Compare commits
4 Commits
nilmrun-0.
...
nilmrun-1.
Author | SHA1 | Date | |
---|---|---|---|
2e9ec63675 | |||
6d295b840a | |||
74a05d05d6 | |||
35b20c90a5 |
@@ -1 +0,0 @@
|
|||||||
# Filters
|
|
@@ -1,260 +0,0 @@
|
|||||||
#!/usr/bin/python
|
|
||||||
|
|
||||||
from nilmdb.utils.printf import *
|
|
||||||
import nilmdb.client
|
|
||||||
import nilmtools.filter
|
|
||||||
from nilmdb.utils.time import (timestamp_to_human,
|
|
||||||
timestamp_to_seconds,
|
|
||||||
seconds_to_timestamp)
|
|
||||||
from nilmdb.utils.interval import Interval
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import scipy
|
|
||||||
import scipy.signal
|
|
||||||
from numpy.core.umath_tests import inner1d
|
|
||||||
import nilmrun
|
|
||||||
from collections import OrderedDict
|
|
||||||
|
|
||||||
class DataError(ValueError):
|
|
||||||
pass
|
|
||||||
|
|
||||||
class Data(object):
|
|
||||||
def __init__(self, name, url, stream, start, end, columns):
|
|
||||||
"""Initialize, get stream info, check columns"""
|
|
||||||
self.name = name
|
|
||||||
self.url = url
|
|
||||||
self.stream = stream
|
|
||||||
self.start = start
|
|
||||||
self.end = end
|
|
||||||
|
|
||||||
# Get stream info
|
|
||||||
self.client = nilmdb.client.numpyclient.NumpyClient(url)
|
|
||||||
self.info = nilmtools.filter.get_stream_info(self.client, stream)
|
|
||||||
|
|
||||||
# Build up name => index mapping for the columns
|
|
||||||
self.columns = OrderedDict()
|
|
||||||
for c in columns:
|
|
||||||
if (c['name'] in self.columns.keys() or
|
|
||||||
c['index'] in self.columns.values()):
|
|
||||||
raise DataError("duplicated columns")
|
|
||||||
if (c['index'] < 0 or c['index'] >= self.info.layout_count):
|
|
||||||
raise DataError("bad column number")
|
|
||||||
self.columns[c['name']] = c['index']
|
|
||||||
if not len(self.columns):
|
|
||||||
raise DataError("no columns")
|
|
||||||
|
|
||||||
# Count points
|
|
||||||
self.count = self.client.stream_count(self.stream, self.start, self.end)
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
return sprintf("%-20s: %s%s, %s rows",
|
|
||||||
self.name, self.stream, str(self.columns.keys()),
|
|
||||||
self.count)
|
|
||||||
|
|
||||||
def fetch(self, min_rows = 10, max_rows = 100000):
|
|
||||||
"""Fetch all the data into self.data. This is intended for
|
|
||||||
exemplars, and can only handle a relatively small number of
|
|
||||||
rows"""
|
|
||||||
# Verify count
|
|
||||||
if self.count == 0:
|
|
||||||
raise DataError("No data in this exemplar!")
|
|
||||||
if self.count < min_rows:
|
|
||||||
raise DataError("Too few data points: " + str(self.count))
|
|
||||||
if self.count > max_rows:
|
|
||||||
raise DataError("Too many data points: " + str(self.count))
|
|
||||||
|
|
||||||
# Extract the data
|
|
||||||
datagen = self.client.stream_extract_numpy(self.stream,
|
|
||||||
self.start, self.end,
|
|
||||||
self.info.layout,
|
|
||||||
maxrows = self.count)
|
|
||||||
self.data = list(datagen)[0]
|
|
||||||
|
|
||||||
# Discard timestamp
|
|
||||||
self.data = self.data[:,1:]
|
|
||||||
|
|
||||||
# Subtract the mean from each column
|
|
||||||
self.data = self.data - self.data.mean(axis=0)
|
|
||||||
|
|
||||||
# Get scale factors for each column by computing dot product
|
|
||||||
# of each column with itself.
|
|
||||||
self.scale = inner1d(self.data.T, self.data.T)
|
|
||||||
|
|
||||||
# Ensure a minimum (nonzero) scale and convert to list
|
|
||||||
self.scale = np.maximum(self.scale, [1e-9]).tolist()
|
|
||||||
|
|
||||||
def process(main, function, args = None, rows = 200000):
|
|
||||||
"""Process through the data; similar to nilmtools.Filter.process_numpy"""
|
|
||||||
if args is None:
|
|
||||||
args = []
|
|
||||||
|
|
||||||
extractor = main.client.stream_extract_numpy
|
|
||||||
old_array = np.array([])
|
|
||||||
for new_array in extractor(main.stream, main.start, main.end,
|
|
||||||
layout = main.info.layout, maxrows = rows):
|
|
||||||
# If we still had old data left, combine it
|
|
||||||
if old_array.shape[0] != 0:
|
|
||||||
array = np.vstack((old_array, new_array))
|
|
||||||
else:
|
|
||||||
array = new_array
|
|
||||||
|
|
||||||
# Process it
|
|
||||||
processed = function(array, args)
|
|
||||||
|
|
||||||
# Save the unprocessed parts
|
|
||||||
if processed >= 0:
|
|
||||||
old_array = array[processed:]
|
|
||||||
else:
|
|
||||||
raise Exception(sprintf("%s return value %s must be >= 0",
|
|
||||||
str(function), str(processed)))
|
|
||||||
|
|
||||||
# Warn if there's too much data remaining
|
|
||||||
if old_array.shape[0] > 3 * rows:
|
|
||||||
printf("warning: %d unprocessed rows in buffer\n",
|
|
||||||
old_array.shape[0])
|
|
||||||
|
|
||||||
# Handle leftover data
|
|
||||||
if old_array.shape[0] != 0:
|
|
||||||
processed = function(array, args)
|
|
||||||
|
|
||||||
def peak_detect(data, delta):
|
|
||||||
"""Simple min/max peak detection algorithm, taken from my code
|
|
||||||
in the disagg.m from the 10-8-5 paper"""
|
|
||||||
mins = [];
|
|
||||||
maxs = [];
|
|
||||||
cur_min = (None, np.inf)
|
|
||||||
cur_max = (None, -np.inf)
|
|
||||||
lookformax = False
|
|
||||||
for (n, p) in enumerate(data):
|
|
||||||
if p > cur_max[1]:
|
|
||||||
cur_max = (n, p)
|
|
||||||
if p < cur_min[1]:
|
|
||||||
cur_min = (n, p)
|
|
||||||
if lookformax:
|
|
||||||
if p < (cur_max[1] - delta):
|
|
||||||
maxs.append(cur_max)
|
|
||||||
cur_min = (n, p)
|
|
||||||
lookformax = False
|
|
||||||
else:
|
|
||||||
if p > (cur_min[1] + delta):
|
|
||||||
mins.append(cur_min)
|
|
||||||
cur_max = (n, p)
|
|
||||||
lookformax = True
|
|
||||||
return (mins, maxs)
|
|
||||||
|
|
||||||
def match(data, args):
|
|
||||||
"""Perform cross-correlation match"""
|
|
||||||
( columns, exemplars ) = args
|
|
||||||
nrows = data.shape[0]
|
|
||||||
|
|
||||||
# We want at least 10% more points than the widest exemplar.
|
|
||||||
widest = max([ x.count for x in exemplars ])
|
|
||||||
if (widest * 1.1) > nrows:
|
|
||||||
return 0
|
|
||||||
|
|
||||||
# This is how many points we'll consider valid in the
|
|
||||||
# cross-correlation.
|
|
||||||
valid = nrows + 1 - widest
|
|
||||||
matches = []
|
|
||||||
|
|
||||||
# Try matching against each of the exemplars
|
|
||||||
for e_num, e in enumerate(exemplars):
|
|
||||||
corrs = []
|
|
||||||
|
|
||||||
# Compute cross-correlation for each column
|
|
||||||
for c in e.columns:
|
|
||||||
a = data[:,columns[c] + 1]
|
|
||||||
b = e.data[:,e.columns[c]]
|
|
||||||
corr = scipy.signal.fftconvolve(a, np.flipud(b), 'valid')[0:valid]
|
|
||||||
|
|
||||||
# Scale by the norm of the exemplar
|
|
||||||
corr = corr / e.scale[columns[c]]
|
|
||||||
corrs.append(corr)
|
|
||||||
|
|
||||||
# Find the peaks using the column with the largest amplitude
|
|
||||||
biggest = e.scale.index(max(e.scale))
|
|
||||||
peaks_minmax = peak_detect(corrs[biggest], 0.1)
|
|
||||||
peaks = [ p[0] for p in peaks_minmax[1] ]
|
|
||||||
|
|
||||||
# Now look at every peak
|
|
||||||
for p in peaks:
|
|
||||||
# Correlation for each column must be close enough to 1.
|
|
||||||
for (corr, scale) in zip(corrs, e.scale):
|
|
||||||
# The accepted distance from 1 is based on the relative
|
|
||||||
# amplitude of the column. Use a linear mapping:
|
|
||||||
# scale 1.0 -> distance 0.1
|
|
||||||
# scale 0.0 -> distance 1.0
|
|
||||||
distance = 1 - 0.9 * (scale / e.scale[biggest])
|
|
||||||
if abs(corr[p] - 1) > distance:
|
|
||||||
# No match
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
# Successful match
|
|
||||||
matches.append((p, e_num))
|
|
||||||
|
|
||||||
# Print matches
|
|
||||||
for (point, e_num) in sorted(matches):
|
|
||||||
# Ignore matches that showed up at the very tail of the window,
|
|
||||||
# and shorten the window accordingly. This is an attempt to avoid
|
|
||||||
# problems at chunk boundaries.
|
|
||||||
if point > (valid - 50):
|
|
||||||
valid -= 50
|
|
||||||
break
|
|
||||||
print "matched", data[point,0], "exemplar", exemplars[e_num].name
|
|
||||||
|
|
||||||
#from matplotlib import pyplot as p
|
|
||||||
#p.plot(data[:,1:3])
|
|
||||||
#p.show()
|
|
||||||
|
|
||||||
return max(valid, 0)
|
|
||||||
|
|
||||||
def trainola(conf):
|
|
||||||
# Load main stream data
|
|
||||||
print "Loading stream data"
|
|
||||||
main = Data(None, conf['url'], conf['stream'],
|
|
||||||
conf['start'], conf['end'], conf['columns'])
|
|
||||||
|
|
||||||
# Pull in the exemplar data
|
|
||||||
exemplars = []
|
|
||||||
for n, e in enumerate(conf['exemplars']):
|
|
||||||
print sprintf("Loading exemplar %d: %s", n, e['name'])
|
|
||||||
ex = Data(e['name'], e['url'], e['stream'],
|
|
||||||
e['start'], e['end'], e['columns'])
|
|
||||||
ex.fetch()
|
|
||||||
exemplars.append(ex)
|
|
||||||
|
|
||||||
# Verify that the exemplar columns are all represented in the main data
|
|
||||||
for n, ex in enumerate(exemplars):
|
|
||||||
for col in ex.columns:
|
|
||||||
if col not in main.columns:
|
|
||||||
raise DataError(sprintf("Exemplar %d column %s is not "
|
|
||||||
"available in main data", n, col))
|
|
||||||
|
|
||||||
# Process the main data
|
|
||||||
process(main, match, (main.columns, exemplars))
|
|
||||||
|
|
||||||
return "done"
|
|
||||||
|
|
||||||
filterfunc = trainola
|
|
||||||
|
|
||||||
def main(argv = None):
|
|
||||||
import simplejson as json
|
|
||||||
import argparse
|
|
||||||
import sys
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class = argparse.RawDescriptionHelpFormatter,
|
|
||||||
version = nilmrun.__version__,
|
|
||||||
description = """Run Trainola using parameters passed in as
|
|
||||||
JSON-formatted data.""")
|
|
||||||
parser.add_argument("file", metavar="FILE", nargs="?",
|
|
||||||
type=argparse.FileType('r'), default=sys.stdin)
|
|
||||||
args = parser.parse_args(argv)
|
|
||||||
|
|
||||||
conf = json.loads(args.file.read())
|
|
||||||
result = trainola(conf)
|
|
||||||
print json.dumps(result, sort_keys = True, indent = 2 * ' ')
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
|
|
@@ -173,25 +173,30 @@ def _exec_user_code(codeargs): # pragma: no cover (runs in subprocess)
|
|||||||
codeobj = compile(code, '<user-code>', 'exec',
|
codeobj = compile(code, '<user-code>', 'exec',
|
||||||
flags = 0, dont_inherit = 1)
|
flags = 0, dont_inherit = 1)
|
||||||
exec(codeobj, module.__dict__, {})
|
exec(codeobj, module.__dict__, {})
|
||||||
except:
|
except Exception:
|
||||||
# Pull out the exception
|
try:
|
||||||
info = sys.exc_info()
|
# Pull out the exception
|
||||||
tblist = traceback.extract_tb(info[2])
|
info = sys.exc_info()
|
||||||
|
tblist = traceback.extract_tb(info[2])
|
||||||
|
|
||||||
# First entry is probably this code; get rid of it
|
# First entry is probably this code; get rid of it
|
||||||
if len(tblist) and tblist[0][2] == '_exec_user_code':
|
if len(tblist) and tblist[0][2] == '_exec_user_code':
|
||||||
tblist = tblist[1:]
|
tblist = tblist[1:]
|
||||||
|
|
||||||
# Add the user's source code to every line that's missing it
|
# Add the user's source code to every line that's missing it
|
||||||
lines = code.splitlines()
|
lines = code.splitlines()
|
||||||
for (n, (name, line, func, text)) in enumerate(tblist):
|
maxline = len(lines)
|
||||||
if name == '<user-code>' and text is None and line <= len(lines):
|
for (n, (name, line, func, text)) in enumerate(tblist):
|
||||||
tblist[n] = (name, line, func, lines[line-1].strip())
|
if name == '<user-code>' and text is None and line <= maxline:
|
||||||
|
tblist[n] = (name, line, func, lines[line-1].strip())
|
||||||
|
|
||||||
# Print it to stderr in the usual format
|
# Format it in the usual manner
|
||||||
out = ['Traceback (most recent call last):\n']
|
out = ['Traceback (most recent call last):\n']
|
||||||
out.extend(traceback.format_list(tblist))
|
out.extend(traceback.format_list(tblist))
|
||||||
out.extend(traceback.format_exception_only(info[0], info[1]))
|
out.extend(traceback.format_exception_only(info[0], info[1]))
|
||||||
|
finally:
|
||||||
|
# Need to explicitly delete traceback object to avoid ref cycle
|
||||||
|
del info
|
||||||
sys.stderr.write("".join(out))
|
sys.stderr.write("".join(out))
|
||||||
sys.stderr.flush()
|
sys.stderr.flush()
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
@@ -25,8 +25,7 @@ from nilmdb.server.serverutil import (
|
|||||||
cherrypy_stop,
|
cherrypy_stop,
|
||||||
)
|
)
|
||||||
import nilmrun
|
import nilmrun
|
||||||
import nilmrun.filters.trainola
|
import nilmrun.testfilter
|
||||||
import nilmrun.filters.dummy
|
|
||||||
|
|
||||||
# Add CORS_allow tool
|
# Add CORS_allow tool
|
||||||
cherrypy.tools.CORS_allow = cherrypy.Tool('on_start_resource', CORS_allow)
|
cherrypy.tools.CORS_allow = cherrypy.Tool('on_start_resource', CORS_allow)
|
||||||
@@ -124,6 +123,7 @@ class AppRun(object):
|
|||||||
and 'argv[1:]' are arguments"""
|
and 'argv[1:]' are arguments"""
|
||||||
return self.manager.run_command("command", argv)
|
return self.manager.run_command("command", argv)
|
||||||
|
|
||||||
|
# /run/code
|
||||||
@cherrypy.expose
|
@cherrypy.expose
|
||||||
@cherrypy.tools.json_in()
|
@cherrypy.tools.json_in()
|
||||||
@cherrypy.tools.json_out()
|
@cherrypy.tools.json_out()
|
||||||
@@ -135,25 +135,15 @@ class AppRun(object):
|
|||||||
(i.e., they end up in sys.argv[1:])"""
|
(i.e., they end up in sys.argv[1:])"""
|
||||||
return self.manager.run_code("usercode", code, args)
|
return self.manager.run_code("usercode", code, args)
|
||||||
|
|
||||||
# /run/trainola
|
# /run/testfilter
|
||||||
@cherrypy.expose
|
@cherrypy.expose
|
||||||
@cherrypy.tools.json_in()
|
@cherrypy.tools.json_in()
|
||||||
@cherrypy.tools.json_out()
|
@cherrypy.tools.json_out()
|
||||||
@exception_to_httperror(KeyError, ValueError)
|
@exception_to_httperror(KeyError, ValueError)
|
||||||
@cherrypy.tools.CORS_allow(methods = ["POST"])
|
@cherrypy.tools.CORS_allow(methods = ["POST"])
|
||||||
def trainola(self, data):
|
def testfilter(self, data):
|
||||||
return self.manager.run_function(
|
return self.manager.run_function(
|
||||||
"trainola", nilmrun.filters.trainola.filterfunc, data)
|
"dummy", nilmrun.testfilter.test, data)
|
||||||
|
|
||||||
# /run/dummy
|
|
||||||
@cherrypy.expose
|
|
||||||
@cherrypy.tools.json_in()
|
|
||||||
@cherrypy.tools.json_out()
|
|
||||||
@exception_to_httperror(KeyError, ValueError)
|
|
||||||
@cherrypy.tools.CORS_allow(methods = ["POST"])
|
|
||||||
def dummy(self, data):
|
|
||||||
return self.manager.run_function(
|
|
||||||
"dummy", nilmrun.filters.dummy.filterfunc, data)
|
|
||||||
|
|
||||||
class Server(object):
|
class Server(object):
|
||||||
def __init__(self, host = '127.0.0.1', port = 8080,
|
def __init__(self, host = '127.0.0.1', port = 8080,
|
||||||
|
@@ -6,7 +6,7 @@ import signal
|
|||||||
import sys
|
import sys
|
||||||
|
|
||||||
# This is just for testing the process management.
|
# This is just for testing the process management.
|
||||||
def filterfunc(n):
|
def test(n):
|
||||||
n = int(n)
|
n = int(n)
|
||||||
if n < 0: # raise an exception
|
if n < 0: # raise an exception
|
||||||
raise Exception("test exception")
|
raise Exception("test exception")
|
@@ -1,3 +1,3 @@
|
|||||||
test_client.py
|
test_nilmrun.py
|
||||||
|
|
||||||
test_*.py
|
test_*.py
|
||||||
|
@@ -98,7 +98,7 @@ class TestClient(object):
|
|||||||
client = HTTPClient(baseurl = testurl, post_json = True)
|
client = HTTPClient(baseurl = testurl, post_json = True)
|
||||||
|
|
||||||
# start dummy filter
|
# start dummy filter
|
||||||
pid = client.post("/run/dummy", { "data": 30 })
|
pid = client.post("/run/testfilter", { "data": 30 })
|
||||||
eq_(client.get("/process/list"), [pid])
|
eq_(client.get("/process/list"), [pid])
|
||||||
time.sleep(1)
|
time.sleep(1)
|
||||||
|
|
||||||
@@ -132,7 +132,7 @@ class TestClient(object):
|
|||||||
client = HTTPClient(baseurl = testurl, post_json = True)
|
client = HTTPClient(baseurl = testurl, post_json = True)
|
||||||
|
|
||||||
# Trigger exception in filter
|
# Trigger exception in filter
|
||||||
pid = client.post("/run/dummy", { "data": -1 })
|
pid = client.post("/run/testfilter", { "data": -1 })
|
||||||
time.sleep(0.5)
|
time.sleep(0.5)
|
||||||
status = client.get("/process/status", { "pid": pid })
|
status = client.get("/process/status", { "pid": pid })
|
||||||
eq_(status["alive"], False)
|
eq_(status["alive"], False)
|
||||||
@@ -141,7 +141,7 @@ class TestClient(object):
|
|||||||
client.post("/process/remove", { "pid": pid })
|
client.post("/process/remove", { "pid": pid })
|
||||||
|
|
||||||
# Kill a running filter by removing it early
|
# Kill a running filter by removing it early
|
||||||
newpid = client.post("/run/dummy", { "data": 50 })
|
newpid = client.post("/run/testfilter", { "data": 50 })
|
||||||
ne_(newpid, pid)
|
ne_(newpid, pid)
|
||||||
time.sleep(0.5)
|
time.sleep(0.5)
|
||||||
start = time.time()
|
start = time.time()
|
||||||
@@ -156,7 +156,7 @@ class TestClient(object):
|
|||||||
eq_(client.get("/process/list"), [])
|
eq_(client.get("/process/list"), [])
|
||||||
|
|
||||||
# Try to remove a running filter that ignored SIGTERM
|
# Try to remove a running filter that ignored SIGTERM
|
||||||
pid = client.post("/run/dummy", { "data": 0 })
|
pid = client.post("/run/testfilter", { "data": 0 })
|
||||||
start = time.time()
|
start = time.time()
|
||||||
status = client.post("/process/remove", { "pid": pid })
|
status = client.post("/process/remove", { "pid": pid })
|
||||||
elapsed = time.time() - start
|
elapsed = time.time() - start
|
||||||
@@ -165,6 +165,7 @@ class TestClient(object):
|
|||||||
eq_(status["alive"], False)
|
eq_(status["alive"], False)
|
||||||
ne_(status["exitcode"], 0)
|
ne_(status["exitcode"], 0)
|
||||||
|
|
||||||
|
@unittest.skip("trainola moving to nilmtools")
|
||||||
def test_client_05_trainola_simple(self):
|
def test_client_05_trainola_simple(self):
|
||||||
client = HTTPClient(baseurl = testurl, post_json = True)
|
client = HTTPClient(baseurl = testurl, post_json = True)
|
||||||
pid = client.post("/run/trainola", { "data": {} })
|
pid = client.post("/run/trainola", { "data": {} })
|
||||||
@@ -172,7 +173,7 @@ class TestClient(object):
|
|||||||
ne_(status["exitcode"], 0)
|
ne_(status["exitcode"], 0)
|
||||||
status = client.post("/process/remove", { "pid": pid })
|
status = client.post("/process/remove", { "pid": pid })
|
||||||
|
|
||||||
@unittest.skip("needs a running nilmdb")
|
@unittest.skip("needs a running nilmdb; trainola moved to nilmtools")
|
||||||
def test_client_06_trainola(self):
|
def test_client_06_trainola(self):
|
||||||
client = HTTPClient(baseurl = testurl, post_json = True)
|
client = HTTPClient(baseurl = testurl, post_json = True)
|
||||||
|
|
||||||
@@ -306,6 +307,7 @@ class TestClient(object):
|
|||||||
code=textwrap.dedent("""
|
code=textwrap.dedent("""
|
||||||
import sys
|
import sys
|
||||||
print sys.argv[1].encode('ascii'), sys.argv[2]
|
print sys.argv[1].encode('ascii'), sys.argv[2]
|
||||||
|
sys.exit(0) # also test raising SystemExit
|
||||||
""")
|
""")
|
||||||
status = do(code, ["hello", 123], False)
|
status = do(code, ["hello", 123], False)
|
||||||
eq_(status["log"], "hello 123\n")
|
eq_(status["log"], "hello 123\n")
|
Reference in New Issue
Block a user