Compare commits
41 Commits
nilmdb-1.3
...
nilmdb-1.4
Author | SHA1 | Date | |
---|---|---|---|
52ae397d7d | |||
d05b6f6348 | |||
049375d30e | |||
88eb0123f5 | |||
a547ddbbba | |||
28e72fd53e | |||
f63107b334 | |||
955d7aa871 | |||
b8d2cf1b78 | |||
7c465730de | |||
aca130272d | |||
76e5e9883f | |||
fb4f4519ff | |||
30328714a7 | |||
759466de4a | |||
d3efb829b5 | |||
90b96799ac | |||
56679ad770 | |||
b5541722c2 | |||
aaea105861 | |||
e6a081d639 | |||
1835d03412 | |||
c7a712d8d8 | |||
20d315b4f7 | |||
a44a5e3135 | |||
039b2a0557 | |||
cd1dfe7dcd | |||
fb35517dfa | |||
b9f0b35bbe | |||
b1b09f8cd0 | |||
d467df7980 | |||
09bc7eb48c | |||
b77f07a4cd | |||
59f0076306 | |||
83bc5bc775 | |||
6b1dfec828 | |||
d827f41fa5 | |||
7eca587fdf | |||
a351bc1b10 | |||
1d61d61a81 | |||
755255030b |
2
Makefile
2
Makefile
@@ -43,4 +43,4 @@ clean::
|
||||
gitclean::
|
||||
git clean -dXf
|
||||
|
||||
.PHONY: all version build dist sdist install docs lint test clean
|
||||
.PHONY: all version build dist sdist install docs lint test clean gitclean
|
||||
|
@@ -140,7 +140,7 @@ Speed
|
||||
|
||||
- Next slowdown target is nilmdb.layout.Parser.parse().
|
||||
- Rewrote parsers using cython and sscanf
|
||||
- Stats (rev 10831), with _add_interval disabled
|
||||
- Stats (rev 10831), with `_add_interval` disabled
|
||||
|
||||
layout.pyx.Parser.parse:128 6303 sec, 262k calls
|
||||
layout.pyx.parse:63 13913 sec, 5.1g calls
|
||||
@@ -328,3 +328,51 @@ Current places where we use lines:
|
||||
- Finished. Just a single insert() that takes any length string and
|
||||
does very little processing until it's time to send it to the
|
||||
server.
|
||||
|
||||
Timestamps
|
||||
----------
|
||||
|
||||
Timestamps are currently double-precision floats (64 bit). Since the
|
||||
mantissa is 53-bit, this can only represent about 15-17 significant
|
||||
figures, and microsecond Unix timestamps like 1222333444.000111 are
|
||||
already 16 significant figures. Rounding is therefore an issue;
|
||||
it's hard to sure that converting from ASCII, then back to ASCII,
|
||||
will always give the same result.
|
||||
|
||||
Also, if the client provides a floating point value like 1.9999999999,
|
||||
we need to be careful that we don't store it as 1.9999999999 but later
|
||||
print it as 2.000000, because then round-trips change the data.
|
||||
|
||||
Possible solutions:
|
||||
|
||||
- When the client provides a floating point value to the server,
|
||||
always round to the 6th decimal digit before verifying & storing.
|
||||
Good for compatibility and simplicity. But still might have rounding
|
||||
issues, and clients will also need to round when doing their own
|
||||
verification. Having every piece of code need to know which digit
|
||||
to round at is not ideal.
|
||||
|
||||
- Always store int64 timestamps on the server, representing
|
||||
microseconds since epoch. int64 timestamps are used in all HTTP
|
||||
parameters, in insert/extract ASCII strings, client API, commandline
|
||||
raw timestamps, etc. Pretty big change.
|
||||
|
||||
This is what we'll go with...
|
||||
|
||||
- Client programs that interpret the timestamps as doubles instead
|
||||
of ints will remain accurate until 2^53 microseconds, or year
|
||||
2255.
|
||||
|
||||
- On insert, maybe it's OK to send floating point microsecond values
|
||||
(1234567890123456.0), just to cope with clients that want to print
|
||||
everything as a double. Server could try parsing as int64, and if
|
||||
that fails, parse as double and truncate to int64. However, this
|
||||
wouldn't catch imprecise inputs like "1.23456789012e+15". But
|
||||
maybe that can just be ignored; it's likely to cause a
|
||||
non-monotonic error at the client.
|
||||
|
||||
- Timestamps like 1234567890.123456 never show up anywhere, except
|
||||
for interfacing to datetime_tz etc. Command line "raw timestamps"
|
||||
are always printed as int64 values, and a new format
|
||||
"@1234567890123456" is added to the parser for specifying them
|
||||
exactly.
|
||||
|
20
extras/nilmtool-bash-completion.sh
Normal file
20
extras/nilmtool-bash-completion.sh
Normal file
@@ -0,0 +1,20 @@
|
||||
# To enable bash completion:
|
||||
#
|
||||
# 1. Ensure python-argcomplete is installed:
|
||||
# pip install argcomplete
|
||||
# 2. Source this file:
|
||||
# . nilmtool-bash-completion.sh
|
||||
|
||||
_nilmtool_argcomplete() {
|
||||
local IFS=$(printf "\013")
|
||||
COMPREPLY=( $(IFS="$IFS" \
|
||||
COMP_LINE="$COMP_LINE" \
|
||||
COMP_WORDBREAKS="$COMP_WORDBREAKS" \
|
||||
COMP_POINT="$COMP_POINT" \
|
||||
_ARGCOMPLETE=1 \
|
||||
"$1" 8>&1 9>&2 1>/dev/null 2>/dev/null) )
|
||||
if [[ $? != 0 ]]; then
|
||||
unset COMPREPLY
|
||||
fi
|
||||
}
|
||||
complete -o nospace -o default -F _nilmtool_argcomplete nilmtool
|
@@ -10,11 +10,11 @@ import time
|
||||
import simplejson as json
|
||||
import contextlib
|
||||
|
||||
from nilmdb.utils.time import float_time_to_string
|
||||
from nilmdb.utils.time import timestamp_to_string, string_to_timestamp
|
||||
|
||||
def extract_timestamp(line):
|
||||
"""Extract just the timestamp from a line of data text"""
|
||||
return float(line.split()[0])
|
||||
return string_to_timestamp(line.split()[0])
|
||||
|
||||
class Client(object):
|
||||
"""Main client interface to the Nilm database."""
|
||||
@@ -101,15 +101,21 @@ class Client(object):
|
||||
params = { "path": path }
|
||||
return self.http.post("stream/destroy", params)
|
||||
|
||||
def stream_rename(self, oldpath, newpath):
|
||||
"""Rename a stream."""
|
||||
params = { "oldpath": oldpath,
|
||||
"newpath": newpath }
|
||||
return self.http.post("stream/rename", params)
|
||||
|
||||
def stream_remove(self, path, start = None, end = None):
|
||||
"""Remove data from the specified time range"""
|
||||
params = {
|
||||
"path": path
|
||||
}
|
||||
if start is not None:
|
||||
params["start"] = float_time_to_string(start)
|
||||
params["start"] = timestamp_to_string(start)
|
||||
if end is not None:
|
||||
params["end"] = float_time_to_string(end)
|
||||
params["end"] = timestamp_to_string(end)
|
||||
return self.http.post("stream/remove", params)
|
||||
|
||||
@contextlib.contextmanager
|
||||
@@ -147,17 +153,22 @@ class Client(object):
|
||||
ctx.insert(chunk)
|
||||
return ctx.last_response
|
||||
|
||||
def stream_intervals(self, path, start = None, end = None):
|
||||
def stream_intervals(self, path, start = None, end = None, diffpath = None):
|
||||
"""
|
||||
Return a generator that yields each stream interval.
|
||||
|
||||
If diffpath is not None, yields only interval ranges that are
|
||||
present in 'path' but not in 'diffpath'.
|
||||
"""
|
||||
params = {
|
||||
"path": path
|
||||
}
|
||||
if diffpath is not None:
|
||||
params["diffpath"] = diffpath
|
||||
if start is not None:
|
||||
params["start"] = float_time_to_string(start)
|
||||
params["start"] = timestamp_to_string(start)
|
||||
if end is not None:
|
||||
params["end"] = float_time_to_string(end)
|
||||
params["end"] = timestamp_to_string(end)
|
||||
return self.http.get_gen("stream/intervals", params)
|
||||
|
||||
def stream_extract(self, path, start = None, end = None, count = False):
|
||||
@@ -173,9 +184,9 @@ class Client(object):
|
||||
"path": path,
|
||||
}
|
||||
if start is not None:
|
||||
params["start"] = float_time_to_string(start)
|
||||
params["start"] = timestamp_to_string(start)
|
||||
if end is not None:
|
||||
params["end"] = float_time_to_string(end)
|
||||
params["end"] = timestamp_to_string(end)
|
||||
if count:
|
||||
params["count"] = 1
|
||||
return self.http.get_gen("stream/extract", params)
|
||||
@@ -225,9 +236,7 @@ class StreamInserter(object):
|
||||
# See design.md for a discussion of how much data to send. This
|
||||
# is a soft limit -- we might send up to twice as much or so
|
||||
_max_data = 2 * 1024 * 1024
|
||||
|
||||
# Delta to add to the final timestamp, if "end" wasn't given
|
||||
_end_epsilon = 1e-6
|
||||
_max_data_after_send = 64 * 1024
|
||||
|
||||
def __init__(self, http, path, start = None, end = None):
|
||||
"""'http' is the httpclient object. 'path' is the database
|
||||
@@ -270,6 +279,10 @@ class StreamInserter(object):
|
||||
# Send the block once we have enough data
|
||||
if self._block_len >= maxdata:
|
||||
self._send_block(final = False)
|
||||
if self._block_len >= self._max_data_after_send: # pragma: no cover
|
||||
raise ValueError("too much data left over after trying"
|
||||
" to send intermediate block; is it"
|
||||
" missing newlines or malformed?")
|
||||
|
||||
def update_start(self, start):
|
||||
"""Update the start time for the next contiguous interval.
|
||||
@@ -348,7 +361,7 @@ class StreamInserter(object):
|
||||
if end_ts is None:
|
||||
(spos, epos) = self._get_last_noncomment(block)
|
||||
end_ts = extract_timestamp(block[spos:epos])
|
||||
end_ts += self._end_epsilon
|
||||
end_ts += nilmdb.utils.time.epsilon
|
||||
except (ValueError, IndexError):
|
||||
pass # no timestamp is OK, if we have no data
|
||||
self._block_data = []
|
||||
@@ -366,7 +379,7 @@ class StreamInserter(object):
|
||||
(spos, epos) = self._get_last_noncomment(block)
|
||||
end_ts = extract_timestamp(block[spos:epos])
|
||||
except (ValueError, IndexError):
|
||||
# If we found no timestamp, give up; we'll send this
|
||||
# If we found no timestamp, give up; we could send this
|
||||
# block later when we have more data.
|
||||
return
|
||||
if spos == 0:
|
||||
@@ -395,6 +408,8 @@ class StreamInserter(object):
|
||||
|
||||
# Send it
|
||||
params = { "path": self._path,
|
||||
"start": float_time_to_string(start_ts),
|
||||
"end": float_time_to_string(end_ts) }
|
||||
"start": timestamp_to_string(start_ts),
|
||||
"end": timestamp_to_string(end_ts) }
|
||||
self.last_response = self._http.put("stream/insert", block, params)
|
||||
|
||||
return
|
||||
|
@@ -11,10 +11,16 @@ import os
|
||||
import argparse
|
||||
from argparse import ArgumentDefaultsHelpFormatter as def_form
|
||||
|
||||
try: # pragma: no cover
|
||||
import argcomplete
|
||||
except ImportError: # pragma: no cover
|
||||
argcomplete = None
|
||||
|
||||
# Valid subcommands. Defined in separate files just to break
|
||||
# things up -- they're still called with Cmdline as self.
|
||||
subcommands = [ "help", "info", "create", "list", "metadata",
|
||||
"insert", "extract", "remove", "destroy" ]
|
||||
"insert", "extract", "remove", "destroy",
|
||||
"intervals", "rename" ]
|
||||
|
||||
# Import the subcommand modules
|
||||
subcmd_mods = {}
|
||||
@@ -26,6 +32,50 @@ class JimArgumentParser(argparse.ArgumentParser):
|
||||
self.print_usage(sys.stderr)
|
||||
self.exit(2, sprintf("error: %s\n", message))
|
||||
|
||||
class Complete(object): # pragma: no cover
|
||||
# Completion helpers, for using argcomplete (see
|
||||
# extras/nilmtool-bash-completion.sh)
|
||||
def escape(self, s):
|
||||
quote_chars = [ "\\", "\"", "'", " " ]
|
||||
for char in quote_chars:
|
||||
s = s.replace(char, "\\" + char)
|
||||
return s
|
||||
|
||||
def none(self, prefix, parsed_args, **kwargs):
|
||||
return []
|
||||
rate = none
|
||||
time = none
|
||||
url = none
|
||||
|
||||
def path(self, prefix, parsed_args, **kwargs):
|
||||
client = nilmdb.client.Client(parsed_args.url)
|
||||
return ( self.escape(s[0])
|
||||
for s in client.stream_list()
|
||||
if s[0].startswith(prefix) )
|
||||
|
||||
def layout(self, prefix, parsed_args, **kwargs):
|
||||
types = [ "int8", "int16", "int32", "int64",
|
||||
"uint8", "uint16", "uint32", "uint64",
|
||||
"float32", "float64" ]
|
||||
layouts = []
|
||||
for i in range(1,10):
|
||||
layouts.extend([(t + "_" + str(i)) for t in types])
|
||||
return ( l for l in layouts if l.startswith(prefix) )
|
||||
|
||||
def meta_key(self, prefix, parsed_args, **kwargs):
|
||||
return (kv.split('=')[0] for kv
|
||||
in self.meta_keyval(prefix, parsed_args, **kwargs))
|
||||
|
||||
def meta_keyval(self, prefix, parsed_args, **kwargs):
|
||||
client = nilmdb.client.Client(parsed_args.url)
|
||||
path = parsed_args.path
|
||||
if not path:
|
||||
return []
|
||||
return ( self.escape(k + '=' + v)
|
||||
for (k,v) in client.stream_get_metadata(path).iteritems()
|
||||
if k.startswith(prefix) )
|
||||
|
||||
|
||||
class Cmdline(object):
|
||||
|
||||
def __init__(self, argv = None):
|
||||
@@ -33,15 +83,17 @@ class Cmdline(object):
|
||||
self.client = None
|
||||
self.def_url = os.environ.get("NILMDB_URL", "http://localhost:12380")
|
||||
self.subcmd = {}
|
||||
self.complete = Complete()
|
||||
|
||||
def arg_time(self, toparse):
|
||||
"""Parse a time string argument"""
|
||||
try:
|
||||
return nilmdb.utils.time.parse_time(toparse).totimestamp()
|
||||
return nilmdb.utils.time.parse_time(toparse)
|
||||
except ValueError as e:
|
||||
raise argparse.ArgumentTypeError(sprintf("%s \"%s\"",
|
||||
str(e), toparse))
|
||||
|
||||
# Set up the parser
|
||||
def parser_setup(self):
|
||||
self.parser = JimArgumentParser(add_help = False,
|
||||
formatter_class = def_form)
|
||||
@@ -55,7 +107,8 @@ class Cmdline(object):
|
||||
group = self.parser.add_argument_group("Server")
|
||||
group.add_argument("-u", "--url", action="store",
|
||||
default=self.def_url,
|
||||
help="NilmDB server URL (default: %(default)s)")
|
||||
help="NilmDB server URL (default: %(default)s)"
|
||||
).completer = self.complete.url
|
||||
|
||||
sub = self.parser.add_subparsers(
|
||||
title="Commands", dest="command",
|
||||
@@ -79,6 +132,8 @@ class Cmdline(object):
|
||||
|
||||
# Run parser
|
||||
self.parser_setup()
|
||||
if argcomplete: # pragma: no cover
|
||||
argcomplete.autocomplete(self.parser)
|
||||
self.args = self.parser.parse_args(self.argv)
|
||||
|
||||
# Run arg verify handler if there is one
|
||||
|
@@ -22,9 +22,11 @@ Layout types are of the format: type_count
|
||||
cmd.set_defaults(handler = cmd_create)
|
||||
group = cmd.add_argument_group("Required arguments")
|
||||
group.add_argument("path",
|
||||
help="Path (in database) of new stream, e.g. /foo/bar")
|
||||
help="Path (in database) of new stream, e.g. /foo/bar",
|
||||
).completer = self.complete.path
|
||||
group.add_argument("layout",
|
||||
help="Layout type for new stream, e.g. float32_8")
|
||||
help="Layout type for new stream, e.g. float32_8",
|
||||
).completer = self.complete.layout
|
||||
return cmd
|
||||
|
||||
def cmd_create(self):
|
||||
|
@@ -14,7 +14,8 @@ def setup(self, sub):
|
||||
cmd.set_defaults(handler = cmd_destroy)
|
||||
group = cmd.add_argument_group("Required arguments")
|
||||
group.add_argument("path",
|
||||
help="Path of the stream to delete, e.g. /foo/bar")
|
||||
help="Path of the stream to delete, e.g. /foo/bar",
|
||||
).completer = self.complete.path
|
||||
return cmd
|
||||
|
||||
def cmd_destroy(self):
|
||||
|
@@ -12,13 +12,16 @@ def setup(self, sub):
|
||||
|
||||
group = cmd.add_argument_group("Data selection")
|
||||
group.add_argument("path",
|
||||
help="Path of stream, e.g. /foo/bar")
|
||||
help="Path of stream, e.g. /foo/bar",
|
||||
).completer = self.complete.path
|
||||
group.add_argument("-s", "--start", required=True,
|
||||
metavar="TIME", type=self.arg_time,
|
||||
help="Starting timestamp (free-form, inclusive)")
|
||||
help="Starting timestamp (free-form, inclusive)",
|
||||
).completer = self.complete.time
|
||||
group.add_argument("-e", "--end", required=True,
|
||||
metavar="TIME", type=self.arg_time,
|
||||
help="Ending timestamp (free-form, noninclusive)")
|
||||
help="Ending timestamp (free-form, noninclusive)",
|
||||
).completer = self.complete.time
|
||||
|
||||
group = cmd.add_argument_group("Output format")
|
||||
group.add_argument("-b", "--bare", action="store_true",
|
||||
@@ -44,9 +47,9 @@ def cmd_extract(self):
|
||||
layout = streams[0][1]
|
||||
|
||||
if self.args.timestamp_raw:
|
||||
time_string = nilmdb.utils.time.float_time_to_string
|
||||
time_string = nilmdb.utils.time.timestamp_to_string
|
||||
else:
|
||||
time_string = nilmdb.utils.time.format_time
|
||||
time_string = nilmdb.utils.time.timestamp_to_human
|
||||
|
||||
if self.args.annotate:
|
||||
printf("# path: %s\n", self.args.path)
|
||||
|
@@ -25,7 +25,8 @@ def setup(self, sub):
|
||||
group.add_argument("-t", "--timestamp", action="store_true",
|
||||
help="Add timestamps to each line")
|
||||
group.add_argument("-r", "--rate", type=float,
|
||||
help="Data rate, in Hz")
|
||||
help="Data rate, in Hz",
|
||||
).completer = self.complete.rate
|
||||
|
||||
group = cmd.add_argument_group("Start time",
|
||||
description="""
|
||||
@@ -39,7 +40,8 @@ def setup(self, sub):
|
||||
exc = group.add_mutually_exclusive_group()
|
||||
exc.add_argument("-s", "--start",
|
||||
metavar="TIME", type=self.arg_time,
|
||||
help="Starting timestamp (free-form)")
|
||||
help="Starting timestamp (free-form)",
|
||||
).completer = self.complete.time
|
||||
exc.add_argument("-f", "--filename", action="store_true",
|
||||
help="Use filename to determine start time")
|
||||
|
||||
@@ -52,11 +54,13 @@ def setup(self, sub):
|
||||
timezone.""")
|
||||
group.add_argument("-e", "--end",
|
||||
metavar="TIME", type=self.arg_time,
|
||||
help="Ending timestamp (free-form)")
|
||||
help="Ending timestamp (free-form)",
|
||||
).completer = self.complete.time
|
||||
|
||||
group = cmd.add_argument_group("Required parameters")
|
||||
group.add_argument("path",
|
||||
help="Path of stream, e.g. /foo/bar")
|
||||
help="Path of stream, e.g. /foo/bar",
|
||||
).completer = self.complete.path
|
||||
group.add_argument("file", nargs = '?', default='-',
|
||||
help="File to insert (default: - (stdin))")
|
||||
return cmd
|
||||
@@ -92,7 +96,7 @@ def cmd_insert(self):
|
||||
|
||||
if arg.start is None:
|
||||
try:
|
||||
arg.start = nilmdb.utils.time.parse_time(filename).totimestamp()
|
||||
arg.start = nilmdb.utils.time.parse_time(filename)
|
||||
except ValueError:
|
||||
self.die("error extracting start time from filename '%s'",
|
||||
filename)
|
||||
@@ -106,10 +110,10 @@ def cmd_insert(self):
|
||||
if not arg.quiet:
|
||||
printf(" Input file: %s\n", filename)
|
||||
printf(" Start time: %s\n",
|
||||
nilmdb.utils.time.format_time(arg.start))
|
||||
nilmdb.utils.time.timestamp_to_human(arg.start))
|
||||
if arg.end:
|
||||
printf(" End time: %s\n",
|
||||
nilmdb.utils.time.format_time(arg.end))
|
||||
nilmdb.utils.time.timestamp_to_human(arg.end))
|
||||
if arg.timestamp:
|
||||
printf("Timestamper: %s\n", str(data))
|
||||
|
||||
|
66
nilmdb/cmdline/intervals.py
Normal file
66
nilmdb/cmdline/intervals.py
Normal file
@@ -0,0 +1,66 @@
|
||||
from nilmdb.utils.printf import *
|
||||
import nilmdb.utils.time
|
||||
|
||||
import fnmatch
|
||||
import argparse
|
||||
from argparse import ArgumentDefaultsHelpFormatter as def_form
|
||||
|
||||
def setup(self, sub):
|
||||
cmd = sub.add_parser("intervals", help="List intervals",
|
||||
formatter_class = def_form,
|
||||
description="""
|
||||
List intervals in a stream, similar to
|
||||
'list --detail path'.
|
||||
|
||||
If '--diff diffpath' is provided, only
|
||||
interval ranges that are present in 'path'
|
||||
and not present in 'diffpath' are printed.
|
||||
""")
|
||||
cmd.set_defaults(verify = cmd_intervals_verify,
|
||||
handler = cmd_intervals)
|
||||
|
||||
group = cmd.add_argument_group("Stream selection")
|
||||
group.add_argument("path", metavar="PATH",
|
||||
help="List intervals for this path",
|
||||
).completer = self.complete.path
|
||||
group.add_argument("-d", "--diff", metavar="PATH",
|
||||
help="Subtract intervals from this path",
|
||||
).completer = self.complete.path
|
||||
|
||||
group = cmd.add_argument_group("Interval details")
|
||||
group.add_argument("-s", "--start",
|
||||
metavar="TIME", type=self.arg_time,
|
||||
help="Starting timestamp for intervals "
|
||||
"(free-form, inclusive)",
|
||||
).completer = self.complete.time
|
||||
group.add_argument("-e", "--end",
|
||||
metavar="TIME", type=self.arg_time,
|
||||
help="Ending timestamp for intervals "
|
||||
"(free-form, noninclusive)",
|
||||
).completer = self.complete.time
|
||||
|
||||
group = cmd.add_argument_group("Misc options")
|
||||
group.add_argument("-T", "--timestamp-raw", action="store_true",
|
||||
help="Show raw timestamps when printing times")
|
||||
|
||||
return cmd
|
||||
|
||||
def cmd_intervals_verify(self):
|
||||
if self.args.start is not None and self.args.end is not None:
|
||||
if self.args.start >= self.args.end:
|
||||
self.parser.error("start must precede end")
|
||||
|
||||
def cmd_intervals(self):
|
||||
"""List intervals in a stream"""
|
||||
if self.args.timestamp_raw:
|
||||
time_string = nilmdb.utils.time.timestamp_to_string
|
||||
else:
|
||||
time_string = nilmdb.utils.time.timestamp_to_human
|
||||
|
||||
try:
|
||||
for (start, end) in self.client.stream_intervals(
|
||||
self.args.path, self.args.start, self.args.end, self.args.diff):
|
||||
printf("[ %s -> %s ]\n", time_string(start), time_string(end))
|
||||
except nilmdb.client.ClientError as e:
|
||||
self.die("error listing intervals: %s", str(e))
|
||||
|
@@ -18,11 +18,14 @@ def setup(self, sub):
|
||||
|
||||
group = cmd.add_argument_group("Stream filtering")
|
||||
group.add_argument("-p", "--path", metavar="PATH", default="*",
|
||||
help="Match only this path (-p can be omitted)")
|
||||
help="Match only this path (-p can be omitted)",
|
||||
).completer = self.complete.path
|
||||
group.add_argument("path_positional", default="*",
|
||||
nargs="?", help=argparse.SUPPRESS)
|
||||
nargs="?", help=argparse.SUPPRESS,
|
||||
).completer = self.complete.path
|
||||
group.add_argument("-l", "--layout", default="*",
|
||||
help="Match only this stream layout")
|
||||
help="Match only this stream layout",
|
||||
).completer = self.complete.layout
|
||||
|
||||
group = cmd.add_argument_group("Interval info")
|
||||
group.add_argument("-E", "--ext", action="store_true",
|
||||
@@ -35,11 +38,13 @@ def setup(self, sub):
|
||||
group.add_argument("-s", "--start",
|
||||
metavar="TIME", type=self.arg_time,
|
||||
help="Starting timestamp for intervals "
|
||||
"(free-form, inclusive)")
|
||||
"(free-form, inclusive)",
|
||||
).completer = self.complete.time
|
||||
group.add_argument("-e", "--end",
|
||||
metavar="TIME", type=self.arg_time,
|
||||
help="Ending timestamp for intervals "
|
||||
"(free-form, noninclusive)")
|
||||
"(free-form, noninclusive)",
|
||||
).completer = self.complete.time
|
||||
|
||||
group = cmd.add_argument_group("Misc options")
|
||||
group.add_argument("-T", "--timestamp-raw", action="store_true",
|
||||
@@ -71,12 +76,12 @@ def cmd_list(self):
|
||||
streams = self.client.stream_list(extended = True)
|
||||
|
||||
if self.args.timestamp_raw:
|
||||
time_string = nilmdb.utils.time.float_time_to_string
|
||||
time_string = nilmdb.utils.time.timestamp_to_string
|
||||
else:
|
||||
time_string = nilmdb.utils.time.format_time
|
||||
time_string = nilmdb.utils.time.timestamp_to_human
|
||||
|
||||
for stream in streams:
|
||||
(path, layout, int_min, int_max, rows, seconds) = stream[:6]
|
||||
(path, layout, int_min, int_max, rows, time) = stream[:6]
|
||||
if not (fnmatch.fnmatch(path, self.args.path) and
|
||||
fnmatch.fnmatch(layout, self.args.layout)):
|
||||
continue
|
||||
@@ -90,7 +95,8 @@ def cmd_list(self):
|
||||
printf(" interval extents: %s -> %s\n",
|
||||
time_string(int_min), time_string(int_max))
|
||||
printf(" total data: %d rows, %.6f seconds\n",
|
||||
rows or 0, seconds or 0);
|
||||
rows or 0,
|
||||
nilmdb.utils.time.timestamp_to_seconds(time or 0))
|
||||
|
||||
if self.args.detail:
|
||||
printed = False
|
||||
|
@@ -14,18 +14,22 @@ def setup(self, sub):
|
||||
|
||||
group = cmd.add_argument_group("Required arguments")
|
||||
group.add_argument("path",
|
||||
help="Path of stream, e.g. /foo/bar")
|
||||
help="Path of stream, e.g. /foo/bar",
|
||||
).completer = self.complete.path
|
||||
|
||||
group = cmd.add_argument_group("Actions")
|
||||
exc = group.add_mutually_exclusive_group()
|
||||
exc.add_argument("-g", "--get", nargs="*", metavar="key",
|
||||
help="Get metadata for specified keys (default all)")
|
||||
help="Get metadata for specified keys (default all)",
|
||||
).completer = self.complete.meta_key
|
||||
exc.add_argument("-s", "--set", nargs="+", metavar="key=value",
|
||||
help="Replace all metadata with provided "
|
||||
"key=value pairs")
|
||||
"key=value pairs",
|
||||
).completer = self.complete.meta_keyval
|
||||
exc.add_argument("-u", "--update", nargs="+", metavar="key=value",
|
||||
help="Update metadata using provided "
|
||||
"key=value pairs")
|
||||
"key=value pairs",
|
||||
).completer = self.complete.meta_keyval
|
||||
return cmd
|
||||
|
||||
def cmd_metadata(self):
|
||||
|
@@ -11,13 +11,16 @@ def setup(self, sub):
|
||||
|
||||
group = cmd.add_argument_group("Data selection")
|
||||
group.add_argument("path",
|
||||
help="Path of stream, e.g. /foo/bar")
|
||||
help="Path of stream, e.g. /foo/bar",
|
||||
).completer = self.complete.path
|
||||
group.add_argument("-s", "--start", required=True,
|
||||
metavar="TIME", type=self.arg_time,
|
||||
help="Starting timestamp (free-form, inclusive)")
|
||||
help="Starting timestamp (free-form, inclusive)",
|
||||
).completer = self.complete.time
|
||||
group.add_argument("-e", "--end", required=True,
|
||||
metavar="TIME", type=self.arg_time,
|
||||
help="Ending timestamp (free-form, noninclusive)")
|
||||
help="Ending timestamp (free-form, noninclusive)",
|
||||
).completer = self.complete.time
|
||||
|
||||
group = cmd.add_argument_group("Output format")
|
||||
group.add_argument("-c", "--count", action="store_true",
|
||||
|
31
nilmdb/cmdline/rename.py
Normal file
31
nilmdb/cmdline/rename.py
Normal file
@@ -0,0 +1,31 @@
|
||||
from nilmdb.utils.printf import *
|
||||
import nilmdb.client
|
||||
|
||||
from argparse import ArgumentDefaultsHelpFormatter as def_form
|
||||
|
||||
def setup(self, sub):
|
||||
cmd = sub.add_parser("rename", help="Rename a stream",
|
||||
formatter_class = def_form,
|
||||
description="""
|
||||
Rename a stream.
|
||||
|
||||
Only the stream's path is renamed; no
|
||||
metadata is changed.
|
||||
""")
|
||||
cmd.set_defaults(handler = cmd_rename)
|
||||
group = cmd.add_argument_group("Required arguments")
|
||||
group.add_argument("oldpath",
|
||||
help="Old path, e.g. /foo/old",
|
||||
).completer = self.complete.path
|
||||
group.add_argument("newpath",
|
||||
help="New path, e.g. /foo/bar/new",
|
||||
).completer = self.complete.path
|
||||
|
||||
return cmd
|
||||
|
||||
def cmd_rename(self):
|
||||
"""Rename a stream"""
|
||||
try:
|
||||
self.client.stream_rename(self.args.oldpath, self.args.newpath)
|
||||
except nilmdb.client.ClientError as e:
|
||||
self.die("error renaming stream: %s", str(e))
|
@@ -5,15 +5,15 @@
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from nilmdb.utils.printf import *
|
||||
from nilmdb.utils.time import float_time_to_string as ftts
|
||||
from nilmdb.utils.time import timestamp_to_string as timestamp_to_string
|
||||
import nilmdb.utils
|
||||
|
||||
import os
|
||||
import cPickle as pickle
|
||||
import re
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
#from . import pyrocket as rocket
|
||||
from . import rocket
|
||||
|
||||
# Up to 256 open file descriptors at any given time.
|
||||
@@ -56,6 +56,59 @@ class BulkData(object):
|
||||
return path.encode('utf-8')
|
||||
return path
|
||||
|
||||
def _create_check_ospath(self, ospath):
|
||||
if ospath[-1] == '/':
|
||||
raise ValueError("invalid path; should not end with a /")
|
||||
if Table.exists(ospath):
|
||||
raise ValueError("stream already exists at this path")
|
||||
if os.path.isdir(ospath):
|
||||
raise ValueError("subdirs of this path already exist")
|
||||
|
||||
def _create_parents(self, unicodepath):
|
||||
"""Verify the path name, and create parent directories if they
|
||||
don't exist. Returns a list of elements that got created."""
|
||||
path = self._encode_filename(unicodepath)
|
||||
|
||||
if path[0] != '/':
|
||||
raise ValueError("paths must start with /")
|
||||
[ group, node ] = path.rsplit("/", 1)
|
||||
if group == '':
|
||||
raise ValueError("invalid path; path must contain at least one "
|
||||
"folder")
|
||||
if node == '':
|
||||
raise ValueError("invalid path; should not end with a /")
|
||||
if not Table.valid_path(path):
|
||||
raise ValueError("path name is invalid or contains reserved words")
|
||||
|
||||
# Create the table's base dir. Note that we make a
|
||||
# distinction here between NilmDB paths (always Unix style,
|
||||
# split apart manually) and OS paths (built up with
|
||||
# os.path.join)
|
||||
|
||||
# Make directories leading up to this one
|
||||
elements = path.lstrip('/').split('/')
|
||||
made_dirs = []
|
||||
try:
|
||||
# Make parent elements
|
||||
for i in range(len(elements)):
|
||||
ospath = os.path.join(self.root, *elements[0:i])
|
||||
if Table.exists(ospath):
|
||||
raise ValueError("path is subdir of existing node")
|
||||
if not os.path.isdir(ospath):
|
||||
os.mkdir(ospath)
|
||||
made_dirs.append(ospath)
|
||||
except Exception as e:
|
||||
# Try to remove paths that we created; ignore errors
|
||||
exc_info = sys.exc_info()
|
||||
for ospath in reversed(made_dirs): # pragma: no cover (hard to hit)
|
||||
try:
|
||||
os.rmdir(ospath)
|
||||
except OSError:
|
||||
pass
|
||||
raise exc_info[1], None, exc_info[2]
|
||||
|
||||
return elements
|
||||
|
||||
def create(self, unicodepath, layout_name):
|
||||
"""
|
||||
unicodepath: path to the data (e.g. u'/newton/prep').
|
||||
@@ -67,32 +120,11 @@ class BulkData(object):
|
||||
|
||||
layout_name: string for nilmdb.layout.get_named(), e.g. 'float32_8'
|
||||
"""
|
||||
path = self._encode_filename(unicodepath)
|
||||
|
||||
if path[0] != '/':
|
||||
raise ValueError("paths must start with /")
|
||||
[ group, node ] = path.rsplit("/", 1)
|
||||
if group == '':
|
||||
raise ValueError("invalid path; path must contain at least one "
|
||||
"folder")
|
||||
|
||||
# Create the table. Note that we make a distinction here
|
||||
# between NilmDB paths (always Unix style, split apart
|
||||
# manually) and OS paths (built up with os.path.join)
|
||||
|
||||
# Make directories leading up to this one
|
||||
elements = path.lstrip('/').split('/')
|
||||
for i in range(len(elements)):
|
||||
ospath = os.path.join(self.root, *elements[0:i])
|
||||
if Table.exists(ospath):
|
||||
raise ValueError("path is subdir of existing node")
|
||||
if not os.path.isdir(ospath):
|
||||
os.mkdir(ospath)
|
||||
elements = self._create_parents(unicodepath)
|
||||
|
||||
# Make the final dir
|
||||
ospath = os.path.join(self.root, *elements)
|
||||
if os.path.isdir(ospath):
|
||||
raise ValueError("subdirs of this path already exist")
|
||||
self._create_check_ospath(ospath)
|
||||
os.mkdir(ospath)
|
||||
|
||||
try:
|
||||
@@ -113,6 +145,55 @@ class BulkData(object):
|
||||
# Success
|
||||
return
|
||||
|
||||
def _remove_leaves(self, unicodepath):
|
||||
"""Remove empty directories starting at the leaves of unicodepath"""
|
||||
path = self._encode_filename(unicodepath)
|
||||
elements = path.lstrip('/').split('/')
|
||||
for i in reversed(range(len(elements))):
|
||||
ospath = os.path.join(self.root, *elements[0:i+1])
|
||||
try:
|
||||
os.rmdir(ospath)
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
def rename(self, oldunicodepath, newunicodepath):
|
||||
"""Move entire tree from 'oldunicodepath' to
|
||||
'newunicodepath'"""
|
||||
oldpath = self._encode_filename(oldunicodepath)
|
||||
newpath = self._encode_filename(newunicodepath)
|
||||
|
||||
# Get OS paths
|
||||
oldelements = oldpath.lstrip('/').split('/')
|
||||
oldospath = os.path.join(self.root, *oldelements)
|
||||
newelements = newpath.lstrip('/').split('/')
|
||||
newospath = os.path.join(self.root, *newelements)
|
||||
|
||||
# Basic checks
|
||||
if oldospath == newospath:
|
||||
raise ValueError("old and new paths are the same")
|
||||
self._create_check_ospath(newospath)
|
||||
|
||||
# Move the table to a temporary location
|
||||
tmpdir = tempfile.mkdtemp(prefix = "rename-", dir = self.root)
|
||||
tmppath = os.path.join(tmpdir, "table")
|
||||
os.rename(oldospath, tmppath)
|
||||
|
||||
try:
|
||||
# Create parent dirs for new location
|
||||
self._create_parents(newunicodepath)
|
||||
|
||||
# Move table into new location
|
||||
os.rename(tmppath, newospath)
|
||||
except Exception:
|
||||
# On failure, move the table back to original path
|
||||
os.rename(tmppath, oldospath)
|
||||
os.rmdir(tmpdir)
|
||||
raise
|
||||
|
||||
# Prune old dirs
|
||||
self._remove_leaves(oldunicodepath)
|
||||
os.rmdir(tmpdir)
|
||||
|
||||
def destroy(self, unicodepath):
|
||||
"""Fully remove all data at a particular path. No way to undo
|
||||
it! The group/path structure is removed, too."""
|
||||
@@ -134,13 +215,8 @@ class BulkData(object):
|
||||
for name in dirs:
|
||||
os.rmdir(os.path.join(root, name))
|
||||
|
||||
# Remove empty parent directories
|
||||
for i in reversed(range(len(elements))):
|
||||
ospath = os.path.join(self.root, *elements[0:i+1])
|
||||
try:
|
||||
os.rmdir(ospath)
|
||||
except OSError:
|
||||
break
|
||||
# Remove leftover empty directories
|
||||
self._remove_leaves(unicodepath)
|
||||
|
||||
# Cache open tables
|
||||
@nilmdb.utils.lru_cache(size = table_cache_size,
|
||||
@@ -159,6 +235,11 @@ class Table(object):
|
||||
# See design.md for design details
|
||||
|
||||
# Class methods, to help keep format details in this class.
|
||||
@classmethod
|
||||
def valid_path(cls, root):
|
||||
"""Return True if a root path is a valid name"""
|
||||
return "_format" not in root.split("/")
|
||||
|
||||
@classmethod
|
||||
def exists(cls, root):
|
||||
"""Return True if a table appears to exist at this OS path"""
|
||||
@@ -178,7 +259,7 @@ class Table(object):
|
||||
fmt = { "rows_per_file": rows_per_file,
|
||||
"files_per_dir": files_per_dir,
|
||||
"layout": layout,
|
||||
"version": 2 }
|
||||
"version": 3 }
|
||||
with open(os.path.join(root, "_format"), "wb") as f:
|
||||
pickle.dump(fmt, f, 2)
|
||||
|
||||
@@ -191,21 +272,11 @@ class Table(object):
|
||||
with open(os.path.join(self.root, "_format"), "rb") as f:
|
||||
fmt = pickle.load(f)
|
||||
|
||||
if fmt["version"] == 1: # pragma: no cover
|
||||
# We can handle this old version by converting from
|
||||
# struct_fmt back to layout name.
|
||||
compat = { "<dHHHHHH": "uint16_6",
|
||||
"<dHHHHHHHHH": "uint16_9",
|
||||
"<dffffffff": "float32_8" }
|
||||
if fmt["struct_fmt"] in compat:
|
||||
fmt["version"] = 2
|
||||
fmt["layout"] = compat[fmt["struct_fmt"]]
|
||||
else:
|
||||
raise NotImplementedError("old version 1 data with format "
|
||||
+ fmt["struct_fmt"] + " is no good")
|
||||
elif fmt["version"] != 2: # pragma: no cover (just future proofing)
|
||||
raise NotImplementedError("version " + str(fmt["version"]) +
|
||||
" bulk data store not supported")
|
||||
if fmt["version"] != 3: # pragma: no cover
|
||||
# Old versions used floating point timestamps, which aren't
|
||||
# valid anymore.
|
||||
raise NotImplementedError("old version " + str(fmt["version"]) +
|
||||
" bulk data store is not supported")
|
||||
|
||||
self.rows_per_file = fmt["rows_per_file"]
|
||||
self.files_per_dir = fmt["files_per_dir"]
|
||||
@@ -318,27 +389,6 @@ class Table(object):
|
||||
return rocket.Rocket(self.layout,
|
||||
os.path.join(self.root, subdir, filename))
|
||||
|
||||
def append(self, data):
|
||||
"""Append the data and flush it to disk.
|
||||
data is a nested Python list [[row],[row],[...]]"""
|
||||
remaining = len(data)
|
||||
dataiter = iter(data)
|
||||
while remaining:
|
||||
# See how many rows we can fit into the current file, and open it
|
||||
(subdir, fname, offset, count) = self._offset_from_row(self.nrows)
|
||||
if count > remaining:
|
||||
count = remaining
|
||||
|
||||
f = self.file_open(subdir, fname)
|
||||
|
||||
# Write the data
|
||||
written = f.append_iter(count, dataiter)
|
||||
if written != count: # pragma: no cover
|
||||
raise Exception("Didn't write the expected number of rows: "
|
||||
+ str(written) + " != " + str(count))
|
||||
remaining -= count
|
||||
self.nrows += count
|
||||
|
||||
def append_string(self, data, start, end):
|
||||
"""Parse the formatted string in 'data', according to the
|
||||
current layout, and append it to the table. If any timestamps
|
||||
@@ -349,7 +399,7 @@ class Table(object):
|
||||
the table is reverted back to its original state by truncating
|
||||
or deleting files as necessary."""
|
||||
data_offset = 0
|
||||
last_timestamp = -1e12
|
||||
last_timestamp = nilmdb.utils.time.min_timestamp
|
||||
tot_rows = self.nrows
|
||||
count = 0
|
||||
linenum = 0
|
||||
@@ -367,22 +417,29 @@ class Table(object):
|
||||
) = f.append_string(count, data, data_offset, linenum,
|
||||
start, end, last_timestamp)
|
||||
except rocket.ParseError as e:
|
||||
(linenum, errtype, obj) = e.args
|
||||
(linenum, colnum, errtype, obj) = e.args
|
||||
where = "line %d, column %d: " % (linenum, colnum)
|
||||
# Extract out the error line, add column marker
|
||||
try:
|
||||
bad = data.splitlines()[linenum-1]
|
||||
badptr = ' ' * (colnum - 1) + '^'
|
||||
except IndexError: # pragma: no cover
|
||||
bad = ""
|
||||
if errtype == rocket.ERR_NON_MONOTONIC:
|
||||
err = sprintf("line %d: timestamp is not monotonically "
|
||||
"increasing", linenum)
|
||||
err = "timestamp is not monotonically increasing"
|
||||
elif errtype == rocket.ERR_OUT_OF_INTERVAL:
|
||||
if obj < start:
|
||||
err = sprintf("line %d: Data timestamp %s < "
|
||||
"start time %s", linenum,
|
||||
ftts(obj), ftts(start))
|
||||
err = sprintf("Data timestamp %s < start time %s",
|
||||
timestamp_to_string(obj),
|
||||
timestamp_to_string(start))
|
||||
else:
|
||||
err = sprintf("line %d: Data timestamp %s >= "
|
||||
"end time %s", linenum,
|
||||
ftts(obj), ftts(end))
|
||||
err = sprintf("Data timestamp %s >= end time %s",
|
||||
timestamp_to_string(obj),
|
||||
timestamp_to_string(end))
|
||||
else:
|
||||
err = sprintf("line %d: %s", linenum, str(obj))
|
||||
raise ValueError("error parsing input data: " + err)
|
||||
err = str(obj)
|
||||
raise ValueError("error parsing input data: " +
|
||||
where + err + "\n" + bad + "\n" + badptr)
|
||||
tot_rows += added_rows
|
||||
except Exception:
|
||||
# Some failure, so try to roll things back by truncating or
|
||||
@@ -398,10 +455,9 @@ class Table(object):
|
||||
# Success, so update self.nrows accordingly
|
||||
self.nrows = tot_rows
|
||||
|
||||
def _get_data(self, start, stop, as_string):
|
||||
def get_data(self, start, stop):
|
||||
"""Extract data corresponding to Python range [n:m],
|
||||
and returns a numeric list or formatted string,
|
||||
depending on as_string."""
|
||||
and returns a formatted string"""
|
||||
if (start is None or
|
||||
stop is None or
|
||||
start > stop or
|
||||
@@ -417,42 +473,18 @@ class Table(object):
|
||||
if count > remaining:
|
||||
count = remaining
|
||||
f = self.file_open(subdir, filename)
|
||||
if as_string:
|
||||
ret.append(f.extract_string(offset, count))
|
||||
else:
|
||||
ret.extend(f.extract_list(offset, count))
|
||||
remaining -= count
|
||||
row += count
|
||||
if as_string:
|
||||
return "".join(ret)
|
||||
return ret
|
||||
|
||||
def get_as_text(self, start, stop):
|
||||
"""Extract data corresponding to Python range [n:m],
|
||||
and returns a formatted string"""
|
||||
return self._get_data(start, stop, True)
|
||||
|
||||
def __getitem__(self, key):
|
||||
"""Extract data and return it. Supports simple indexing
|
||||
(table[n]) and range slices (table[n:m]). Returns a nested
|
||||
Python list [[row],[row],[...]]"""
|
||||
|
||||
# Handle simple slices
|
||||
if isinstance(key, slice):
|
||||
# Fall back to brute force if the slice isn't simple
|
||||
try:
|
||||
if (key.step is not None and key.step != 1):
|
||||
raise IndexError
|
||||
return self._get_data(key.start, key.stop, False)
|
||||
except IndexError:
|
||||
return [ self[x] for x in xrange(*key.indices(self.nrows)) ]
|
||||
|
||||
# Handle single points (inefficiently!)
|
||||
if key < 0 or key >= self.nrows:
|
||||
def __getitem__(self, row):
|
||||
"""Extract timestamps from a row, with table[n] notation."""
|
||||
if row < 0 or row >= self.nrows:
|
||||
raise IndexError("Index out of range")
|
||||
(subdir, filename, offset, count) = self._offset_from_row(key)
|
||||
(subdir, filename, offset, count) = self._offset_from_row(row)
|
||||
f = self.file_open(subdir, filename)
|
||||
return f.extract_list(offset, 1)[0]
|
||||
return f.extract_timestamp(offset)
|
||||
|
||||
def _remove_rows(self, subdir, filename, start, stop):
|
||||
"""Helper to mark specific rows as being removed from a
|
||||
@@ -543,11 +575,3 @@ class Table(object):
|
||||
self._remove_rows(subdir, filename, row_offset, row_offset + count)
|
||||
remaining -= count
|
||||
row += count
|
||||
|
||||
class TimestampOnlyTable(object):
|
||||
"""Helper that lets us pass a Tables object into bisect, by
|
||||
returning only the timestamp when a particular row is requested."""
|
||||
def __init__(self, table):
|
||||
self.table = table
|
||||
def __getitem__(self, index):
|
||||
return self.table[index][0]
|
||||
|
@@ -19,11 +19,16 @@ Intervals are half-open, ie. they include data points with timestamps
|
||||
# Fourth version is an optimized rb-tree that stores interval starts
|
||||
# and ends directly in the tree, like bxinterval did.
|
||||
|
||||
from ..utils.time import float_time_to_string as ftts
|
||||
from ..utils.time import min_timestamp as nilmdb_min_timestamp
|
||||
from ..utils.time import max_timestamp as nilmdb_max_timestamp
|
||||
from ..utils.time import timestamp_to_string
|
||||
from ..utils.iterator import imerge
|
||||
import itertools
|
||||
|
||||
cimport rbtree
|
||||
cdef extern from "stdint.h":
|
||||
ctypedef unsigned long long uint64_t
|
||||
from libc.stdint cimport uint64_t, int64_t
|
||||
|
||||
ctypedef int64_t timestamp_t
|
||||
|
||||
class IntervalError(Exception):
|
||||
"""Error due to interval overlap, etc"""
|
||||
@@ -32,24 +37,25 @@ class IntervalError(Exception):
|
||||
cdef class Interval:
|
||||
"""Represents an interval of time."""
|
||||
|
||||
cdef public double start, end
|
||||
cdef public timestamp_t start, end
|
||||
|
||||
def __init__(self, double start, double end):
|
||||
def __init__(self, timestamp_t start, timestamp_t end):
|
||||
"""
|
||||
'start' and 'end' are arbitrary floats that represent time
|
||||
'start' and 'end' are arbitrary numbers that represent time
|
||||
"""
|
||||
if start >= end:
|
||||
# Explicitly disallow zero-width intervals (since they're half-open)
|
||||
raise IntervalError("start %s must precede end %s" % (start, end))
|
||||
self.start = float(start)
|
||||
self.end = float(end)
|
||||
self.start = start
|
||||
self.end = end
|
||||
|
||||
def __repr__(self):
|
||||
s = repr(self.start) + ", " + repr(self.end)
|
||||
return self.__class__.__name__ + "(" + s + ")"
|
||||
|
||||
def __str__(self):
|
||||
return "[" + ftts(self.start) + " -> " + ftts(self.end) + ")"
|
||||
return ("[" + timestamp_to_string(self.start) +
|
||||
" -> " + timestamp_to_string(self.end) + ")")
|
||||
|
||||
def __cmp__(self, Interval other):
|
||||
"""Compare two intervals. If non-equal, order by start then end"""
|
||||
@@ -71,7 +77,7 @@ cdef class Interval:
|
||||
return False
|
||||
return True
|
||||
|
||||
cpdef subset(self, double start, double end):
|
||||
cpdef subset(self, timestamp_t start, timestamp_t end):
|
||||
"""Return a new Interval that is a subset of this one"""
|
||||
# A subclass that tracks additional data might override this.
|
||||
if start < self.start or end > self.end:
|
||||
@@ -93,14 +99,14 @@ cdef class DBInterval(Interval):
|
||||
db_end = 200, db_endpos = 20000
|
||||
"""
|
||||
|
||||
cpdef public double db_start, db_end
|
||||
cpdef public timestamp_t db_start, db_end
|
||||
cpdef public uint64_t db_startpos, db_endpos
|
||||
|
||||
def __init__(self, start, end,
|
||||
db_start, db_end,
|
||||
db_startpos, db_endpos):
|
||||
"""
|
||||
'db_start' and 'db_end' are arbitrary floats that represent
|
||||
'db_start' and 'db_end' are arbitrary numbers that represent
|
||||
time. They must be a strict superset of the time interval
|
||||
covered by 'start' and 'end'. The 'db_startpos' and
|
||||
'db_endpos' are arbitrary database position indicators that
|
||||
@@ -120,7 +126,7 @@ cdef class DBInterval(Interval):
|
||||
s += ", " + repr(self.db_startpos) + ", " + repr(self.db_endpos)
|
||||
return self.__class__.__name__ + "(" + s + ")"
|
||||
|
||||
cpdef subset(self, double start, double end):
|
||||
cpdef subset(self, timestamp_t start, timestamp_t end):
|
||||
"""
|
||||
Return a new DBInterval that is a subset of this one
|
||||
"""
|
||||
@@ -264,21 +270,15 @@ cdef class IntervalSet:
|
||||
|
||||
def __and__(self, other not None):
|
||||
"""
|
||||
Compute a new IntervalSet from the intersection of two others
|
||||
Compute a new IntervalSet from the intersection of this
|
||||
IntervalSet with one other interval.
|
||||
|
||||
Output intervals are built as subsets of the intervals in the
|
||||
first argument (self).
|
||||
"""
|
||||
out = IntervalSet()
|
||||
|
||||
if not isinstance(other, IntervalSet):
|
||||
for i in self.intersection(other):
|
||||
out.tree.insert(rbtree.RBNode(i.start, i.end, i))
|
||||
else:
|
||||
for x in other:
|
||||
for i in self.intersection(x):
|
||||
out.tree.insert(rbtree.RBNode(i.start, i.end, i))
|
||||
|
||||
return out
|
||||
|
||||
def intersection(self, Interval interval not None, orig = False):
|
||||
@@ -313,6 +313,63 @@ cdef class IntervalSet:
|
||||
else:
|
||||
yield subset
|
||||
|
||||
def set_difference(self, IntervalSet other not None,
|
||||
Interval bounds = None):
|
||||
"""
|
||||
Compute the difference (self \\ other) between this
|
||||
IntervalSet and the given IntervalSet; i.e., the ranges
|
||||
that are present in 'self' but not 'other'.
|
||||
|
||||
If 'bounds' is not None, results are limited to the range
|
||||
specified by the interval 'bounds'.
|
||||
|
||||
Returns a generator that yields each interval in turn.
|
||||
Output intervals are built as subsets of the intervals in the
|
||||
first argument (self).
|
||||
"""
|
||||
# Iterate through all starts and ends in sorted order. Add a
|
||||
# tag to the iterator so that we can figure out which one they
|
||||
# were, after sorting.
|
||||
def decorate(it, key_start, key_end):
|
||||
for i in it:
|
||||
yield i.start, key_start, i
|
||||
yield i.end, key_end, i
|
||||
if bounds is None:
|
||||
bounds = Interval(nilmdb_min_timestamp,
|
||||
nilmdb_max_timestamp)
|
||||
self_iter = decorate(self.intersection(bounds), 0, 2)
|
||||
other_iter = decorate(other.intersection(bounds), 1, 3)
|
||||
|
||||
# Now iterate over the timestamps of each start and end.
|
||||
# At each point, evaluate which type of end it is, to determine
|
||||
# how to build up the output intervals.
|
||||
self_interval = None
|
||||
other_interval = None
|
||||
out_start = None
|
||||
for (ts, k, i) in imerge(self_iter, other_iter):
|
||||
if k == 0:
|
||||
# start self interval
|
||||
self_interval = i
|
||||
if other_interval is None:
|
||||
out_start = ts
|
||||
elif k == 1:
|
||||
# start other interval
|
||||
other_interval = i
|
||||
if out_start is not None and out_start != ts:
|
||||
yield self_interval.subset(out_start, ts)
|
||||
out_start = None
|
||||
elif k == 2:
|
||||
# end self interval
|
||||
if out_start is not None and out_start != ts:
|
||||
yield self_interval.subset(out_start, ts)
|
||||
out_start = None
|
||||
self_interval = None
|
||||
elif k == 3:
|
||||
# end other interval
|
||||
other_interval = None
|
||||
if self_interval:
|
||||
out_start = ts
|
||||
|
||||
cpdef intersects(self, Interval other):
|
||||
"""Return True if this IntervalSet intersects another interval"""
|
||||
for n in self.tree.intersect(other.start, other.end):
|
||||
@@ -320,7 +377,7 @@ cdef class IntervalSet:
|
||||
return True
|
||||
return False
|
||||
|
||||
def find_end(self, double t):
|
||||
def find_end(self, timestamp_t t):
|
||||
"""
|
||||
Return an Interval from this tree that ends at time t, or
|
||||
None if it doesn't exist.
|
||||
|
@@ -5,6 +5,8 @@ import sys
|
||||
import inspect
|
||||
import cStringIO
|
||||
|
||||
from ..utils.time import min_timestamp as nilmdb_min_timestamp
|
||||
|
||||
cdef enum:
|
||||
max_value_count = 64
|
||||
|
||||
@@ -146,7 +148,8 @@ class Parser(object):
|
||||
layout, into an internal data structure suitable for a
|
||||
pytables 'table.append(parser.data)'.
|
||||
"""
|
||||
cdef double last_ts = -1e12, ts
|
||||
cdef double last_ts = nilmdb_min_timestamp
|
||||
cdef double ts
|
||||
cdef int n = 0, i
|
||||
cdef char *line
|
||||
|
||||
|
@@ -35,7 +35,7 @@ import bisect
|
||||
# seems that 'PRAGMA synchronous=NORMAL' and 'PRAGMA journal_mode=WAL'
|
||||
# give an equivalent speedup more safely. That is what is used here.
|
||||
_sql_schema_updates = {
|
||||
0: """
|
||||
0: { "next": 1, "sql": """
|
||||
-- All streams
|
||||
CREATE TABLE streams(
|
||||
id INTEGER PRIMARY KEY, -- stream ID
|
||||
@@ -59,16 +59,21 @@ _sql_schema_updates = {
|
||||
end_pos INTEGER NOT NULL
|
||||
);
|
||||
CREATE INDEX _ranges_index ON ranges (stream_id, start_time, end_time);
|
||||
""",
|
||||
""" },
|
||||
|
||||
1: """
|
||||
1: { "next": 3, "sql": """
|
||||
-- Generic dictionary-type metadata that can be associated with a stream
|
||||
CREATE TABLE metadata(
|
||||
stream_id INTEGER NOT NULL,
|
||||
key TEXT NOT NULL,
|
||||
value TEXT
|
||||
);
|
||||
""",
|
||||
""" },
|
||||
|
||||
2: { "error": "old format with floating-point timestamps requires "
|
||||
"nilmdb 1.3.1 or older" },
|
||||
|
||||
3: { "next": None },
|
||||
}
|
||||
|
||||
@nilmdb.utils.must_close()
|
||||
@@ -96,7 +101,10 @@ class NilmDB(object):
|
||||
# SQLite database too
|
||||
sqlfilename = os.path.join(self.basepath, "data.sql")
|
||||
self.con = sqlite3.connect(sqlfilename, check_same_thread = True)
|
||||
try:
|
||||
self._sql_schema_update()
|
||||
finally: # pragma: no cover
|
||||
self.data.close()
|
||||
|
||||
# See big comment at top about the performance implications of this
|
||||
self.con.execute("PRAGMA synchronous=NORMAL")
|
||||
@@ -123,11 +131,20 @@ class NilmDB(object):
|
||||
version = cur.execute("PRAGMA user_version").fetchone()[0]
|
||||
oldversion = version
|
||||
|
||||
while version in _sql_schema_updates:
|
||||
cur.executescript(_sql_schema_updates[version])
|
||||
version = version + 1
|
||||
while True:
|
||||
if version not in _sql_schema_updates: # pragma: no cover
|
||||
raise Exception(self.basepath + ": unknown database version "
|
||||
+ str(version))
|
||||
update = _sql_schema_updates[version]
|
||||
if "error" in update: # pragma: no cover
|
||||
raise Exception(self.basepath + ": can't use database version "
|
||||
+ str(version) + ": " + update["error"])
|
||||
if update["next"] is None:
|
||||
break
|
||||
cur.executescript(update["sql"])
|
||||
version = update["next"]
|
||||
if self.verbose: # pragma: no cover
|
||||
printf("Schema updated to %d\n", version)
|
||||
printf("Database schema updated to %d\n", version)
|
||||
|
||||
if version != oldversion:
|
||||
with self.con:
|
||||
@@ -135,9 +152,9 @@ class NilmDB(object):
|
||||
|
||||
def _check_user_times(self, start, end):
|
||||
if start is None:
|
||||
start = -1e12
|
||||
start = nilmdb.utils.time.min_timestamp
|
||||
if end is None:
|
||||
end = 1e12
|
||||
end = nilmdb.utils.time.max_timestamp
|
||||
if start >= end:
|
||||
raise NilmDBError("start must precede end")
|
||||
return (start, end)
|
||||
@@ -284,14 +301,14 @@ class NilmDB(object):
|
||||
interval_min (earliest interval start)
|
||||
interval_max (latest interval end)
|
||||
rows (total number of rows of data)
|
||||
seconds (total time covered by this stream)
|
||||
time (total time covered by this stream, in timestamp units)
|
||||
"""
|
||||
params = ()
|
||||
query = "SELECT streams.path, streams.layout"
|
||||
if extended:
|
||||
query += ", min(ranges.start_time), max(ranges.end_time) "
|
||||
query += ", sum(ranges.end_pos - ranges.start_pos) "
|
||||
query += ", sum(ranges.end_time - ranges.start_time) "
|
||||
query += ", coalesce(sum(ranges.end_pos - ranges.start_pos), 0) "
|
||||
query += ", coalesce(sum(ranges.end_time - ranges.start_time), 0) "
|
||||
query += " FROM streams"
|
||||
if extended:
|
||||
query += " LEFT JOIN ranges ON streams.id = ranges.stream_id"
|
||||
@@ -306,8 +323,13 @@ class NilmDB(object):
|
||||
result = self.con.execute(query, params).fetchall()
|
||||
return [ list(x) for x in result ]
|
||||
|
||||
def stream_intervals(self, path, start = None, end = None):
|
||||
def stream_intervals(self, path, start = None, end = None, diffpath = None):
|
||||
"""
|
||||
List all intervals in 'path' between 'start' and 'end'. If
|
||||
'diffpath' is not none, list instead the set-difference
|
||||
between the intervals in the two streams; i.e. all interval
|
||||
ranges that are present in 'path' but not 'path2'.
|
||||
|
||||
Returns (intervals, restart) tuple.
|
||||
|
||||
intervals is a list of [start,end] timestamps of all intervals
|
||||
@@ -321,10 +343,17 @@ class NilmDB(object):
|
||||
"""
|
||||
stream_id = self._stream_id(path)
|
||||
intervals = self._get_intervals(stream_id)
|
||||
if diffpath:
|
||||
diffstream_id = self._stream_id(diffpath)
|
||||
diffintervals = self._get_intervals(diffstream_id)
|
||||
(start, end) = self._check_user_times(start, end)
|
||||
requested = Interval(start, end)
|
||||
result = []
|
||||
for n, i in enumerate(intervals.intersection(requested)):
|
||||
if diffpath:
|
||||
getter = intervals.set_difference(diffintervals, requested)
|
||||
else:
|
||||
getter = intervals.intersection(requested)
|
||||
for n, i in enumerate(getter):
|
||||
if n >= self.max_results:
|
||||
restart = i.start
|
||||
break
|
||||
@@ -393,6 +422,18 @@ class NilmDB(object):
|
||||
data.update(newdata)
|
||||
self.stream_set_metadata(path, data)
|
||||
|
||||
def stream_rename(self, oldpath, newpath):
|
||||
"""Rename a stream."""
|
||||
stream_id = self._stream_id(oldpath)
|
||||
|
||||
# Rename the data
|
||||
self.data.rename(oldpath, newpath)
|
||||
|
||||
# Rename the stream in the database
|
||||
with self.con as con:
|
||||
con.execute("UPDATE streams SET path=? WHERE id=?",
|
||||
(newpath, stream_id))
|
||||
|
||||
def stream_destroy(self, path):
|
||||
"""Fully remove a table and all of its data from the database.
|
||||
No way to undo it! Metadata is removed."""
|
||||
@@ -448,7 +489,7 @@ class NilmDB(object):
|
||||
# Optimization for the common case where an interval wasn't truncated
|
||||
if dbinterval.start == dbinterval.db_start:
|
||||
return dbinterval.db_startpos
|
||||
return bisect.bisect_left(bulkdata.TimestampOnlyTable(table),
|
||||
return bisect.bisect_left(table,
|
||||
dbinterval.start,
|
||||
dbinterval.db_startpos,
|
||||
dbinterval.db_endpos)
|
||||
@@ -467,7 +508,7 @@ class NilmDB(object):
|
||||
# want to include the given timestamp in the results. This is
|
||||
# so a queries like 1:00 -> 2:00 and 2:00 -> 3:00 return
|
||||
# non-overlapping data.
|
||||
return bisect.bisect_left(bulkdata.TimestampOnlyTable(table),
|
||||
return bisect.bisect_left(table,
|
||||
dbinterval.end,
|
||||
dbinterval.db_startpos,
|
||||
dbinterval.db_endpos)
|
||||
@@ -515,10 +556,10 @@ class NilmDB(object):
|
||||
row_max = row_start + remaining
|
||||
if row_max < row_end:
|
||||
row_end = row_max
|
||||
restart = table[row_max][0]
|
||||
restart = table[row_max]
|
||||
|
||||
# Gather these results up
|
||||
result.append(table.get_as_text(row_start, row_end))
|
||||
result.append(table.get_data(row_start, row_end))
|
||||
|
||||
# Count them
|
||||
remaining -= row_end - row_start
|
||||
|
@@ -1,143 +0,0 @@
|
||||
# Python implementation of the "rocket" data parsing interface.
|
||||
# This interface translates between the binary format on disk
|
||||
# and the ASCII format used when communicating with clients.
|
||||
|
||||
# This is slow! Use the C version instead.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import struct
|
||||
import cStringIO
|
||||
import itertools
|
||||
from . import layout as _layout
|
||||
import nilmdb.utils
|
||||
from nilmdb.utils.time import float_time_to_string as ftts
|
||||
|
||||
ERR_UNKNOWN = 0
|
||||
ERR_NON_MONOTONIC = 1
|
||||
ERR_OUT_OF_INTERVAL = 2
|
||||
class ParseError(Exception):
|
||||
pass
|
||||
|
||||
@nilmdb.utils.must_close(wrap_verify = False)
|
||||
class Rocket(object):
|
||||
def __init__(self, layout, filename):
|
||||
self.layout = layout
|
||||
if filename:
|
||||
self.file = open(filename, "a+b")
|
||||
else:
|
||||
self.file = None
|
||||
|
||||
# For packing/unpacking into a binary file.
|
||||
# This will change in the C version
|
||||
try:
|
||||
(self.ltype, lcount) = layout.split('_', 2)
|
||||
self.lcount = int(lcount)
|
||||
except:
|
||||
raise ValueError("no such layout: badly formatted string")
|
||||
if self.lcount < 1:
|
||||
raise ValueError("no such layout: bad count")
|
||||
try:
|
||||
struct_fmt = '<d' # Little endian, double timestamp
|
||||
struct_mapping = {
|
||||
"int8": 'b',
|
||||
"uint8": 'B',
|
||||
"int16": 'h',
|
||||
"uint16": 'H',
|
||||
"int32": 'i',
|
||||
"uint32": 'I',
|
||||
"int64": 'q',
|
||||
"uint64": 'Q',
|
||||
"float32": 'f',
|
||||
"float64": 'd',
|
||||
}
|
||||
struct_fmt += struct_mapping[self.ltype] * self.lcount
|
||||
except KeyError:
|
||||
raise ValueError("no such layout: bad data type")
|
||||
self.packer = struct.Struct(struct_fmt)
|
||||
|
||||
# For packing/unpacking from strings.
|
||||
self.layoutparser = _layout.Layout(self.layout)
|
||||
self.formatter = _layout.Formatter(self.layout)
|
||||
|
||||
def close(self):
|
||||
if self.file:
|
||||
self.file.close()
|
||||
|
||||
@property
|
||||
def binary_size(self):
|
||||
"""Return size of one row of data in the binary file, in bytes"""
|
||||
return self.packer.size
|
||||
|
||||
def append_iter(self, maxrows, data):
|
||||
"""Append the list data to the file"""
|
||||
# We assume the file is opened in append mode,
|
||||
# so all writes go to the end.
|
||||
written = 0
|
||||
for row in itertools.islice(data, maxrows):
|
||||
self.file.write(self.packer.pack(*row))
|
||||
written += 1
|
||||
self.file.flush()
|
||||
return written
|
||||
|
||||
def append_string(self, count, data, data_offset, linenum,
|
||||
start, end, last_timestamp):
|
||||
"""Parse string and append data.
|
||||
|
||||
count: maximum number of rows to add
|
||||
data: string data
|
||||
data_offset: byte offset into data to start parsing
|
||||
linenum: current line number of data
|
||||
start: starting timestamp for interval
|
||||
end: end timestamp for interval
|
||||
last_timestamp: last timestamp that was previously parsed
|
||||
|
||||
Raises ParseError if timestamps are non-monotonic, outside the
|
||||
start/end interval, etc.
|
||||
|
||||
On success, return a tuple with three values:
|
||||
added_rows: how many rows were added from the file
|
||||
data_offset: current offset into the data string
|
||||
last_timestamp: last timestamp we parsed
|
||||
"""
|
||||
# Parse the input data
|
||||
indata = cStringIO.StringIO(data)
|
||||
indata.seek(data_offset)
|
||||
written = 0
|
||||
while written < count:
|
||||
line = indata.readline()
|
||||
linenum += 1
|
||||
if line == "":
|
||||
break
|
||||
comment = line.find('#')
|
||||
if comment >= 0:
|
||||
line = line.split('#', 1)[0]
|
||||
line = line.strip()
|
||||
if line == "":
|
||||
continue
|
||||
try:
|
||||
(ts, row) = self.layoutparser.parse(line)
|
||||
except ValueError as e:
|
||||
raise ParseError(linenum, ERR_UNKNOWN, e)
|
||||
if ts <= last_timestamp:
|
||||
raise ParseError(linenum, ERR_NON_MONOTONIC, ts)
|
||||
last_timestamp = ts
|
||||
if ts < start or ts >= end:
|
||||
raise ParseError(linenum, ERR_OUT_OF_INTERVAL, ts)
|
||||
self.append_iter(1, [row])
|
||||
written += 1
|
||||
return (written, indata.tell(), last_timestamp, linenum)
|
||||
|
||||
def extract_list(self, offset, count):
|
||||
"""Extract count rows of data from the file at offset offset.
|
||||
Return a list of lists [[row],[row],...]"""
|
||||
ret = []
|
||||
self.file.seek(offset)
|
||||
for i in xrange(count):
|
||||
data = self.file.read(self.binary_size)
|
||||
ret.append(list(self.packer.unpack(data)))
|
||||
return ret
|
||||
|
||||
def extract_string(self, offset, count):
|
||||
"""Extract count rows of data from the file at offset offset.
|
||||
Return an ascii formatted string according to the layout"""
|
||||
return self.formatter.format(self.extract_list(offset, count))
|
@@ -2,6 +2,7 @@
|
||||
#include <structmember.h>
|
||||
#include <endian.h>
|
||||
|
||||
#include <ctype.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/* Values missing from stdint.h */
|
||||
@@ -16,9 +17,18 @@
|
||||
#define FLOAT64_MIN 0
|
||||
#define FLOAT64_MAX 0
|
||||
|
||||
typedef int64_t timestamp_t;
|
||||
|
||||
/* This code probably needs to be double-checked for the case where
|
||||
sizeof(long) != 8, so enforce that here with something that will
|
||||
fail at build time. We assume that the python integer type can
|
||||
hold an int64_t. */
|
||||
const static char __long_ok[1 - 2*!(sizeof(int64_t) ==
|
||||
sizeof(long int))] = { 0 };
|
||||
|
||||
/* Somewhat arbitrary, just so we can use fixed sizes for strings
|
||||
etc. */
|
||||
static const int MAX_LAYOUT_COUNT = 64;
|
||||
static const int MAX_LAYOUT_COUNT = 128;
|
||||
|
||||
/* Error object and constants */
|
||||
static PyObject *ParseError;
|
||||
@@ -35,20 +45,20 @@ static void add_parseerror_codes(PyObject *module)
|
||||
}
|
||||
|
||||
/* Helpers to raise ParseErrors. Use "return raise_str(...)" etc. */
|
||||
static PyObject *raise_str(int linenum, int code, const char *string)
|
||||
static PyObject *raise_str(int line, int col, int code, const char *string)
|
||||
{
|
||||
PyObject *o;
|
||||
o = Py_BuildValue("(iis)", linenum, code, string);
|
||||
o = Py_BuildValue("(iiis)", line, col, code, string);
|
||||
if (o != NULL) {
|
||||
PyErr_SetObject(ParseError, o);
|
||||
Py_DECREF(o);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
static PyObject *raise_num(int linenum, int code, double num)
|
||||
static PyObject *raise_int(int line, int col, int code, int64_t num)
|
||||
{
|
||||
PyObject *o;
|
||||
o = Py_BuildValue("(iid)", linenum, code, num);
|
||||
o = Py_BuildValue("(iiil)", line, col, code, num);
|
||||
if (o != NULL) {
|
||||
PyErr_SetObject(ParseError, o);
|
||||
Py_DECREF(o);
|
||||
@@ -236,106 +246,6 @@ static PyObject *Rocket_get_file_size(Rocket *self)
|
||||
return PyInt_FromLong(self->file_size);
|
||||
}
|
||||
|
||||
/****
|
||||
* Append from iterator
|
||||
*/
|
||||
|
||||
/* Helper for writing Python objects to the file */
|
||||
static inline void append_pyobject(FILE *out, PyObject *val, layout_type_t type)
|
||||
{
|
||||
union8_t t8;
|
||||
union16_t t16;
|
||||
union32_t t32;
|
||||
union64_t t64;
|
||||
int ret = 0;
|
||||
|
||||
switch (type) {
|
||||
#define CASE(type, pyconvert, pytype, disktype, htole, bytes) \
|
||||
case LAYOUT_TYPE_##type: \
|
||||
pytype = pyconvert(val); \
|
||||
if (PyErr_Occurred()) \
|
||||
return; \
|
||||
disktype = htole(disktype); \
|
||||
ret = fwrite(&disktype, bytes, 1, out); \
|
||||
break
|
||||
CASE(INT8, PyInt_AsLong, t8.i, t8.u, , 1);
|
||||
CASE(UINT8, PyInt_AsLong, t8.u, t8.u, , 1);
|
||||
CASE(INT16, PyInt_AsLong, t16.i, t16.u, htole16, 2);
|
||||
CASE(UINT16, PyInt_AsLong, t16.u, t16.u, htole16, 2);
|
||||
CASE(INT32, PyInt_AsLong, t32.i, t32.u, htole32, 4);
|
||||
CASE(UINT32, PyInt_AsLong, t32.u, t32.u, htole32, 4);
|
||||
CASE(INT64, PyInt_AsLong, t64.i, t64.u, htole64, 8);
|
||||
CASE(UINT64, PyInt_AsLong, t64.u, t64.u, htole64, 8);
|
||||
CASE(FLOAT32, PyFloat_AsDouble, t32.f, t32.u, htole32, 4);
|
||||
CASE(FLOAT64, PyFloat_AsDouble, t64.d, t64.u, htole64, 8);
|
||||
#undef CASE
|
||||
default:
|
||||
PyErr_SetString(PyExc_TypeError, "unknown type");
|
||||
return;
|
||||
}
|
||||
if (ret <= 0) {
|
||||
PyErr_SetFromErrno(PyExc_OSError);
|
||||
}
|
||||
}
|
||||
/* .append_iter(maxrows, dataiter) */
|
||||
static PyObject *Rocket_append_iter(Rocket *self, PyObject *args)
|
||||
{
|
||||
int maxrows;
|
||||
PyObject *iter;
|
||||
PyObject *rowlist;
|
||||
if (!PyArg_ParseTuple(args, "iO:append_iter", &maxrows, &iter))
|
||||
return NULL;
|
||||
if (!PyIter_Check(iter)) {
|
||||
PyErr_SetString(PyExc_TypeError, "need an iterable");
|
||||
return NULL;
|
||||
}
|
||||
if (!self->file) {
|
||||
PyErr_SetString(PyExc_Exception, "no file");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Mark file size so that it will get updated next time it's read */
|
||||
self->file_size = -1;
|
||||
|
||||
int row;
|
||||
for (row = 0; row < maxrows; row++) {
|
||||
rowlist = PyIter_Next(iter);
|
||||
if (!rowlist)
|
||||
break;
|
||||
if (!PyList_Check(rowlist)) {
|
||||
PyErr_SetString(PyExc_TypeError, "rows must be lists");
|
||||
goto row_err;
|
||||
}
|
||||
if (PyList_Size(rowlist) != self->layout_count + 1) {
|
||||
PyErr_SetString(PyExc_TypeError, "short row");
|
||||
goto row_err;
|
||||
}
|
||||
|
||||
/* Extract and write timestamp */
|
||||
append_pyobject(self->file, PyList_GetItem(rowlist, 0),
|
||||
LAYOUT_TYPE_FLOAT64);
|
||||
if (PyErr_Occurred())
|
||||
goto row_err;
|
||||
|
||||
/* Extract and write values */
|
||||
int i;
|
||||
for (i = 0; i < self->layout_count; i++) {
|
||||
append_pyobject(self->file,
|
||||
PyList_GetItem(rowlist, i+1),
|
||||
self->layout_type);
|
||||
if (PyErr_Occurred())
|
||||
goto row_err;
|
||||
}
|
||||
}
|
||||
fflush(self->file);
|
||||
/* All done */
|
||||
return PyLong_FromLong(row);
|
||||
row_err:
|
||||
fflush(self->file);
|
||||
Py_DECREF(rowlist);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/****
|
||||
* Append from string
|
||||
*/
|
||||
@@ -352,10 +262,11 @@ static PyObject *Rocket_append_string(Rocket *self, PyObject *args)
|
||||
int count;
|
||||
const char *data;
|
||||
int offset;
|
||||
const char *linestart;
|
||||
int linenum;
|
||||
double start;
|
||||
double end;
|
||||
double last_timestamp;
|
||||
timestamp_t start;
|
||||
timestamp_t end;
|
||||
timestamp_t last_timestamp;
|
||||
|
||||
int written = 0;
|
||||
char *endptr;
|
||||
@@ -369,19 +280,27 @@ static PyObject *Rocket_append_string(Rocket *self, PyObject *args)
|
||||
but we need the null termination for strto*. If we had
|
||||
strnto* that took a length, we could use t# and not require
|
||||
a copy. */
|
||||
if (!PyArg_ParseTuple(args, "isiiddd:append_string", &count,
|
||||
if (!PyArg_ParseTuple(args, "isiilll:append_string", &count,
|
||||
&data, &offset, &linenum,
|
||||
&start, &end, &last_timestamp))
|
||||
return NULL;
|
||||
|
||||
/* Skip spaces, but don't skip over a newline. */
|
||||
#define SKIP_BLANK(buf) do { \
|
||||
while (isspace(*buf)) { \
|
||||
if (*buf == '\n') \
|
||||
break; \
|
||||
buf++; \
|
||||
} } while(0)
|
||||
|
||||
const char *buf = &data[offset];
|
||||
while (written < count && *buf)
|
||||
{
|
||||
linestart = buf;
|
||||
linenum++;
|
||||
|
||||
/* Skip leading whitespace and commented lines */
|
||||
while (*buf == ' ' || *buf == '\t')
|
||||
buf++;
|
||||
SKIP_BLANK(buf);
|
||||
if (*buf == '#') {
|
||||
while (*buf && *buf != '\n')
|
||||
buf++;
|
||||
@@ -391,14 +310,23 @@ static PyObject *Rocket_append_string(Rocket *self, PyObject *args)
|
||||
}
|
||||
|
||||
/* Extract timestamp */
|
||||
t64.i = strtoll(buf, &endptr, 10);
|
||||
if (endptr == buf || !isspace(*endptr)) {
|
||||
/* Try parsing as a double instead */
|
||||
t64.d = strtod(buf, &endptr);
|
||||
if (endptr == buf)
|
||||
return raise_str(linenum, ERR_OTHER, "bad timestamp");
|
||||
if (t64.d <= last_timestamp)
|
||||
return raise_num(linenum, ERR_NON_MONOTONIC, t64.d);
|
||||
last_timestamp = t64.d;
|
||||
if (t64.d < start || t64.d >= end)
|
||||
return raise_num(linenum, ERR_OUT_OF_INTERVAL, t64.d);
|
||||
goto bad_timestamp;
|
||||
if (!isspace(*endptr))
|
||||
goto cant_parse_value;
|
||||
t64.i = round(t64.d);
|
||||
}
|
||||
if (t64.i <= last_timestamp)
|
||||
return raise_int(linenum, buf - linestart + 1,
|
||||
ERR_NON_MONOTONIC, t64.i);
|
||||
last_timestamp = t64.i;
|
||||
if (t64.i < start || t64.i >= end)
|
||||
return raise_int(linenum, buf - linestart + 1,
|
||||
ERR_OUT_OF_INTERVAL, t64.i);
|
||||
t64.u = le64toh(t64.u);
|
||||
if (fwrite(&t64.u, 8, 1, self->file) != 1)
|
||||
goto err;
|
||||
@@ -410,23 +338,31 @@ static PyObject *Rocket_append_string(Rocket *self, PyObject *args)
|
||||
case LAYOUT_TYPE_##type: \
|
||||
/* parse and write in a loop */ \
|
||||
for (i = 0; i < self->layout_count; i++) { \
|
||||
parsetype = parsefunc(buf, &endptr); \
|
||||
if (endptr == buf) \
|
||||
/* skip non-newlines */ \
|
||||
SKIP_BLANK(buf); \
|
||||
if (*buf == '\n') \
|
||||
goto wrong_number_of_values; \
|
||||
/* parse number */ \
|
||||
parsetype = parsefunc(buf, &endptr); \
|
||||
if (*endptr && !isspace(*endptr)) \
|
||||
goto cant_parse_value; \
|
||||
/* check limits */ \
|
||||
if (type##_MIN != type##_MAX && \
|
||||
(parsetype < type##_MIN || \
|
||||
parsetype > type##_MAX)) \
|
||||
goto value_out_of_range; \
|
||||
/* convert to disk representation */ \
|
||||
realtype = parsetype; \
|
||||
disktype = letoh(disktype); \
|
||||
/* write it */ \
|
||||
if (fwrite(&disktype, bytes, \
|
||||
1, self->file) != 1) \
|
||||
goto err; \
|
||||
/* advance buf */ \
|
||||
buf = endptr; \
|
||||
} \
|
||||
/* Skip trailing whitespace and comments */ \
|
||||
while (*buf == ' ' || *buf == '\t') \
|
||||
buf++; \
|
||||
SKIP_BLANK(buf); \
|
||||
if (*buf == '#') \
|
||||
while (*buf && *buf != '\n') \
|
||||
buf++; \
|
||||
@@ -461,127 +397,26 @@ static PyObject *Rocket_append_string(Rocket *self, PyObject *args)
|
||||
/* Build return value and return */
|
||||
offset = buf - data;
|
||||
PyObject *o;
|
||||
o = Py_BuildValue("(iidi)", written, offset, last_timestamp, linenum);
|
||||
o = Py_BuildValue("(iili)", written, offset, last_timestamp, linenum);
|
||||
return o;
|
||||
err:
|
||||
PyErr_SetFromErrno(PyExc_OSError);
|
||||
return NULL;
|
||||
bad_timestamp:
|
||||
return raise_str(linenum, buf - linestart + 1,
|
||||
ERR_OTHER, "bad timestamp");
|
||||
cant_parse_value:
|
||||
return raise_str(linenum, buf - linestart + 1,
|
||||
ERR_OTHER, "can't parse value");
|
||||
wrong_number_of_values:
|
||||
return raise_str(linenum, ERR_OTHER, "wrong number of values");
|
||||
return raise_str(linenum, buf - linestart + 1,
|
||||
ERR_OTHER, "wrong number of values");
|
||||
value_out_of_range:
|
||||
return raise_str(linenum, ERR_OTHER, "value out of range");
|
||||
return raise_str(linenum, buf - linestart + 1,
|
||||
ERR_OTHER, "value out of range");
|
||||
extra_data_on_line:
|
||||
return raise_str(linenum, ERR_OTHER, "extra data on line");
|
||||
}
|
||||
|
||||
/****
|
||||
* Extract to Python list
|
||||
*/
|
||||
|
||||
static int _extract_handle_params(Rocket *self, PyObject *args, long *count)
|
||||
{
|
||||
long offset;
|
||||
if (!PyArg_ParseTuple(args, "ll", &offset, count))
|
||||
return -1;
|
||||
if (!self->file) {
|
||||
PyErr_SetString(PyExc_Exception, "no file");
|
||||
return -1;
|
||||
}
|
||||
/* Seek to target location */
|
||||
if (fseek(self->file, offset, SEEK_SET) < 0) {
|
||||
PyErr_SetFromErrno(PyExc_OSError);
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Helper for extracting data from a file as a Python object */
|
||||
static inline void *extract_pyobject(FILE *in, layout_type_t type)
|
||||
{
|
||||
union8_t t8;
|
||||
union16_t t16;
|
||||
union32_t t32;
|
||||
union64_t t64;
|
||||
|
||||
switch (type) {
|
||||
#define CASE(type, pyconvert, pytype, disktype, letoh, bytes) \
|
||||
case LAYOUT_TYPE_##type: \
|
||||
if (fread(&disktype, bytes, 1, in) <= 0) \
|
||||
break; \
|
||||
disktype = letoh(disktype); \
|
||||
return pyconvert(pytype); \
|
||||
break
|
||||
CASE(INT8, PyInt_FromLong, t8.i, t8.u, , 1);
|
||||
CASE(UINT8, PyInt_FromLong, t8.u, t8.u, , 1);
|
||||
CASE(INT16, PyInt_FromLong, t16.i, t16.u, le16toh, 2);
|
||||
CASE(UINT16, PyInt_FromLong, t16.u, t16.u, le16toh, 2);
|
||||
CASE(INT32, PyInt_FromLong, t32.i, t32.u, le32toh, 4);
|
||||
CASE(UINT32, PyInt_FromLong, t32.u, t32.u, le32toh, 4);
|
||||
CASE(INT64, PyInt_FromLong, t64.i, t64.u, le64toh, 8);
|
||||
CASE(UINT64, PyInt_FromLong, t64.u, t64.u, le64toh, 8);
|
||||
CASE(FLOAT32, PyFloat_FromDouble, t32.f, t32.u, le32toh, 4);
|
||||
CASE(FLOAT64, PyFloat_FromDouble, t64.d, t64.u, le64toh, 8);
|
||||
#undef CASE
|
||||
default:
|
||||
PyErr_SetString(PyExc_TypeError, "unknown type");
|
||||
return NULL;
|
||||
}
|
||||
PyErr_SetString(PyExc_OSError, "failed to read from file");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static PyObject *Rocket_extract_list(Rocket *self, PyObject *args)
|
||||
{
|
||||
long count;
|
||||
if (_extract_handle_params(self, args, &count) < 0)
|
||||
return NULL;
|
||||
|
||||
/* Make a list to return */
|
||||
PyObject *retlist = PyList_New(0);
|
||||
if (!retlist)
|
||||
return NULL;
|
||||
|
||||
/* Read data into new Python lists */
|
||||
int row;
|
||||
for (row = 0; row < count; row++)
|
||||
{
|
||||
PyObject *rowlist = PyList_New(self->layout_count + 1);
|
||||
if (!rowlist) {
|
||||
Py_DECREF(retlist);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Timestamp */
|
||||
PyObject *entry = extract_pyobject(self->file,
|
||||
LAYOUT_TYPE_FLOAT64);
|
||||
if (!entry || (PyList_SetItem(rowlist, 0, entry) < 0)) {
|
||||
Py_DECREF(rowlist);
|
||||
Py_DECREF(retlist);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Data */
|
||||
int i;
|
||||
for (i = 0; i < self->layout_count; i++) {
|
||||
PyObject *ent = extract_pyobject(self->file,
|
||||
self->layout_type);
|
||||
if (!ent || (PyList_SetItem(rowlist, i+1, ent) < 0)) {
|
||||
Py_DECREF(rowlist);
|
||||
Py_DECREF(retlist);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Add row to return value */
|
||||
if (PyList_Append(retlist, rowlist) < 0) {
|
||||
Py_DECREF(rowlist);
|
||||
Py_DECREF(retlist);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
Py_DECREF(rowlist);
|
||||
}
|
||||
return retlist;
|
||||
return raise_str(linenum, buf - linestart + 1,
|
||||
ERR_OTHER, "extra data on line");
|
||||
}
|
||||
|
||||
/****
|
||||
@@ -591,8 +426,19 @@ static PyObject *Rocket_extract_list(Rocket *self, PyObject *args)
|
||||
static PyObject *Rocket_extract_string(Rocket *self, PyObject *args)
|
||||
{
|
||||
long count;
|
||||
if (_extract_handle_params(self, args, &count) < 0)
|
||||
long offset;
|
||||
|
||||
if (!PyArg_ParseTuple(args, "ll", &offset, &count))
|
||||
return NULL;
|
||||
if (!self->file) {
|
||||
PyErr_SetString(PyExc_Exception, "no file");
|
||||
return NULL;
|
||||
}
|
||||
/* Seek to target location */
|
||||
if (fseek(self->file, offset, SEEK_SET) < 0) {
|
||||
PyErr_SetFromErrno(PyExc_OSError);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
char *str = NULL, *new;
|
||||
long len_alloc = 0;
|
||||
@@ -626,8 +472,7 @@ static PyObject *Rocket_extract_string(Rocket *self, PyObject *args)
|
||||
if (fread(&t64.u, 8, 1, self->file) != 1)
|
||||
goto err;
|
||||
t64.u = le64toh(t64.u);
|
||||
/* Timestamps are always printed to the microsecond */
|
||||
ret = sprintf(&str[len], "%.6f", t64.d);
|
||||
ret = sprintf(&str[len], "%ld", t64.i);
|
||||
if (ret <= 0)
|
||||
goto err;
|
||||
len += ret;
|
||||
@@ -682,6 +527,33 @@ err:
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
/****
|
||||
* Extract timestamp
|
||||
*/
|
||||
static PyObject *Rocket_extract_timestamp(Rocket *self, PyObject *args)
|
||||
{
|
||||
long offset;
|
||||
union64_t t64;
|
||||
if (!PyArg_ParseTuple(args, "l", &offset))
|
||||
return NULL;
|
||||
if (!self->file) {
|
||||
PyErr_SetString(PyExc_Exception, "no file");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Seek to target location and read timestamp */
|
||||
if ((fseek(self->file, offset, SEEK_SET) < 0) ||
|
||||
(fread(&t64.u, 8, 1, self->file) != 1)) {
|
||||
PyErr_SetFromErrno(PyExc_OSError);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Convert and return */
|
||||
t64.u = le64toh(t64.u);
|
||||
return Py_BuildValue("l", t64.i);
|
||||
}
|
||||
|
||||
/****
|
||||
* Module and type setup
|
||||
*/
|
||||
@@ -703,10 +575,6 @@ static PyMethodDef Rocket_methods[] = {
|
||||
"close(self)\n\n"
|
||||
"Close file handle" },
|
||||
|
||||
{ "append_iter", (PyCFunction)Rocket_append_iter, METH_VARARGS,
|
||||
"append_iter(self, maxrows, iterable)\n\n"
|
||||
"Append up to maxrows of data from iter to the file" },
|
||||
|
||||
{ "append_string", (PyCFunction)Rocket_append_string, METH_VARARGS,
|
||||
"append_string(self, count, data, offset, line, start, end, ts)\n\n"
|
||||
"Parse string and append data.\n"
|
||||
@@ -727,16 +595,16 @@ static PyMethodDef Rocket_methods[] = {
|
||||
" data_offset: current offset into the data string\n"
|
||||
" last_timestamp: last timestamp we parsed" },
|
||||
|
||||
{ "extract_list", (PyCFunction)Rocket_extract_list, METH_VARARGS,
|
||||
"extract_list(self, offset, count)\n\n"
|
||||
"Extract count rows of data from the file at offset offset.\n"
|
||||
"Return a list of lists [[row],[row],...]" },
|
||||
|
||||
{ "extract_string", (PyCFunction)Rocket_extract_string, METH_VARARGS,
|
||||
"extract_string(self, offset, count)\n\n"
|
||||
"Extract count rows of data from the file at offset offset.\n"
|
||||
"Return an ascii formatted string according to the layout" },
|
||||
|
||||
{ "extract_timestamp",
|
||||
(PyCFunction)Rocket_extract_timestamp, METH_VARARGS,
|
||||
"extract_timestamp(self, offset)\n\n"
|
||||
"Extract a single timestamp from the file" },
|
||||
|
||||
{ NULL },
|
||||
};
|
||||
|
||||
|
@@ -6,6 +6,7 @@ from __future__ import absolute_import
|
||||
import nilmdb.server
|
||||
from nilmdb.utils.printf import *
|
||||
from nilmdb.server.errors import NilmDBError
|
||||
from nilmdb.utils.time import string_to_timestamp
|
||||
|
||||
import cherrypy
|
||||
import sys
|
||||
@@ -212,6 +213,16 @@ class Stream(NilmApp):
|
||||
"""Delete a stream and its associated data."""
|
||||
return self.db.stream_destroy(path)
|
||||
|
||||
# /stream/rename?oldpath=/newton/prep&newpath=/newton/prep/1
|
||||
@cherrypy.expose
|
||||
@cherrypy.tools.json_in()
|
||||
@cherrypy.tools.json_out()
|
||||
@exception_to_httperror(NilmDBError, ValueError)
|
||||
@cherrypy.tools.CORS_allow(methods = ["POST"])
|
||||
def rename(self, oldpath, newpath):
|
||||
"""Rename a stream."""
|
||||
return self.db.stream_rename(oldpath, newpath)
|
||||
|
||||
# /stream/get_metadata?path=/newton/prep
|
||||
# /stream/get_metadata?path=/newton/prep&key=foo&key=bar
|
||||
@cherrypy.expose
|
||||
@@ -294,8 +305,8 @@ class Stream(NilmApp):
|
||||
raise cherrypy.HTTPError("404 Not Found", "No such stream")
|
||||
|
||||
# Check limits
|
||||
start = float(start)
|
||||
end = float(end)
|
||||
start = string_to_timestamp(start)
|
||||
end = string_to_timestamp(end)
|
||||
if start >= end:
|
||||
raise cherrypy.HTTPError("400 Bad Request",
|
||||
"start must precede end")
|
||||
@@ -321,9 +332,9 @@ class Stream(NilmApp):
|
||||
removed.
|
||||
"""
|
||||
if start is not None:
|
||||
start = float(start)
|
||||
start = string_to_timestamp(start)
|
||||
if end is not None:
|
||||
end = float(end)
|
||||
end = string_to_timestamp(end)
|
||||
if start is not None and end is not None:
|
||||
if start >= end:
|
||||
raise cherrypy.HTTPError("400 Bad Request",
|
||||
@@ -332,38 +343,47 @@ class Stream(NilmApp):
|
||||
|
||||
# /stream/intervals?path=/newton/prep
|
||||
# /stream/intervals?path=/newton/prep&start=1234567890.0&end=1234567899.0
|
||||
# /stream/intervals?path=/newton/prep&diffpath=/newton/prep2
|
||||
@cherrypy.expose
|
||||
@chunked_response
|
||||
@response_type("application/x-json-stream")
|
||||
def intervals(self, path, start = None, end = None):
|
||||
def intervals(self, path, start = None, end = None, diffpath = None):
|
||||
"""
|
||||
Get intervals from backend database. Streams the resulting
|
||||
intervals as JSON strings separated by CR LF pairs. This may
|
||||
make multiple requests to the nilmdb backend to avoid causing
|
||||
it to block for too long.
|
||||
|
||||
Returns intervals between 'start' and 'end' belonging to
|
||||
'path'. If 'diff' is provided, the set-difference between
|
||||
intervals in 'path' and intervals in 'diffpath' are
|
||||
returned instead.
|
||||
|
||||
Note that the response type is the non-standard
|
||||
'application/x-json-stream' for lack of a better option.
|
||||
"""
|
||||
if start is not None:
|
||||
start = float(start)
|
||||
start = string_to_timestamp(start)
|
||||
if end is not None:
|
||||
end = float(end)
|
||||
end = string_to_timestamp(end)
|
||||
|
||||
if start is not None and end is not None:
|
||||
if start >= end:
|
||||
raise cherrypy.HTTPError("400 Bad Request",
|
||||
"start must precede end")
|
||||
|
||||
streams = self.db.stream_list(path = path)
|
||||
if len(streams) != 1:
|
||||
raise cherrypy.HTTPError("404 Not Found", "No such stream")
|
||||
if len(self.db.stream_list(path = path)) != 1:
|
||||
raise cherrypy.HTTPError("404", "No such stream: " + path)
|
||||
|
||||
if diffpath and len(self.db.stream_list(path = diffpath)) != 1:
|
||||
raise cherrypy.HTTPError("404", "No such stream: " + diffpath)
|
||||
|
||||
@workaround_cp_bug_1200
|
||||
def content(start, end):
|
||||
# Note: disable chunked responses to see tracebacks from here.
|
||||
while True:
|
||||
(ints, restart) = self.db.stream_intervals(path, start, end)
|
||||
(ints, restart) = self.db.stream_intervals(path, start, end,
|
||||
diffpath)
|
||||
response = ''.join([ json.dumps(i) + "\r\n" for i in ints ])
|
||||
yield response
|
||||
if restart == 0:
|
||||
@@ -385,9 +405,9 @@ class Stream(NilmApp):
|
||||
Add count=True to return a count rather than actual data.
|
||||
"""
|
||||
if start is not None:
|
||||
start = float(start)
|
||||
start = string_to_timestamp(start)
|
||||
if end is not None:
|
||||
end = float(end)
|
||||
end = string_to_timestamp(end)
|
||||
|
||||
# Check parameters
|
||||
if start is not None and end is not None:
|
||||
|
@@ -10,3 +10,4 @@ from nilmdb.utils import atomic
|
||||
import nilmdb.utils.threadsafety
|
||||
import nilmdb.utils.fallocate
|
||||
import nilmdb.utils.time
|
||||
import nilmdb.utils.iterator
|
||||
|
36
nilmdb/utils/iterator.py
Normal file
36
nilmdb/utils/iterator.py
Normal file
@@ -0,0 +1,36 @@
|
||||
# Misc iterator tools
|
||||
|
||||
# Iterator merging, based on http://code.activestate.com/recipes/491285/
|
||||
import heapq
|
||||
def imerge(*iterables):
|
||||
'''Merge multiple sorted inputs into a single sorted output.
|
||||
|
||||
Equivalent to: sorted(itertools.chain(*iterables))
|
||||
|
||||
>>> list(imerge([1,3,5,7], [0,2,4,8], [5,10,15,20], [], [25]))
|
||||
[0, 1, 2, 3, 4, 5, 5, 7, 8, 10, 15, 20, 25]
|
||||
|
||||
'''
|
||||
heappop, siftup, _Stop = heapq.heappop, heapq._siftup, StopIteration
|
||||
|
||||
h = []
|
||||
h_append = h.append
|
||||
for it in map(iter, iterables):
|
||||
try:
|
||||
next = it.next
|
||||
h_append([next(), next])
|
||||
except _Stop:
|
||||
pass
|
||||
heapq.heapify(h)
|
||||
|
||||
while 1:
|
||||
try:
|
||||
while 1:
|
||||
v, next = s = h[0] # raises IndexError when h is empty
|
||||
yield v
|
||||
s[0] = next() # raises StopIteration when exhausted
|
||||
siftup(h, 0) # restore heap condition
|
||||
except _Stop:
|
||||
heappop(h) # remove empty iterator
|
||||
except IndexError:
|
||||
return
|
@@ -1,11 +1,60 @@
|
||||
from nilmdb.utils import datetime_tz
|
||||
import re
|
||||
|
||||
# Range
|
||||
min_timestamp = (-2**63)
|
||||
max_timestamp = (2**62 - 1)
|
||||
|
||||
# Smallest representable step
|
||||
epsilon = 1
|
||||
|
||||
def string_to_timestamp(str):
|
||||
"""Convert a string that represents an integer number of microseconds
|
||||
since epoch."""
|
||||
try:
|
||||
# Parse a string like "1234567890123456" and return an integer
|
||||
return int(str)
|
||||
except ValueError:
|
||||
# Try parsing as a float, in case it's "1234567890123456.0"
|
||||
return int(round(float(str)))
|
||||
|
||||
def timestamp_to_string(timestamp):
|
||||
"""Convert a timestamp (integer microseconds since epoch) to a string"""
|
||||
if isinstance(timestamp, float):
|
||||
return str(int(round(timestamp)))
|
||||
else:
|
||||
return str(timestamp)
|
||||
|
||||
def timestamp_to_human(timestamp):
|
||||
"""Convert a timestamp (integer microseconds since epoch) to a
|
||||
human-readable string, using the local timezone for display
|
||||
(e.g. from the TZ env var)."""
|
||||
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp_to_unix(timestamp))
|
||||
return dt.strftime("%a, %d %b %Y %H:%M:%S.%f %z")
|
||||
|
||||
def unix_to_timestamp(unix):
|
||||
"""Convert a Unix timestamp (floating point seconds since epoch)
|
||||
into a NILM timestamp (integer microseconds since epoch)"""
|
||||
return int(round(unix * 1e6))
|
||||
|
||||
def timestamp_to_unix(timestamp):
|
||||
"""Convert a NILM timestamp (integer microseconds since epoch)
|
||||
into a Unix timestamp (floating point seconds since epoch)"""
|
||||
return timestamp / 1e6
|
||||
timestamp_to_seconds = timestamp_to_unix
|
||||
|
||||
def rate_to_period(hz, cycles = 1):
|
||||
"""Convert a rate (in Hz) to a period (in timestamp units).
|
||||
Returns an integer."""
|
||||
period = unix_to_timestamp(cycles) / float(hz)
|
||||
return int(round(period))
|
||||
|
||||
def parse_time(toparse):
|
||||
"""
|
||||
Parse a free-form time string and return a datetime_tz object.
|
||||
If the string doesn't contain a timestamp, the current local
|
||||
timezone is assumed (e.g. from the TZ env var).
|
||||
Parse a free-form time string and return a nilmdb timestamp
|
||||
(integer seconds since epoch). If the string doesn't contain a
|
||||
timestamp, the current local timezone is assumed (e.g. from the TZ
|
||||
env var).
|
||||
"""
|
||||
# If string isn't "now" and doesn't contain at least 4 digits,
|
||||
# consider it invalid. smartparse might otherwise accept
|
||||
@@ -15,17 +64,28 @@ def parse_time(toparse):
|
||||
|
||||
# Try to just parse the time as given
|
||||
try:
|
||||
return datetime_tz.datetime_tz.smartparse(toparse)
|
||||
except ValueError:
|
||||
return unix_to_timestamp(datetime_tz.datetime_tz.
|
||||
smartparse(toparse).totimestamp())
|
||||
except (ValueError, OverflowError):
|
||||
pass
|
||||
|
||||
# Try to treat it as a single double
|
||||
# If it starts with @, treat it as a NILM timestamp
|
||||
# (integer microseconds since epoch)
|
||||
try:
|
||||
timestamp = float(toparse)
|
||||
# range is from about year 2001 - 2065
|
||||
if timestamp < 1e9 or timestamp > 3e9:
|
||||
raise ValueError
|
||||
return datetime_tz.datetime_tz.fromtimestamp(timestamp)
|
||||
if toparse[0] == '@':
|
||||
return int(toparse[1:])
|
||||
except (ValueError, KeyError):
|
||||
pass
|
||||
|
||||
# If it's parseable as a float, treat it as a Unix or NILM
|
||||
# timestamp based on its range.
|
||||
try:
|
||||
val = float(toparse)
|
||||
# range is from about year 2001 - 2128
|
||||
if val > 1e9 and val < 5e9:
|
||||
return unix_to_timestamp(val)
|
||||
if val > 1e15 and val < 5e15:
|
||||
return val
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
@@ -47,7 +107,8 @@ def parse_time(toparse):
|
||||
r")", toparse)
|
||||
if res is not None:
|
||||
try:
|
||||
return datetime_tz.datetime_tz.smartparse(res.group(2))
|
||||
return unix_to_timestamp(datetime_tz.datetime_tz.
|
||||
smartparse(res.group(2)).totimestamp())
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
@@ -55,15 +116,6 @@ def parse_time(toparse):
|
||||
# just give up for now.
|
||||
raise ValueError("unable to parse timestamp")
|
||||
|
||||
def format_time(timestamp):
|
||||
"""
|
||||
Convert a Unix timestamp to a string for printing, using the
|
||||
local timezone for display (e.g. from the TZ env var).
|
||||
"""
|
||||
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp)
|
||||
return dt.strftime("%a, %d %b %Y %H:%M:%S.%f %z")
|
||||
|
||||
def float_time_to_string(timestamp):
|
||||
"""Convert a floating-point Unix timestamp to a string,
|
||||
like '1234567890.000000'"""
|
||||
return "%.6f" % timestamp
|
||||
def now():
|
||||
"""Return current timestamp"""
|
||||
return unix_to_timestamp(datetime_tz.datetime_tz.utcnow().totimestamp())
|
||||
|
@@ -1,7 +1,7 @@
|
||||
"""File-like objects that add timestamps to the input lines"""
|
||||
|
||||
from nilmdb.utils.printf import *
|
||||
from nilmdb.utils import datetime_tz
|
||||
import nilmdb.utils.time
|
||||
|
||||
class Timestamper(object):
|
||||
"""A file-like object that adds timestamps to lines of an input file."""
|
||||
@@ -61,31 +61,33 @@ class TimestamperRate(Timestamper):
|
||||
|
||||
end: If specified, raise StopIteration before outputting a value
|
||||
greater than this."""
|
||||
timestamp_to_string = nilmdb.utils.time.timestamp_to_string
|
||||
rate_to_period = nilmdb.utils.time.rate_to_period
|
||||
def iterator(start, rate, end):
|
||||
n = 0
|
||||
rate = float(rate)
|
||||
while True:
|
||||
now = start + n / rate
|
||||
now = start + rate_to_period(rate, n)
|
||||
if end and now >= end:
|
||||
raise StopIteration
|
||||
yield sprintf("%.6f ", start + n / rate)
|
||||
yield timestamp_to_string(now) + " "
|
||||
n += 1
|
||||
Timestamper.__init__(self, infile, iterator(start, rate, end))
|
||||
self.start = start
|
||||
self.rate = rate
|
||||
def __str__(self):
|
||||
start = datetime_tz.datetime_tz.fromtimestamp(self.start)
|
||||
start = start.strftime("%a, %d %b %Y %H:%M:%S %Z")
|
||||
return sprintf("TimestamperRate(..., start=\"%s\", rate=%g)",
|
||||
str(start), self.rate)
|
||||
nilmdb.utils.time.timestamp_to_human(self.start),
|
||||
self.rate)
|
||||
|
||||
class TimestamperNow(Timestamper):
|
||||
"""Timestamper that uses current time"""
|
||||
def __init__(self, infile):
|
||||
timestamp_to_string = nilmdb.utils.time.timestamp_to_string
|
||||
get_now = nilmdb.utils.time.now
|
||||
def iterator():
|
||||
while True:
|
||||
now = datetime_tz.datetime_tz.utcnow().totimestamp()
|
||||
yield sprintf("%.6f ", now)
|
||||
yield timestamp_to_string(get_now()) + " "
|
||||
Timestamper.__init__(self, infile, iterator())
|
||||
def __str__(self):
|
||||
return "TimestamperNow(...)"
|
||||
|
3
setup.py
3
setup.py
@@ -91,6 +91,9 @@ include tests/test.order
|
||||
|
||||
# Docs
|
||||
recursive-include docs Makefile *.md
|
||||
|
||||
# Extras
|
||||
recursive-include extras *
|
||||
""")
|
||||
|
||||
# Run setup
|
||||
|
@@ -2,123 +2,123 @@
|
||||
# layout: float32_8
|
||||
# start: Fri, 23 Mar 2012 10:00:30.000000 +0000
|
||||
# end: Fri, 23 Mar 2012 10:00:31.000000 +0000
|
||||
1332496830.000000 2.517740e+05 2.242410e+05 5.688100e+03 1.915530e+03 9.329220e+03 4.183710e+03 1.212350e+03 2.641790e+03
|
||||
1332496830.008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
|
||||
1332496830.016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
|
||||
1332496830.025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
|
||||
1332496830.033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
|
||||
1332496830.041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
|
||||
1332496830.050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
|
||||
1332496830.058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
|
||||
1332496830.066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
|
||||
1332496830.075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
|
||||
1332496830.083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
|
||||
1332496830.091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
|
||||
1332496830.100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
|
||||
1332496830.108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
|
||||
1332496830.116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
|
||||
1332496830.125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
|
||||
1332496830.133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
|
||||
1332496830.141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
|
||||
1332496830.150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
|
||||
1332496830.158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
|
||||
1332496830.166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
|
||||
1332496830.175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
|
||||
1332496830.183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
|
||||
1332496830.191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
|
||||
1332496830.200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
|
||||
1332496830.208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
|
||||
1332496830.216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
|
||||
1332496830.225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
|
||||
1332496830.233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
|
||||
1332496830.241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
|
||||
1332496830.250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
|
||||
1332496830.258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
|
||||
1332496830.266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
|
||||
1332496830.275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
|
||||
1332496830.283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
|
||||
1332496830.291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
|
||||
1332496830.300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
|
||||
1332496830.308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
|
||||
1332496830.316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
|
||||
1332496830.325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
|
||||
1332496830.333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
|
||||
1332496830.341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
|
||||
1332496830.350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
|
||||
1332496830.358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
|
||||
1332496830.366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
|
||||
1332496830.375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
|
||||
1332496830.383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
|
||||
1332496830.391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
|
||||
1332496830.400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
|
||||
1332496830.408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
|
||||
1332496830.416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
|
||||
1332496830.425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
|
||||
1332496830.433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
|
||||
1332496830.441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
|
||||
1332496830.450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
|
||||
1332496830.458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
|
||||
1332496830.466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
|
||||
1332496830.475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
|
||||
1332496830.483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
|
||||
1332496830.491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
|
||||
1332496830.500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
|
||||
1332496830.508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
|
||||
1332496830.516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
|
||||
1332496830.525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
|
||||
1332496830.533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
|
||||
1332496830.541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
|
||||
1332496830.550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
|
||||
1332496830.558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
|
||||
1332496830.566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
|
||||
1332496830.575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
|
||||
1332496830.583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
|
||||
1332496830.591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
|
||||
1332496830.600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
|
||||
1332496830.608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
|
||||
1332496830.616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
|
||||
1332496830.625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
|
||||
1332496830.633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
|
||||
1332496830.641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
|
||||
1332496830.650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
|
||||
1332496830.658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
|
||||
1332496830.666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
|
||||
1332496830.675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
|
||||
1332496830.683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
|
||||
1332496830.691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
|
||||
1332496830.700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
|
||||
1332496830.708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
|
||||
1332496830.716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
|
||||
1332496830.725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
|
||||
1332496830.733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
|
||||
1332496830.741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
|
||||
1332496830.750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
|
||||
1332496830.758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
|
||||
1332496830.766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
|
||||
1332496830.775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
|
||||
1332496830.783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
|
||||
1332496830.791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
|
||||
1332496830.800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
|
||||
1332496830.808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
|
||||
1332496830.816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
|
||||
1332496830.825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
|
||||
1332496830.833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
|
||||
1332496830.841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
|
||||
1332496830.850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
|
||||
1332496830.858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
|
||||
1332496830.866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
|
||||
1332496830.875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
|
||||
1332496830.883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
|
||||
1332496830.891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
|
||||
1332496830.900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
|
||||
1332496830.908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
|
||||
1332496830.916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
|
||||
1332496830.925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
|
||||
1332496830.933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
|
||||
1332496830.941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
|
||||
1332496830.950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
|
||||
1332496830.958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
|
||||
1332496830.966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
|
||||
1332496830.975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
|
||||
1332496830.983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
|
||||
1332496830.991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03
|
||||
1332496830000000 2.517740e+05 2.242410e+05 5.688100e+03 1.915530e+03 9.329220e+03 4.183710e+03 1.212350e+03 2.641790e+03
|
||||
1332496830008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
|
||||
1332496830016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
|
||||
1332496830025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
|
||||
1332496830033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
|
||||
1332496830041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
|
||||
1332496830050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
|
||||
1332496830058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
|
||||
1332496830066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
|
||||
1332496830075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
|
||||
1332496830083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
|
||||
1332496830091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
|
||||
1332496830100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
|
||||
1332496830108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
|
||||
1332496830116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
|
||||
1332496830125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
|
||||
1332496830133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
|
||||
1332496830141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
|
||||
1332496830150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
|
||||
1332496830158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
|
||||
1332496830166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
|
||||
1332496830175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
|
||||
1332496830183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
|
||||
1332496830191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
|
||||
1332496830200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
|
||||
1332496830208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
|
||||
1332496830216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
|
||||
1332496830225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
|
||||
1332496830233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
|
||||
1332496830241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
|
||||
1332496830250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
|
||||
1332496830258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
|
||||
1332496830266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
|
||||
1332496830275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
|
||||
1332496830283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
|
||||
1332496830291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
|
||||
1332496830300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
|
||||
1332496830308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
|
||||
1332496830316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
|
||||
1332496830325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
|
||||
1332496830333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
|
||||
1332496830341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
|
||||
1332496830350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
|
||||
1332496830358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
|
||||
1332496830366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
|
||||
1332496830375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
|
||||
1332496830383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
|
||||
1332496830391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
|
||||
1332496830400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
|
||||
1332496830408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
|
||||
1332496830416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
|
||||
1332496830425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
|
||||
1332496830433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
|
||||
1332496830441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
|
||||
1332496830450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
|
||||
1332496830458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
|
||||
1332496830466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
|
||||
1332496830475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
|
||||
1332496830483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
|
||||
1332496830491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
|
||||
1332496830500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
|
||||
1332496830508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
|
||||
1332496830516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
|
||||
1332496830525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
|
||||
1332496830533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
|
||||
1332496830541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
|
||||
1332496830550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
|
||||
1332496830558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
|
||||
1332496830566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
|
||||
1332496830575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
|
||||
1332496830583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
|
||||
1332496830591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
|
||||
1332496830600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
|
||||
1332496830608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
|
||||
1332496830616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
|
||||
1332496830625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
|
||||
1332496830633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
|
||||
1332496830641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
|
||||
1332496830650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
|
||||
1332496830658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
|
||||
1332496830666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
|
||||
1332496830675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
|
||||
1332496830683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
|
||||
1332496830691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
|
||||
1332496830700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
|
||||
1332496830708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
|
||||
1332496830716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
|
||||
1332496830725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
|
||||
1332496830733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
|
||||
1332496830741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
|
||||
1332496830750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
|
||||
1332496830758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
|
||||
1332496830766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
|
||||
1332496830775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
|
||||
1332496830783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
|
||||
1332496830791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
|
||||
1332496830800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
|
||||
1332496830808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
|
||||
1332496830816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
|
||||
1332496830825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
|
||||
1332496830833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
|
||||
1332496830841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
|
||||
1332496830850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
|
||||
1332496830858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
|
||||
1332496830866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
|
||||
1332496830875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
|
||||
1332496830883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
|
||||
1332496830891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
|
||||
1332496830900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
|
||||
1332496830908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
|
||||
1332496830916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
|
||||
1332496830925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
|
||||
1332496830933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
|
||||
1332496830941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
|
||||
1332496830950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
|
||||
1332496830958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
|
||||
1332496830966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
|
||||
1332496830975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
|
||||
1332496830983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
|
||||
1332496830991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03
|
||||
|
@@ -1,119 +1,119 @@
|
||||
1332496830.008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
|
||||
1332496830.016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
|
||||
1332496830.025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
|
||||
1332496830.033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
|
||||
1332496830.041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
|
||||
1332496830.050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
|
||||
1332496830.058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
|
||||
1332496830.066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
|
||||
1332496830.075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
|
||||
1332496830.083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
|
||||
1332496830.091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
|
||||
1332496830.100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
|
||||
1332496830.108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
|
||||
1332496830.116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
|
||||
1332496830.125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
|
||||
1332496830.133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
|
||||
1332496830.141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
|
||||
1332496830.150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
|
||||
1332496830.158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
|
||||
1332496830.166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
|
||||
1332496830.175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
|
||||
1332496830.183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
|
||||
1332496830.191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
|
||||
1332496830.200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
|
||||
1332496830.208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
|
||||
1332496830.216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
|
||||
1332496830.225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
|
||||
1332496830.233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
|
||||
1332496830.241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
|
||||
1332496830.250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
|
||||
1332496830.258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
|
||||
1332496830.266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
|
||||
1332496830.275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
|
||||
1332496830.283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
|
||||
1332496830.291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
|
||||
1332496830.300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
|
||||
1332496830.308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
|
||||
1332496830.316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
|
||||
1332496830.325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
|
||||
1332496830.333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
|
||||
1332496830.341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
|
||||
1332496830.350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
|
||||
1332496830.358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
|
||||
1332496830.366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
|
||||
1332496830.375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
|
||||
1332496830.383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
|
||||
1332496830.391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
|
||||
1332496830.400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
|
||||
1332496830.408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
|
||||
1332496830.416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
|
||||
1332496830.425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
|
||||
1332496830.433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
|
||||
1332496830.441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
|
||||
1332496830.450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
|
||||
1332496830.458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
|
||||
1332496830.466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
|
||||
1332496830.475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
|
||||
1332496830.483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
|
||||
1332496830.491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
|
||||
1332496830.500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
|
||||
1332496830.508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
|
||||
1332496830.516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
|
||||
1332496830.525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
|
||||
1332496830.533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
|
||||
1332496830.541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
|
||||
1332496830.550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
|
||||
1332496830.558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
|
||||
1332496830.566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
|
||||
1332496830.575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
|
||||
1332496830.583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
|
||||
1332496830.591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
|
||||
1332496830.600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
|
||||
1332496830.608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
|
||||
1332496830.616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
|
||||
1332496830.625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
|
||||
1332496830.633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
|
||||
1332496830.641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
|
||||
1332496830.650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
|
||||
1332496830.658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
|
||||
1332496830.666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
|
||||
1332496830.675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
|
||||
1332496830.683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
|
||||
1332496830.691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
|
||||
1332496830.700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
|
||||
1332496830.708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
|
||||
1332496830.716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
|
||||
1332496830.725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
|
||||
1332496830.733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
|
||||
1332496830.741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
|
||||
1332496830.750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
|
||||
1332496830.758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
|
||||
1332496830.766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
|
||||
1332496830.775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
|
||||
1332496830.783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
|
||||
1332496830.791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
|
||||
1332496830.800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
|
||||
1332496830.808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
|
||||
1332496830.816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
|
||||
1332496830.825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
|
||||
1332496830.833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
|
||||
1332496830.841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
|
||||
1332496830.850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
|
||||
1332496830.858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
|
||||
1332496830.866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
|
||||
1332496830.875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
|
||||
1332496830.883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
|
||||
1332496830.891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
|
||||
1332496830.900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
|
||||
1332496830.908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
|
||||
1332496830.916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
|
||||
1332496830.925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
|
||||
1332496830.933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
|
||||
1332496830.941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
|
||||
1332496830.950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
|
||||
1332496830.958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
|
||||
1332496830.966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
|
||||
1332496830.975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
|
||||
1332496830.983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
|
||||
1332496830.991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03
|
||||
1332496830008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
|
||||
1332496830016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
|
||||
1332496830025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
|
||||
1332496830033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
|
||||
1332496830041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
|
||||
1332496830050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
|
||||
1332496830058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
|
||||
1332496830066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
|
||||
1332496830075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
|
||||
1332496830083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
|
||||
1332496830091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
|
||||
1332496830100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
|
||||
1332496830108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
|
||||
1332496830116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
|
||||
1332496830125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
|
||||
1332496830133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
|
||||
1332496830141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
|
||||
1332496830150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
|
||||
1332496830158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
|
||||
1332496830166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
|
||||
1332496830175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
|
||||
1332496830183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
|
||||
1332496830191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
|
||||
1332496830200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
|
||||
1332496830208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
|
||||
1332496830216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
|
||||
1332496830225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
|
||||
1332496830233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
|
||||
1332496830241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
|
||||
1332496830250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
|
||||
1332496830258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
|
||||
1332496830266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
|
||||
1332496830275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
|
||||
1332496830283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
|
||||
1332496830291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
|
||||
1332496830300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
|
||||
1332496830308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
|
||||
1332496830316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
|
||||
1332496830325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
|
||||
1332496830333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
|
||||
1332496830341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
|
||||
1332496830350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
|
||||
1332496830358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
|
||||
1332496830366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
|
||||
1332496830375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
|
||||
1332496830383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
|
||||
1332496830391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
|
||||
1332496830400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
|
||||
1332496830408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
|
||||
1332496830416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
|
||||
1332496830425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
|
||||
1332496830433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
|
||||
1332496830441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
|
||||
1332496830450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
|
||||
1332496830458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
|
||||
1332496830466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
|
||||
1332496830475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
|
||||
1332496830483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
|
||||
1332496830491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
|
||||
1332496830500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
|
||||
1332496830508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
|
||||
1332496830516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
|
||||
1332496830525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
|
||||
1332496830533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
|
||||
1332496830541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
|
||||
1332496830550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
|
||||
1332496830558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
|
||||
1332496830566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
|
||||
1332496830575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
|
||||
1332496830583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
|
||||
1332496830591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
|
||||
1332496830600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
|
||||
1332496830608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
|
||||
1332496830616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
|
||||
1332496830625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
|
||||
1332496830633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
|
||||
1332496830641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
|
||||
1332496830650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
|
||||
1332496830658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
|
||||
1332496830666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
|
||||
1332496830675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
|
||||
1332496830683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
|
||||
1332496830691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
|
||||
1332496830700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
|
||||
1332496830708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
|
||||
1332496830716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
|
||||
1332496830725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
|
||||
1332496830733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
|
||||
1332496830741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
|
||||
1332496830750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
|
||||
1332496830758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
|
||||
1332496830766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
|
||||
1332496830775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
|
||||
1332496830783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
|
||||
1332496830791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
|
||||
1332496830800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
|
||||
1332496830808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
|
||||
1332496830816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
|
||||
1332496830825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
|
||||
1332496830833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
|
||||
1332496830841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
|
||||
1332496830850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
|
||||
1332496830858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
|
||||
1332496830866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
|
||||
1332496830875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
|
||||
1332496830883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
|
||||
1332496830891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
|
||||
1332496830900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
|
||||
1332496830908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
|
||||
1332496830916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
|
||||
1332496830925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
|
||||
1332496830933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
|
||||
1332496830941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
|
||||
1332496830950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
|
||||
1332496830958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
|
||||
1332496830966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
|
||||
1332496830975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
|
||||
1332496830983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
|
||||
1332496830991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03
|
||||
|
@@ -1 +1 @@
|
||||
1332496830.008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
|
||||
1332496830008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
|
||||
|
@@ -1,2 +1,2 @@
|
||||
1332496830.008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
|
||||
1332496830.016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
|
||||
1332496830008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
|
||||
1332496830016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
|
||||
|
@@ -1,124 +1,124 @@
|
||||
# path: /newton/prep
|
||||
# layout: float32_8
|
||||
# start: 1332496830.000000
|
||||
# end: 1332496830.999000
|
||||
1332496830.000000 2.517740e+05 2.242410e+05 5.688100e+03 1.915530e+03 9.329220e+03 4.183710e+03 1.212350e+03 2.641790e+03
|
||||
1332496830.008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
|
||||
1332496830.016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
|
||||
1332496830.025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
|
||||
1332496830.033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
|
||||
1332496830.041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
|
||||
1332496830.050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
|
||||
1332496830.058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
|
||||
1332496830.066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
|
||||
1332496830.075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
|
||||
1332496830.083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
|
||||
1332496830.091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
|
||||
1332496830.100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
|
||||
1332496830.108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
|
||||
1332496830.116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
|
||||
1332496830.125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
|
||||
1332496830.133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
|
||||
1332496830.141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
|
||||
1332496830.150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
|
||||
1332496830.158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
|
||||
1332496830.166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
|
||||
1332496830.175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
|
||||
1332496830.183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
|
||||
1332496830.191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
|
||||
1332496830.200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
|
||||
1332496830.208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
|
||||
1332496830.216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
|
||||
1332496830.225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
|
||||
1332496830.233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
|
||||
1332496830.241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
|
||||
1332496830.250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
|
||||
1332496830.258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
|
||||
1332496830.266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
|
||||
1332496830.275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
|
||||
1332496830.283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
|
||||
1332496830.291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
|
||||
1332496830.300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
|
||||
1332496830.308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
|
||||
1332496830.316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
|
||||
1332496830.325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
|
||||
1332496830.333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
|
||||
1332496830.341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
|
||||
1332496830.350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
|
||||
1332496830.358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
|
||||
1332496830.366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
|
||||
1332496830.375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
|
||||
1332496830.383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
|
||||
1332496830.391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
|
||||
1332496830.400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
|
||||
1332496830.408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
|
||||
1332496830.416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
|
||||
1332496830.425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
|
||||
1332496830.433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
|
||||
1332496830.441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
|
||||
1332496830.450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
|
||||
1332496830.458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
|
||||
1332496830.466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
|
||||
1332496830.475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
|
||||
1332496830.483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
|
||||
1332496830.491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
|
||||
1332496830.500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
|
||||
1332496830.508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
|
||||
1332496830.516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
|
||||
1332496830.525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
|
||||
1332496830.533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
|
||||
1332496830.541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
|
||||
1332496830.550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
|
||||
1332496830.558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
|
||||
1332496830.566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
|
||||
1332496830.575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
|
||||
1332496830.583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
|
||||
1332496830.591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
|
||||
1332496830.600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
|
||||
1332496830.608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
|
||||
1332496830.616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
|
||||
1332496830.625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
|
||||
1332496830.633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
|
||||
1332496830.641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
|
||||
1332496830.650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
|
||||
1332496830.658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
|
||||
1332496830.666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
|
||||
1332496830.675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
|
||||
1332496830.683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
|
||||
1332496830.691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
|
||||
1332496830.700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
|
||||
1332496830.708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
|
||||
1332496830.716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
|
||||
1332496830.725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
|
||||
1332496830.733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
|
||||
1332496830.741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
|
||||
1332496830.750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
|
||||
1332496830.758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
|
||||
1332496830.766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
|
||||
1332496830.775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
|
||||
1332496830.783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
|
||||
1332496830.791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
|
||||
1332496830.800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
|
||||
1332496830.808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
|
||||
1332496830.816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
|
||||
1332496830.825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
|
||||
1332496830.833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
|
||||
1332496830.841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
|
||||
1332496830.850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
|
||||
1332496830.858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
|
||||
1332496830.866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
|
||||
1332496830.875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
|
||||
1332496830.883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
|
||||
1332496830.891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
|
||||
1332496830.900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
|
||||
1332496830.908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
|
||||
1332496830.916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
|
||||
1332496830.925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
|
||||
1332496830.933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
|
||||
1332496830.941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
|
||||
1332496830.950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
|
||||
1332496830.958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
|
||||
1332496830.966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
|
||||
1332496830.975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
|
||||
1332496830.983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
|
||||
1332496830.991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03
|
||||
# start: 1332496830000000
|
||||
# end: 1332496830999000
|
||||
1332496830000000 2.517740e+05 2.242410e+05 5.688100e+03 1.915530e+03 9.329220e+03 4.183710e+03 1.212350e+03 2.641790e+03
|
||||
1332496830008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
|
||||
1332496830016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
|
||||
1332496830025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
|
||||
1332496830033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
|
||||
1332496830041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
|
||||
1332496830050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
|
||||
1332496830058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
|
||||
1332496830066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
|
||||
1332496830075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
|
||||
1332496830083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
|
||||
1332496830091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
|
||||
1332496830100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
|
||||
1332496830108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
|
||||
1332496830116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
|
||||
1332496830125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
|
||||
1332496830133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
|
||||
1332496830141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
|
||||
1332496830150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
|
||||
1332496830158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
|
||||
1332496830166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
|
||||
1332496830175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
|
||||
1332496830183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
|
||||
1332496830191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
|
||||
1332496830200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
|
||||
1332496830208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
|
||||
1332496830216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
|
||||
1332496830225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
|
||||
1332496830233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
|
||||
1332496830241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
|
||||
1332496830250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
|
||||
1332496830258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
|
||||
1332496830266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
|
||||
1332496830275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
|
||||
1332496830283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
|
||||
1332496830291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
|
||||
1332496830300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
|
||||
1332496830308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
|
||||
1332496830316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
|
||||
1332496830325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
|
||||
1332496830333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
|
||||
1332496830341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
|
||||
1332496830350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
|
||||
1332496830358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
|
||||
1332496830366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
|
||||
1332496830375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
|
||||
1332496830383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
|
||||
1332496830391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
|
||||
1332496830400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
|
||||
1332496830408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
|
||||
1332496830416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
|
||||
1332496830425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
|
||||
1332496830433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
|
||||
1332496830441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
|
||||
1332496830450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
|
||||
1332496830458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
|
||||
1332496830466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
|
||||
1332496830475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
|
||||
1332496830483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
|
||||
1332496830491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
|
||||
1332496830500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
|
||||
1332496830508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
|
||||
1332496830516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
|
||||
1332496830525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
|
||||
1332496830533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
|
||||
1332496830541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
|
||||
1332496830550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
|
||||
1332496830558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
|
||||
1332496830566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
|
||||
1332496830575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
|
||||
1332496830583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
|
||||
1332496830591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
|
||||
1332496830600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
|
||||
1332496830608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
|
||||
1332496830616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
|
||||
1332496830625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
|
||||
1332496830633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
|
||||
1332496830641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
|
||||
1332496830650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
|
||||
1332496830658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
|
||||
1332496830666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
|
||||
1332496830675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
|
||||
1332496830683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
|
||||
1332496830691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
|
||||
1332496830700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
|
||||
1332496830708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
|
||||
1332496830716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
|
||||
1332496830725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
|
||||
1332496830733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
|
||||
1332496830741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
|
||||
1332496830750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
|
||||
1332496830758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
|
||||
1332496830766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
|
||||
1332496830775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
|
||||
1332496830783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
|
||||
1332496830791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
|
||||
1332496830800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
|
||||
1332496830808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
|
||||
1332496830816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
|
||||
1332496830825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
|
||||
1332496830833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
|
||||
1332496830841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
|
||||
1332496830850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
|
||||
1332496830858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
|
||||
1332496830866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
|
||||
1332496830875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
|
||||
1332496830883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
|
||||
1332496830891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
|
||||
1332496830900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
|
||||
1332496830908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
|
||||
1332496830916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
|
||||
1332496830925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
|
||||
1332496830933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
|
||||
1332496830941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
|
||||
1332496830950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
|
||||
1332496830958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
|
||||
1332496830966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
|
||||
1332496830975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
|
||||
1332496830983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
|
||||
1332496830991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03
|
||||
|
@@ -1,11 +1,11 @@
|
||||
1332497040.000000 2.56439e+05 2.24775e+05 2.92897e+03 4.66646e+03 7.58491e+03 3.57351e+03 -4.34171e+02 2.98819e+03
|
||||
1332497040.010000 2.51903e+05 2.23202e+05 4.23696e+03 3.49363e+03 8.53493e+03 4.29416e+03 8.49573e+02 2.38189e+03
|
||||
1332497040.020000 2.57625e+05 2.20247e+05 5.47017e+03 1.35872e+03 9.18903e+03 4.56136e+03 2.65599e+03 2.60912e+03
|
||||
1332497040.030000 2.63375e+05 2.20706e+05 4.51842e+03 1.80758e+03 8.17208e+03 4.17463e+03 2.57884e+03 3.32848e+03
|
||||
1332497040.040000 2.59221e+05 2.22346e+05 2.98879e+03 3.66264e+03 6.87274e+03 3.94223e+03 1.25928e+03 3.51786e+03
|
||||
1332497040.050000 2.51918e+05 2.22281e+05 4.22677e+03 2.84764e+03 7.78323e+03 3.81659e+03 8.04944e+02 3.46314e+03
|
||||
1332497040.050000 2.54478e+05 2.21701e+05 5.61366e+03 1.02262e+03 9.26581e+03 3.50152e+03 1.29331e+03 3.07271e+03
|
||||
1332497040.060000 2.59568e+05 2.22945e+05 4.97190e+03 1.28250e+03 8.62081e+03 4.06316e+03 1.85717e+03 2.61990e+03
|
||||
1332497040.070000 2.57269e+05 2.23697e+05 3.60527e+03 3.05749e+03 7.22363e+03 4.90330e+03 1.93736e+03 2.35357e+03
|
||||
1332497040.080000 2.52274e+05 2.21438e+05 5.01228e+03 2.86309e+03 7.87115e+03 4.80448e+03 2.18291e+03 2.93397e+03
|
||||
1332497040.090000 2.56468e+05 2.19205e+05 6.29804e+03 8.09467e+02 9.12895e+03 3.52055e+03 2.16980e+03 3.88739e+03
|
||||
1332497040000000 2.56439e+05 2.24775e+05 2.92897e+03 4.66646e+03 7.58491e+03 3.57351e+03 -4.34171e+02 2.98819e+03
|
||||
1332497040010000 2.51903e+05 2.23202e+05 4.23696e+03 3.49363e+03 8.53493e+03 4.29416e+03 8.49573e+02 2.38189e+03
|
||||
1332497040020000 2.57625e+05 2.20247e+05 5.47017e+03 1.35872e+03 9.18903e+03 4.56136e+03 2.65599e+03 2.60912e+03
|
||||
1332497040030000 2.63375e+05 2.20706e+05 4.51842e+03 1.80758e+03 8.17208e+03 4.17463e+03 2.57884e+03 3.32848e+03
|
||||
1332497040040000 2.59221e+05 2.22346e+05 2.98879e+03 3.66264e+03 6.87274e+03 3.94223e+03 1.25928e+03 3.51786e+03
|
||||
1332497040050000 2.51918e+05 2.22281e+05 4.22677e+03 2.84764e+03 7.78323e+03 3.81659e+03 8.04944e+02 3.46314e+03
|
||||
1332497040050000 2.54478e+05 2.21701e+05 5.61366e+03 1.02262e+03 9.26581e+03 3.50152e+03 1.29331e+03 3.07271e+03
|
||||
1332497040060000 2.59568e+05 2.22945e+05 4.97190e+03 1.28250e+03 8.62081e+03 4.06316e+03 1.85717e+03 2.61990e+03
|
||||
1332497040070000 2.57269e+05 2.23697e+05 3.60527e+03 3.05749e+03 7.22363e+03 4.90330e+03 1.93736e+03 2.35357e+03
|
||||
1332497040080000 2.52274e+05 2.21438e+05 5.01228e+03 2.86309e+03 7.87115e+03 4.80448e+03 2.18291e+03 2.93397e+03
|
||||
1332497040090000 2.56468e+05 2.19205e+05 6.29804e+03 8.09467e+02 9.12895e+03 3.52055e+03 2.16980e+03 3.88739e+03
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -49,31 +49,40 @@ class TestBulkData(object):
|
||||
nodes.append(data.getnode("/foo/baz/quux"))
|
||||
del nodes
|
||||
|
||||
def get_node_slice(key):
|
||||
if isinstance(key, slice):
|
||||
return [ node.get_data(x, x+1) for x in
|
||||
xrange(*key.indices(node.nrows)) ]
|
||||
return node.get_data(key, key+1)
|
||||
|
||||
# Test node
|
||||
node = data.getnode("/foo/bar")
|
||||
with assert_raises(IndexError):
|
||||
x = node[0]
|
||||
x = get_node_slice(0)
|
||||
with assert_raises(IndexError):
|
||||
x = node[0] # timestamp
|
||||
raw = []
|
||||
for i in range(1000):
|
||||
raw.append([10000+i, 1, 2, 3, 4, 5, 6, 7, 8 ])
|
||||
node.append(raw[0:1])
|
||||
node.append(raw[1:100])
|
||||
node.append(raw[100:])
|
||||
raw.append("%d 1 2 3 4 5 6 7 8\n" % (10000 + i))
|
||||
node.append_string("".join(raw[0:1]), 0, 50000)
|
||||
node.append_string("".join(raw[1:100]), 0, 50000)
|
||||
node.append_string("".join(raw[100:]), 0, 50000)
|
||||
|
||||
misc_slices = [ 0, 100, slice(None), slice(0), slice(10),
|
||||
slice(5,10), slice(3,None), slice(3,-3),
|
||||
slice(20,10), slice(200,100,-1), slice(None,0,-1),
|
||||
slice(100,500,5) ]
|
||||
|
||||
# Extract slices
|
||||
for s in misc_slices:
|
||||
eq_(node[s], raw[s])
|
||||
eq_(get_node_slice(s), raw[s])
|
||||
|
||||
# Extract misc slices while appending, to make sure the
|
||||
# data isn't being added in the middle of the file
|
||||
for s in [2, slice(1,5), 2, slice(1,5)]:
|
||||
node.append([[0,0,0,0,0,0,0,0,0]])
|
||||
raw.append([0,0,0,0,0,0,0,0,0])
|
||||
eq_(node[s], raw[s])
|
||||
node.append_string("0 0 0 0 0 0 0 0 0\n", 0, 50000)
|
||||
raw.append("0 0 0 0 0 0 0 0 0\n")
|
||||
eq_(get_node_slice(s), raw[s])
|
||||
|
||||
# Get some coverage of remove; remove is more fully tested
|
||||
# in cmdline
|
||||
@@ -91,7 +100,7 @@ class TestBulkData(object):
|
||||
|
||||
# Extract slices
|
||||
for s in misc_slices:
|
||||
eq_(node[s], raw[s])
|
||||
eq_(get_node_slice(s), raw[s])
|
||||
|
||||
# destroy
|
||||
with assert_raises(ValueError):
|
||||
|
@@ -186,8 +186,7 @@ class TestClient(object):
|
||||
datetime_tz.localtz_set("America/New_York")
|
||||
|
||||
testfile = "tests/data/prep-20120323T1000"
|
||||
start = datetime_tz.datetime_tz.smartparse("20120323T1000")
|
||||
start = start.totimestamp()
|
||||
start = nilmdb.utils.time.parse_time("20120323T1000")
|
||||
rate = 120
|
||||
|
||||
# First try a nonexistent path
|
||||
@@ -243,32 +242,32 @@ class TestClient(object):
|
||||
data = timestamper.TimestamperRate(testfile, start, 120)
|
||||
with assert_raises(ClientError) as e:
|
||||
result = client.stream_insert("/newton/prep", data,
|
||||
start + 5, start + 120)
|
||||
start + 5000000, start + 120000000)
|
||||
in_("400 Bad Request", str(e.exception))
|
||||
in_("Data timestamp 1332511200.000000 < start time 1332511205.000000",
|
||||
in_("Data timestamp 1332511200000000 < start time 1332511205000000",
|
||||
str(e.exception))
|
||||
|
||||
# Specify start/end (ends too early)
|
||||
data = timestamper.TimestamperRate(testfile, start, 120)
|
||||
with assert_raises(ClientError) as e:
|
||||
result = client.stream_insert("/newton/prep", data,
|
||||
start, start + 1)
|
||||
start, start + 1000000)
|
||||
in_("400 Bad Request", str(e.exception))
|
||||
# Client chunks the input, so the exact timestamp here might change
|
||||
# if the chunk positions change.
|
||||
assert(re.search("Data timestamp 13325[0-9]+\.[0-9]+ "
|
||||
">= end time 1332511201.000000", str(e.exception))
|
||||
assert(re.search("Data timestamp 13325[0-9]+ "
|
||||
">= end time 1332511201000000", str(e.exception))
|
||||
is not None)
|
||||
|
||||
# Now do the real load
|
||||
data = timestamper.TimestamperRate(testfile, start, 120)
|
||||
result = client.stream_insert("/newton/prep", data,
|
||||
start, start + 119.999777)
|
||||
start, start + 119999777)
|
||||
|
||||
# Verify the intervals. Should be just one, even if the data
|
||||
# was inserted in chunks, due to nilmdb interval concatenation.
|
||||
intervals = list(client.stream_intervals("/newton/prep"))
|
||||
eq_(intervals, [[start, start + 119.999777]])
|
||||
eq_(intervals, [[start, start + 119999777]])
|
||||
|
||||
# Try some overlapping data -- just insert it again
|
||||
data = timestamper.TimestamperRate(testfile, start, 120)
|
||||
@@ -284,11 +283,12 @@ class TestClient(object):
|
||||
# Misc tests for extract and remove. Most of them are in test_cmdline.
|
||||
client = nilmdb.client.Client(url = testurl)
|
||||
|
||||
for x in client.stream_extract("/newton/prep", 999123, 999124):
|
||||
for x in client.stream_extract("/newton/prep",
|
||||
999123000000, 999124000000):
|
||||
raise AssertionError("shouldn't be any data for this request")
|
||||
|
||||
with assert_raises(ClientError) as e:
|
||||
client.stream_remove("/newton/prep", 123, 120)
|
||||
client.stream_remove("/newton/prep", 123000000, 120000000)
|
||||
|
||||
# Test count
|
||||
eq_(client.stream_count("/newton/prep"), 14400)
|
||||
@@ -301,13 +301,11 @@ class TestClient(object):
|
||||
client = nilmdb.client.Client(url = testurl)
|
||||
|
||||
# Trigger a client error in generator
|
||||
start = datetime_tz.datetime_tz.smartparse("20120323T2000")
|
||||
end = datetime_tz.datetime_tz.smartparse("20120323T1000")
|
||||
start = nilmdb.utils.time.parse_time("20120323T2000")
|
||||
end = nilmdb.utils.time.parse_time("20120323T1000")
|
||||
for function in [ client.stream_intervals, client.stream_extract ]:
|
||||
with assert_raises(ClientError) as e:
|
||||
function("/newton/prep",
|
||||
start.totimestamp(),
|
||||
end.totimestamp()).next()
|
||||
function("/newton/prep", start, end).next()
|
||||
in_("400 Bad Request", str(e.exception))
|
||||
in_("start must precede end", str(e.exception))
|
||||
|
||||
@@ -455,21 +453,21 @@ class TestClient(object):
|
||||
ctx.insert(" 105 1\n")
|
||||
ctx.finalize()
|
||||
|
||||
ctx.insert("106 1\n")
|
||||
ctx.update_end(106.5)
|
||||
ctx.finalize()
|
||||
ctx.update_start(106.8)
|
||||
ctx.insert("107 1\n")
|
||||
ctx.insert("108 1\n")
|
||||
ctx.insert("109 1\n")
|
||||
ctx.update_end(108)
|
||||
ctx.finalize()
|
||||
ctx.update_start(109)
|
||||
ctx.insert("110 1\n")
|
||||
ctx.insert("111 1\n")
|
||||
ctx.update_end(113)
|
||||
ctx.insert("112 1\n")
|
||||
ctx.update_end(114)
|
||||
ctx.insert("113 1\n")
|
||||
ctx.update_end(115)
|
||||
ctx.insert("114 1" +
|
||||
ctx.insert("114 1\n")
|
||||
ctx.update_end(116)
|
||||
ctx.insert("115 1\n")
|
||||
ctx.update_end(117)
|
||||
ctx.insert("116 1\n")
|
||||
ctx.update_end(118)
|
||||
ctx.insert("117 1" +
|
||||
" # this is super long" * 100 +
|
||||
"\n")
|
||||
ctx.finalize()
|
||||
@@ -477,11 +475,11 @@ class TestClient(object):
|
||||
|
||||
with assert_raises(ClientError):
|
||||
with client.stream_insert_context("/context/test", 100, 200) as ctx:
|
||||
ctx.insert("115 1\n")
|
||||
ctx.insert("118 1\n")
|
||||
|
||||
with assert_raises(ClientError):
|
||||
with client.stream_insert_context("/context/test", 200, 300) as ctx:
|
||||
ctx.insert("115 1\n")
|
||||
ctx.insert("118 1\n")
|
||||
|
||||
with assert_raises(ClientError):
|
||||
with client.stream_insert_context("/context/test") as ctx:
|
||||
@@ -503,9 +501,9 @@ class TestClient(object):
|
||||
ctx.finalize()
|
||||
|
||||
eq_(list(client.stream_intervals("/context/test")),
|
||||
[ [ 100, 105.000001 ],
|
||||
[ 106, 106.5 ],
|
||||
[ 106.8, 115 ],
|
||||
[ [ 100, 106 ],
|
||||
[ 107, 108 ],
|
||||
[ 109, 118 ],
|
||||
[ 200, 300 ] ])
|
||||
|
||||
client.stream_destroy("/context/test")
|
||||
@@ -567,7 +565,7 @@ class TestClient(object):
|
||||
ctx.finalize() # nothing
|
||||
ctx.finalize() # nothing
|
||||
ctx.insert("1100 1\n")
|
||||
ctx.finalize() # inserts [1100, 1100.000001]
|
||||
ctx.finalize() # inserts [1100, 1101]
|
||||
ctx.update_start(1199)
|
||||
ctx.insert("1200 1\n")
|
||||
ctx.update_end(1250)
|
||||
@@ -595,7 +593,7 @@ class TestClient(object):
|
||||
(0, [400, 450]),
|
||||
(0, [500, 550]),
|
||||
(0, [1000, 1050]),
|
||||
(1, [1100, 1100.000001]),
|
||||
(1, [1100, 1101]),
|
||||
(1, [1199, 1250]),
|
||||
(0, [1400, 1450]),
|
||||
(0, [1500, 1550]),
|
||||
@@ -639,3 +637,29 @@ class TestClient(object):
|
||||
# Clean up
|
||||
c.stream_destroy("/persist/test")
|
||||
eq_(connections(), (1, 6))
|
||||
|
||||
def test_client_13_timestamp_rounding(self):
|
||||
# Test potentially bad timestamps (due to floating point
|
||||
# roundoff etc). The server will round floating point values
|
||||
# to the nearest int.
|
||||
client = nilmdb.client.Client(testurl)
|
||||
|
||||
client.stream_create("/rounding/test", "uint16_1")
|
||||
with client.stream_insert_context("/rounding/test",
|
||||
100000000, 200000000.1) as ctx:
|
||||
ctx.insert("100000000.1 1\n")
|
||||
ctx.insert("150000000.00003 1\n")
|
||||
ctx.insert("199999999.4 1\n")
|
||||
eq_(list(client.stream_intervals("/rounding/test")),
|
||||
[ [ 100000000, 200000000 ] ])
|
||||
|
||||
with assert_raises(ClientError):
|
||||
with client.stream_insert_context("/rounding/test",
|
||||
200000000, 300000000) as ctx:
|
||||
ctx.insert("200000000 1\n")
|
||||
ctx.insert("250000000 1\n")
|
||||
# Server will round this and give an error on finalize()
|
||||
ctx.insert("299999999.99 1\n")
|
||||
|
||||
client.stream_destroy("/rounding/test")
|
||||
client.close()
|
||||
|
@@ -15,6 +15,7 @@ import re
|
||||
import sys
|
||||
import StringIO
|
||||
import shlex
|
||||
import warnings
|
||||
|
||||
from testutil.helpers import *
|
||||
|
||||
@@ -215,9 +216,11 @@ class TestCmdline(object):
|
||||
def test_02_parsetime(self):
|
||||
os.environ['TZ'] = "America/New_York"
|
||||
test = datetime_tz.datetime_tz.now()
|
||||
u2ts = nilmdb.utils.time.unix_to_timestamp
|
||||
parse_time = nilmdb.utils.time.parse_time
|
||||
eq_(parse_time(str(test)), test)
|
||||
test = datetime_tz.datetime_tz.smartparse("20120405 1400-0400")
|
||||
eq_(parse_time(str(test)), u2ts(test.totimestamp()))
|
||||
test = u2ts(datetime_tz.datetime_tz.smartparse("20120405 1400-0400").
|
||||
totimestamp())
|
||||
eq_(parse_time("hi there 20120405 1400-0400 testing! 123"), test)
|
||||
eq_(parse_time("20120405 1800 UTC"), test)
|
||||
eq_(parse_time("20120405 1400-0400 UTC"), test)
|
||||
@@ -227,6 +230,11 @@ class TestCmdline(object):
|
||||
x = parse_time("now")
|
||||
eq_(parse_time("snapshot-20120405-140000.raw.gz"), test)
|
||||
eq_(parse_time("prep-20120405T1400"), test)
|
||||
eq_(parse_time("1333648800.0"), test)
|
||||
eq_(parse_time("1333648800000000"), test)
|
||||
eq_(parse_time("@1333648800000000"), test)
|
||||
with assert_raises(ValueError):
|
||||
parse_time("@hashtag12345")
|
||||
|
||||
def test_03_info(self):
|
||||
self.ok("info")
|
||||
@@ -250,6 +258,15 @@ class TestCmdline(object):
|
||||
|
||||
self.fail("create /foo float32_8")
|
||||
self.contain("invalid path")
|
||||
self.fail("create /newton/prep/ float32_8")
|
||||
self.contain("invalid path")
|
||||
|
||||
self.fail("create /newton/_format/prep float32_8")
|
||||
self.contain("path name is invalid")
|
||||
self.fail("create /_format/newton/prep float32_8")
|
||||
self.contain("path name is invalid")
|
||||
self.fail("create /newton/prep/_format float32_8")
|
||||
self.contain("path name is invalid")
|
||||
|
||||
# Bad layout type
|
||||
self.fail("create /newton/prep NoSuchLayout")
|
||||
@@ -264,6 +281,10 @@ class TestCmdline(object):
|
||||
self.ok("create /newton/prep float32_8")
|
||||
self.ok("create /newton/raw uint16_6")
|
||||
|
||||
# Create a stream that already exists
|
||||
self.fail("create /newton/raw uint16_6")
|
||||
self.contain("stream already exists at this path")
|
||||
|
||||
# Should not be able to create a stream with another stream as
|
||||
# its parent
|
||||
self.fail("create /newton/prep/blah float32_8")
|
||||
@@ -394,7 +415,7 @@ class TestCmdline(object):
|
||||
self.fail("insert -s 20120323T1004 -e 20120323T1006 /newton/prep",
|
||||
input)
|
||||
self.contain("error parsing input data")
|
||||
self.contain("line 7:")
|
||||
self.contain("line 7")
|
||||
self.contain("timestamp is not monotonically increasing")
|
||||
|
||||
# insert pre-timestamped data, from stdin
|
||||
@@ -436,6 +457,15 @@ class TestCmdline(object):
|
||||
self.fail("insert -t -r 120 -f /newton/raw "
|
||||
"tests/data/prep-20120323T1004")
|
||||
self.contain("error parsing input data")
|
||||
self.contain("can't parse value")
|
||||
|
||||
# too few rows per line
|
||||
self.ok("create /insert/test float32_20")
|
||||
self.fail("insert -t -r 120 -f /insert/test "
|
||||
"tests/data/prep-20120323T1004")
|
||||
self.contain("error parsing input data")
|
||||
self.contain("wrong number of values")
|
||||
self.ok("destroy /insert/test")
|
||||
|
||||
# empty data does nothing
|
||||
self.ok("insert -t -r 120 --start '03/23/2012 06:05:00' /newton/prep "
|
||||
@@ -482,14 +512,14 @@ class TestCmdline(object):
|
||||
self.ok("list --detail --path *prep --timestamp-raw "
|
||||
"--start='23 Mar 2012 10:05:15.50'")
|
||||
lines_(self.captured, 2)
|
||||
self.contain("[ 1332497115.500000 -> 1332497160.000000 ]")
|
||||
self.contain("[ 1332497115500000 -> 1332497160000000 ]")
|
||||
|
||||
# bad time
|
||||
self.fail("list --detail --path *prep -T --start='9332497115.612'")
|
||||
# good time
|
||||
self.ok("list --detail --path *prep -T --start='1332497115.612'")
|
||||
lines_(self.captured, 2)
|
||||
self.contain("[ 1332497115.612000 -> 1332497160.000000 ]")
|
||||
self.contain("[ 1332497115612000 -> 1332497160000000 ]")
|
||||
|
||||
# Check --ext output
|
||||
self.ok("list --ext")
|
||||
@@ -497,7 +527,7 @@ class TestCmdline(object):
|
||||
|
||||
self.ok("list -E -T")
|
||||
c = self.contain
|
||||
c("\n interval extents: 1332496800.000000 -> 1332497160.000000\n")
|
||||
c("\n interval extents: 1332496800000000 -> 1332497160000000\n")
|
||||
c("\n total data: 43200 rows, 359.983336 seconds\n")
|
||||
c("\n interval extents: (no data)\n")
|
||||
c("\n total data: 0 rows, 0.000000 seconds\n")
|
||||
@@ -893,3 +923,138 @@ class TestCmdline(object):
|
||||
# See if we can extract it all
|
||||
self.ok("extract /newton/prep --start 2000-01-01 --end 2020-01-01")
|
||||
lines_(self.captured, 15600)
|
||||
|
||||
def test_15_intervals_diff(self):
|
||||
# Test "intervals" and "intervals --diff" command.
|
||||
os.environ['TZ'] = "UTC"
|
||||
|
||||
self.ok("create /diff/1 uint8_1")
|
||||
self.match("")
|
||||
self.ok("intervals /diff/1")
|
||||
self.match("")
|
||||
self.ok("intervals /diff/1 --diff /diff/1")
|
||||
self.match("")
|
||||
self.ok("intervals --diff /diff/1 /diff/1")
|
||||
self.match("")
|
||||
self.fail("intervals /diff/2")
|
||||
self.fail("intervals /diff/1 -d /diff/2")
|
||||
|
||||
self.ok("create /diff/2 uint8_1")
|
||||
self.ok("intervals -T /diff/1 -d /diff/2")
|
||||
self.match("")
|
||||
self.ok("insert -s 01-01-2000 -e 01-01-2001 /diff/1 /dev/null")
|
||||
|
||||
self.ok("intervals /diff/1")
|
||||
self.match("[ Sat, 01 Jan 2000 00:00:00.000000 +0000 -"
|
||||
"> Mon, 01 Jan 2001 00:00:00.000000 +0000 ]\n")
|
||||
|
||||
self.ok("intervals /diff/1 -d /diff/2")
|
||||
self.match("[ Sat, 01 Jan 2000 00:00:00.000000 +0000 -"
|
||||
"> Mon, 01 Jan 2001 00:00:00.000000 +0000 ]\n")
|
||||
|
||||
self.ok("insert -s 01-01-2000 -e 01-01-2001 /diff/2 /dev/null")
|
||||
self.ok("intervals /diff/1 -d /diff/2")
|
||||
self.match("")
|
||||
|
||||
self.ok("insert -s 01-01-2001 -e 01-01-2002 /diff/1 /dev/null")
|
||||
self.ok("insert -s 01-01-2002 -e 01-01-2003 /diff/2 /dev/null")
|
||||
self.ok("intervals /diff/1 -d /diff/2")
|
||||
self.match("[ Mon, 01 Jan 2001 00:00:00.000000 +0000 -"
|
||||
"> Tue, 01 Jan 2002 00:00:00.000000 +0000 ]\n")
|
||||
|
||||
self.ok("insert -s 01-01-2004 -e 01-01-2005 /diff/1 /dev/null")
|
||||
self.ok("intervals /diff/1 -d /diff/2")
|
||||
self.match("[ Mon, 01 Jan 2001 00:00:00.000000 +0000 -"
|
||||
"> Tue, 01 Jan 2002 00:00:00.000000 +0000 ]\n"
|
||||
"[ Thu, 01 Jan 2004 00:00:00.000000 +0000 -"
|
||||
"> Sat, 01 Jan 2005 00:00:00.000000 +0000 ]\n")
|
||||
|
||||
self.fail("intervals -s 01-01-2003 -e 01-01-2000 /diff/1 -d /diff/2")
|
||||
self.ok("intervals -s 01-01-2003 -e 01-01-2008 /diff/1 -d /diff/2")
|
||||
self.match("[ Thu, 01 Jan 2004 00:00:00.000000 +0000 -"
|
||||
"> Sat, 01 Jan 2005 00:00:00.000000 +0000 ]\n")
|
||||
|
||||
self.ok("destroy /diff/1")
|
||||
self.ok("destroy /diff/2")
|
||||
|
||||
def test_16_rename(self):
|
||||
# Test renaming. Force file size smaller so we get more files
|
||||
server_stop()
|
||||
recursive_unlink(testdb)
|
||||
server_start(bulkdata_args = { "file_size" : 920, # 23 rows per file
|
||||
"files_per_dir" : 3 })
|
||||
|
||||
|
||||
# Fill data
|
||||
self.ok("create /newton/prep float32_8")
|
||||
os.environ['TZ'] = "UTC"
|
||||
with open("tests/data/prep-20120323T1004-timestamped") as input:
|
||||
self.ok("insert -s 20120323T1004 -e 20120323T1006 /newton/prep",
|
||||
input)
|
||||
|
||||
# Extract it
|
||||
self.ok("extract /newton/prep --start '2000-01-01' " +
|
||||
"--end '2012-03-23 10:04:01'")
|
||||
extract_before = self.captured
|
||||
|
||||
def check_path(*components):
|
||||
# Verify the paths look right on disk
|
||||
seek = os.path.join(testdb, "data", *components)
|
||||
for (dirpath, dirnames, filenames) in os.walk(testdb):
|
||||
if "_format" in filenames:
|
||||
if dirpath == seek:
|
||||
break
|
||||
raise AssertionError("data also found at " + dirpath)
|
||||
else:
|
||||
raise AssertionError("data not found at " + seek)
|
||||
# Verify "list" output
|
||||
self.ok("list")
|
||||
self.match("/" + "/".join(components) + " float32_8\n")
|
||||
|
||||
# Lots of renames
|
||||
check_path("newton", "prep")
|
||||
|
||||
self.fail("rename /newton/prep /newton/prep")
|
||||
self.contain("old and new paths are the same")
|
||||
check_path("newton", "prep")
|
||||
self.fail("rename /newton/prep /newton")
|
||||
self.contain("subdirs of this path already exist")
|
||||
self.fail("rename /newton/prep /newton/prep/")
|
||||
self.contain("invalid path")
|
||||
self.ok("rename /newton/prep /newton/foo")
|
||||
check_path("newton", "foo")
|
||||
self.ok("rename /newton/foo /totally/different/thing")
|
||||
check_path("totally", "different", "thing")
|
||||
self.ok("rename /totally/different/thing /totally/something")
|
||||
check_path("totally", "something")
|
||||
self.ok("rename /totally/something /totally/something/cool")
|
||||
check_path("totally", "something", "cool")
|
||||
self.ok("rename /totally/something/cool /foo/bar")
|
||||
check_path("foo", "bar")
|
||||
self.ok("create /xxx/yyy/zzz float32_8")
|
||||
self.fail("rename /foo/bar /xxx/yyy")
|
||||
self.contain("subdirs of this path already exist")
|
||||
self.fail("rename /foo/bar /xxx/yyy/zzz")
|
||||
self.contain("stream already exists at this path")
|
||||
self.fail("rename /foo/bar /xxx/yyy/zzz/www")
|
||||
self.contain("path is subdir of existing node")
|
||||
self.ok("rename /foo/bar /xxx/yyy/mmm")
|
||||
self.ok("destroy /xxx/yyy/zzz")
|
||||
check_path("xxx", "yyy", "mmm")
|
||||
|
||||
# Extract it at the final path
|
||||
self.ok("extract /xxx/yyy/mmm --start '2000-01-01' " +
|
||||
"--end '2012-03-23 10:04:01'")
|
||||
eq_(self.captured, extract_before)
|
||||
|
||||
self.ok("destroy /xxx/yyy/mmm")
|
||||
|
||||
# Make sure temporary rename dirs weren't left around
|
||||
for (dirpath, dirnames, filenames) in os.walk(testdb):
|
||||
if "rename-" in dirpath:
|
||||
raise AssertionError("temporary directories not cleaned up")
|
||||
if "totally" in dirpath or "newton" in dirpath:
|
||||
raise AssertionError("old directories not cleaned up")
|
||||
|
||||
server_stop()
|
||||
server_start()
|
||||
|
@@ -51,7 +51,7 @@ class TestInterval:
|
||||
# Test Interval class
|
||||
os.environ['TZ'] = "America/New_York"
|
||||
datetime_tz._localtz = None
|
||||
(d1, d2, d3) = [ datetime_tz.datetime_tz.smartparse(x).totimestamp()
|
||||
(d1, d2, d3) = [ nilmdb.utils.time.parse_time(x)
|
||||
for x in [ "03/24/2012", "03/25/2012", "03/26/2012" ] ]
|
||||
|
||||
# basic construction
|
||||
@@ -77,8 +77,8 @@ class TestInterval:
|
||||
assert(Interval(d1, d3) > Interval(d1, d2))
|
||||
assert(Interval(d1, d2) < Interval(d2, d3))
|
||||
assert(Interval(d1, d3) < Interval(d2, d3))
|
||||
assert(Interval(d2, d2+0.01) > Interval(d1, d3))
|
||||
assert(Interval(d3, d3+0.01) == Interval(d3, d3+0.01))
|
||||
assert(Interval(d2, d2+1) > Interval(d1, d3))
|
||||
assert(Interval(d3, d3+1) == Interval(d3, d3+1))
|
||||
#with assert_raises(TypeError): # was AttributeError, that's wrong
|
||||
# x = (i == 123)
|
||||
|
||||
@@ -87,16 +87,16 @@ class TestInterval:
|
||||
with assert_raises(IntervalError):
|
||||
x = Interval(d2, d3).subset(d1, d2)
|
||||
|
||||
# big integers and floats
|
||||
x = Interval(5000111222, 6000111222)
|
||||
eq_(str(x), "[5000111222.000000 -> 6000111222.000000)")
|
||||
x = Interval(123.45, 234.56)
|
||||
eq_(str(x), "[123.450000 -> 234.560000)")
|
||||
# big integers, negative integers
|
||||
x = Interval(5000111222000000, 6000111222000000)
|
||||
eq_(str(x), "[5000111222000000 -> 6000111222000000)")
|
||||
x = Interval(-5000111222000000, -4000111222000000)
|
||||
eq_(str(x), "[-5000111222000000 -> -4000111222000000)")
|
||||
|
||||
# misc
|
||||
i = Interval(d1, d2)
|
||||
eq_(repr(i), repr(eval(repr(i))))
|
||||
eq_(str(i), "[1332561600.000000 -> 1332648000.000000)")
|
||||
eq_(str(i), "[1332561600000000 -> 1332648000000000)")
|
||||
|
||||
def test_interval_intersect(self):
|
||||
# Test Interval intersections
|
||||
@@ -193,7 +193,7 @@ class TestInterval:
|
||||
# misc
|
||||
eq_(repr(iset), repr(eval(repr(iset))))
|
||||
eq_(str(iset),
|
||||
"[[100.000000 -> 200.000000), [200.000000 -> 300.000000)]")
|
||||
"[[100 -> 200), [200 -> 300)]")
|
||||
|
||||
def test_intervalset_geniset(self):
|
||||
# Test basic iset construction
|
||||
@@ -208,64 +208,89 @@ class TestInterval:
|
||||
makeset(" [-|-----|"))
|
||||
|
||||
|
||||
def test_intervalset_intersect(self):
|
||||
def test_intervalset_intersect_difference(self):
|
||||
# Test intersection (&)
|
||||
with assert_raises(TypeError): # was AttributeError
|
||||
x = makeset("[--)") & 1234
|
||||
|
||||
# Intersection with interval
|
||||
eq_(makeset("[---|---)[)") &
|
||||
list(makeset(" [------) "))[0],
|
||||
makeset(" [-----) "))
|
||||
def do_test(a, b, c, d):
|
||||
# a & b == c
|
||||
ab = IntervalSet()
|
||||
for x in b:
|
||||
for i in (a & x):
|
||||
ab += i
|
||||
eq_(ab,c)
|
||||
|
||||
# Intersection with sets
|
||||
eq_(makeset("[---------)") &
|
||||
makeset(" [---) "),
|
||||
makeset(" [---) "))
|
||||
# a \ b == d
|
||||
eq_(IntervalSet(a.set_difference(b)), d)
|
||||
|
||||
eq_(makeset(" [---) ") &
|
||||
makeset("[---------)"),
|
||||
makeset(" [---) "))
|
||||
|
||||
eq_(makeset(" [-----)") &
|
||||
makeset(" [-----) "),
|
||||
makeset(" [--) "))
|
||||
|
||||
eq_(makeset(" [--) [--)") &
|
||||
# Intersection with intervals
|
||||
do_test(makeset("[---|---)[)"),
|
||||
makeset(" [------) "),
|
||||
makeset(" [-) [-) "))
|
||||
makeset(" [-----) "), # intersection
|
||||
makeset("[-) [)")) # difference
|
||||
|
||||
eq_(makeset(" [---)") &
|
||||
do_test(makeset("[---------)"),
|
||||
makeset(" [---) "),
|
||||
makeset(" [---) "), # intersection
|
||||
makeset("[) [----)")) # difference
|
||||
|
||||
do_test(makeset(" [---) "),
|
||||
makeset("[---------)"),
|
||||
makeset(" [---) "), # intersection
|
||||
makeset(" ")) # difference
|
||||
|
||||
do_test(makeset(" [-----)"),
|
||||
makeset(" [-----) "),
|
||||
makeset(" [--) "), # intersection
|
||||
makeset(" [--)")) # difference
|
||||
|
||||
do_test(makeset(" [--) [--)"),
|
||||
makeset(" [------) "),
|
||||
makeset(" [-) [-) "), # intersection
|
||||
makeset(" [) [)")) # difference
|
||||
|
||||
do_test(makeset(" [---)"),
|
||||
makeset(" [--) "),
|
||||
makeset(" "))
|
||||
makeset(" "), # intersection
|
||||
makeset(" [---)")) # difference
|
||||
|
||||
eq_(makeset(" [-|---)") &
|
||||
do_test(makeset(" [-|---)"),
|
||||
makeset(" [-----|-) "),
|
||||
makeset(" [----) "))
|
||||
makeset(" [----) "), # intersection
|
||||
makeset(" [)")) # difference
|
||||
|
||||
eq_(makeset(" [-|-) ") &
|
||||
do_test(makeset(" [-|-) "),
|
||||
makeset(" [-|--|--) "),
|
||||
makeset(" [---) "))
|
||||
makeset(" [---) "), # intersection
|
||||
makeset(" ")) # difference
|
||||
|
||||
do_test(makeset("[-)[-)[-)[)"),
|
||||
makeset(" [) [|)[) "),
|
||||
makeset(" [) [) "), # intersection
|
||||
makeset("[) [-) [)[)")) # difference
|
||||
|
||||
# Border cases -- will give different results if intervals are
|
||||
# half open or fully closed. Right now, they are half open,
|
||||
# although that's a little messy since the database intervals
|
||||
# often contain a data point at the endpoint.
|
||||
half_open = True
|
||||
if half_open:
|
||||
eq_(makeset(" [---)") &
|
||||
# half open or fully closed. In nilmdb, they are half open.
|
||||
do_test(makeset(" [---)"),
|
||||
makeset(" [----) "),
|
||||
makeset(" "))
|
||||
eq_(makeset(" [----)[--)") &
|
||||
makeset(" "), # intersection
|
||||
makeset(" [---)")) # difference
|
||||
|
||||
do_test(makeset(" [----)[--)"),
|
||||
makeset("[-) [--) [)"),
|
||||
makeset(" [) [-) [)"))
|
||||
else:
|
||||
eq_(makeset(" [---)") &
|
||||
makeset(" [----) "),
|
||||
makeset(" . "))
|
||||
eq_(makeset(" [----)[--)") &
|
||||
makeset("[-) [--) [)"),
|
||||
makeset(" [) [-). [)"))
|
||||
makeset(" [) [-) [)"), # intersection
|
||||
makeset(" [-) [-) ")) # difference
|
||||
|
||||
# Set difference with bounds
|
||||
a = makeset(" [----)[--)")
|
||||
b = makeset("[-) [--) [)")
|
||||
c = makeset("[----) ")
|
||||
d = makeset(" [-) ")
|
||||
eq_(a.set_difference(b, list(c)[0]), d)
|
||||
|
||||
# Empty second set
|
||||
eq_(a.set_difference(IntervalSet()), a)
|
||||
|
||||
class TestIntervalDB:
|
||||
def test_dbinterval(self):
|
||||
@@ -371,4 +396,3 @@ class TestIntervalSpeed:
|
||||
aplotter.plot(speeds.keys(), speeds.values(), plot_slope=True)
|
||||
yappi.stop()
|
||||
yappi.print_stats(sort_type=yappi.SORTTYPE_TTOT, limit=10)
|
||||
|
||||
|
@@ -1,6 +1,5 @@
|
||||
import nilmdb
|
||||
from nilmdb.utils.printf import *
|
||||
from nilmdb.utils import datetime_tz
|
||||
|
||||
from nose.tools import *
|
||||
from nose.tools import assert_raises
|
||||
@@ -20,11 +19,11 @@ class TestTimestamper(object):
|
||||
def join(list):
|
||||
return "\n".join(list) + "\n"
|
||||
|
||||
start = datetime_tz.datetime_tz.smartparse("03/24/2012").totimestamp()
|
||||
start = nilmdb.utils.time.parse_time("03/24/2012")
|
||||
lines_in = [ "hello", "world", "hello world", "# commented out" ]
|
||||
lines_out = [ "1332561600.000000 hello",
|
||||
"1332561600.000125 world",
|
||||
"1332561600.000250 hello world" ]
|
||||
lines_out = [ "1332561600000000 hello",
|
||||
"1332561600000125 world",
|
||||
"1332561600000250 hello world" ]
|
||||
|
||||
# full
|
||||
input = cStringIO.StringIO(join(lines_in))
|
||||
@@ -42,7 +41,7 @@ class TestTimestamper(object):
|
||||
# stop iteration early
|
||||
input = cStringIO.StringIO(join(lines_in))
|
||||
ts = timestamper.TimestamperRate(input, start, 8000,
|
||||
1332561600.000200)
|
||||
1332561600000200)
|
||||
foo = ""
|
||||
for line in ts:
|
||||
foo += line
|
||||
@@ -51,14 +50,14 @@ class TestTimestamper(object):
|
||||
# stop iteration early (readlines)
|
||||
input = cStringIO.StringIO(join(lines_in))
|
||||
ts = timestamper.TimestamperRate(input, start, 8000,
|
||||
1332561600.000200)
|
||||
1332561600000200)
|
||||
foo = ts.readlines()
|
||||
eq_(foo, join(lines_out[0:2]))
|
||||
|
||||
# stop iteration really early
|
||||
input = cStringIO.StringIO(join(lines_in))
|
||||
ts = timestamper.TimestamperRate(input, start, 8000,
|
||||
1332561600.000000)
|
||||
1332561600000000)
|
||||
foo = ts.readlines()
|
||||
eq_(foo, "")
|
||||
|
||||
|
Reference in New Issue
Block a user