Compare commits

...

2 Commits

Author SHA1 Message Date
9b9f392d43 add .gitignore 2012-11-28 17:21:36 -05:00
3c441de498 WIP moving back to bxintersect, cleaning up bxintersect 2012-11-15 16:05:33 -05:00
4 changed files with 20 additions and 764 deletions

2
.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
.coverage
*.pyc

View File

@@ -1,605 +0,0 @@
// The RedBlackEntry class is an Abstract Base Class. This means that no
// instance of the RedBlackEntry class can exist. Only classes which
// inherit from the RedBlackEntry class can exist. Furthermore any class
// which inherits from the RedBlackEntry class must define the member
// function GetKey(). The Print() member function does not have to
// be defined because a default definition exists.
//
// The GetKey() function should return an integer key for that entry.
// The key for an entry should never change otherwise bad things might occur.
class RedBlackEntry {
public:
RedBlackEntry();
virtual ~RedBlackEntry();
virtual int GetKey() const = 0;
virtual void Print() const;
};
class RedBlackTreeNode {
friend class RedBlackTree;
public:
void Print(RedBlackTreeNode*,
RedBlackTreeNode*) const;
RedBlackTreeNode();
RedBlackTreeNode(RedBlackEntry *);
RedBlackEntry * GetEntry() const;
~RedBlackTreeNode();
protected:
RedBlackEntry * storedEntry;
int key;
int red; /* if red=0 then the node is black */
RedBlackTreeNode * left;
RedBlackTreeNode * right;
RedBlackTreeNode * parent;
};
class RedBlackTree {
public:
RedBlackTree();
~RedBlackTree();
void Print() const;
RedBlackEntry * DeleteNode(RedBlackTreeNode *);
RedBlackTreeNode * Insert(RedBlackEntry *);
RedBlackTreeNode * GetPredecessorOf(RedBlackTreeNode *) const;
RedBlackTreeNode * GetSuccessorOf(RedBlackTreeNode *) const;
RedBlackTreeNode * Search(int key);
TemplateStack<RedBlackTreeNode *> * Enumerate(int low, int high) ;
void CheckAssumptions() const;
protected:
/* A sentinel is used for root and for nil. These sentinels are */
/* created when RedBlackTreeCreate is caled. root->left should always */
/* point to the node which is the root of the tree. nil points to a */
/* node which should always be black but has aribtrary children and */
/* parent and no key or info. The point of using these sentinels is so */
/* that the root and nil nodes do not require special cases in the code */
RedBlackTreeNode * root;
RedBlackTreeNode * nil;
void LeftRotate(RedBlackTreeNode *);
void RightRotate(RedBlackTreeNode *);
void TreeInsertHelp(RedBlackTreeNode *);
void TreePrintHelper(RedBlackTreeNode *) const;
void FixUpMaxHigh(RedBlackTreeNode *);
void DeleteFixUp(RedBlackTreeNode *);
};
const int MIN_INT=-MAX_INT;
RedBlackTreeNode::RedBlackTreeNode(){
};
RedBlackTreeNode::RedBlackTreeNode(RedBlackEntry * newEntry)
: storedEntry (newEntry) , key(newEntry->GetKey()) {
};
RedBlackTreeNode::~RedBlackTreeNode(){
};
RedBlackEntry * RedBlackTreeNode::GetEntry() const {return storedEntry;}
RedBlackEntry::RedBlackEntry(){
};
RedBlackEntry::~RedBlackEntry(){
};
void RedBlackEntry::Print() const {
cout << "No Print Method defined. Using Default: " << GetKey() << endl;
}
RedBlackTree::RedBlackTree()
{
nil = new RedBlackTreeNode;
nil->left = nil->right = nil->parent = nil;
nil->red = 0;
nil->key = MIN_INT;
nil->storedEntry = NULL;
root = new RedBlackTreeNode;
root->parent = root->left = root->right = nil;
root->key = MAX_INT;
root->red=0;
root->storedEntry = NULL;
}
/***********************************************************************/
/* FUNCTION: LeftRotate */
/**/
/* INPUTS: the node to rotate on */
/**/
/* OUTPUT: None */
/**/
/* Modifies Input: this, x */
/**/
/* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */
/* Cormen, Leiserson, Rivest (Chapter 14). Basically this */
/* makes the parent of x be to the left of x, x the parent of */
/* its parent before the rotation and fixes other pointers */
/* accordingly. */
/***********************************************************************/
void RedBlackTree::LeftRotate(RedBlackTreeNode* x) {
RedBlackTreeNode* y;
/* I originally wrote this function to use the sentinel for */
/* nil to avoid checking for nil. However this introduces a */
/* very subtle bug because sometimes this function modifies */
/* the parent pointer of nil. This can be a problem if a */
/* function which calls LeftRotate also uses the nil sentinel */
/* and expects the nil sentinel's parent pointer to be unchanged */
/* after calling this function. For example, when DeleteFixUP */
/* calls LeftRotate it expects the parent pointer of nil to be */
/* unchanged. */
y=x->right;
x->right=y->left;
if (y->left != nil) y->left->parent=x; /* used to use sentinel here */
/* and do an unconditional assignment instead of testing for nil */
y->parent=x->parent;
/* instead of checking if x->parent is the root as in the book, we */
/* count on the root sentinel to implicitly take care of this case */
if( x == x->parent->left) {
x->parent->left=y;
} else {
x->parent->right=y;
}
y->left=x;
x->parent=y;
}
/***********************************************************************/
/* FUNCTION: RighttRotate */
/**/
/* INPUTS: node to rotate on */
/**/
/* OUTPUT: None */
/**/
/* Modifies Input?: this, y */
/**/
/* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */
/* Cormen, Leiserson, Rivest (Chapter 14). Basically this */
/* makes the parent of x be to the left of x, x the parent of */
/* its parent before the rotation and fixes other pointers */
/* accordingly. */
/***********************************************************************/
void RedBlackTree::RightRotate(RedBlackTreeNode* y) {
RedBlackTreeNode* x;
/* I originally wrote this function to use the sentinel for */
/* nil to avoid checking for nil. However this introduces a */
/* very subtle bug because sometimes this function modifies */
/* the parent pointer of nil. This can be a problem if a */
/* function which calls LeftRotate also uses the nil sentinel */
/* and expects the nil sentinel's parent pointer to be unchanged */
/* after calling this function. For example, when DeleteFixUP */
/* calls LeftRotate it expects the parent pointer of nil to be */
/* unchanged. */
x=y->left;
y->left=x->right;
if (nil != x->right) x->right->parent=y; /*used to use sentinel here */
/* and do an unconditional assignment instead of testing for nil */
/* instead of checking if x->parent is the root as in the book, we */
/* count on the root sentinel to implicitly take care of this case */
x->parent=y->parent;
if( y == y->parent->left) {
y->parent->left=x;
} else {
y->parent->right=x;
}
x->right=y;
y->parent=x;
}
/***********************************************************************/
/* FUNCTION: TreeInsertHelp */
/**/
/* INPUTS: z is the node to insert */
/**/
/* OUTPUT: none */
/**/
/* Modifies Input: this, z */
/**/
/* EFFECTS: Inserts z into the tree as if it were a regular binary tree */
/* using the algorithm described in _Introduction_To_Algorithms_ */
/* by Cormen et al. This funciton is only intended to be called */
/* by the Insert function and not by the user */
/***********************************************************************/
void RedBlackTree::TreeInsertHelp(RedBlackTreeNode* z) {
/* This function should only be called by RedBlackTree::Insert */
RedBlackTreeNode* x;
RedBlackTreeNode* y;
z->left=z->right=nil;
y=root;
x=root->left;
while( x != nil) {
y=x;
if ( x->key > z->key) {
x=x->left;
} else { /* x->key <= z->key */
x=x->right;
}
}
z->parent=y;
if ( (y == root) ||
(y->key > z->key) ) {
y->left=z;
} else {
y->right=z;
}
}
/* Before calling InsertNode the node x should have its key set */
/***********************************************************************/
/* FUNCTION: InsertNode */
/**/
/* INPUTS: newEntry is the entry to insert*/
/**/
/* OUTPUT: This function returns a pointer to the newly inserted node */
/* which is guarunteed to be valid until this node is deleted. */
/* What this means is if another data structure stores this */
/* pointer then the tree does not need to be searched when this */
/* is to be deleted. */
/**/
/* Modifies Input: tree */
/**/
/* EFFECTS: Creates a node node which contains the appropriate key and */
/* info pointers and inserts it into the tree. */
/***********************************************************************/
/* jim */
RedBlackTreeNode * RedBlackTree::Insert(RedBlackEntry * newEntry)
{
RedBlackTreeNode * y;
RedBlackTreeNode * x;
RedBlackTreeNode * newNode;
x = new RedBlackTreeNode(newEntry);
TreeInsertHelp(x);
newNode = x;
x->red=1;
while(x->parent->red) { /* use sentinel instead of checking for root */
if (x->parent == x->parent->parent->left) {
y=x->parent->parent->right;
if (y->red) {
x->parent->red=0;
y->red=0;
x->parent->parent->red=1;
x=x->parent->parent;
} else {
if (x == x->parent->right) {
x=x->parent;
LeftRotate(x);
}
x->parent->red=0;
x->parent->parent->red=1;
RightRotate(x->parent->parent);
}
} else { /* case for x->parent == x->parent->parent->right */
/* this part is just like the section above with */
/* left and right interchanged */
y=x->parent->parent->left;
if (y->red) {
x->parent->red=0;
y->red=0;
x->parent->parent->red=1;
x=x->parent->parent;
} else {
if (x == x->parent->left) {
x=x->parent;
RightRotate(x);
}
x->parent->red=0;
x->parent->parent->red=1;
LeftRotate(x->parent->parent);
}
}
}
root->left->red=0;
return(newNode);
}
/***********************************************************************/
/* FUNCTION: GetSuccessorOf */
/**/
/* INPUTS: x is the node we want the succesor of */
/**/
/* OUTPUT: This function returns the successor of x or NULL if no */
/* successor exists. */
/**/
/* Modifies Input: none */
/**/
/* Note: uses the algorithm in _Introduction_To_Algorithms_ */
/***********************************************************************/
RedBlackTreeNode * RedBlackTree::GetSuccessorOf(RedBlackTreeNode * x) const
{
RedBlackTreeNode* y;
if (nil != (y = x->right)) { /* assignment to y is intentional */
while(y->left != nil) { /* returns the minium of the right subtree of x */
y=y->left;
}
return(y);
} else {
y=x->parent;
while(x == y->right) { /* sentinel used instead of checking for nil */
x=y;
y=y->parent;
}
if (y == root) return(nil);
return(y);
}
}
/***********************************************************************/
/* FUNCTION: GetPredecessorOf */
/**/
/* INPUTS: x is the node to get predecessor of */
/**/
/* OUTPUT: This function returns the predecessor of x or NULL if no */
/* predecessor exists. */
/**/
/* Modifies Input: none */
/**/
/* Note: uses the algorithm in _Introduction_To_Algorithms_ */
/***********************************************************************/
RedBlackTreeNode * RedBlackTree::GetPredecessorOf(RedBlackTreeNode * x) const {
RedBlackTreeNode* y;
if (nil != (y = x->left)) { /* assignment to y is intentional */
while(y->right != nil) { /* returns the maximum of the left subtree of x */
y=y->right;
}
return(y);
} else {
y=x->parent;
while(x == y->left) {
if (y == root) return(nil);
x=y;
y=y->parent;
}
return(y);
}
}
/***********************************************************************/
/* FUNCTION: Print */
/**/
/* INPUTS: none */
/**/
/* OUTPUT: none */
/**/
/* EFFECTS: This function recursively prints the nodes of the tree */
/* inorder. */
/**/
/* Modifies Input: none */
/**/
/* Note: This function should only be called from ITTreePrint */
/***********************************************************************/
void RedBlackTreeNode::Print(RedBlackTreeNode * nil,
RedBlackTreeNode * root) const {
storedEntry->Print();
printf(", key=%i ",key);
printf(" l->key=");
if( left == nil) printf("NULL"); else printf("%i",left->key);
printf(" r->key=");
if( right == nil) printf("NULL"); else printf("%i",right->key);
printf(" p->key=");
if( parent == root) printf("NULL"); else printf("%i",parent->key);
printf(" red=%i\n",red);
}
void RedBlackTree::TreePrintHelper( RedBlackTreeNode* x) const {
if (x != nil) {
TreePrintHelper(x->left);
x->Print(nil,root);
TreePrintHelper(x->right);
}
}
/***********************************************************************/
/* FUNCTION: Print */
/**/
/* INPUTS: none */
/**/
/* OUTPUT: none */
/**/
/* EFFECT: This function recursively prints the nodes of the tree */
/* inorder. */
/**/
/* Modifies Input: none */
/**/
/***********************************************************************/
void RedBlackTree::Print() const {
TreePrintHelper(root->left);
}
/***********************************************************************/
/* FUNCTION: DeleteFixUp */
/**/
/* INPUTS: x is the child of the spliced */
/* out node in DeleteNode. */
/**/
/* OUTPUT: none */
/**/
/* EFFECT: Performs rotations and changes colors to restore red-black */
/* properties after a node is deleted */
/**/
/* Modifies Input: this, x */
/**/
/* The algorithm from this function is from _Introduction_To_Algorithms_ */
/***********************************************************************/
void RedBlackTree::DeleteFixUp(RedBlackTreeNode* x) {
RedBlackTreeNode * w;
RedBlackTreeNode * rootLeft = root->left;
while( (!x->red) && (rootLeft != x)) {
if (x == x->parent->left) {
//
w=x->parent->right;
if (w->red) {
w->red=0;
x->parent->red=1;
LeftRotate(x->parent);
w=x->parent->right;
}
if ( (!w->right->red) && (!w->left->red) ) {
w->red=1;
x=x->parent;
} else {
if (!w->right->red) {
w->left->red=0;
w->red=1;
RightRotate(w);
w=x->parent->right;
}
w->red=x->parent->red;
x->parent->red=0;
w->right->red=0;
LeftRotate(x->parent);
x=rootLeft; /* this is to exit while loop */
}
//
} else { /* the code below is has left and right switched from above */
w=x->parent->left;
if (w->red) {
w->red=0;
x->parent->red=1;
RightRotate(x->parent);
w=x->parent->left;
}
if ( (!w->right->red) && (!w->left->red) ) {
w->red=1;
x=x->parent;
} else {
if (!w->left->red) {
w->right->red=0;
w->red=1;
LeftRotate(w);
w=x->parent->left;
}
w->red=x->parent->red;
x->parent->red=0;
w->left->red=0;
RightRotate(x->parent);
x=rootLeft; /* this is to exit while loop */
}
}
}
x->red=0;
}
/***********************************************************************/
/* FUNCTION: DeleteNode */
/**/
/* INPUTS: tree is the tree to delete node z from */
/**/
/* OUTPUT: returns the RedBlackEntry stored at deleted node */
/**/
/* EFFECT: Deletes z from tree and but don't call destructor */
/**/
/* Modifies Input: z */
/**/
/* The algorithm from this function is from _Introduction_To_Algorithms_ */
/***********************************************************************/
RedBlackEntry * RedBlackTree::DeleteNode(RedBlackTreeNode * z){
RedBlackTreeNode* y;
RedBlackTreeNode* x;
RedBlackEntry * returnValue = z->storedEntry;
y= ((z->left == nil) || (z->right == nil)) ? z : GetSuccessorOf(z);
x= (y->left == nil) ? y->right : y->left;
if (root == (x->parent = y->parent)) { /* assignment of y->p to x->p is intentional */
root->left=x;
} else {
if (y == y->parent->left) {
y->parent->left=x;
} else {
y->parent->right=x;
}
}
if (y != z) { /* y should not be nil in this case */
/* y is the node to splice out and x is its child */
y->left=z->left;
y->right=z->right;
y->parent=z->parent;
z->left->parent=z->right->parent=y;
if (z == z->parent->left) {
z->parent->left=y;
} else {
z->parent->right=y;
}
if (!(y->red)) {
y->red = z->red;
DeleteFixUp(x);
} else
y->red = z->red;
delete z;
} else {
if (!(y->red)) DeleteFixUp(x);
delete y;
}
return returnValue;
}
/***********************************************************************/
/* FUNCTION: Enumerate */
/**/
/* INPUTS: tree is the tree to look for keys between [low,high] */
/**/
/* OUTPUT: stack containing pointers to the nodes between [low,high] */
/**/
/* Modifies Input: none */
/**/
/* EFFECT: Returns a stack containing pointers to nodes containing */
/* keys which in [low,high]/ */
/**/
/***********************************************************************/
TemplateStack<RedBlackTreeNode *> * RedBlackTree::Enumerate(int low,
int high) {
TemplateStack<RedBlackTreeNode *> * enumResultStack =
new TemplateStack<RedBlackTreeNode *>(4);
RedBlackTreeNode* x=root->left;
RedBlackTreeNode* lastBest=NULL;
while(nil != x) {
if ( x->key > high ) {
x=x->left;
} else {
lastBest=x;
x=x->right;
}
}
while ( (lastBest) && (low <= lastBest->key) ) {
enumResultStack->Push(lastBest);
lastBest=GetPredecessorOf(lastBest);
}
return(enumResultStack);
}

View File

@@ -1,26 +1,7 @@
# cython: profile=False # cython: profile=False
# This is from bx-python 554:07aca5a9f6fc (BSD licensed), modified to # This is based on bxintersect in bx-python 554:07aca5a9f6fc (BSD licensed);
# store interval ranges as doubles rather than 32-bit integers. # modified to store interval ranges as doubles rather than 32-bit integers,
# use fully closed intervals, support deletion, etc.
"""
Data structure for performing intersect queries on a set of intervals which
preserves all information about the intervals (unlike bitset projection methods).
:Authors: James Taylor (james@jamestaylor.org),
Ian Schenk (ian.schenck@gmail.com),
Brent Pedersen (bpederse@gmail.com)
"""
# Historical note:
# This module original contained an implementation based on sorted endpoints
# and a binary search, using an idea from Scott Schwartz and Piotr Berman.
# Later an interval tree implementation was implemented by Ian for Galaxy's
# join tool (see `bx.intervals.operations.quicksect.py`). This was then
# converted to Cython by Brent, who also added support for
# upstream/downstream/neighbor queries. This was modified by James to
# handle half-open intervals strictly, to maintain sort order, and to
# implement the same interface as the original Intersecter.
#cython: cdivision=True #cython: cdivision=True
import operator import operator
@@ -194,76 +175,6 @@ cdef class IntervalNode:
self.cright._intersect( start, end, results ) self.cright._intersect( start, end, results )
cdef void _seek_left(IntervalNode self, double position, list results, int n, double max_dist):
# we know we can bail in these 2 cases.
if self.maxend + max_dist < position:
return
if self.minstart > position:
return
# the ordering of these 3 blocks makes it so the results are
# ordered nearest to farest from the query position
if self.cright is not EmptyNode:
self.cright._seek_left(position, results, n, max_dist)
if -1 < position - self.end < max_dist:
results.append(self.interval)
# TODO: can these conditionals be more stringent?
if self.cleft is not EmptyNode:
self.cleft._seek_left(position, results, n, max_dist)
cdef void _seek_right(IntervalNode self, double position, list results, int n, double max_dist):
# we know we can bail in these 2 cases.
if self.maxend < position: return
if self.minstart - max_dist > position: return
#print "SEEK_RIGHT:",self, self.cleft, self.maxend, self.minstart, position
# the ordering of these 3 blocks makes it so the results are
# ordered nearest to farest from the query position
if self.cleft is not EmptyNode:
self.cleft._seek_right(position, results, n, max_dist)
if -1 < self.start - position < max_dist:
results.append(self.interval)
if self.cright is not EmptyNode:
self.cright._seek_right(position, results, n, max_dist)
cpdef left(self, position, int n=1, double max_dist=2500):
"""
find n features with a start > than `position`
f: a Interval object (or anything with an `end` attribute)
n: the number of features to return
max_dist: the maximum distance to look before giving up.
"""
cdef list results = []
# use start - 1 becuase .left() assumes strictly left-of
self._seek_left( position - 1, results, n, max_dist )
if len(results) == n: return results
r = results
r.sort(key=operator.attrgetter('end'), reverse=True)
return r[:n]
cpdef right(self, position, int n=1, double max_dist=2500):
"""
find n features with a end < than position
f: a Interval object (or anything with a `start` attribute)
n: the number of features to return
max_dist: the maximum distance to look before giving up.
"""
cdef list results = []
# use end + 1 becuase .right() assumes strictly right-of
self._seek_right(position + 1, results, n, max_dist)
if len(results) == n: return results
r = results
r.sort(key=operator.attrgetter('start'))
return r[:n]
def traverse(self): def traverse(self):
if self.cleft is not EmptyNode: if self.cleft is not EmptyNode:
for node in self.cleft.traverse(): for node in self.cleft.traverse():
@@ -392,6 +303,7 @@ cdef class IntervalTree:
# ---- Position based interfaces ----------------------------------------- # ---- Position based interfaces -----------------------------------------
## KEEP
def insert( self, double start, double end, object value=None ): def insert( self, double start, double end, object value=None ):
""" """
Insert the interval [start,end) associated with value `value`. Insert the interval [start,end) associated with value `value`.
@@ -401,8 +313,14 @@ cdef class IntervalTree:
else: else:
self.root = self.root.insert( start, end, value ) self.root = self.root.insert( start, end, value )
add = insert def delete( self, double start, double end, object value=None ):
"""
Delete the interval [start,end) associated with value `value`.
"""
if self.root is None:
self.root = IntervalNode( start, end, value )
else:
self.root = self.root.insert( start, end, value )
def find( self, start, end ): def find( self, start, end ):
""" """
@@ -412,26 +330,9 @@ cdef class IntervalTree:
return [] return []
return self.root.find( start, end ) return self.root.find( start, end )
def before( self, position, num_intervals=1, max_dist=2500 ):
"""
Find `num_intervals` intervals that lie before `position` and are no
further than `max_dist` positions away
"""
if self.root is None:
return []
return self.root.left( position, num_intervals, max_dist )
def after( self, position, num_intervals=1, max_dist=2500 ):
"""
Find `num_intervals` intervals that lie after `position` and are no
further than `max_dist` positions away
"""
if self.root is None:
return []
return self.root.right( position, num_intervals, max_dist )
# ---- Interval-like object based interfaces ----------------------------- # ---- Interval-like object based interfaces -----------------------------
## KEEP
def insert_interval( self, interval ): def insert_interval( self, interval ):
""" """
Insert an "interval" like object (one with at least start and end Insert an "interval" like object (one with at least start and end
@@ -439,50 +340,6 @@ cdef class IntervalTree:
""" """
self.insert( interval.start, interval.end, interval ) self.insert( interval.start, interval.end, interval )
add_interval = insert_interval
def before_interval( self, interval, num_intervals=1, max_dist=2500 ):
"""
Find `num_intervals` intervals that lie completely before `interval`
and are no further than `max_dist` positions away
"""
if self.root is None:
return []
return self.root.left( interval.start, num_intervals, max_dist )
def after_interval( self, interval, num_intervals=1, max_dist=2500 ):
"""
Find `num_intervals` intervals that lie completely after `interval` and
are no further than `max_dist` positions away
"""
if self.root is None:
return []
return self.root.right( interval.end, num_intervals, max_dist )
def upstream_of_interval( self, interval, num_intervals=1, max_dist=2500 ):
"""
Find `num_intervals` intervals that lie completely upstream of
`interval` and are no further than `max_dist` positions away
"""
if self.root is None:
return []
if interval.strand == -1 or interval.strand == "-":
return self.root.right( interval.end, num_intervals, max_dist )
else:
return self.root.left( interval.start, num_intervals, max_dist )
def downstream_of_interval( self, interval, num_intervals=1, max_dist=2500 ):
"""
Find `num_intervals` intervals that lie completely downstream of
`interval` and are no further than `max_dist` positions away
"""
if self.root is None:
return []
if interval.strand == -1 or interval.strand == "-":
return self.root.left( interval.start, num_intervals, max_dist )
else:
return self.root.right( interval.end, num_intervals, max_dist )
def traverse(self): def traverse(self):
""" """
iterator that traverses the tree iterator that traverses the tree

View File

@@ -18,7 +18,9 @@ Intervals are closed, ie. they include timestamps [start, end]
# Fourth version is an optimized rb-tree that stores interval starts # Fourth version is an optimized rb-tree that stores interval starts
# and ends directly in the tree, like bxinterval did. # and ends directly in the tree, like bxinterval did.
import rbtree # Fifth version is back to modified bxintersect...
import bxintersect
class IntervalError(Exception): class IntervalError(Exception):
"""Error due to interval overlap, etc""" """Error due to interval overlap, etc"""
@@ -128,7 +130,7 @@ class IntervalSet(object):
""" """
'source' is an Interval or IntervalSet to add. 'source' is an Interval or IntervalSet to add.
""" """
self.tree = rbtree.RBTree() self.tree = bxinterval.IntervalTree()
if source is not None: if source is not None:
self += source self += source
@@ -210,7 +212,7 @@ class IntervalSet(object):
if self.intersects(other): if self.intersects(other):
raise IntervalError("Tried to add overlapping interval " raise IntervalError("Tried to add overlapping interval "
"to this set") "to this set")
self.tree.insert(rbtree.RBNode(other)) self.tree.insert_interval(other)
else: else:
for x in other: for x in other:
self.__iadd__(x) self.__iadd__(x)