Split off useful math functions to math.py
This commit is contained in:
parent
33c3586bea
commit
6a8f30d0a0
nilmtools
107
nilmtools/math.py
Normal file
107
nilmtools/math.py
Normal file
|
@ -0,0 +1,107 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
# Miscellaenous useful mathematical functions
|
||||
from nilmdb.utils.printf import *
|
||||
from numpy import *
|
||||
from scipy import *
|
||||
|
||||
def sfit4(data, fs):
|
||||
"""(A, f0, phi, C) = sfit4(data, fs)
|
||||
|
||||
Compute 4-parameter (unknown-frequency) least-squares fit to
|
||||
sine-wave data, according to IEEE Std 1241-2010 Annex B
|
||||
|
||||
Input:
|
||||
data vector of input samples
|
||||
fs sampling rate (Hz)
|
||||
|
||||
Output:
|
||||
Parameters [A, f0, phi, C] to fit the equation
|
||||
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
|
||||
where n is sample number. Or, as a function of time:
|
||||
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
|
||||
|
||||
by Jim Paris
|
||||
(Verified to match sfit4.m)
|
||||
"""
|
||||
N = len(data)
|
||||
t = linspace(0, (N-1) / float(fs), N)
|
||||
|
||||
## Estimate frequency using FFT (step b)
|
||||
Fc = fft(data)
|
||||
F = abs(Fc)
|
||||
F[0] = 0 # eliminate DC
|
||||
|
||||
# Find pair of spectral lines with largest amplitude:
|
||||
# resulting values are in F(i) and F(i+1)
|
||||
i = argmax(F[0:int(N/2)] + F[1:int(N/2+1)])
|
||||
|
||||
# Interpolate FFT to get a better result (from Markus [B37])
|
||||
U1 = real(Fc[i])
|
||||
U2 = real(Fc[i+1])
|
||||
V1 = imag(Fc[i])
|
||||
V2 = imag(Fc[i+1])
|
||||
n = 2 * pi / N
|
||||
ni1 = n * i
|
||||
ni2 = n * (i+1)
|
||||
K = ((V2-V1)*sin(ni1) + (U2-U1)*cos(ni1)) / (U2-U1)
|
||||
Z1 = V1 * (K - cos(ni1)) / sin(ni1) + U1
|
||||
Z2 = V2 * (K - cos(ni2)) / sin(ni2) + U2
|
||||
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
|
||||
|
||||
# Convert to Hz
|
||||
f0 = i * float(fs) / N
|
||||
|
||||
# Fit it. We'll catch exceptions here and just returns zeros
|
||||
# if something fails with the least squares fit, etc.
|
||||
try:
|
||||
# first guess for A0, B0 using 3-parameter fit (step c)
|
||||
s = zeros(3)
|
||||
w = 2*pi*f0
|
||||
|
||||
# Now iterate 7 times (step b, plus 6 iterations of step i)
|
||||
for idx in range(7):
|
||||
D = c_[cos(w*t), sin(w*t), ones(N),
|
||||
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
||||
s = linalg.lstsq(D, data)[0] # eqn B.18
|
||||
w = w + s[3] # update frequency estimate
|
||||
|
||||
## Extract results
|
||||
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
||||
f0 = w / (2*pi)
|
||||
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
|
||||
C = s[2]
|
||||
return (A, f0, phi, C)
|
||||
except Exception as e:
|
||||
# something broke down; just return zeros
|
||||
return (0, 0, 0, 0)
|
||||
|
||||
def peak_detect(data, delta = 0.1):
|
||||
"""Simple min/max peak detection algorithm, taken from my code
|
||||
in the disagg.m from the 10-8-5 paper.
|
||||
|
||||
Returns an array of peaks: each peak is a tuple
|
||||
(n, p, is_max)
|
||||
where n is the row number in 'data', and p is 'data[n]',
|
||||
and is_max is True if this is a maximum, False if it's a minimum,
|
||||
"""
|
||||
peaks = [];
|
||||
cur_min = (None, inf)
|
||||
cur_max = (None, -inf)
|
||||
lookformax = False
|
||||
for (n, p) in enumerate(data):
|
||||
if p > cur_max[1]:
|
||||
cur_max = (n, p)
|
||||
if p < cur_min[1]:
|
||||
cur_min = (n, p)
|
||||
if lookformax:
|
||||
if p < (cur_max[1] - delta):
|
||||
peaks.append((cur_max[0], cur_max[1], True))
|
||||
cur_min = (n, p)
|
||||
lookformax = False
|
||||
else:
|
||||
if p > (cur_min[1] + delta):
|
||||
peaks.append((cur_min[0], cur_min[1], False))
|
||||
cur_max = (n, p)
|
||||
lookformax = True
|
||||
return peaks
|
|
@ -3,6 +3,7 @@
|
|||
# Sine wave fitting.
|
||||
from nilmdb.utils.printf import *
|
||||
import nilmtools.filter
|
||||
import nilmtools.math
|
||||
import nilmdb.client
|
||||
from nilmdb.utils.time import (timestamp_to_human,
|
||||
timestamp_to_seconds,
|
||||
|
@ -11,7 +12,6 @@ from nilmdb.utils.time import (timestamp_to_human,
|
|||
from numpy import *
|
||||
from scipy import *
|
||||
#import pylab as p
|
||||
import operator
|
||||
import sys
|
||||
|
||||
def main(argv = None):
|
||||
|
@ -119,7 +119,7 @@ def process(data, interval, args, insert_function, final):
|
|||
t_max = timestamp_to_seconds(data[start+N-1, 0])
|
||||
|
||||
# Do 4-parameter sine wave fit
|
||||
(A, f0, phi, C) = sfit4(this, fs)
|
||||
(A, f0, phi, C) = nilmtools.math.sfit4(this, fs)
|
||||
|
||||
# Check bounds. If frequency is too crazy, ignore this window
|
||||
if f0 < f_min or f0 > f_max:
|
||||
|
@ -187,76 +187,5 @@ def process(data, interval, args, insert_function, final):
|
|||
printf("%sMarked %d zero-crossings in %d rows\n", now, num_zc, start)
|
||||
return start
|
||||
|
||||
def sfit4(data, fs):
|
||||
"""(A, f0, phi, C) = sfit4(data, fs)
|
||||
|
||||
Compute 4-parameter (unknown-frequency) least-squares fit to
|
||||
sine-wave data, according to IEEE Std 1241-2010 Annex B
|
||||
|
||||
Input:
|
||||
data vector of input samples
|
||||
fs sampling rate (Hz)
|
||||
|
||||
Output:
|
||||
Parameters [A, f0, phi, C] to fit the equation
|
||||
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
|
||||
where n is sample number. Or, as a function of time:
|
||||
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
|
||||
|
||||
by Jim Paris
|
||||
(Verified to match sfit4.m)
|
||||
"""
|
||||
N = len(data)
|
||||
t = linspace(0, (N-1) / float(fs), N)
|
||||
|
||||
## Estimate frequency using FFT (step b)
|
||||
Fc = fft(data)
|
||||
F = abs(Fc)
|
||||
F[0] = 0 # eliminate DC
|
||||
|
||||
# Find pair of spectral lines with largest amplitude:
|
||||
# resulting values are in F(i) and F(i+1)
|
||||
i = argmax(F[0:int(N/2)] + F[1:int(N/2+1)])
|
||||
|
||||
# Interpolate FFT to get a better result (from Markus [B37])
|
||||
U1 = real(Fc[i])
|
||||
U2 = real(Fc[i+1])
|
||||
V1 = imag(Fc[i])
|
||||
V2 = imag(Fc[i+1])
|
||||
n = 2 * pi / N
|
||||
ni1 = n * i
|
||||
ni2 = n * (i+1)
|
||||
K = ((V2-V1)*sin(ni1) + (U2-U1)*cos(ni1)) / (U2-U1)
|
||||
Z1 = V1 * (K - cos(ni1)) / sin(ni1) + U1
|
||||
Z2 = V2 * (K - cos(ni2)) / sin(ni2) + U2
|
||||
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
|
||||
|
||||
# Convert to Hz
|
||||
f0 = i * float(fs) / N
|
||||
|
||||
# Fit it. We'll catch exceptions here and just returns zeros
|
||||
# if something fails with the least squares fit, etc.
|
||||
try:
|
||||
# first guess for A0, B0 using 3-parameter fit (step c)
|
||||
s = zeros(3)
|
||||
w = 2*pi*f0
|
||||
|
||||
# Now iterate 7 times (step b, plus 6 iterations of step i)
|
||||
for idx in range(7):
|
||||
D = c_[cos(w*t), sin(w*t), ones(N),
|
||||
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
||||
s = linalg.lstsq(D, data)[0] # eqn B.18
|
||||
w = w + s[3] # update frequency estimate
|
||||
|
||||
## Extract results
|
||||
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
||||
f0 = w / (2*pi)
|
||||
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
|
||||
C = s[2]
|
||||
return (A, f0, phi, C)
|
||||
except Exception as e:
|
||||
# something broke down, just return zeros
|
||||
return (0, 0, 0, 0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
from nilmdb.utils.printf import *
|
||||
import nilmdb.client
|
||||
import nilmtools.filter
|
||||
import nilmtools.math
|
||||
from nilmdb.utils.time import (timestamp_to_human,
|
||||
timestamp_to_seconds,
|
||||
seconds_to_timestamp)
|
||||
|
@ -104,36 +105,6 @@ class Exemplar(object):
|
|||
self.name, self.stream, ",".join(self.columns.keys()),
|
||||
self.count)
|
||||
|
||||
def peak_detect(data, delta):
|
||||
"""Simple min/max peak detection algorithm, taken from my code
|
||||
in the disagg.m from the 10-8-5 paper.
|
||||
|
||||
Returns an array of peaks: each peak is a tuple
|
||||
(n, p, is_max)
|
||||
where n is the row number in 'data', and p is 'data[n]',
|
||||
and is_max is True if this is a maximum, False if it's a minimum,
|
||||
"""
|
||||
peaks = [];
|
||||
cur_min = (None, np.inf)
|
||||
cur_max = (None, -np.inf)
|
||||
lookformax = False
|
||||
for (n, p) in enumerate(data):
|
||||
if p > cur_max[1]:
|
||||
cur_max = (n, p)
|
||||
if p < cur_min[1]:
|
||||
cur_min = (n, p)
|
||||
if lookformax:
|
||||
if p < (cur_max[1] - delta):
|
||||
peaks.append((cur_max[0], cur_max[1], True))
|
||||
cur_min = (n, p)
|
||||
lookformax = False
|
||||
else:
|
||||
if p > (cur_min[1] + delta):
|
||||
peaks.append((cur_min[0], cur_min[1], False))
|
||||
cur_max = (n, p)
|
||||
lookformax = True
|
||||
return peaks
|
||||
|
||||
def timestamp_to_short_human(timestamp):
|
||||
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp_to_seconds(timestamp))
|
||||
return dt.strftime("%H:%M:%S")
|
||||
|
@ -169,7 +140,7 @@ def trainola_matcher(data, interval, args, insert_func, final_chunk):
|
|||
|
||||
# Find the peaks using the column with the largest amplitude
|
||||
biggest = e.scale.index(max(e.scale))
|
||||
peaks = peak_detect(corrs[biggest], 0.1)
|
||||
peaks = nilmtools.math.peak_detect(corrs[biggest], 0.1)
|
||||
|
||||
# To try to reduce false positives, discard peaks where
|
||||
# there's a higher-magnitude peak (either min or max) within
|
||||
|
|
Loading…
Reference in New Issue
Block a user