980. }
  1981. /* (void) */ dpm->finish(dpm);
  1982. }
  1983. return retval;
  1984. }
  1985. static int cortex_a8_write_memory(struct target *target, uint32_t address,
  1986. uint32_t size, uint32_t count, const uint8_t *buffer)
  1987. {
  1988. int enabled = 0;
  1989. uint32_t virt, phys;
  1990. int retval;
  1991. struct armv7a_common *armv7a = target_to_armv7a(target);
  1992. struct adiv5_dap *swjdp = armv7a->arm.dap;
  1993. uint8_t apsel = swjdp->apsel;
  1994. /* cortex_a8 handles unaligned memory access */
  1995. LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
  1996. size, count);
  1997. if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
  1998. LOG_DEBUG("Writing memory to address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address, size,
  1999. count);
  2000. if (!armv7a->is_armv7r) {
  2001. retval = cortex_a8_mmu(target, &enabled);
  2002. if (retval != ERROR_OK)
  2003. return retval;
  2004. if (enabled) {
  2005. virt = address;
  2006. retval = cortex_a8_virt2phys(target, virt, &phys);
  2007. if (retval != ERROR_OK)
  2008. return retval;
  2009. LOG_DEBUG("Writing to virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
  2010. virt,
  2011. phys);
  2012. address = phys;
  2013. }
  2014. }
  2015. retval = cortex_a8_write_phys_memory(target, address, size,
  2016. count, buffer);
  2017. } else {
  2018. if (!armv7a->is_armv7r) {
  2019. retval = cortex_a8_check_address(target, address);
  2020. if (retval != ERROR_OK)
  2021. return retval;
  2022. /* enable mmu */
  2023. retval = cortex_a8_mmu_modify(target, 1);
  2024. if (retval != ERROR_OK)
  2025. return retval;
  2026. }
  2027. retval = cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
  2028. }
  2029. return retval;
  2030. }
  2031. static int cortex_a8_handle_target_request(void *priv)
  2032. {
  2033. struct target *target = priv;
  2034. struct armv7a_common *armv7a = target_to_armv7a(target);
  2035. struct adiv5_dap *swjdp = armv7a->arm.dap;
  2036. int retval;
  2037. if (!target_was_examined(target))
  2038. return ERROR_OK;
  2039. if (!target->dbg_msg_enabled)
  2040. return ERROR_OK;
  2041. if (target->state == TARGET_RUNNING) {
  2042. uint32_t request;
  2043. uint32_t dscr;
  2044. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  2045. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  2046. /* check if we have data */
  2047. while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
  2048. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  2049. armv7a->debug_base + CPUDBG_DTRTX, &request);
  2050. if (retval == ERROR_OK) {
  2051. target_request(target, request);
  2052. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  2053. armv7a->debug_base + CPUDBG_DSCR, &dscr);
  2054. }
  2055. }
  2056. }
  2057. return ERROR_OK;
  2058. }
  2059. /*
  2060. * Cortex-A8 target information and configuration
  2061. */
  2062. static int cortex_a8_examine_first(struct target *target)
  2063. {
  2064. struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
  2065. struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
  2066. struct adiv5_dap *swjdp = armv7a->arm.dap;
  2067. int i;
  2068. int retval = ERROR_OK;
  2069. uint32_t didr, ctypr, ttypr, cpuid;
  2070. /* We do one extra read to ensure DAP is configured,
  2071. * we call ahbap_debugport_init(swjdp) instead
  2072. */
  2073. retval = ahbap_debugport_init(swjdp);
  2074. if (retval != ERROR_OK)
  2075. return retval;
  2076. /* Search for the APB-AB - it is needed for access to debug registers */
  2077. retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
  2078. if (retval != ERROR_OK) {
  2079. LOG_ERROR("Could not find APB-AP for debug access");
  2080. return retval;
  2081. }
  2082. /* Search for the AHB-AB */
  2083. retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
  2084. if (retval != ERROR_OK) {
  2085. /* AHB-AP not found - use APB-AP */
  2086. LOG_DEBUG("Could not find AHB-AP - using APB-AP for memory access");
  2087. armv7a->memory_ap_available = false;
  2088. } else {
  2089. armv7a->memory_ap_available = true;
  2090. }
  2091. if (!target->dbgbase_set) {
  2092. uint32_t dbgbase;
  2093. /* Get ROM Table base */
  2094. uint32_t apid;
  2095. retval = dap_get_debugbase(swjdp, 1, &dbgbase, &apid);
  2096. if (retval != ERROR_OK)
  2097. return retval;
  2098. /* Lookup 0x15 -- Processor DAP */
  2099. retval = dap_lookup_cs_component(swjdp, 1, dbgbase, 0x15,
  2100. &armv7a->debug_base);
  2101. if (retval != ERROR_OK)
  2102. return retval;
  2103. } else
  2104. armv7a->debug_base = target->dbgbase;
  2105. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  2106. armv7a->debug_base + CPUDBG_CPUID, &cpuid);
  2107. if (retval != ERROR_OK)
  2108. return retval;
  2109. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  2110. armv7a->debug_base + CPUDBG_CPUID, &cpuid);
  2111. if (retval != ERROR_OK) {
  2112. LOG_DEBUG("Examine %s failed", "CPUID");
  2113. return retval;
  2114. }
  2115. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  2116. armv7a->debug_base + CPUDBG_CTYPR, &ctypr);
  2117. if (retval != ERROR_OK) {
  2118. LOG_DEBUG("Examine %s failed", "CTYPR");
  2119. return retval;
  2120. }
  2121. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  2122. armv7a->debug_base + CPUDBG_TTYPR, &ttypr);
  2123. if (retval != ERROR_OK) {
  2124. LOG_DEBUG("Examine %s failed", "TTYPR");
  2125. return retval;
  2126. }
  2127. retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
  2128. armv7a->debug_base + CPUDBG_DIDR, &didr);
  2129. if (retval != ERROR_OK) {
  2130. LOG_DEBUG("Examine %s failed", "DIDR");
  2131. return retval;
  2132. }
  2133. LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
  2134. LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
  2135. LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
  2136. LOG_DEBUG("didr = 0x%08" PRIx32, didr);
  2137. armv7a->arm.core_type = ARM_MODE_MON;
  2138. retval = cortex_a8_dpm_setup(cortex_a8, didr);
  2139. if (retval != ERROR_OK)
  2140. return retval;
  2141. /* Setup Breakpoint Register Pairs */
  2142. cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
  2143. cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
  2144. cortex_a8->brp_num_available = cortex_a8->brp_num;
  2145. cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
  2146. /* cortex_a8->brb_enabled = ????; */
  2147. for (i = 0; i < cortex_a8->brp_num; i++) {
  2148. cortex_a8->brp_list[i].used = 0;
  2149. if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
  2150. cortex_a8->brp_list[i].type = BRP_NORMAL;
  2151. else
  2152. cortex_a8->brp_list[i].type = BRP_CONTEXT;
  2153. cortex_a8->brp_list[i].value = 0;
  2154. cortex_a8->brp_list[i].control = 0;
  2155. cortex_a8->brp_list[i].BRPn = i;
  2156. }
  2157. LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
  2158. target_set_examined(target);
  2159. return ERROR_OK;
  2160. }
  2161. static int cortex_a8_examine(struct target *target)
  2162. {
  2163. int retval = ERROR_OK;
  2164. /* don't re-probe hardware after each reset */
  2165. if (!target_was_examined(target))
  2166. retval = cortex_a8_examine_first(target);
  2167. /* Configure core debug access */
  2168. if (retval == ERROR_OK)
  2169. retval = cortex_a8_init_debug_access(target);
  2170. return retval;
  2171. }
  2172. /*
  2173. * Cortex-A8 target creation and initialization
  2174. */
  2175. static int cortex_a8_init_target(struct command_context *cmd_ctx,
  2176. struct target *target)
  2177. {
  2178. /* examine_first() does a bunch of this */
  2179. return ERROR_OK;
  2180. }
  2181. static int cortex_a8_init_arch_info(struct target *target,
  2182. struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
  2183. {
  2184. struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
  2185. struct adiv5_dap *dap = &armv7a->dap;
  2186. armv7a->arm.dap = dap;
  2187. /* Setup struct cortex_a8_common */
  2188. cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
  2189. /* tap has no dap initialized */
  2190. if (!tap->dap) {
  2191. armv7a->arm.dap = dap;
  2192. /* Setup struct cortex_a8_common */
  2193. /* prepare JTAG information for the new target */
  2194. cortex_a8->jtag_info.tap = tap;
  2195. cortex_a8->jtag_info.scann_size = 4;
  2196. /* Leave (only) generic DAP stuff for debugport_init() */
  2197. dap->jtag_info = &cortex_a8->jtag_info;
  2198. /* Number of bits for tar autoincrement, impl. dep. at least 10 */
  2199. dap->tar_autoincr_block = (1 << 10);
  2200. dap->memaccess_tck = 80;
  2201. tap->dap = dap;
  2202. } else
  2203. armv7a->arm.dap = tap->dap;
  2204. cortex_a8->fast_reg_read = 0;
  2205. /* register arch-specific functions */
  2206. armv7a->examine_debug_reason = NULL;
  2207. armv7a->post_debug_entry = cortex_a8_post_debug_entry;
  2208. armv7a->pre_restore_context = NULL;
  2209. armv7a->armv7a_mmu.read_physical_memory = cortex_a8_read_phys_memory;
  2210. /* arm7_9->handle_target_request = cortex_a8_handle_target_request; */
  2211. /* REVISIT v7a setup should be in a v7a-specific routine */
  2212. armv7a_init_arch_info(target, armv7a);
  2213. target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
  2214. return ERROR_OK;
  2215. }
  2216. static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
  2217. {
  2218. struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
  2219. cortex_a8->armv7a_common.is_armv7r = false;
  2220. return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
  2221. }
  2222. static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
  2223. {
  2224. struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
  2225. cortex_a8->armv7a_common.is_armv7r = true;
  2226. return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
  2227. }
  2228. static int cortex_a8_mmu(struct target *target, int *enabled)
  2229. {
  2230. if (target->state != TARGET_HALTED) {
  2231. LOG_ERROR("%s: target not halted", __func__);
  2232. return ERROR_TARGET_INVALID;
  2233. }
  2234. *enabled = target_to_cortex_a8(target)->armv7a_common.armv7a_mmu.mmu_enabled;
  2235. return ERROR_OK;
  2236. }
  2237. static int cortex_a8_virt2phys(struct target *target,
  2238. uint32_t virt, uint32_t *phys)
  2239. {
  2240. int retval = ERROR_FAIL;
  2241. struct armv7a_common *armv7a = target_to_armv7a(target);
  2242. struct adiv5_dap *swjdp = armv7a->arm.dap;
  2243. uint8_t apsel = swjdp->apsel;
  2244. if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
  2245. uint32_t ret;
  2246. retval = armv7a_mmu_translate_va(target,
  2247. virt, &ret);
  2248. if (retval != ERROR_OK)
  2249. goto done;
  2250. *phys = ret;
  2251. } else {/* use this method if armv7a->memory_ap not selected
  2252. * mmu must be enable in order to get a correct translation */
  2253. retval = cortex_a8_mmu_modify(target, 1);
  2254. if (retval != ERROR_OK)
  2255. goto done;
  2256. retval = armv7a_mmu_translate_va_pa(target, virt, phys, 1);
  2257. }
  2258. done:
  2259. return retval;
  2260. }
  2261. COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
  2262. {
  2263. struct target *target = get_current_target(CMD_CTX);
  2264. struct armv7a_common *armv7a = target_to_armv7a(target);
  2265. return armv7a_handle_cache_info_command(CMD_CTX,
  2266. &armv7a->armv7a_mmu.armv7a_cache);
  2267. }
  2268. COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
  2269. {
  2270. struct target *target = get_current_target(CMD_CTX);
  2271. if (!target_was_examined(target)) {
  2272. LOG_ERROR("target not examined yet");
  2273. return ERROR_FAIL;
  2274. }
  2275. return cortex_a8_init_debug_access(target);
  2276. }
  2277. COMMAND_HANDLER(cortex_a8_handle_smp_off_command)
  2278. {
  2279. struct target *target = get_current_target(CMD_CTX);
  2280. /* check target is an smp target */
  2281. struct target_list *head;
  2282. struct target *curr;
  2283. head = target->head;
  2284. target->smp = 0;
  2285. if (head != (struct target_list *)NULL) {
  2286. while (head != (struct target_list *)NULL) {
  2287. curr = head->target;
  2288. curr->smp = 0;
  2289. head = head->next;
  2290. }
  2291. /* fixes the target display to the debugger */
  2292. target->gdb_service->target = target;
  2293. }
  2294. return ERROR_OK;
  2295. }
  2296. COMMAND_HANDLER(cortex_a8_handle_smp_on_command)
  2297. {
  2298. struct target *target = get_current_target(CMD_CTX);
  2299. struct target_list *head;
  2300. struct target *curr;
  2301. head = target->head;
  2302. if (head != (struct target_list *)NULL) {
  2303. target->smp = 1;
  2304. while (head != (struct target_list *)NULL) {
  2305. curr = head->target;
  2306. curr->smp = 1;
  2307. head = head->next;
  2308. }
  2309. }
  2310. return ERROR_OK;
  2311. }
  2312. COMMAND_HANDLER(cortex_a8_handle_smp_gdb_command)
  2313. {
  2314. struct target *target = get_current_target(CMD_CTX);
  2315. int retval = ERROR_OK;
  2316. struct target_list *head;
  2317. head = target->head;
  2318. if (head != (struct target_list *)NULL) {
  2319. if (CMD_ARGC == 1) {
  2320. int coreid = 0;
  2321. COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
  2322. if (ERROR_OK != retval)
  2323. return retval;
  2324. target->gdb_service->core[1] = coreid;
  2325. }
  2326. command_print(CMD_CTX, "gdb coreid %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
  2327. , target->gdb_service->core[1]);
  2328. }
  2329. return ERROR_OK;
  2330. }
  2331. static const struct command_registration cortex_a8_exec_command_handlers[] = {
  2332. {
  2333. .name = "cache_info",
  2334. .handler = cortex_a8_handle_cache_info_command,
  2335. .mode = COMMAND_EXEC,
  2336. .help = "display information about target caches",
  2337. .usage = "",
  2338. },
  2339. {
  2340. .name = "dbginit",
  2341. .handler = cortex_a8_handle_dbginit_command,
  2342. .mode = COMMAND_EXEC,
  2343. .help = "Initialize core debug",
  2344. .usage = "",
  2345. },
  2346. { .name = "smp_off",
  2347. .handler = cortex_a8_handle_smp_off_command,
  2348. .mode = COMMAND_EXEC,
  2349. .help = "Stop smp handling",
  2350. .usage = "",},
  2351. {
  2352. .name = "smp_on",
  2353. .handler = cortex_a8_handle_smp_on_command,
  2354. .mode = COMMAND_EXEC,
  2355. .help = "Restart smp handling",
  2356. .usage = "",
  2357. },
  2358. {
  2359. .name = "smp_gdb",
  2360. .handler = cortex_a8_handle_smp_gdb_command,
  2361. .mode = COMMAND_EXEC,
  2362. .help = "display/fix current core played to gdb",
  2363. .usage = "",
  2364. },
  2365. COMMAND_REGISTRATION_DONE
  2366. };
  2367. static const struct command_registration cortex_a8_command_handlers[] = {
  2368. {
  2369. .chain = arm_command_handlers,
  2370. },
  2371. {
  2372. .chain = armv7a_command_handlers,
  2373. },
  2374. {
  2375. .name = "cortex_a",
  2376. .mode = COMMAND_ANY,
  2377. .help = "Cortex-A command group",
  2378. .usage = "",
  2379. .chain = cortex_a8_exec_command_handlers,
  2380. },
  2381. COMMAND_REGISTRATION_DONE
  2382. };
  2383. struct target_type cortexa8_target = {
  2384. .name = "cortex_a",
  2385. .deprecated_name = "cortex_a8",
  2386. .poll = cortex_a8_poll,
  2387. .arch_state = armv7a_arch_state,
  2388. .halt = cortex_a8_halt,
  2389. .resume = cortex_a8_resume,
  2390. .step = cortex_a8_step,
  2391. .assert_reset = cortex_a8_assert_reset,
  2392. .deassert_reset = cortex_a8_deassert_reset,
  2393. /* REVISIT allow exporting VFP3 registers ... */
  2394. .get_gdb_reg_list = arm_get_gdb_reg_list,
  2395. .read_memory = cortex_a8_read_memory,
  2396. .write_memory = cortex_a8_write_memory,
  2397. .checksum_memory = arm_checksum_memory,
  2398. .blank_check_memory = arm_blank_check_memory,
  2399. .run_algorithm = armv4_5_run_algorithm,
  2400. .add_breakpoint = cortex_a8_add_breakpoint,
  2401. .add_context_breakpoint = cortex_a8_add_context_breakpoint,
  2402. .add_hybrid_breakpoint = cortex_a8_add_hybrid_breakpoint,
  2403. .remove_breakpoint = cortex_a8_remove_breakpoint,
  2404. .add_watchpoint = NULL,
  2405. .remove_watchpoint = NULL,
  2406. .commands = cortex_a8_command_handlers,
  2407. .target_create = cortex_a8_target_create,
  2408. .init_target = cortex_a8_init_target,
  2409. .examine = cortex_a8_examine,
  2410. .read_phys_memory = cortex_a8_read_phys_memory,
  2411. .write_phys_memory = cortex_a8_write_phys_memory,
  2412. .mmu = cortex_a8_mmu,
  2413. .virt2phys = cortex_a8_virt2phys,
  2414. };
  2415. static const struct command_registration cortex_r4_exec_command_handlers[] = {
  2416. {
  2417. .name = "cache_info",
  2418. .handler = cortex_a8_handle_cache_info_command,
  2419. .mode = COMMAND_EXEC,
  2420. .help = "display information about target caches",
  2421. .usage = "",
  2422. },
  2423. {
  2424. .name = "dbginit",
  2425. .handler = cortex_a8_handle_dbginit_command,
  2426. .mode = COMMAND_EXEC,
  2427. .help = "Initialize core debug",
  2428. .usage = "",
  2429. },
  2430. COMMAND_REGISTRATION_DONE
  2431. };
  2432. static const struct command_registration cortex_r4_command_handlers[] = {
  2433. {
  2434. .chain = arm_command_handlers,
  2435. },
  2436. {
  2437. .chain = armv7a_command_handlers,
  2438. },
  2439. {
  2440. .name = "cortex_r4",
  2441. .mode = COMMAND_ANY,
  2442. .help = "Cortex-R4 command group",
  2443. .usage = "",
  2444. .chain = cortex_r4_exec_command_handlers,
  2445. },
  2446. COMMAND_REGISTRATION_DONE
  2447. };
  2448. struct target_type cortexr4_target = {
  2449. .name = "cortex_r4",
  2450. .poll = cortex_a8_poll,
  2451. .arch_state = armv7a_arch_state,
  2452. .halt = cortex_a8_halt,
  2453. .resume = cortex_a8_resume,
  2454. .step = cortex_a8_step,
  2455. .assert_reset = cortex_a8_assert_reset,
  2456. .deassert_reset = cortex_a8_deassert_reset,
  2457. /* REVISIT allow exporting VFP3 registers ... */
  2458. .get_gdb_reg_list = arm_get_gdb_reg_list,
  2459. .read_memory = cortex_a8_read_memory,
  2460. .write_memory = cortex_a8_write_memory,
  2461. .checksum_memory = arm_checksum_memory,
  2462. .blank_check_memory = arm_blank_check_memory,
  2463. .run_algorithm = armv4_5_run_algorithm,
  2464. .add_breakpoint = cortex_a8_add_breakpoint,
  2465. .add_context_breakpoint = cortex_a8_add_context_breakpoint,
  2466. .add_hybrid_breakpoint = cortex_a8_add_hybrid_breakpoint,
  2467. .remove_breakpoint = cortex_a8_remove_breakpoint,
  2468. .add_watchpoint = NULL,
  2469. .remove_watchpoint = NULL,
  2470. .commands = cortex_r4_command_handlers,
  2471. .target_create = cortex_r4_target_create,
  2472. .init_target = cortex_a8_init_target,
  2473. .examine = cortex_a8_examine,
  2474. };