Compare commits
6 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
33c3586bea | |||
c1e0f8ffbc | |||
d2853bdb0e | |||
a4d4bc22fc | |||
6090dd6112 | |||
![]() |
9c0d9ad324 |
20
Makefile
20
Makefile
@@ -8,26 +8,33 @@ else
|
||||
@echo "Try 'make install'"
|
||||
endif
|
||||
|
||||
test: test_pipewatch
|
||||
test: test_trainola3
|
||||
|
||||
test_pipewatch:
|
||||
nilmtools/pipewatch.py -t 3 "seq 10 20" "seq 20 30"
|
||||
|
||||
test_trainola:
|
||||
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
|
||||
/sharon/prep-a-matches
|
||||
nilmtools/trainola.py "$$(cat extras/trainola-test-param-2.js)"
|
||||
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
|
||||
/sharon/prep-a-matches
|
||||
nilmtools/trainola.py "$$(cat extras/trainola-test-param.js)"
|
||||
|
||||
test_trainola2:
|
||||
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
|
||||
/sharon/prep-a-matches
|
||||
nilmtools/trainola.py "$$(cat extras/trainola-test-param-2.js)"
|
||||
|
||||
test_trainola3:
|
||||
-nilmtool -u "http://bucket/nilmdb" destroy -R /test/jim
|
||||
nilmtool -u "http://bucket/nilmdb" create /test/jim uint8_3
|
||||
nilmtools/trainola.py "$$(cat extras/trainola-test-param-3.js)"
|
||||
nilmtool -u "http://bucket/nilmdb" extract /test/jim -s min -e max
|
||||
|
||||
test_cleanup:
|
||||
nilmtools/cleanup.py -e extras/cleanup.cfg
|
||||
nilmtools/cleanup.py extras/cleanup.cfg
|
||||
|
||||
test_insert:
|
||||
nilmtools/insert.py --file --dry-run /test/foo </dev/null
|
||||
nilmtools/insert.py --skip --file --dry-run /foo/bar ~/data/20130311T2100.prep1.gz ~/data/20130311T2100.prep1.gz ~/data/20130311T2200.prep1.gz
|
||||
|
||||
test_copy:
|
||||
nilmtools/copy_wildcard.py -U "http://nilmdb.com/bucket/" -D /lees*
|
||||
@@ -46,7 +53,8 @@ test_prep: /tmp/raw.dat
|
||||
nilmtool create /test/sinefit float32_3
|
||||
nilmtool create /test/prep float32_8
|
||||
nilmtool insert -s '@0' -t -r 8000 /test/raw /tmp/raw.dat
|
||||
nilmtools/sinefit.py -a 0.5 -c 1 /test/raw /test/sinefit
|
||||
nilmtools/sinefit.py -a 0.5 -c 1 -s '@0' -e '@5000000' /test/raw /test/sinefit
|
||||
nilmtools/prep.py -c 2 /test/raw /test/sinefit /test/prep
|
||||
nilmtools/prep.py -c 2 /test/raw /test/sinefit /test/prep
|
||||
nilmtool extract -s min -e max /test/prep | head -20
|
||||
|
||||
|
@@ -8,7 +8,7 @@ Prerequisites:
|
||||
sudo apt-get install python2.7 python2.7-dev python-setuptools
|
||||
sudo apt-get install python-numpy python-scipy python-daemon
|
||||
|
||||
nilmdb (1.8.1+)
|
||||
nilmdb (1.8.5+)
|
||||
|
||||
Install:
|
||||
|
||||
|
10
extras/sample-cron-scripts/capture.sh
Executable file
10
extras/sample-cron-scripts/capture.sh
Executable file
@@ -0,0 +1,10 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Start the ethstream capture using nilm-pipewatch
|
||||
|
||||
# Bail out on errors
|
||||
set -e
|
||||
|
||||
nilm-pipewatch --daemon --lock "/tmp/nilmdb-capture.lock" --timeout 30 \
|
||||
"ethstream -a 192.168.1.209 -n 9 -r 8000 -N" \
|
||||
"nilm-insert -m 10 -r 8000 --live /sharon/raw"
|
8
extras/sample-cron-scripts/cleanup.cfg
Normal file
8
extras/sample-cron-scripts/cleanup.cfg
Normal file
@@ -0,0 +1,8 @@
|
||||
[/sharon/prep-*]
|
||||
keep = 1y
|
||||
|
||||
[/sharon/raw]
|
||||
keep = 2w
|
||||
|
||||
[/sharon/sinefit]
|
||||
keep = 1y
|
9
extras/sample-cron-scripts/crontab
Normal file
9
extras/sample-cron-scripts/crontab
Normal file
@@ -0,0 +1,9 @@
|
||||
# Install this by running "crontab crontab" (will replace existing crontab)
|
||||
|
||||
# m h dom mon dow cmd
|
||||
|
||||
# Run NilmDB processing every 5 minutes
|
||||
*/5 * * * * chronic /home/nilm/data/process.sh
|
||||
|
||||
# Check the capture process every minute
|
||||
*/1 * * * * chronic /home/nilm/data/capture.sh
|
28
extras/sample-cron-scripts/process.sh
Executable file
28
extras/sample-cron-scripts/process.sh
Executable file
@@ -0,0 +1,28 @@
|
||||
#!/bin/bash
|
||||
# Run all necessary processing on NilmDB data.
|
||||
|
||||
# Bail out on errors
|
||||
set -e
|
||||
|
||||
# Ensure only one copy of this code runs at a time:
|
||||
LOCKFILE="/tmp/nilmdb-process.lock"
|
||||
exec 99>"$LOCKFILE"
|
||||
if ! flock -n -x 99 ; then
|
||||
echo "NilmDB processing already running, giving up..."
|
||||
exit 0
|
||||
fi
|
||||
trap 'rm -f "$LOCKFILE"' 0
|
||||
|
||||
# sinefit on phase A voltage
|
||||
nilm-sinefit -c 5 /sharon/raw /sharon/sinefit
|
||||
|
||||
# prep on A, B, C with appropriate rotations
|
||||
nilm-prep -c 1 -r 0 /sharon/raw /sharon/sinefit /sharon/prep-a
|
||||
nilm-prep -c 2 -r 120 /sharon/raw /sharon/sinefit /sharon/prep-b
|
||||
nilm-prep -c 3 -r 240 /sharon/raw /sharon/sinefit /sharon/prep-c
|
||||
|
||||
# decimate raw and prep data
|
||||
nilm-decimate-auto /sharon/raw /sharon/prep*
|
||||
|
||||
# run cleanup
|
||||
nilm-cleanup --yes /home/nilm/data/cleanup.cfg
|
40
extras/trainola-test-param-3.js
Normal file
40
extras/trainola-test-param-3.js
Normal file
@@ -0,0 +1,40 @@
|
||||
{
|
||||
"url": "http://bucket/nilmdb",
|
||||
"stream": "/sharon/prep-a",
|
||||
"dest_stream": "/test/jim",
|
||||
"start": 1364184839901599,
|
||||
"end": 1364184942407610.2,
|
||||
|
||||
"columns": [ { "index": 0, "name": "P1" } ],
|
||||
|
||||
"exemplars": [
|
||||
{
|
||||
"name": "A - True DBL Freezer ON",
|
||||
"dest_column": 0,
|
||||
"url": "http://bucket/nilmdb",
|
||||
"stream": "/sharon/prep-a",
|
||||
"columns": [ { "index": 0, "name": "P1" } ],
|
||||
"start": 1365277707649000,
|
||||
"end": 1365277710705000
|
||||
},
|
||||
{
|
||||
"name": "A - Boiler 1 Fan OFF",
|
||||
"dest_column": 1,
|
||||
"url": "http://bucket/nilmdb",
|
||||
"stream": "/sharon/prep-a",
|
||||
"columns": [ { "index": 0, "name": "P1" } ],
|
||||
"start": 1364188370735000,
|
||||
"end": 1364188373819000
|
||||
},
|
||||
{
|
||||
"name": "A - True DBL Freezer OFF",
|
||||
"dest_column": 2,
|
||||
"url": "http://bucket/nilmdb",
|
||||
"stream": "/sharon/prep-a",
|
||||
"columns": [ { "index": 0, "name": "P1" } ],
|
||||
"start": 1365278087982000,
|
||||
"end": 1365278089340000
|
||||
}
|
||||
]
|
||||
}
|
||||
|
@@ -32,7 +32,7 @@ def main(argv = None):
|
||||
extractor = NumpyClient(f.src.url).stream_extract_numpy
|
||||
inserter = NumpyClient(f.dest.url).stream_insert_numpy_context
|
||||
for i in f.intervals():
|
||||
print "Processing", f.interval_string(i)
|
||||
print "Processing", i.human_string()
|
||||
with inserter(f.dest.path, i.start, i.end) as insert_ctx:
|
||||
for data in extractor(f.src.path, i.start, i.end):
|
||||
insert_ctx.insert(data)
|
||||
|
@@ -316,7 +316,8 @@ class Filter(object):
|
||||
self._client_dest.stream_update_metadata(self.dest.path, data)
|
||||
|
||||
# The main filter processing method.
|
||||
def process_numpy(self, function, args = None, rows = 100000):
|
||||
def process_numpy(self, function, args = None, rows = 100000,
|
||||
intervals = None):
|
||||
"""Calls process_numpy_interval for each interval that currently
|
||||
exists in self.src, but doesn't exist in self.dest. It will
|
||||
process the data in chunks as follows:
|
||||
@@ -325,6 +326,9 @@ class Filter(object):
|
||||
corresponding to the data. The data is converted to a Numpy
|
||||
array in chunks of 'rows' rows at a time.
|
||||
|
||||
If 'intervals' is not None, process those intervals instead of
|
||||
the default list.
|
||||
|
||||
'function' should be defined as:
|
||||
# def function(data, interval, args, insert_func, final)
|
||||
|
||||
@@ -358,7 +362,7 @@ class Filter(object):
|
||||
maxrows = rows)
|
||||
inserter_func = functools.partial(inserter, self.dest.path)
|
||||
|
||||
for interval in self.intervals():
|
||||
for interval in (intervals or self.intervals()):
|
||||
print "Processing", interval.human_string()
|
||||
process_numpy_interval(interval, extractor_func, inserter_func,
|
||||
rows * 3, function, args)
|
||||
|
@@ -53,7 +53,8 @@ def parse_args(argv = None):
|
||||
is stepped forward to match 'clock'.
|
||||
|
||||
- If 'data' is running ahead, there is overlap in the data, and an
|
||||
error is raised.
|
||||
error is raised. If '--ignore' is specified, the current file
|
||||
is skipped instead of raising an error.
|
||||
"""))
|
||||
parser.add_argument("-u", "--url", action="store",
|
||||
default="http://localhost/nilmdb/",
|
||||
@@ -61,6 +62,8 @@ def parse_args(argv = None):
|
||||
group = parser.add_argument_group("Misc options")
|
||||
group.add_argument("-D", "--dry-run", action="store_true",
|
||||
help="Parse files, but don't insert any data")
|
||||
group.add_argument("-s", "--skip", action="store_true",
|
||||
help="Skip files if the data would overlap")
|
||||
group.add_argument("-m", "--max-gap", action="store", default=10.0,
|
||||
metavar="SEC", type=float,
|
||||
help="Max discrepency between clock and data "
|
||||
@@ -235,6 +238,10 @@ def main(argv = None):
|
||||
"is %s but clock time is only %s",
|
||||
timestamp_to_human(data_ts),
|
||||
timestamp_to_human(clock_ts))
|
||||
if args.skip:
|
||||
printf("%s\n", err)
|
||||
printf("Skipping the remainder of this file\n")
|
||||
break
|
||||
raise ParseError(filename, err)
|
||||
|
||||
if (data_ts + max_gap) < clock_ts:
|
||||
|
@@ -12,6 +12,7 @@ import scipy.fftpack
|
||||
import scipy.signal
|
||||
#from matplotlib import pyplot as p
|
||||
import bisect
|
||||
from nilmdb.utils.interval import Interval
|
||||
|
||||
def main(argv = None):
|
||||
# Set up argument parser
|
||||
@@ -82,9 +83,20 @@ def main(argv = None):
|
||||
"prep_column": args.column,
|
||||
"prep_rotation": repr(rotation) })
|
||||
|
||||
# Run the processing function on all data
|
||||
# Find the intersection of the usual set of intervals we'd filter,
|
||||
# and the intervals actually present in sinefit data. This is
|
||||
# what we will process.
|
||||
filter_int = f.intervals()
|
||||
sinefit_int = ( Interval(start, end) for (start, end) in
|
||||
client_sinefit.stream_intervals(
|
||||
args.sinepath, start = f.start, end = f.end) )
|
||||
intervals = nilmdb.utils.interval.intersection(filter_int, sinefit_int)
|
||||
|
||||
# Run the process (using the helper in the filter module)
|
||||
f.process_numpy(process, args = (client_sinefit, sinefit.path, args.column,
|
||||
args.nharm, rotation, args.nshift))
|
||||
args.nharm, rotation, args.nshift),
|
||||
intervals = intervals)
|
||||
|
||||
|
||||
def process(data, interval, args, insert_function, final):
|
||||
(client, sinefit_path, column, nharm, rotation, nshift) = args
|
||||
|
@@ -106,9 +106,14 @@ class Exemplar(object):
|
||||
|
||||
def peak_detect(data, delta):
|
||||
"""Simple min/max peak detection algorithm, taken from my code
|
||||
in the disagg.m from the 10-8-5 paper"""
|
||||
mins = [];
|
||||
maxs = [];
|
||||
in the disagg.m from the 10-8-5 paper.
|
||||
|
||||
Returns an array of peaks: each peak is a tuple
|
||||
(n, p, is_max)
|
||||
where n is the row number in 'data', and p is 'data[n]',
|
||||
and is_max is True if this is a maximum, False if it's a minimum,
|
||||
"""
|
||||
peaks = [];
|
||||
cur_min = (None, np.inf)
|
||||
cur_max = (None, -np.inf)
|
||||
lookformax = False
|
||||
@@ -119,15 +124,15 @@ def peak_detect(data, delta):
|
||||
cur_min = (n, p)
|
||||
if lookformax:
|
||||
if p < (cur_max[1] - delta):
|
||||
maxs.append(cur_max)
|
||||
peaks.append((cur_max[0], cur_max[1], True))
|
||||
cur_min = (n, p)
|
||||
lookformax = False
|
||||
else:
|
||||
if p > (cur_min[1] + delta):
|
||||
mins.append(cur_min)
|
||||
peaks.append((cur_min[0], cur_min[1], False))
|
||||
cur_max = (n, p)
|
||||
lookformax = True
|
||||
return (mins, maxs)
|
||||
return peaks
|
||||
|
||||
def timestamp_to_short_human(timestamp):
|
||||
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp_to_seconds(timestamp))
|
||||
@@ -164,11 +169,35 @@ def trainola_matcher(data, interval, args, insert_func, final_chunk):
|
||||
|
||||
# Find the peaks using the column with the largest amplitude
|
||||
biggest = e.scale.index(max(e.scale))
|
||||
peaks_minmax = peak_detect(corrs[biggest], 0.1)
|
||||
peaks = [ p[0] for p in peaks_minmax[1] ]
|
||||
peaks = peak_detect(corrs[biggest], 0.1)
|
||||
|
||||
# Now look at every peak
|
||||
for row in peaks:
|
||||
# To try to reduce false positives, discard peaks where
|
||||
# there's a higher-magnitude peak (either min or max) within
|
||||
# one exemplar width nearby.
|
||||
good_peak_locations = []
|
||||
for (i, (n, p, is_max)) in enumerate(peaks):
|
||||
if not is_max:
|
||||
continue
|
||||
ok = True
|
||||
# check up to 'e.count' rows before this one
|
||||
j = i-1
|
||||
while ok and j >= 0 and peaks[j][0] > (n - e.count):
|
||||
if abs(peaks[j][1]) > abs(p):
|
||||
ok = False
|
||||
j -= 1
|
||||
|
||||
# check up to 'e.count' rows after this one
|
||||
j = i+1
|
||||
while ok and j < len(peaks) and peaks[j][0] < (n + e.count):
|
||||
if abs(peaks[j][1]) > abs(p):
|
||||
ok = False
|
||||
j += 1
|
||||
|
||||
if ok:
|
||||
good_peak_locations.append(n)
|
||||
|
||||
# Now look at all good peaks
|
||||
for row in good_peak_locations:
|
||||
# Correlation for each column must be close enough to 1.
|
||||
for (corr, scale) in zip(corrs, e.scale):
|
||||
# The accepted distance from 1 is based on the relative
|
||||
|
Reference in New Issue
Block a user