Compare commits

...

6 Commits

Author SHA1 Message Date
33c3586bea trainola: suppress peaks if larger ones are nearby
Might fix the problem Mark noticed where turn-off transients
are erroneously matching the drop that follows startup transients.
2013-07-31 19:12:16 -04:00
c1e0f8ffbc Fix bug in copy_one 2013-07-31 14:47:16 -04:00
d2853bdb0e Add test case for bad trainola detections 2013-07-30 20:35:54 -04:00
a4d4bc22fc Add --skip option to nilm-insert 2013-07-30 18:25:47 -04:00
6090dd6112 prep: only process intervals present in both raw & sinefit 2013-07-30 14:55:06 -04:00
Sharon NILM
9c0d9ad324 Sample scripts from Sharon 2013-07-29 18:37:55 -04:00
13 changed files with 179 additions and 24 deletions

View File

@@ -8,26 +8,33 @@ else
@echo "Try 'make install'"
endif
test: test_pipewatch
test: test_trainola3
test_pipewatch:
nilmtools/pipewatch.py -t 3 "seq 10 20" "seq 20 30"
test_trainola:
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
/sharon/prep-a-matches
nilmtools/trainola.py "$$(cat extras/trainola-test-param-2.js)"
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
/sharon/prep-a-matches
nilmtools/trainola.py "$$(cat extras/trainola-test-param.js)"
test_trainola2:
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
/sharon/prep-a-matches
nilmtools/trainola.py "$$(cat extras/trainola-test-param-2.js)"
test_trainola3:
-nilmtool -u "http://bucket/nilmdb" destroy -R /test/jim
nilmtool -u "http://bucket/nilmdb" create /test/jim uint8_3
nilmtools/trainola.py "$$(cat extras/trainola-test-param-3.js)"
nilmtool -u "http://bucket/nilmdb" extract /test/jim -s min -e max
test_cleanup:
nilmtools/cleanup.py -e extras/cleanup.cfg
nilmtools/cleanup.py extras/cleanup.cfg
test_insert:
nilmtools/insert.py --file --dry-run /test/foo </dev/null
nilmtools/insert.py --skip --file --dry-run /foo/bar ~/data/20130311T2100.prep1.gz ~/data/20130311T2100.prep1.gz ~/data/20130311T2200.prep1.gz
test_copy:
nilmtools/copy_wildcard.py -U "http://nilmdb.com/bucket/" -D /lees*
@@ -46,7 +53,8 @@ test_prep: /tmp/raw.dat
nilmtool create /test/sinefit float32_3
nilmtool create /test/prep float32_8
nilmtool insert -s '@0' -t -r 8000 /test/raw /tmp/raw.dat
nilmtools/sinefit.py -a 0.5 -c 1 /test/raw /test/sinefit
nilmtools/sinefit.py -a 0.5 -c 1 -s '@0' -e '@5000000' /test/raw /test/sinefit
nilmtools/prep.py -c 2 /test/raw /test/sinefit /test/prep
nilmtools/prep.py -c 2 /test/raw /test/sinefit /test/prep
nilmtool extract -s min -e max /test/prep | head -20

View File

@@ -8,7 +8,7 @@ Prerequisites:
sudo apt-get install python2.7 python2.7-dev python-setuptools
sudo apt-get install python-numpy python-scipy python-daemon
nilmdb (1.8.1+)
nilmdb (1.8.5+)
Install:

View File

@@ -0,0 +1,10 @@
#!/bin/bash
# Start the ethstream capture using nilm-pipewatch
# Bail out on errors
set -e
nilm-pipewatch --daemon --lock "/tmp/nilmdb-capture.lock" --timeout 30 \
"ethstream -a 192.168.1.209 -n 9 -r 8000 -N" \
"nilm-insert -m 10 -r 8000 --live /sharon/raw"

View File

@@ -0,0 +1,8 @@
[/sharon/prep-*]
keep = 1y
[/sharon/raw]
keep = 2w
[/sharon/sinefit]
keep = 1y

View File

@@ -0,0 +1,9 @@
# Install this by running "crontab crontab" (will replace existing crontab)
# m h dom mon dow cmd
# Run NilmDB processing every 5 minutes
*/5 * * * * chronic /home/nilm/data/process.sh
# Check the capture process every minute
*/1 * * * * chronic /home/nilm/data/capture.sh

View File

@@ -0,0 +1,28 @@
#!/bin/bash
# Run all necessary processing on NilmDB data.
# Bail out on errors
set -e
# Ensure only one copy of this code runs at a time:
LOCKFILE="/tmp/nilmdb-process.lock"
exec 99>"$LOCKFILE"
if ! flock -n -x 99 ; then
echo "NilmDB processing already running, giving up..."
exit 0
fi
trap 'rm -f "$LOCKFILE"' 0
# sinefit on phase A voltage
nilm-sinefit -c 5 /sharon/raw /sharon/sinefit
# prep on A, B, C with appropriate rotations
nilm-prep -c 1 -r 0 /sharon/raw /sharon/sinefit /sharon/prep-a
nilm-prep -c 2 -r 120 /sharon/raw /sharon/sinefit /sharon/prep-b
nilm-prep -c 3 -r 240 /sharon/raw /sharon/sinefit /sharon/prep-c
# decimate raw and prep data
nilm-decimate-auto /sharon/raw /sharon/prep*
# run cleanup
nilm-cleanup --yes /home/nilm/data/cleanup.cfg

View File

@@ -0,0 +1,40 @@
{
"url": "http://bucket/nilmdb",
"stream": "/sharon/prep-a",
"dest_stream": "/test/jim",
"start": 1364184839901599,
"end": 1364184942407610.2,
"columns": [ { "index": 0, "name": "P1" } ],
"exemplars": [
{
"name": "A - True DBL Freezer ON",
"dest_column": 0,
"url": "http://bucket/nilmdb",
"stream": "/sharon/prep-a",
"columns": [ { "index": 0, "name": "P1" } ],
"start": 1365277707649000,
"end": 1365277710705000
},
{
"name": "A - Boiler 1 Fan OFF",
"dest_column": 1,
"url": "http://bucket/nilmdb",
"stream": "/sharon/prep-a",
"columns": [ { "index": 0, "name": "P1" } ],
"start": 1364188370735000,
"end": 1364188373819000
},
{
"name": "A - True DBL Freezer OFF",
"dest_column": 2,
"url": "http://bucket/nilmdb",
"stream": "/sharon/prep-a",
"columns": [ { "index": 0, "name": "P1" } ],
"start": 1365278087982000,
"end": 1365278089340000
}
]
}

View File

@@ -32,7 +32,7 @@ def main(argv = None):
extractor = NumpyClient(f.src.url).stream_extract_numpy
inserter = NumpyClient(f.dest.url).stream_insert_numpy_context
for i in f.intervals():
print "Processing", f.interval_string(i)
print "Processing", i.human_string()
with inserter(f.dest.path, i.start, i.end) as insert_ctx:
for data in extractor(f.src.path, i.start, i.end):
insert_ctx.insert(data)

View File

@@ -316,7 +316,8 @@ class Filter(object):
self._client_dest.stream_update_metadata(self.dest.path, data)
# The main filter processing method.
def process_numpy(self, function, args = None, rows = 100000):
def process_numpy(self, function, args = None, rows = 100000,
intervals = None):
"""Calls process_numpy_interval for each interval that currently
exists in self.src, but doesn't exist in self.dest. It will
process the data in chunks as follows:
@@ -325,6 +326,9 @@ class Filter(object):
corresponding to the data. The data is converted to a Numpy
array in chunks of 'rows' rows at a time.
If 'intervals' is not None, process those intervals instead of
the default list.
'function' should be defined as:
# def function(data, interval, args, insert_func, final)
@@ -358,7 +362,7 @@ class Filter(object):
maxrows = rows)
inserter_func = functools.partial(inserter, self.dest.path)
for interval in self.intervals():
for interval in (intervals or self.intervals()):
print "Processing", interval.human_string()
process_numpy_interval(interval, extractor_func, inserter_func,
rows * 3, function, args)

View File

@@ -53,7 +53,8 @@ def parse_args(argv = None):
is stepped forward to match 'clock'.
- If 'data' is running ahead, there is overlap in the data, and an
error is raised.
error is raised. If '--ignore' is specified, the current file
is skipped instead of raising an error.
"""))
parser.add_argument("-u", "--url", action="store",
default="http://localhost/nilmdb/",
@@ -61,6 +62,8 @@ def parse_args(argv = None):
group = parser.add_argument_group("Misc options")
group.add_argument("-D", "--dry-run", action="store_true",
help="Parse files, but don't insert any data")
group.add_argument("-s", "--skip", action="store_true",
help="Skip files if the data would overlap")
group.add_argument("-m", "--max-gap", action="store", default=10.0,
metavar="SEC", type=float,
help="Max discrepency between clock and data "
@@ -235,6 +238,10 @@ def main(argv = None):
"is %s but clock time is only %s",
timestamp_to_human(data_ts),
timestamp_to_human(clock_ts))
if args.skip:
printf("%s\n", err)
printf("Skipping the remainder of this file\n")
break
raise ParseError(filename, err)
if (data_ts + max_gap) < clock_ts:

View File

@@ -12,6 +12,7 @@ import scipy.fftpack
import scipy.signal
#from matplotlib import pyplot as p
import bisect
from nilmdb.utils.interval import Interval
def main(argv = None):
# Set up argument parser
@@ -82,9 +83,20 @@ def main(argv = None):
"prep_column": args.column,
"prep_rotation": repr(rotation) })
# Run the processing function on all data
# Find the intersection of the usual set of intervals we'd filter,
# and the intervals actually present in sinefit data. This is
# what we will process.
filter_int = f.intervals()
sinefit_int = ( Interval(start, end) for (start, end) in
client_sinefit.stream_intervals(
args.sinepath, start = f.start, end = f.end) )
intervals = nilmdb.utils.interval.intersection(filter_int, sinefit_int)
# Run the process (using the helper in the filter module)
f.process_numpy(process, args = (client_sinefit, sinefit.path, args.column,
args.nharm, rotation, args.nshift))
args.nharm, rotation, args.nshift),
intervals = intervals)
def process(data, interval, args, insert_function, final):
(client, sinefit_path, column, nharm, rotation, nshift) = args

View File

@@ -106,9 +106,14 @@ class Exemplar(object):
def peak_detect(data, delta):
"""Simple min/max peak detection algorithm, taken from my code
in the disagg.m from the 10-8-5 paper"""
mins = [];
maxs = [];
in the disagg.m from the 10-8-5 paper.
Returns an array of peaks: each peak is a tuple
(n, p, is_max)
where n is the row number in 'data', and p is 'data[n]',
and is_max is True if this is a maximum, False if it's a minimum,
"""
peaks = [];
cur_min = (None, np.inf)
cur_max = (None, -np.inf)
lookformax = False
@@ -119,15 +124,15 @@ def peak_detect(data, delta):
cur_min = (n, p)
if lookformax:
if p < (cur_max[1] - delta):
maxs.append(cur_max)
peaks.append((cur_max[0], cur_max[1], True))
cur_min = (n, p)
lookformax = False
else:
if p > (cur_min[1] + delta):
mins.append(cur_min)
peaks.append((cur_min[0], cur_min[1], False))
cur_max = (n, p)
lookformax = True
return (mins, maxs)
return peaks
def timestamp_to_short_human(timestamp):
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp_to_seconds(timestamp))
@@ -164,11 +169,35 @@ def trainola_matcher(data, interval, args, insert_func, final_chunk):
# Find the peaks using the column with the largest amplitude
biggest = e.scale.index(max(e.scale))
peaks_minmax = peak_detect(corrs[biggest], 0.1)
peaks = [ p[0] for p in peaks_minmax[1] ]
peaks = peak_detect(corrs[biggest], 0.1)
# Now look at every peak
for row in peaks:
# To try to reduce false positives, discard peaks where
# there's a higher-magnitude peak (either min or max) within
# one exemplar width nearby.
good_peak_locations = []
for (i, (n, p, is_max)) in enumerate(peaks):
if not is_max:
continue
ok = True
# check up to 'e.count' rows before this one
j = i-1
while ok and j >= 0 and peaks[j][0] > (n - e.count):
if abs(peaks[j][1]) > abs(p):
ok = False
j -= 1
# check up to 'e.count' rows after this one
j = i+1
while ok and j < len(peaks) and peaks[j][0] < (n + e.count):
if abs(peaks[j][1]) > abs(p):
ok = False
j += 1
if ok:
good_peak_locations.append(n)
# Now look at all good peaks
for row in good_peak_locations:
# Correlation for each column must be close enough to 1.
for (corr, scale) in zip(corrs, e.scale):
# The accepted distance from 1 is based on the relative

View File

@@ -61,7 +61,7 @@ setup(name='nilmtools',
long_description = "NILM Database Tools",
license = "Proprietary",
author_email = 'jim@jtan.com',
install_requires = [ 'nilmdb >= 1.8.1',
install_requires = [ 'nilmdb >= 1.8.5',
'numpy',
'scipy',
'python-daemon >= 1.5',