Compare commits
7 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
dc26e32b6e | |||
981f23ff14 | |||
492445a469 | |||
33c3586bea | |||
c1e0f8ffbc | |||
d2853bdb0e | |||
a4d4bc22fc |
17
Makefile
17
Makefile
@@ -8,26 +8,33 @@ else
|
|||||||
@echo "Try 'make install'"
|
@echo "Try 'make install'"
|
||||||
endif
|
endif
|
||||||
|
|
||||||
test: test_pipewatch
|
test: test_trainola3
|
||||||
|
|
||||||
test_pipewatch:
|
test_pipewatch:
|
||||||
nilmtools/pipewatch.py -t 3 "seq 10 20" "seq 20 30"
|
nilmtools/pipewatch.py -t 3 "seq 10 20" "seq 20 30"
|
||||||
|
|
||||||
test_trainola:
|
test_trainola:
|
||||||
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
|
|
||||||
/sharon/prep-a-matches
|
|
||||||
nilmtools/trainola.py "$$(cat extras/trainola-test-param-2.js)"
|
|
||||||
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
|
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
|
||||||
/sharon/prep-a-matches
|
/sharon/prep-a-matches
|
||||||
nilmtools/trainola.py "$$(cat extras/trainola-test-param.js)"
|
nilmtools/trainola.py "$$(cat extras/trainola-test-param.js)"
|
||||||
|
|
||||||
|
test_trainola2:
|
||||||
|
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
|
||||||
|
/sharon/prep-a-matches
|
||||||
|
nilmtools/trainola.py "$$(cat extras/trainola-test-param-2.js)"
|
||||||
|
|
||||||
|
test_trainola3:
|
||||||
|
-nilmtool -u "http://bucket/nilmdb" destroy -R /test/jim
|
||||||
|
nilmtool -u "http://bucket/nilmdb" create /test/jim uint8_3
|
||||||
|
nilmtools/trainola.py "$$(cat extras/trainola-test-param-3.js)"
|
||||||
|
nilmtool -u "http://bucket/nilmdb" extract /test/jim -s min -e max
|
||||||
|
|
||||||
test_cleanup:
|
test_cleanup:
|
||||||
nilmtools/cleanup.py -e extras/cleanup.cfg
|
nilmtools/cleanup.py -e extras/cleanup.cfg
|
||||||
nilmtools/cleanup.py extras/cleanup.cfg
|
nilmtools/cleanup.py extras/cleanup.cfg
|
||||||
|
|
||||||
test_insert:
|
test_insert:
|
||||||
nilmtools/insert.py --file --dry-run /test/foo </dev/null
|
nilmtools/insert.py --skip --file --dry-run /foo/bar ~/data/20130311T2100.prep1.gz ~/data/20130311T2100.prep1.gz ~/data/20130311T2200.prep1.gz
|
||||||
|
|
||||||
test_copy:
|
test_copy:
|
||||||
nilmtools/copy_wildcard.py -U "http://nilmdb.com/bucket/" -D /lees*
|
nilmtools/copy_wildcard.py -U "http://nilmdb.com/bucket/" -D /lees*
|
||||||
|
40
extras/trainola-test-param-3.js
Normal file
40
extras/trainola-test-param-3.js
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
{
|
||||||
|
"url": "http://bucket/nilmdb",
|
||||||
|
"stream": "/sharon/prep-a",
|
||||||
|
"dest_stream": "/test/jim",
|
||||||
|
"start": 1364184839901599,
|
||||||
|
"end": 1364184942407610.2,
|
||||||
|
|
||||||
|
"columns": [ { "index": 0, "name": "P1" } ],
|
||||||
|
|
||||||
|
"exemplars": [
|
||||||
|
{
|
||||||
|
"name": "A - True DBL Freezer ON",
|
||||||
|
"dest_column": 0,
|
||||||
|
"url": "http://bucket/nilmdb",
|
||||||
|
"stream": "/sharon/prep-a",
|
||||||
|
"columns": [ { "index": 0, "name": "P1" } ],
|
||||||
|
"start": 1365277707649000,
|
||||||
|
"end": 1365277710705000
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "A - Boiler 1 Fan OFF",
|
||||||
|
"dest_column": 1,
|
||||||
|
"url": "http://bucket/nilmdb",
|
||||||
|
"stream": "/sharon/prep-a",
|
||||||
|
"columns": [ { "index": 0, "name": "P1" } ],
|
||||||
|
"start": 1364188370735000,
|
||||||
|
"end": 1364188373819000
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "A - True DBL Freezer OFF",
|
||||||
|
"dest_column": 2,
|
||||||
|
"url": "http://bucket/nilmdb",
|
||||||
|
"stream": "/sharon/prep-a",
|
||||||
|
"columns": [ { "index": 0, "name": "P1" } ],
|
||||||
|
"start": 1365278087982000,
|
||||||
|
"end": 1365278089340000
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
@@ -32,7 +32,7 @@ def main(argv = None):
|
|||||||
extractor = NumpyClient(f.src.url).stream_extract_numpy
|
extractor = NumpyClient(f.src.url).stream_extract_numpy
|
||||||
inserter = NumpyClient(f.dest.url).stream_insert_numpy_context
|
inserter = NumpyClient(f.dest.url).stream_insert_numpy_context
|
||||||
for i in f.intervals():
|
for i in f.intervals():
|
||||||
print "Processing", f.interval_string(i)
|
print "Processing", i.human_string()
|
||||||
with inserter(f.dest.path, i.start, i.end) as insert_ctx:
|
with inserter(f.dest.path, i.start, i.end) as insert_ctx:
|
||||||
for data in extractor(f.src.path, i.start, i.end):
|
for data in extractor(f.src.path, i.start, i.end):
|
||||||
insert_ctx.insert(data)
|
insert_ctx.insert(data)
|
||||||
|
@@ -133,6 +133,34 @@ def process_numpy_interval(interval, extractor, inserter, warn_rows,
|
|||||||
# we'll not miss any data when we run again later.
|
# we'll not miss any data when we run again later.
|
||||||
insert_ctx.update_end(old_array[processed][0])
|
insert_ctx.update_end(old_array[processed][0])
|
||||||
|
|
||||||
|
def example_callback_function(data, interval, args, insert_func, final):
|
||||||
|
"""Example of the signature for the function that gets passed
|
||||||
|
to process_numpy_interval.
|
||||||
|
|
||||||
|
'data': array of data to process -- may be empty
|
||||||
|
|
||||||
|
'interval': overall interval we're processing (but not necessarily
|
||||||
|
the interval of this particular chunk of data)
|
||||||
|
|
||||||
|
'args': opaque arguments passed to process_numpy
|
||||||
|
|
||||||
|
'insert_func': function to call in order to insert array of data.
|
||||||
|
Should be passed a 2-dimensional array of data to insert.
|
||||||
|
Data timestamps must be within the provided interval.
|
||||||
|
|
||||||
|
'final': True if this is the last bit of data for this
|
||||||
|
contiguous interval, False otherwise.
|
||||||
|
|
||||||
|
Return value of 'function' is the number of data rows processed.
|
||||||
|
Unprocessed data will be provided again in a subsequent call
|
||||||
|
(unless 'final' is True).
|
||||||
|
|
||||||
|
If unprocessed data remains after 'final' is True, the interval
|
||||||
|
being inserted will be ended at the timestamp of the first
|
||||||
|
unprocessed data point.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError("example_callback_function does nothing")
|
||||||
|
|
||||||
class Filter(object):
|
class Filter(object):
|
||||||
|
|
||||||
def __init__(self, parser_description = None):
|
def __init__(self, parser_description = None):
|
||||||
@@ -144,8 +172,8 @@ class Filter(object):
|
|||||||
self.dest = None
|
self.dest = None
|
||||||
self.start = None
|
self.start = None
|
||||||
self.end = None
|
self.end = None
|
||||||
self.interhost = False
|
self._interhost = False
|
||||||
self.force_metadata = False
|
self._force_metadata = False
|
||||||
if parser_description is not None:
|
if parser_description is not None:
|
||||||
self.setup_parser(parser_description)
|
self.setup_parser(parser_description)
|
||||||
self.parse_args()
|
self.parse_args()
|
||||||
@@ -208,12 +236,12 @@ class Filter(object):
|
|||||||
if dest_url is None:
|
if dest_url is None:
|
||||||
dest_url = url
|
dest_url = url
|
||||||
if url != dest_url:
|
if url != dest_url:
|
||||||
self.interhost = True
|
self._interhost = True
|
||||||
|
|
||||||
self._client_src = Client(url)
|
self._client_src = Client(url)
|
||||||
self._client_dest = Client(dest_url)
|
self._client_dest = Client(dest_url)
|
||||||
|
|
||||||
if (not self.interhost) and (srcpath == destpath):
|
if (not self._interhost) and (srcpath == destpath):
|
||||||
raise ArgumentError("source and destination path must be different")
|
raise ArgumentError("source and destination path must be different")
|
||||||
|
|
||||||
# Open the streams
|
# Open the streams
|
||||||
@@ -231,8 +259,8 @@ class Filter(object):
|
|||||||
|
|
||||||
# Print info
|
# Print info
|
||||||
if not quiet:
|
if not quiet:
|
||||||
print "Source:", self.src.string(self.interhost)
|
print "Source:", self.src.string(self._interhost)
|
||||||
print " Dest:", self.dest.string(self.interhost)
|
print " Dest:", self.dest.string(self._interhost)
|
||||||
|
|
||||||
def parse_args(self, argv = None):
|
def parse_args(self, argv = None):
|
||||||
"""Parse arguments from a command line"""
|
"""Parse arguments from a command line"""
|
||||||
@@ -241,7 +269,7 @@ class Filter(object):
|
|||||||
self.set_args(args.url, args.dest_url, args.srcpath, args.destpath,
|
self.set_args(args.url, args.dest_url, args.srcpath, args.destpath,
|
||||||
args.start, args.end, quiet = False, parsed_args = args)
|
args.start, args.end, quiet = False, parsed_args = args)
|
||||||
|
|
||||||
self.force_metadata = args.force_metadata
|
self._force_metadata = args.force_metadata
|
||||||
if args.dry_run:
|
if args.dry_run:
|
||||||
for interval in self.intervals():
|
for interval in self.intervals():
|
||||||
print interval.human_string()
|
print interval.human_string()
|
||||||
@@ -252,7 +280,7 @@ class Filter(object):
|
|||||||
"""Generate all the intervals that this filter should process"""
|
"""Generate all the intervals that this filter should process"""
|
||||||
self._using_client = True
|
self._using_client = True
|
||||||
|
|
||||||
if self.interhost:
|
if self._interhost:
|
||||||
# Do the difference ourselves
|
# Do the difference ourselves
|
||||||
s_intervals = ( Interval(start, end)
|
s_intervals = ( Interval(start, end)
|
||||||
for (start, end) in
|
for (start, end) in
|
||||||
@@ -289,10 +317,11 @@ class Filter(object):
|
|||||||
str(e), toparse))
|
str(e), toparse))
|
||||||
|
|
||||||
def check_dest_metadata(self, data):
|
def check_dest_metadata(self, data):
|
||||||
"""See if the metadata jives, and complain if it doesn't. If
|
"""See if the metadata jives, and complain if it doesn't. For
|
||||||
there's no conflict, update the metadata to match 'data'."""
|
each key in data, if the stream contains the key, it must match
|
||||||
|
values. If the stream does not contain the key, it is created."""
|
||||||
metadata = self._client_dest.stream_get_metadata(self.dest.path)
|
metadata = self._client_dest.stream_get_metadata(self.dest.path)
|
||||||
if not self.force_metadata:
|
if not self._force_metadata:
|
||||||
for key in data:
|
for key in data:
|
||||||
wanted = data[key]
|
wanted = data[key]
|
||||||
if not isinstance(wanted, basestring):
|
if not isinstance(wanted, basestring):
|
||||||
@@ -329,30 +358,10 @@ class Filter(object):
|
|||||||
If 'intervals' is not None, process those intervals instead of
|
If 'intervals' is not None, process those intervals instead of
|
||||||
the default list.
|
the default list.
|
||||||
|
|
||||||
'function' should be defined as:
|
'function' should be defined with the same interface as
|
||||||
# def function(data, interval, args, insert_func, final)
|
nilmtools.filter.example_callback_function. See the
|
||||||
|
documentation of that for details. 'args' are passed to
|
||||||
'data': array of data to process -- may be empty
|
'function'.
|
||||||
|
|
||||||
'interval': overall interval we're processing (but not necessarily
|
|
||||||
the interval of this particular chunk of data)
|
|
||||||
|
|
||||||
'args': opaque arguments passed to process_numpy
|
|
||||||
|
|
||||||
'insert_func': function to call in order to insert array of data.
|
|
||||||
Should be passed a 2-dimensional array of data to insert.
|
|
||||||
Data timestamps must be within the provided interval.
|
|
||||||
|
|
||||||
'final': True if this is the last bit of data for this
|
|
||||||
contiguous interval, False otherwise.
|
|
||||||
|
|
||||||
Return value of 'function' is the number of data rows processed.
|
|
||||||
Unprocessed data will be provided again in a subsequent call
|
|
||||||
(unless 'final' is True).
|
|
||||||
|
|
||||||
If unprocessed data remains after 'final' is True, the interval
|
|
||||||
being inserted will be ended at the timestamp of the first
|
|
||||||
unprocessed data point.
|
|
||||||
"""
|
"""
|
||||||
extractor = NumpyClient(self.src.url).stream_extract_numpy
|
extractor = NumpyClient(self.src.url).stream_extract_numpy
|
||||||
inserter = NumpyClient(self.dest.url).stream_insert_numpy_context
|
inserter = NumpyClient(self.dest.url).stream_insert_numpy_context
|
||||||
|
@@ -53,7 +53,8 @@ def parse_args(argv = None):
|
|||||||
is stepped forward to match 'clock'.
|
is stepped forward to match 'clock'.
|
||||||
|
|
||||||
- If 'data' is running ahead, there is overlap in the data, and an
|
- If 'data' is running ahead, there is overlap in the data, and an
|
||||||
error is raised.
|
error is raised. If '--ignore' is specified, the current file
|
||||||
|
is skipped instead of raising an error.
|
||||||
"""))
|
"""))
|
||||||
parser.add_argument("-u", "--url", action="store",
|
parser.add_argument("-u", "--url", action="store",
|
||||||
default="http://localhost/nilmdb/",
|
default="http://localhost/nilmdb/",
|
||||||
@@ -61,6 +62,8 @@ def parse_args(argv = None):
|
|||||||
group = parser.add_argument_group("Misc options")
|
group = parser.add_argument_group("Misc options")
|
||||||
group.add_argument("-D", "--dry-run", action="store_true",
|
group.add_argument("-D", "--dry-run", action="store_true",
|
||||||
help="Parse files, but don't insert any data")
|
help="Parse files, but don't insert any data")
|
||||||
|
group.add_argument("-s", "--skip", action="store_true",
|
||||||
|
help="Skip files if the data would overlap")
|
||||||
group.add_argument("-m", "--max-gap", action="store", default=10.0,
|
group.add_argument("-m", "--max-gap", action="store", default=10.0,
|
||||||
metavar="SEC", type=float,
|
metavar="SEC", type=float,
|
||||||
help="Max discrepency between clock and data "
|
help="Max discrepency between clock and data "
|
||||||
@@ -235,6 +238,10 @@ def main(argv = None):
|
|||||||
"is %s but clock time is only %s",
|
"is %s but clock time is only %s",
|
||||||
timestamp_to_human(data_ts),
|
timestamp_to_human(data_ts),
|
||||||
timestamp_to_human(clock_ts))
|
timestamp_to_human(clock_ts))
|
||||||
|
if args.skip:
|
||||||
|
printf("%s\n", err)
|
||||||
|
printf("Skipping the remainder of this file\n")
|
||||||
|
break
|
||||||
raise ParseError(filename, err)
|
raise ParseError(filename, err)
|
||||||
|
|
||||||
if (data_ts + max_gap) < clock_ts:
|
if (data_ts + max_gap) < clock_ts:
|
||||||
|
107
nilmtools/math.py
Normal file
107
nilmtools/math.py
Normal file
@@ -0,0 +1,107 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
|
||||||
|
# Miscellaenous useful mathematical functions
|
||||||
|
from nilmdb.utils.printf import *
|
||||||
|
from numpy import *
|
||||||
|
from scipy import *
|
||||||
|
|
||||||
|
def sfit4(data, fs):
|
||||||
|
"""(A, f0, phi, C) = sfit4(data, fs)
|
||||||
|
|
||||||
|
Compute 4-parameter (unknown-frequency) least-squares fit to
|
||||||
|
sine-wave data, according to IEEE Std 1241-2010 Annex B
|
||||||
|
|
||||||
|
Input:
|
||||||
|
data vector of input samples
|
||||||
|
fs sampling rate (Hz)
|
||||||
|
|
||||||
|
Output:
|
||||||
|
Parameters [A, f0, phi, C] to fit the equation
|
||||||
|
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
|
||||||
|
where n is sample number. Or, as a function of time:
|
||||||
|
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
|
||||||
|
|
||||||
|
by Jim Paris
|
||||||
|
(Verified to match sfit4.m)
|
||||||
|
"""
|
||||||
|
N = len(data)
|
||||||
|
t = linspace(0, (N-1) / float(fs), N)
|
||||||
|
|
||||||
|
## Estimate frequency using FFT (step b)
|
||||||
|
Fc = fft(data)
|
||||||
|
F = abs(Fc)
|
||||||
|
F[0] = 0 # eliminate DC
|
||||||
|
|
||||||
|
# Find pair of spectral lines with largest amplitude:
|
||||||
|
# resulting values are in F(i) and F(i+1)
|
||||||
|
i = argmax(F[0:int(N/2)] + F[1:int(N/2+1)])
|
||||||
|
|
||||||
|
# Interpolate FFT to get a better result (from Markus [B37])
|
||||||
|
U1 = real(Fc[i])
|
||||||
|
U2 = real(Fc[i+1])
|
||||||
|
V1 = imag(Fc[i])
|
||||||
|
V2 = imag(Fc[i+1])
|
||||||
|
n = 2 * pi / N
|
||||||
|
ni1 = n * i
|
||||||
|
ni2 = n * (i+1)
|
||||||
|
K = ((V2-V1)*sin(ni1) + (U2-U1)*cos(ni1)) / (U2-U1)
|
||||||
|
Z1 = V1 * (K - cos(ni1)) / sin(ni1) + U1
|
||||||
|
Z2 = V2 * (K - cos(ni2)) / sin(ni2) + U2
|
||||||
|
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
|
||||||
|
|
||||||
|
# Convert to Hz
|
||||||
|
f0 = i * float(fs) / N
|
||||||
|
|
||||||
|
# Fit it. We'll catch exceptions here and just returns zeros
|
||||||
|
# if something fails with the least squares fit, etc.
|
||||||
|
try:
|
||||||
|
# first guess for A0, B0 using 3-parameter fit (step c)
|
||||||
|
s = zeros(3)
|
||||||
|
w = 2*pi*f0
|
||||||
|
|
||||||
|
# Now iterate 7 times (step b, plus 6 iterations of step i)
|
||||||
|
for idx in range(7):
|
||||||
|
D = c_[cos(w*t), sin(w*t), ones(N),
|
||||||
|
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
||||||
|
s = linalg.lstsq(D, data)[0] # eqn B.18
|
||||||
|
w = w + s[3] # update frequency estimate
|
||||||
|
|
||||||
|
## Extract results
|
||||||
|
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
||||||
|
f0 = w / (2*pi)
|
||||||
|
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
|
||||||
|
C = s[2]
|
||||||
|
return (A, f0, phi, C)
|
||||||
|
except Exception as e:
|
||||||
|
# something broke down; just return zeros
|
||||||
|
return (0, 0, 0, 0)
|
||||||
|
|
||||||
|
def peak_detect(data, delta = 0.1):
|
||||||
|
"""Simple min/max peak detection algorithm, taken from my code
|
||||||
|
in the disagg.m from the 10-8-5 paper.
|
||||||
|
|
||||||
|
Returns an array of peaks: each peak is a tuple
|
||||||
|
(n, p, is_max)
|
||||||
|
where n is the row number in 'data', and p is 'data[n]',
|
||||||
|
and is_max is True if this is a maximum, False if it's a minimum,
|
||||||
|
"""
|
||||||
|
peaks = [];
|
||||||
|
cur_min = (None, inf)
|
||||||
|
cur_max = (None, -inf)
|
||||||
|
lookformax = False
|
||||||
|
for (n, p) in enumerate(data):
|
||||||
|
if p > cur_max[1]:
|
||||||
|
cur_max = (n, p)
|
||||||
|
if p < cur_min[1]:
|
||||||
|
cur_min = (n, p)
|
||||||
|
if lookformax:
|
||||||
|
if p < (cur_max[1] - delta):
|
||||||
|
peaks.append((cur_max[0], cur_max[1], True))
|
||||||
|
cur_min = (n, p)
|
||||||
|
lookformax = False
|
||||||
|
else:
|
||||||
|
if p > (cur_min[1] + delta):
|
||||||
|
peaks.append((cur_min[0], cur_min[1], False))
|
||||||
|
cur_max = (n, p)
|
||||||
|
lookformax = True
|
||||||
|
return peaks
|
@@ -3,6 +3,7 @@
|
|||||||
# Sine wave fitting.
|
# Sine wave fitting.
|
||||||
from nilmdb.utils.printf import *
|
from nilmdb.utils.printf import *
|
||||||
import nilmtools.filter
|
import nilmtools.filter
|
||||||
|
import nilmtools.math
|
||||||
import nilmdb.client
|
import nilmdb.client
|
||||||
from nilmdb.utils.time import (timestamp_to_human,
|
from nilmdb.utils.time import (timestamp_to_human,
|
||||||
timestamp_to_seconds,
|
timestamp_to_seconds,
|
||||||
@@ -11,7 +12,6 @@ from nilmdb.utils.time import (timestamp_to_human,
|
|||||||
from numpy import *
|
from numpy import *
|
||||||
from scipy import *
|
from scipy import *
|
||||||
#import pylab as p
|
#import pylab as p
|
||||||
import operator
|
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
def main(argv = None):
|
def main(argv = None):
|
||||||
@@ -119,7 +119,7 @@ def process(data, interval, args, insert_function, final):
|
|||||||
t_max = timestamp_to_seconds(data[start+N-1, 0])
|
t_max = timestamp_to_seconds(data[start+N-1, 0])
|
||||||
|
|
||||||
# Do 4-parameter sine wave fit
|
# Do 4-parameter sine wave fit
|
||||||
(A, f0, phi, C) = sfit4(this, fs)
|
(A, f0, phi, C) = nilmtools.math.sfit4(this, fs)
|
||||||
|
|
||||||
# Check bounds. If frequency is too crazy, ignore this window
|
# Check bounds. If frequency is too crazy, ignore this window
|
||||||
if f0 < f_min or f0 > f_max:
|
if f0 < f_min or f0 > f_max:
|
||||||
@@ -187,76 +187,5 @@ def process(data, interval, args, insert_function, final):
|
|||||||
printf("%sMarked %d zero-crossings in %d rows\n", now, num_zc, start)
|
printf("%sMarked %d zero-crossings in %d rows\n", now, num_zc, start)
|
||||||
return start
|
return start
|
||||||
|
|
||||||
def sfit4(data, fs):
|
|
||||||
"""(A, f0, phi, C) = sfit4(data, fs)
|
|
||||||
|
|
||||||
Compute 4-parameter (unknown-frequency) least-squares fit to
|
|
||||||
sine-wave data, according to IEEE Std 1241-2010 Annex B
|
|
||||||
|
|
||||||
Input:
|
|
||||||
data vector of input samples
|
|
||||||
fs sampling rate (Hz)
|
|
||||||
|
|
||||||
Output:
|
|
||||||
Parameters [A, f0, phi, C] to fit the equation
|
|
||||||
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
|
|
||||||
where n is sample number. Or, as a function of time:
|
|
||||||
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
|
|
||||||
|
|
||||||
by Jim Paris
|
|
||||||
(Verified to match sfit4.m)
|
|
||||||
"""
|
|
||||||
N = len(data)
|
|
||||||
t = linspace(0, (N-1) / float(fs), N)
|
|
||||||
|
|
||||||
## Estimate frequency using FFT (step b)
|
|
||||||
Fc = fft(data)
|
|
||||||
F = abs(Fc)
|
|
||||||
F[0] = 0 # eliminate DC
|
|
||||||
|
|
||||||
# Find pair of spectral lines with largest amplitude:
|
|
||||||
# resulting values are in F(i) and F(i+1)
|
|
||||||
i = argmax(F[0:int(N/2)] + F[1:int(N/2+1)])
|
|
||||||
|
|
||||||
# Interpolate FFT to get a better result (from Markus [B37])
|
|
||||||
U1 = real(Fc[i])
|
|
||||||
U2 = real(Fc[i+1])
|
|
||||||
V1 = imag(Fc[i])
|
|
||||||
V2 = imag(Fc[i+1])
|
|
||||||
n = 2 * pi / N
|
|
||||||
ni1 = n * i
|
|
||||||
ni2 = n * (i+1)
|
|
||||||
K = ((V2-V1)*sin(ni1) + (U2-U1)*cos(ni1)) / (U2-U1)
|
|
||||||
Z1 = V1 * (K - cos(ni1)) / sin(ni1) + U1
|
|
||||||
Z2 = V2 * (K - cos(ni2)) / sin(ni2) + U2
|
|
||||||
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
|
|
||||||
|
|
||||||
# Convert to Hz
|
|
||||||
f0 = i * float(fs) / N
|
|
||||||
|
|
||||||
# Fit it. We'll catch exceptions here and just returns zeros
|
|
||||||
# if something fails with the least squares fit, etc.
|
|
||||||
try:
|
|
||||||
# first guess for A0, B0 using 3-parameter fit (step c)
|
|
||||||
s = zeros(3)
|
|
||||||
w = 2*pi*f0
|
|
||||||
|
|
||||||
# Now iterate 7 times (step b, plus 6 iterations of step i)
|
|
||||||
for idx in range(7):
|
|
||||||
D = c_[cos(w*t), sin(w*t), ones(N),
|
|
||||||
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
|
||||||
s = linalg.lstsq(D, data)[0] # eqn B.18
|
|
||||||
w = w + s[3] # update frequency estimate
|
|
||||||
|
|
||||||
## Extract results
|
|
||||||
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
|
||||||
f0 = w / (2*pi)
|
|
||||||
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
|
|
||||||
C = s[2]
|
|
||||||
return (A, f0, phi, C)
|
|
||||||
except Exception as e:
|
|
||||||
# something broke down, just return zeros
|
|
||||||
return (0, 0, 0, 0)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
@@ -3,6 +3,7 @@
|
|||||||
from nilmdb.utils.printf import *
|
from nilmdb.utils.printf import *
|
||||||
import nilmdb.client
|
import nilmdb.client
|
||||||
import nilmtools.filter
|
import nilmtools.filter
|
||||||
|
import nilmtools.math
|
||||||
from nilmdb.utils.time import (timestamp_to_human,
|
from nilmdb.utils.time import (timestamp_to_human,
|
||||||
timestamp_to_seconds,
|
timestamp_to_seconds,
|
||||||
seconds_to_timestamp)
|
seconds_to_timestamp)
|
||||||
@@ -104,31 +105,6 @@ class Exemplar(object):
|
|||||||
self.name, self.stream, ",".join(self.columns.keys()),
|
self.name, self.stream, ",".join(self.columns.keys()),
|
||||||
self.count)
|
self.count)
|
||||||
|
|
||||||
def peak_detect(data, delta):
|
|
||||||
"""Simple min/max peak detection algorithm, taken from my code
|
|
||||||
in the disagg.m from the 10-8-5 paper"""
|
|
||||||
mins = [];
|
|
||||||
maxs = [];
|
|
||||||
cur_min = (None, np.inf)
|
|
||||||
cur_max = (None, -np.inf)
|
|
||||||
lookformax = False
|
|
||||||
for (n, p) in enumerate(data):
|
|
||||||
if p > cur_max[1]:
|
|
||||||
cur_max = (n, p)
|
|
||||||
if p < cur_min[1]:
|
|
||||||
cur_min = (n, p)
|
|
||||||
if lookformax:
|
|
||||||
if p < (cur_max[1] - delta):
|
|
||||||
maxs.append(cur_max)
|
|
||||||
cur_min = (n, p)
|
|
||||||
lookformax = False
|
|
||||||
else:
|
|
||||||
if p > (cur_min[1] + delta):
|
|
||||||
mins.append(cur_min)
|
|
||||||
cur_max = (n, p)
|
|
||||||
lookformax = True
|
|
||||||
return (mins, maxs)
|
|
||||||
|
|
||||||
def timestamp_to_short_human(timestamp):
|
def timestamp_to_short_human(timestamp):
|
||||||
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp_to_seconds(timestamp))
|
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp_to_seconds(timestamp))
|
||||||
return dt.strftime("%H:%M:%S")
|
return dt.strftime("%H:%M:%S")
|
||||||
@@ -164,11 +140,35 @@ def trainola_matcher(data, interval, args, insert_func, final_chunk):
|
|||||||
|
|
||||||
# Find the peaks using the column with the largest amplitude
|
# Find the peaks using the column with the largest amplitude
|
||||||
biggest = e.scale.index(max(e.scale))
|
biggest = e.scale.index(max(e.scale))
|
||||||
peaks_minmax = peak_detect(corrs[biggest], 0.1)
|
peaks = nilmtools.math.peak_detect(corrs[biggest], 0.1)
|
||||||
peaks = [ p[0] for p in peaks_minmax[1] ]
|
|
||||||
|
|
||||||
# Now look at every peak
|
# To try to reduce false positives, discard peaks where
|
||||||
for row in peaks:
|
# there's a higher-magnitude peak (either min or max) within
|
||||||
|
# one exemplar width nearby.
|
||||||
|
good_peak_locations = []
|
||||||
|
for (i, (n, p, is_max)) in enumerate(peaks):
|
||||||
|
if not is_max:
|
||||||
|
continue
|
||||||
|
ok = True
|
||||||
|
# check up to 'e.count' rows before this one
|
||||||
|
j = i-1
|
||||||
|
while ok and j >= 0 and peaks[j][0] > (n - e.count):
|
||||||
|
if abs(peaks[j][1]) > abs(p):
|
||||||
|
ok = False
|
||||||
|
j -= 1
|
||||||
|
|
||||||
|
# check up to 'e.count' rows after this one
|
||||||
|
j = i+1
|
||||||
|
while ok and j < len(peaks) and peaks[j][0] < (n + e.count):
|
||||||
|
if abs(peaks[j][1]) > abs(p):
|
||||||
|
ok = False
|
||||||
|
j += 1
|
||||||
|
|
||||||
|
if ok:
|
||||||
|
good_peak_locations.append(n)
|
||||||
|
|
||||||
|
# Now look at all good peaks
|
||||||
|
for row in good_peak_locations:
|
||||||
# Correlation for each column must be close enough to 1.
|
# Correlation for each column must be close enough to 1.
|
||||||
for (corr, scale) in zip(corrs, e.scale):
|
for (corr, scale) in zip(corrs, e.scale):
|
||||||
# The accepted distance from 1 is based on the relative
|
# The accepted distance from 1 is based on the relative
|
||||||
|
Reference in New Issue
Block a user