Compare commits
6 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
c76d527f95 | |||
b8a73278e7 | |||
ce0691d6c4 | |||
4da658e960 | |||
8ab31eafc2 | |||
979ab13bff |
@@ -67,7 +67,7 @@ def get_stream_info(client, path):
|
||||
|
||||
class Filter(object):
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, parser_description = None):
|
||||
self._parser = None
|
||||
self._client_src = None
|
||||
self._client_dest = None
|
||||
@@ -78,6 +78,9 @@ class Filter(object):
|
||||
self.end = None
|
||||
self.interhost = False
|
||||
self.force_metadata = False
|
||||
if parser_description is not None:
|
||||
self.setup_parser(parser_description)
|
||||
self.parse_args()
|
||||
|
||||
@property
|
||||
def client_src(self):
|
||||
@@ -233,8 +236,12 @@ class Filter(object):
|
||||
metadata = self._client_dest.stream_get_metadata(self.dest.path)
|
||||
if not self.force_metadata:
|
||||
for key in data:
|
||||
wanted = str(data[key])
|
||||
wanted = data[key]
|
||||
val = metadata.get(key, wanted)
|
||||
# Force UTF-8 encoding for comparison and display
|
||||
wanted = wanted.encode('utf-8')
|
||||
val = val.encode('utf-8')
|
||||
key = key.encode('utf-8')
|
||||
if val != wanted and self.dest.rows > 0:
|
||||
m = "Metadata in destination stream:\n"
|
||||
m += " %s = %s\n" % (key, val)
|
||||
|
@@ -80,7 +80,7 @@ def main(argv = None):
|
||||
f.check_dest_metadata({ "prep_raw_source": f.src.path,
|
||||
"prep_sinefit_source": sinefit.path,
|
||||
"prep_column": args.column,
|
||||
"prep_rotation": rotation })
|
||||
"prep_rotation": repr(rotation) })
|
||||
|
||||
# Run the processing function on all data
|
||||
f.process_numpy(process, args = (client_sinefit, sinefit.path, args.column,
|
||||
|
@@ -98,12 +98,12 @@ def process(data, interval, args, insert_function, final):
|
||||
continue
|
||||
|
||||
#p.plot(arange(N), this)
|
||||
#p.plot(arange(N), A * cos(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||
#p.plot(arange(N), A * sin(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||
|
||||
# Period starts when the argument of cosine is 3*pi/2 degrees,
|
||||
# Period starts when the argument of sine is 0 degrees,
|
||||
# so we're looking for sample number:
|
||||
# n = (3 * pi / 2 - phi) / (f0/fs * 2 * pi)
|
||||
zc_n = (3 * pi / 2 - phi) / (f0 / fs * 2 * pi)
|
||||
# n = (0 - phi) / (f0/fs * 2 * pi)
|
||||
zc_n = (0 - phi) / (f0 / fs * 2 * pi)
|
||||
period_n = fs/f0
|
||||
|
||||
# Add periods to make N positive
|
||||
@@ -149,15 +149,15 @@ def sfit4(data, fs):
|
||||
|
||||
Output:
|
||||
Parameters [A, f0, phi, C] to fit the equation
|
||||
x[n] = A * cos(f0/fs * 2 * pi * n + phi) + C
|
||||
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
|
||||
where n is sample number. Or, as a function of time:
|
||||
x(t) = A * cos(f0 * 2 * pi * t + phi) + C
|
||||
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
|
||||
|
||||
by Jim Paris
|
||||
(Verified to match sfit4.m)
|
||||
"""
|
||||
N = len(data)
|
||||
t = linspace(0, (N-1) / fs, N)
|
||||
t = linspace(0, (N-1) / float(fs), N)
|
||||
|
||||
## Estimate frequency using FFT (step b)
|
||||
Fc = fft(data)
|
||||
@@ -182,18 +182,17 @@ def sfit4(data, fs):
|
||||
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
|
||||
|
||||
# Convert to Hz
|
||||
f0 = i * fs / N
|
||||
f0 = i * float(fs) / N
|
||||
|
||||
# Fit it. We'll catch exceptions here and just returns zeros
|
||||
# if something fails with the least squares fit, etc.
|
||||
try:
|
||||
# first guess for A0, B0 using 3-parameter fit (step c)
|
||||
s = zeros(3)
|
||||
w = 2*pi*f0
|
||||
D = c_[cos(w*t), sin(w*t), ones(N)]
|
||||
s = linalg.lstsq(D, data)[0]
|
||||
|
||||
# Now iterate 6 times (step i)
|
||||
for idx in range(6):
|
||||
# Now iterate 7 times (step b, plus 6 iterations of step i)
|
||||
for idx in range(7):
|
||||
D = c_[cos(w*t), sin(w*t), ones(N),
|
||||
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
||||
s = linalg.lstsq(D, data)[0] # eqn B.18
|
||||
@@ -202,7 +201,7 @@ def sfit4(data, fs):
|
||||
## Extract results
|
||||
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
||||
f0 = w / (2*pi)
|
||||
phi = -arctan2(s[1], s[0]) # eqn B.22
|
||||
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
|
||||
C = s[2]
|
||||
return (A, f0, phi, C)
|
||||
except Exception as e:
|
||||
|
Reference in New Issue
Block a user