Compare commits

...

37 Commits

Author SHA1 Message Date
7429c1788d Update nilmdb.utils.time 2013-03-15 22:49:59 -04:00
0ef71c193b Remove layout.pyx, since rocket replaced it 2013-03-15 22:32:40 -04:00
4a50dd015e Merge branch 'python-intervals' 2013-03-15 21:39:11 -04:00
22274550ab Test python version of Interval too 2013-03-15 21:37:03 -04:00
4f06d6ae68 Move Interval set_difference inside nilmdb.utils for clients
Clients might need to to Interval math too, so move a simple Interval
class and start putting helpers in there.
2013-03-15 21:37:03 -04:00
c54d8041c3 Update design docs 2013-03-15 21:07:01 -04:00
52ae397d7d Bump database version to 3, reject old version 2 due to timestamp changes 2013-03-15 18:37:38 -04:00
d05b6f6348 Merge branch 'rocket-cleanup' 2013-03-15 18:08:36 -04:00
049375d30e Fill out test coverage 2013-03-15 18:08:21 -04:00
88eb0123f5 Add test for Table.__getitem__ indexing 2013-03-15 18:08:21 -04:00
a547ddbbba Change table.get_timestamp to table.__getitem__
This lets us use simple indexing to get timestamps from the table,
which allows us to use 'bisect' directly without needing a proxy class.
2013-03-15 18:08:21 -04:00
28e72fd53e Remove Table.__getitem__; used only by tests 2013-03-15 18:08:21 -04:00
f63107b334 Add rocket.extract_timestamp to speed up bisections 2013-03-15 18:08:21 -04:00
955d7aa871 Remove floating port time support from nilmdb.utils.time 2013-03-15 18:08:21 -04:00
b8d2cf1b78 Consolidate rocket._extract_handle.params with extract_string 2013-03-15 18:08:21 -04:00
7c465730de Remove rocket.extract_pyobject 2013-03-15 18:08:21 -04:00
aca130272d Remove rocket.extract_list 2013-03-15 18:08:21 -04:00
76e5e9883f Remove Table.append, rocket.append_iter 2013-03-15 18:08:20 -04:00
fb4f4519ff Clean up and simplify Table.get_*, including __getitem__ 2013-03-15 18:08:20 -04:00
30328714a7 Remove python implementation of rocket 2013-03-15 18:08:20 -04:00
759466de4a Merge branch 'timestamp-integers' 2013-03-15 18:07:51 -04:00
d3efb829b5 Try to parse timestamps as double, if int64 parse fails 2013-03-15 15:19:41 -04:00
90b96799ac Bulk of the switch to int64 microsecond timestamps, including test data. 2013-03-15 15:08:58 -04:00
56679ad770 Move more datetime_tz calls into common code 2013-03-15 15:08:58 -04:00
b5541722c2 Continue moving time-handling code into nilmdb.utils.time 2013-03-15 15:08:58 -04:00
aaea105861 Consolidate most timestamp <-> string conversions (outside of rocket) 2013-03-15 15:08:57 -04:00
e6a081d639 Consolidate timestamp constants into nilmdb.utils.time 2013-03-15 15:08:57 -04:00
1835d03412 Bump bulkdata database version to 3 2013-03-15 15:08:57 -04:00
c7a712d8d8 Partial test for rounding issues 2013-03-15 15:08:57 -04:00
20d315b4f7 Add documentation about upcoming timestamp changes 2013-03-15 15:08:57 -04:00
a44a5e3135 Merge branch 'argcomplete' 2013-03-15 15:08:42 -04:00
039b2a0557 Include nilmtool-bash-completion.sh script in .tar.gz 2013-03-15 15:08:28 -04:00
cd1dfe7dcd Add completion functions to most commandline arguments 2013-03-15 14:26:38 -04:00
fb35517dfa Add basic argument completion 2013-03-15 13:57:35 -04:00
b9f0b35bbe Stream renaming support, and comprehensive tests
Implemented in command line, client, server, nilmdb, bulkdata
2013-03-14 11:02:30 -04:00
b1b09f8cd0 Strengthen checks when creating paths, fix some bugs, and add tests 2013-03-13 17:45:47 -04:00
d467df7980 Add specific error for creating a path that already exists 2013-03-13 10:14:28 -04:00
39 changed files with 15755 additions and 16014 deletions

View File

@@ -140,7 +140,7 @@ Speed
- Next slowdown target is nilmdb.layout.Parser.parse().
- Rewrote parsers using cython and sscanf
- Stats (rev 10831), with _add_interval disabled
- Stats (rev 10831), with `_add_interval` disabled
layout.pyx.Parser.parse:128 6303 sec, 262k calls
layout.pyx.parse:63 13913 sec, 5.1g calls
@@ -186,6 +186,19 @@ IntervalSet speed
- rbtree and interval converted to cython:
8.4 μS, total 12 s, 134 MB RAM
- Would like to move Interval itself back to Python so other
non-cythonized code like client code can use it more easily.
Testing speed with just `test_interval` being tested, with
`range(5,22)`, using `/usr/bin/time -v python tests/runtests.py`,
times recorded for 2097152:
- 52ae397 (Interval in cython):
12.6133 μs each, ratio 0.866533, total 47 sec, 399 MB RAM
- 9759dcf (Interval in python):
21.2937 μs each, ratio 1.462870, total 83 sec, 1107 MB RAM
That's a huge difference! Instead, will keep Interval and DBInterval
cythonized inside nilmdb, and just have an additional copy in
nilmdb.utils for clients to use.
Layouts
-------
Current/old design has specific layouts: RawData, PrepData, RawNotchedData.
@@ -328,3 +341,51 @@ Current places where we use lines:
- Finished. Just a single insert() that takes any length string and
does very little processing until it's time to send it to the
server.
Timestamps
----------
Timestamps are currently double-precision floats (64 bit). Since the
mantissa is 53-bit, this can only represent about 15-17 significant
figures, and microsecond Unix timestamps like 1222333444.000111 are
already 16 significant figures. Rounding is therefore an issue;
it's hard to sure that converting from ASCII, then back to ASCII,
will always give the same result.
Also, if the client provides a floating point value like 1.9999999999,
we need to be careful that we don't store it as 1.9999999999 but later
print it as 2.000000, because then round-trips change the data.
Possible solutions:
- When the client provides a floating point value to the server,
always round to the 6th decimal digit before verifying & storing.
Good for compatibility and simplicity. But still might have rounding
issues, and clients will also need to round when doing their own
verification. Having every piece of code need to know which digit
to round at is not ideal.
- Always store int64 timestamps on the server, representing
microseconds since epoch. int64 timestamps are used in all HTTP
parameters, in insert/extract ASCII strings, client API, commandline
raw timestamps, etc. Pretty big change.
This is what we'll go with...
- Client programs that interpret the timestamps as doubles instead
of ints will remain accurate until 2^53 microseconds, or year
2255.
- On insert, maybe it's OK to send floating point microsecond values
(1234567890123456.0), just to cope with clients that want to print
everything as a double. Server could try parsing as int64, and if
that fails, parse as double and truncate to int64. However, this
wouldn't catch imprecise inputs like "1.23456789012e+15". But
maybe that can just be ignored; it's likely to cause a
non-monotonic error at the client.
- Timestamps like 1234567890.123456 never show up anywhere, except
for interfacing to datetime_tz etc. Command line "raw timestamps"
are always printed as int64 values, and a new format
"@1234567890123456" is added to the parser for specifying them
exactly.

View File

@@ -0,0 +1,20 @@
# To enable bash completion:
#
# 1. Ensure python-argcomplete is installed:
# pip install argcomplete
# 2. Source this file:
# . nilmtool-bash-completion.sh
_nilmtool_argcomplete() {
local IFS=$(printf "\013")
COMPREPLY=( $(IFS="$IFS" \
COMP_LINE="$COMP_LINE" \
COMP_WORDBREAKS="$COMP_WORDBREAKS" \
COMP_POINT="$COMP_POINT" \
_ARGCOMPLETE=1 \
"$1" 8>&1 9>&2 1>/dev/null 2>/dev/null) )
if [[ $? != 0 ]]; then
unset COMPREPLY
fi
}
complete -o nospace -o default -F _nilmtool_argcomplete nilmtool

View File

@@ -10,11 +10,11 @@ import time
import simplejson as json
import contextlib
from nilmdb.utils.time import float_time_to_string
from nilmdb.utils.time import timestamp_to_string, string_to_timestamp
def extract_timestamp(line):
"""Extract just the timestamp from a line of data text"""
return float(line.split()[0])
return string_to_timestamp(line.split()[0])
class Client(object):
"""Main client interface to the Nilm database."""
@@ -101,15 +101,21 @@ class Client(object):
params = { "path": path }
return self.http.post("stream/destroy", params)
def stream_rename(self, oldpath, newpath):
"""Rename a stream."""
params = { "oldpath": oldpath,
"newpath": newpath }
return self.http.post("stream/rename", params)
def stream_remove(self, path, start = None, end = None):
"""Remove data from the specified time range"""
params = {
"path": path
}
if start is not None:
params["start"] = float_time_to_string(start)
params["start"] = timestamp_to_string(start)
if end is not None:
params["end"] = float_time_to_string(end)
params["end"] = timestamp_to_string(end)
return self.http.post("stream/remove", params)
@contextlib.contextmanager
@@ -160,9 +166,9 @@ class Client(object):
if diffpath is not None:
params["diffpath"] = diffpath
if start is not None:
params["start"] = float_time_to_string(start)
params["start"] = timestamp_to_string(start)
if end is not None:
params["end"] = float_time_to_string(end)
params["end"] = timestamp_to_string(end)
return self.http.get_gen("stream/intervals", params)
def stream_extract(self, path, start = None, end = None, count = False):
@@ -178,9 +184,9 @@ class Client(object):
"path": path,
}
if start is not None:
params["start"] = float_time_to_string(start)
params["start"] = timestamp_to_string(start)
if end is not None:
params["end"] = float_time_to_string(end)
params["end"] = timestamp_to_string(end)
if count:
params["count"] = 1
return self.http.get_gen("stream/extract", params)
@@ -232,9 +238,6 @@ class StreamInserter(object):
_max_data = 2 * 1024 * 1024
_max_data_after_send = 64 * 1024
# Delta to add to the final timestamp, if "end" wasn't given
_end_epsilon = 1e-6
def __init__(self, http, path, start = None, end = None):
"""'http' is the httpclient object. 'path' is the database
path to insert to. 'start' and 'end' are used for the first
@@ -358,7 +361,7 @@ class StreamInserter(object):
if end_ts is None:
(spos, epos) = self._get_last_noncomment(block)
end_ts = extract_timestamp(block[spos:epos])
end_ts += self._end_epsilon
end_ts += nilmdb.utils.time.epsilon
except (ValueError, IndexError):
pass # no timestamp is OK, if we have no data
self._block_data = []
@@ -405,8 +408,8 @@ class StreamInserter(object):
# Send it
params = { "path": self._path,
"start": float_time_to_string(start_ts),
"end": float_time_to_string(end_ts) }
"start": timestamp_to_string(start_ts),
"end": timestamp_to_string(end_ts) }
self.last_response = self._http.put("stream/insert", block, params)
return

View File

@@ -11,11 +11,16 @@ import os
import argparse
from argparse import ArgumentDefaultsHelpFormatter as def_form
try: # pragma: no cover
import argcomplete
except ImportError: # pragma: no cover
argcomplete = None
# Valid subcommands. Defined in separate files just to break
# things up -- they're still called with Cmdline as self.
subcommands = [ "help", "info", "create", "list", "metadata",
"insert", "extract", "remove", "destroy",
"intervals" ]
"intervals", "rename" ]
# Import the subcommand modules
subcmd_mods = {}
@@ -27,6 +32,50 @@ class JimArgumentParser(argparse.ArgumentParser):
self.print_usage(sys.stderr)
self.exit(2, sprintf("error: %s\n", message))
class Complete(object): # pragma: no cover
# Completion helpers, for using argcomplete (see
# extras/nilmtool-bash-completion.sh)
def escape(self, s):
quote_chars = [ "\\", "\"", "'", " " ]
for char in quote_chars:
s = s.replace(char, "\\" + char)
return s
def none(self, prefix, parsed_args, **kwargs):
return []
rate = none
time = none
url = none
def path(self, prefix, parsed_args, **kwargs):
client = nilmdb.client.Client(parsed_args.url)
return ( self.escape(s[0])
for s in client.stream_list()
if s[0].startswith(prefix) )
def layout(self, prefix, parsed_args, **kwargs):
types = [ "int8", "int16", "int32", "int64",
"uint8", "uint16", "uint32", "uint64",
"float32", "float64" ]
layouts = []
for i in range(1,10):
layouts.extend([(t + "_" + str(i)) for t in types])
return ( l for l in layouts if l.startswith(prefix) )
def meta_key(self, prefix, parsed_args, **kwargs):
return (kv.split('=')[0] for kv
in self.meta_keyval(prefix, parsed_args, **kwargs))
def meta_keyval(self, prefix, parsed_args, **kwargs):
client = nilmdb.client.Client(parsed_args.url)
path = parsed_args.path
if not path:
return []
return ( self.escape(k + '=' + v)
for (k,v) in client.stream_get_metadata(path).iteritems()
if k.startswith(prefix) )
class Cmdline(object):
def __init__(self, argv = None):
@@ -34,15 +83,17 @@ class Cmdline(object):
self.client = None
self.def_url = os.environ.get("NILMDB_URL", "http://localhost:12380")
self.subcmd = {}
self.complete = Complete()
def arg_time(self, toparse):
"""Parse a time string argument"""
try:
return nilmdb.utils.time.parse_time(toparse).totimestamp()
return nilmdb.utils.time.parse_time(toparse)
except ValueError as e:
raise argparse.ArgumentTypeError(sprintf("%s \"%s\"",
str(e), toparse))
# Set up the parser
def parser_setup(self):
self.parser = JimArgumentParser(add_help = False,
formatter_class = def_form)
@@ -56,7 +107,8 @@ class Cmdline(object):
group = self.parser.add_argument_group("Server")
group.add_argument("-u", "--url", action="store",
default=self.def_url,
help="NilmDB server URL (default: %(default)s)")
help="NilmDB server URL (default: %(default)s)"
).completer = self.complete.url
sub = self.parser.add_subparsers(
title="Commands", dest="command",
@@ -80,6 +132,8 @@ class Cmdline(object):
# Run parser
self.parser_setup()
if argcomplete: # pragma: no cover
argcomplete.autocomplete(self.parser)
self.args = self.parser.parse_args(self.argv)
# Run arg verify handler if there is one

View File

@@ -22,9 +22,11 @@ Layout types are of the format: type_count
cmd.set_defaults(handler = cmd_create)
group = cmd.add_argument_group("Required arguments")
group.add_argument("path",
help="Path (in database) of new stream, e.g. /foo/bar")
help="Path (in database) of new stream, e.g. /foo/bar",
).completer = self.complete.path
group.add_argument("layout",
help="Layout type for new stream, e.g. float32_8")
help="Layout type for new stream, e.g. float32_8",
).completer = self.complete.layout
return cmd
def cmd_create(self):

View File

@@ -14,7 +14,8 @@ def setup(self, sub):
cmd.set_defaults(handler = cmd_destroy)
group = cmd.add_argument_group("Required arguments")
group.add_argument("path",
help="Path of the stream to delete, e.g. /foo/bar")
help="Path of the stream to delete, e.g. /foo/bar",
).completer = self.complete.path
return cmd
def cmd_destroy(self):

View File

@@ -12,13 +12,16 @@ def setup(self, sub):
group = cmd.add_argument_group("Data selection")
group.add_argument("path",
help="Path of stream, e.g. /foo/bar")
help="Path of stream, e.g. /foo/bar",
).completer = self.complete.path
group.add_argument("-s", "--start", required=True,
metavar="TIME", type=self.arg_time,
help="Starting timestamp (free-form, inclusive)")
help="Starting timestamp (free-form, inclusive)",
).completer = self.complete.time
group.add_argument("-e", "--end", required=True,
metavar="TIME", type=self.arg_time,
help="Ending timestamp (free-form, noninclusive)")
help="Ending timestamp (free-form, noninclusive)",
).completer = self.complete.time
group = cmd.add_argument_group("Output format")
group.add_argument("-b", "--bare", action="store_true",
@@ -44,9 +47,9 @@ def cmd_extract(self):
layout = streams[0][1]
if self.args.timestamp_raw:
time_string = nilmdb.utils.time.float_time_to_string
time_string = nilmdb.utils.time.timestamp_to_string
else:
time_string = nilmdb.utils.time.format_time
time_string = nilmdb.utils.time.timestamp_to_human
if self.args.annotate:
printf("# path: %s\n", self.args.path)

View File

@@ -25,7 +25,8 @@ def setup(self, sub):
group.add_argument("-t", "--timestamp", action="store_true",
help="Add timestamps to each line")
group.add_argument("-r", "--rate", type=float,
help="Data rate, in Hz")
help="Data rate, in Hz",
).completer = self.complete.rate
group = cmd.add_argument_group("Start time",
description="""
@@ -39,7 +40,8 @@ def setup(self, sub):
exc = group.add_mutually_exclusive_group()
exc.add_argument("-s", "--start",
metavar="TIME", type=self.arg_time,
help="Starting timestamp (free-form)")
help="Starting timestamp (free-form)",
).completer = self.complete.time
exc.add_argument("-f", "--filename", action="store_true",
help="Use filename to determine start time")
@@ -52,11 +54,13 @@ def setup(self, sub):
timezone.""")
group.add_argument("-e", "--end",
metavar="TIME", type=self.arg_time,
help="Ending timestamp (free-form)")
help="Ending timestamp (free-form)",
).completer = self.complete.time
group = cmd.add_argument_group("Required parameters")
group.add_argument("path",
help="Path of stream, e.g. /foo/bar")
help="Path of stream, e.g. /foo/bar",
).completer = self.complete.path
group.add_argument("file", nargs = '?', default='-',
help="File to insert (default: - (stdin))")
return cmd
@@ -92,7 +96,7 @@ def cmd_insert(self):
if arg.start is None:
try:
arg.start = nilmdb.utils.time.parse_time(filename).totimestamp()
arg.start = nilmdb.utils.time.parse_time(filename)
except ValueError:
self.die("error extracting start time from filename '%s'",
filename)
@@ -106,10 +110,10 @@ def cmd_insert(self):
if not arg.quiet:
printf(" Input file: %s\n", filename)
printf(" Start time: %s\n",
nilmdb.utils.time.format_time(arg.start))
nilmdb.utils.time.timestamp_to_human(arg.start))
if arg.end:
printf(" End time: %s\n",
nilmdb.utils.time.format_time(arg.end))
nilmdb.utils.time.timestamp_to_human(arg.end))
if arg.timestamp:
printf("Timestamper: %s\n", str(data))

View File

@@ -21,19 +21,23 @@ def setup(self, sub):
group = cmd.add_argument_group("Stream selection")
group.add_argument("path", metavar="PATH",
help="List intervals for this path")
help="List intervals for this path",
).completer = self.complete.path
group.add_argument("-d", "--diff", metavar="PATH",
help="Subtract intervals from this path")
help="Subtract intervals from this path",
).completer = self.complete.path
group = cmd.add_argument_group("Interval details")
group.add_argument("-s", "--start",
metavar="TIME", type=self.arg_time,
help="Starting timestamp for intervals "
"(free-form, inclusive)")
"(free-form, inclusive)",
).completer = self.complete.time
group.add_argument("-e", "--end",
metavar="TIME", type=self.arg_time,
help="Ending timestamp for intervals "
"(free-form, noninclusive)")
"(free-form, noninclusive)",
).completer = self.complete.time
group = cmd.add_argument_group("Misc options")
group.add_argument("-T", "--timestamp-raw", action="store_true",
@@ -49,9 +53,9 @@ def cmd_intervals_verify(self):
def cmd_intervals(self):
"""List intervals in a stream"""
if self.args.timestamp_raw:
time_string = nilmdb.utils.time.float_time_to_string
time_string = nilmdb.utils.time.timestamp_to_string
else:
time_string = nilmdb.utils.time.format_time
time_string = nilmdb.utils.time.timestamp_to_human
try:
for (start, end) in self.client.stream_intervals(

View File

@@ -18,11 +18,14 @@ def setup(self, sub):
group = cmd.add_argument_group("Stream filtering")
group.add_argument("-p", "--path", metavar="PATH", default="*",
help="Match only this path (-p can be omitted)")
help="Match only this path (-p can be omitted)",
).completer = self.complete.path
group.add_argument("path_positional", default="*",
nargs="?", help=argparse.SUPPRESS)
nargs="?", help=argparse.SUPPRESS,
).completer = self.complete.path
group.add_argument("-l", "--layout", default="*",
help="Match only this stream layout")
help="Match only this stream layout",
).completer = self.complete.layout
group = cmd.add_argument_group("Interval info")
group.add_argument("-E", "--ext", action="store_true",
@@ -35,11 +38,13 @@ def setup(self, sub):
group.add_argument("-s", "--start",
metavar="TIME", type=self.arg_time,
help="Starting timestamp for intervals "
"(free-form, inclusive)")
"(free-form, inclusive)",
).completer = self.complete.time
group.add_argument("-e", "--end",
metavar="TIME", type=self.arg_time,
help="Ending timestamp for intervals "
"(free-form, noninclusive)")
"(free-form, noninclusive)",
).completer = self.complete.time
group = cmd.add_argument_group("Misc options")
group.add_argument("-T", "--timestamp-raw", action="store_true",
@@ -71,12 +76,12 @@ def cmd_list(self):
streams = self.client.stream_list(extended = True)
if self.args.timestamp_raw:
time_string = nilmdb.utils.time.float_time_to_string
time_string = nilmdb.utils.time.timestamp_to_string
else:
time_string = nilmdb.utils.time.format_time
time_string = nilmdb.utils.time.timestamp_to_human
for stream in streams:
(path, layout, int_min, int_max, rows, seconds) = stream[:6]
(path, layout, int_min, int_max, rows, time) = stream[:6]
if not (fnmatch.fnmatch(path, self.args.path) and
fnmatch.fnmatch(layout, self.args.layout)):
continue
@@ -90,7 +95,8 @@ def cmd_list(self):
printf(" interval extents: %s -> %s\n",
time_string(int_min), time_string(int_max))
printf(" total data: %d rows, %.6f seconds\n",
rows or 0, seconds or 0);
rows or 0,
nilmdb.utils.time.timestamp_to_seconds(time or 0))
if self.args.detail:
printed = False

View File

@@ -14,18 +14,22 @@ def setup(self, sub):
group = cmd.add_argument_group("Required arguments")
group.add_argument("path",
help="Path of stream, e.g. /foo/bar")
help="Path of stream, e.g. /foo/bar",
).completer = self.complete.path
group = cmd.add_argument_group("Actions")
exc = group.add_mutually_exclusive_group()
exc.add_argument("-g", "--get", nargs="*", metavar="key",
help="Get metadata for specified keys (default all)")
help="Get metadata for specified keys (default all)",
).completer = self.complete.meta_key
exc.add_argument("-s", "--set", nargs="+", metavar="key=value",
help="Replace all metadata with provided "
"key=value pairs")
"key=value pairs",
).completer = self.complete.meta_keyval
exc.add_argument("-u", "--update", nargs="+", metavar="key=value",
help="Update metadata using provided "
"key=value pairs")
"key=value pairs",
).completer = self.complete.meta_keyval
return cmd
def cmd_metadata(self):

View File

@@ -11,13 +11,16 @@ def setup(self, sub):
group = cmd.add_argument_group("Data selection")
group.add_argument("path",
help="Path of stream, e.g. /foo/bar")
help="Path of stream, e.g. /foo/bar",
).completer = self.complete.path
group.add_argument("-s", "--start", required=True,
metavar="TIME", type=self.arg_time,
help="Starting timestamp (free-form, inclusive)")
help="Starting timestamp (free-form, inclusive)",
).completer = self.complete.time
group.add_argument("-e", "--end", required=True,
metavar="TIME", type=self.arg_time,
help="Ending timestamp (free-form, noninclusive)")
help="Ending timestamp (free-form, noninclusive)",
).completer = self.complete.time
group = cmd.add_argument_group("Output format")
group.add_argument("-c", "--count", action="store_true",

31
nilmdb/cmdline/rename.py Normal file
View File

@@ -0,0 +1,31 @@
from nilmdb.utils.printf import *
import nilmdb.client
from argparse import ArgumentDefaultsHelpFormatter as def_form
def setup(self, sub):
cmd = sub.add_parser("rename", help="Rename a stream",
formatter_class = def_form,
description="""
Rename a stream.
Only the stream's path is renamed; no
metadata is changed.
""")
cmd.set_defaults(handler = cmd_rename)
group = cmd.add_argument_group("Required arguments")
group.add_argument("oldpath",
help="Old path, e.g. /foo/old",
).completer = self.complete.path
group.add_argument("newpath",
help="New path, e.g. /foo/bar/new",
).completer = self.complete.path
return cmd
def cmd_rename(self):
"""Rename a stream"""
try:
self.client.stream_rename(self.args.oldpath, self.args.newpath)
except nilmdb.client.ClientError as e:
self.die("error renaming stream: %s", str(e))

View File

@@ -5,15 +5,15 @@
from __future__ import absolute_import
from __future__ import division
from nilmdb.utils.printf import *
from nilmdb.utils.time import float_time_to_string as ftts
from nilmdb.utils.time import timestamp_to_string as timestamp_to_string
import nilmdb.utils
import os
import cPickle as pickle
import re
import sys
import tempfile
#from . import pyrocket as rocket
from . import rocket
# Up to 256 open file descriptors at any given time.
@@ -56,6 +56,59 @@ class BulkData(object):
return path.encode('utf-8')
return path
def _create_check_ospath(self, ospath):
if ospath[-1] == '/':
raise ValueError("invalid path; should not end with a /")
if Table.exists(ospath):
raise ValueError("stream already exists at this path")
if os.path.isdir(ospath):
raise ValueError("subdirs of this path already exist")
def _create_parents(self, unicodepath):
"""Verify the path name, and create parent directories if they
don't exist. Returns a list of elements that got created."""
path = self._encode_filename(unicodepath)
if path[0] != '/':
raise ValueError("paths must start with /")
[ group, node ] = path.rsplit("/", 1)
if group == '':
raise ValueError("invalid path; path must contain at least one "
"folder")
if node == '':
raise ValueError("invalid path; should not end with a /")
if not Table.valid_path(path):
raise ValueError("path name is invalid or contains reserved words")
# Create the table's base dir. Note that we make a
# distinction here between NilmDB paths (always Unix style,
# split apart manually) and OS paths (built up with
# os.path.join)
# Make directories leading up to this one
elements = path.lstrip('/').split('/')
made_dirs = []
try:
# Make parent elements
for i in range(len(elements)):
ospath = os.path.join(self.root, *elements[0:i])
if Table.exists(ospath):
raise ValueError("path is subdir of existing node")
if not os.path.isdir(ospath):
os.mkdir(ospath)
made_dirs.append(ospath)
except Exception as e:
# Try to remove paths that we created; ignore errors
exc_info = sys.exc_info()
for ospath in reversed(made_dirs): # pragma: no cover (hard to hit)
try:
os.rmdir(ospath)
except OSError:
pass
raise exc_info[1], None, exc_info[2]
return elements
def create(self, unicodepath, layout_name):
"""
unicodepath: path to the data (e.g. u'/newton/prep').
@@ -67,32 +120,11 @@ class BulkData(object):
layout_name: string for nilmdb.layout.get_named(), e.g. 'float32_8'
"""
path = self._encode_filename(unicodepath)
if path[0] != '/':
raise ValueError("paths must start with /")
[ group, node ] = path.rsplit("/", 1)
if group == '':
raise ValueError("invalid path; path must contain at least one "
"folder")
# Create the table. Note that we make a distinction here
# between NilmDB paths (always Unix style, split apart
# manually) and OS paths (built up with os.path.join)
# Make directories leading up to this one
elements = path.lstrip('/').split('/')
for i in range(len(elements)):
ospath = os.path.join(self.root, *elements[0:i])
if Table.exists(ospath):
raise ValueError("path is subdir of existing node")
if not os.path.isdir(ospath):
os.mkdir(ospath)
elements = self._create_parents(unicodepath)
# Make the final dir
ospath = os.path.join(self.root, *elements)
if os.path.isdir(ospath):
raise ValueError("subdirs of this path already exist")
self._create_check_ospath(ospath)
os.mkdir(ospath)
try:
@@ -113,6 +145,55 @@ class BulkData(object):
# Success
return
def _remove_leaves(self, unicodepath):
"""Remove empty directories starting at the leaves of unicodepath"""
path = self._encode_filename(unicodepath)
elements = path.lstrip('/').split('/')
for i in reversed(range(len(elements))):
ospath = os.path.join(self.root, *elements[0:i+1])
try:
os.rmdir(ospath)
except OSError:
pass
def rename(self, oldunicodepath, newunicodepath):
"""Move entire tree from 'oldunicodepath' to
'newunicodepath'"""
oldpath = self._encode_filename(oldunicodepath)
newpath = self._encode_filename(newunicodepath)
# Get OS paths
oldelements = oldpath.lstrip('/').split('/')
oldospath = os.path.join(self.root, *oldelements)
newelements = newpath.lstrip('/').split('/')
newospath = os.path.join(self.root, *newelements)
# Basic checks
if oldospath == newospath:
raise ValueError("old and new paths are the same")
self._create_check_ospath(newospath)
# Move the table to a temporary location
tmpdir = tempfile.mkdtemp(prefix = "rename-", dir = self.root)
tmppath = os.path.join(tmpdir, "table")
os.rename(oldospath, tmppath)
try:
# Create parent dirs for new location
self._create_parents(newunicodepath)
# Move table into new location
os.rename(tmppath, newospath)
except Exception:
# On failure, move the table back to original path
os.rename(tmppath, oldospath)
os.rmdir(tmpdir)
raise
# Prune old dirs
self._remove_leaves(oldunicodepath)
os.rmdir(tmpdir)
def destroy(self, unicodepath):
"""Fully remove all data at a particular path. No way to undo
it! The group/path structure is removed, too."""
@@ -134,13 +215,8 @@ class BulkData(object):
for name in dirs:
os.rmdir(os.path.join(root, name))
# Remove empty parent directories
for i in reversed(range(len(elements))):
ospath = os.path.join(self.root, *elements[0:i+1])
try:
os.rmdir(ospath)
except OSError:
break
# Remove leftover empty directories
self._remove_leaves(unicodepath)
# Cache open tables
@nilmdb.utils.lru_cache(size = table_cache_size,
@@ -159,6 +235,11 @@ class Table(object):
# See design.md for design details
# Class methods, to help keep format details in this class.
@classmethod
def valid_path(cls, root):
"""Return True if a root path is a valid name"""
return "_format" not in root.split("/")
@classmethod
def exists(cls, root):
"""Return True if a table appears to exist at this OS path"""
@@ -178,7 +259,7 @@ class Table(object):
fmt = { "rows_per_file": rows_per_file,
"files_per_dir": files_per_dir,
"layout": layout,
"version": 2 }
"version": 3 }
with open(os.path.join(root, "_format"), "wb") as f:
pickle.dump(fmt, f, 2)
@@ -191,21 +272,11 @@ class Table(object):
with open(os.path.join(self.root, "_format"), "rb") as f:
fmt = pickle.load(f)
if fmt["version"] == 1: # pragma: no cover
# We can handle this old version by converting from
# struct_fmt back to layout name.
compat = { "<dHHHHHH": "uint16_6",
"<dHHHHHHHHH": "uint16_9",
"<dffffffff": "float32_8" }
if fmt["struct_fmt"] in compat:
fmt["version"] = 2
fmt["layout"] = compat[fmt["struct_fmt"]]
else:
raise NotImplementedError("old version 1 data with format "
+ fmt["struct_fmt"] + " is no good")
elif fmt["version"] != 2: # pragma: no cover (just future proofing)
raise NotImplementedError("version " + str(fmt["version"]) +
" bulk data store not supported")
if fmt["version"] != 3: # pragma: no cover
# Old versions used floating point timestamps, which aren't
# valid anymore.
raise NotImplementedError("old version " + str(fmt["version"]) +
" bulk data store is not supported")
self.rows_per_file = fmt["rows_per_file"]
self.files_per_dir = fmt["files_per_dir"]
@@ -318,27 +389,6 @@ class Table(object):
return rocket.Rocket(self.layout,
os.path.join(self.root, subdir, filename))
def append(self, data):
"""Append the data and flush it to disk.
data is a nested Python list [[row],[row],[...]]"""
remaining = len(data)
dataiter = iter(data)
while remaining:
# See how many rows we can fit into the current file, and open it
(subdir, fname, offset, count) = self._offset_from_row(self.nrows)
if count > remaining:
count = remaining
f = self.file_open(subdir, fname)
# Write the data
written = f.append_iter(count, dataiter)
if written != count: # pragma: no cover
raise Exception("Didn't write the expected number of rows: "
+ str(written) + " != " + str(count))
remaining -= count
self.nrows += count
def append_string(self, data, start, end):
"""Parse the formatted string in 'data', according to the
current layout, and append it to the table. If any timestamps
@@ -349,7 +399,7 @@ class Table(object):
the table is reverted back to its original state by truncating
or deleting files as necessary."""
data_offset = 0
last_timestamp = -1e12
last_timestamp = nilmdb.utils.time.min_timestamp
tot_rows = self.nrows
count = 0
linenum = 0
@@ -380,10 +430,12 @@ class Table(object):
elif errtype == rocket.ERR_OUT_OF_INTERVAL:
if obj < start:
err = sprintf("Data timestamp %s < start time %s",
ftts(obj), ftts(start))
timestamp_to_string(obj),
timestamp_to_string(start))
else:
err = sprintf("Data timestamp %s >= end time %s",
ftts(obj), ftts(end))
timestamp_to_string(obj),
timestamp_to_string(end))
else:
err = str(obj)
raise ValueError("error parsing input data: " +
@@ -403,10 +455,9 @@ class Table(object):
# Success, so update self.nrows accordingly
self.nrows = tot_rows
def _get_data(self, start, stop, as_string):
def get_data(self, start, stop):
"""Extract data corresponding to Python range [n:m],
and returns a numeric list or formatted string,
depending on as_string."""
and returns a formatted string"""
if (start is None or
stop is None or
start > stop or
@@ -422,42 +473,18 @@ class Table(object):
if count > remaining:
count = remaining
f = self.file_open(subdir, filename)
if as_string:
ret.append(f.extract_string(offset, count))
else:
ret.extend(f.extract_list(offset, count))
remaining -= count
row += count
if as_string:
return "".join(ret)
return ret
def get_as_text(self, start, stop):
"""Extract data corresponding to Python range [n:m],
and returns a formatted string"""
return self._get_data(start, stop, True)
def __getitem__(self, key):
"""Extract data and return it. Supports simple indexing
(table[n]) and range slices (table[n:m]). Returns a nested
Python list [[row],[row],[...]]"""
# Handle simple slices
if isinstance(key, slice):
# Fall back to brute force if the slice isn't simple
try:
if (key.step is not None and key.step != 1):
raise IndexError
return self._get_data(key.start, key.stop, False)
except IndexError:
return [ self[x] for x in xrange(*key.indices(self.nrows)) ]
# Handle single points (inefficiently!)
if key < 0 or key >= self.nrows:
def __getitem__(self, row):
"""Extract timestamps from a row, with table[n] notation."""
if row < 0 or row >= self.nrows:
raise IndexError("Index out of range")
(subdir, filename, offset, count) = self._offset_from_row(key)
(subdir, filename, offset, count) = self._offset_from_row(row)
f = self.file_open(subdir, filename)
return f.extract_list(offset, 1)[0]
return f.extract_timestamp(offset)
def _remove_rows(self, subdir, filename, start, stop):
"""Helper to mark specific rows as being removed from a
@@ -548,11 +575,3 @@ class Table(object):
self._remove_rows(subdir, filename, row_offset, row_offset + count)
remaining -= count
row += count
class TimestampOnlyTable(object):
"""Helper that lets us pass a Tables object into bisect, by
returning only the timestamp when a particular row is requested."""
def __init__(self, table):
self.table = table
def __getitem__(self, index):
return self.table[index][0]

View File

@@ -1,5 +1,9 @@
"""Interval, IntervalSet
The Interval implemented here is just like
nilmdb.utils.interval.Interval, except implemented in Cython for
speed.
Represents an interval of time, and a set of such intervals.
Intervals are half-open, ie. they include data points with timestamps
@@ -19,53 +23,44 @@ Intervals are half-open, ie. they include data points with timestamps
# Fourth version is an optimized rb-tree that stores interval starts
# and ends directly in the tree, like bxinterval did.
from ..utils.time import float_time_to_string as ftts
from ..utils.time import min_timestamp as nilmdb_min_timestamp
from ..utils.time import max_timestamp as nilmdb_max_timestamp
from ..utils.time import timestamp_to_string
from ..utils.iterator import imerge
from ..utils.interval import IntervalError
import itertools
cimport rbtree
cdef extern from "stdint.h":
ctypedef unsigned long long uint64_t
from libc.stdint cimport uint64_t, int64_t
class IntervalError(Exception):
"""Error due to interval overlap, etc"""
pass
ctypedef int64_t timestamp_t
cdef class Interval:
"""Represents an interval of time."""
cdef public double start, end
cdef public timestamp_t start, end
def __init__(self, double start, double end):
def __init__(self, timestamp_t start, timestamp_t end):
"""
'start' and 'end' are arbitrary floats that represent time
'start' and 'end' are arbitrary numbers that represent time
"""
if start >= end:
# Explicitly disallow zero-width intervals (since they're half-open)
raise IntervalError("start %s must precede end %s" % (start, end))
self.start = float(start)
self.end = float(end)
self.start = start
self.end = end
def __repr__(self):
s = repr(self.start) + ", " + repr(self.end)
return self.__class__.__name__ + "(" + s + ")"
def __str__(self):
return "[" + ftts(self.start) + " -> " + ftts(self.end) + ")"
return ("[" + timestamp_to_string(self.start) +
" -> " + timestamp_to_string(self.end) + ")")
def __cmp__(self, Interval other):
"""Compare two intervals. If non-equal, order by start then end"""
if not isinstance(other, Interval):
raise TypeError("bad type")
if self.start == other.start:
if self.end < other.end:
return -1
if self.end > other.end:
return 1
return 0
if self.start < other.start:
return -1
return 1
return cmp(self.start, other.start) or cmp(self.end, other.end)
cpdef intersects(self, Interval other):
"""Return True if two Interval objects intersect"""
@@ -73,7 +68,7 @@ cdef class Interval:
return False
return True
cpdef subset(self, double start, double end):
cpdef subset(self, timestamp_t start, timestamp_t end):
"""Return a new Interval that is a subset of this one"""
# A subclass that tracks additional data might override this.
if start < self.start or end > self.end:
@@ -95,14 +90,14 @@ cdef class DBInterval(Interval):
db_end = 200, db_endpos = 20000
"""
cpdef public double db_start, db_end
cpdef public timestamp_t db_start, db_end
cpdef public uint64_t db_startpos, db_endpos
def __init__(self, start, end,
db_start, db_end,
db_startpos, db_endpos):
"""
'db_start' and 'db_end' are arbitrary floats that represent
'db_start' and 'db_end' are arbitrary numbers that represent
time. They must be a strict superset of the time interval
covered by 'start' and 'end'. The 'db_startpos' and
'db_endpos' are arbitrary database position indicators that
@@ -122,7 +117,7 @@ cdef class DBInterval(Interval):
s += ", " + repr(self.db_startpos) + ", " + repr(self.db_endpos)
return self.__class__.__name__ + "(" + s + ")"
cpdef subset(self, double start, double end):
cpdef subset(self, timestamp_t start, timestamp_t end):
"""
Return a new DBInterval that is a subset of this one
"""
@@ -309,62 +304,6 @@ cdef class IntervalSet:
else:
yield subset
def set_difference(self, IntervalSet other not None,
Interval bounds = None):
"""
Compute the difference (self \\ other) between this
IntervalSet and the given IntervalSet; i.e., the ranges
that are present in 'self' but not 'other'.
If 'bounds' is not None, results are limited to the range
specified by the interval 'bounds'.
Returns a generator that yields each interval in turn.
Output intervals are built as subsets of the intervals in the
first argument (self).
"""
# Iterate through all starts and ends in sorted order. Add a
# tag to the iterator so that we can figure out which one they
# were, after sorting.
def decorate(it, key_start, key_end):
for i in it:
yield i.start, key_start, i
yield i.end, key_end, i
if bounds is None:
bounds = Interval(-1e12, 1e12)
self_iter = decorate(self.intersection(bounds), 0, 2)
other_iter = decorate(other.intersection(bounds), 1, 3)
# Now iterate over the timestamps of each start and end.
# At each point, evaluate which type of end it is, to determine
# how to build up the output intervals.
self_interval = None
other_interval = None
out_start = None
for (ts, k, i) in imerge(self_iter, other_iter):
if k == 0:
# start self interval
self_interval = i
if other_interval is None:
out_start = ts
elif k == 1:
# start other interval
other_interval = i
if out_start is not None and out_start != ts:
yield self_interval.subset(out_start, ts)
out_start = None
elif k == 2:
# end self interval
if out_start is not None and out_start != ts:
yield self_interval.subset(out_start, ts)
out_start = None
self_interval = None
elif k == 3:
# end other interval
other_interval = None
if self_interval:
out_start = ts
cpdef intersects(self, Interval other):
"""Return True if this IntervalSet intersects another interval"""
for n in self.tree.intersect(other.start, other.end):
@@ -372,7 +311,7 @@ cdef class IntervalSet:
return True
return False
def find_end(self, double t):
def find_end(self, timestamp_t t):
"""
Return an Interval from this tree that ends at time t, or
None if it doesn't exist.

View File

@@ -1,201 +0,0 @@
# cython: profile=False
import time
import sys
import inspect
import cStringIO
cdef enum:
max_value_count = 64
cimport cython
cimport libc.stdlib
cimport libc.stdio
cimport libc.string
class ParserError(Exception):
def __init__(self, line, message):
self.message = "line " + str(line) + ": " + message
Exception.__init__(self, self.message)
class FormatterError(Exception):
pass
class Layout:
"""Represents a NILM database layout"""
def __init__(self, typestring):
"""Initialize this Layout object to handle the specified
type string"""
try:
[ datatype, count ] = typestring.split("_")
except:
raise KeyError("invalid layout string")
try:
self.count = int(count)
except ValueError:
raise KeyError("invalid count")
if self.count < 1 or self.count > max_value_count:
raise KeyError("invalid count")
if datatype == 'uint16':
self.parse = self.parse_uint16
self.format_str = "%.6f" + " %d" * self.count
self.format = self.format_generic
elif datatype == 'float32':
self.parse = self.parse_float64
self.format_str = "%.6f" + " %.6e" * self.count
self.format = self.format_generic
elif datatype == 'float64':
self.parse = self.parse_float64
self.format_str = "%.6f" + " %.16e" * self.count
self.format = self.format_generic
else:
raise KeyError("invalid type")
self.datatype = datatype
# Parsers
def parse_float64(self, char *text):
cdef int n
cdef double ts
# Return doubles even in float32 case, since they're going into
# a Python array which would upconvert to double anyway.
result = [0] * (self.count + 1)
cdef char *end
ts = libc.stdlib.strtod(text, &end)
if end == text:
raise ValueError("bad timestamp")
result[0] = ts
for n in range(self.count):
text = end
result[n+1] = libc.stdlib.strtod(text, &end)
if end == text:
raise ValueError("wrong number of values")
n = 0
while end[n] == ' ':
n += 1
if end[n] != '\n' and end[n] != '#' and end[n] != '\0':
raise ValueError("extra data on line")
return (ts, result)
def parse_uint16(self, char *text):
cdef int n
cdef double ts
cdef int v
cdef char *end
result = [0] * (self.count + 1)
ts = libc.stdlib.strtod(text, &end)
if end == text:
raise ValueError("bad timestamp")
result[0] = ts
for n in range(self.count):
text = end
v = libc.stdlib.strtol(text, &end, 10)
if v < 0 or v > 65535:
raise ValueError("value out of range")
result[n+1] = v
if end == text:
raise ValueError("wrong number of values")
n = 0
while end[n] == ' ':
n += 1
if end[n] != '\n' and end[n] != '#' and end[n] != '\0':
raise ValueError("extra data on line")
return (ts, result)
# Formatters
def format_generic(self, d):
n = len(d) - 1
if n != self.count:
raise ValueError("wrong number of values for layout type: "
"got %d, wanted %d" % (n, self.count))
return (self.format_str % tuple(d)) + "\n"
# Get a layout by name
def get_named(typestring):
try:
return Layout(typestring)
except KeyError:
compat = { "PrepData": "float32_8",
"RawData": "uint16_6",
"RawNotchedData": "uint16_9" }
return Layout(compat[typestring])
class Parser(object):
"""Object that parses and stores ASCII data for inclusion into the
database"""
def __init__(self, layout):
if issubclass(layout.__class__, Layout):
self.layout = layout
else:
try:
self.layout = get_named(layout)
except KeyError:
raise TypeError("unknown layout")
self.data = []
self.min_timestamp = None
self.max_timestamp = None
def parse(self, textdata):
"""
Parse the data, provided as lines of text, using the current
layout, into an internal data structure suitable for a
pytables 'table.append(parser.data)'.
"""
cdef double last_ts = -1e12, ts
cdef int n = 0, i
cdef char *line
indata = cStringIO.StringIO(textdata)
# Assume any parsing error is a real error.
# In the future we might want to skip completely empty lines,
# or partial lines right before EOF?
try:
self.data = []
for pyline in indata:
line = pyline
n += 1
if line[0] == '\#':
continue
(ts, row) = self.layout.parse(line)
if ts <= last_ts:
raise ValueError("timestamp is not "
"monotonically increasing")
last_ts = ts
self.data.append(row)
except (ValueError, IndexError, TypeError) as e:
raise ParserError(n, "error: " + e.message)
# Mark timestamp ranges
if len(self.data):
self.min_timestamp = self.data[0][0]
self.max_timestamp = self.data[-1][0]
class Formatter(object):
"""Object that formats database data into ASCII"""
def __init__(self, layout):
if issubclass(layout.__class__, Layout):
self.layout = layout
else:
try:
self.layout = get_named(layout)
except KeyError:
raise TypeError("unknown layout")
def format(self, data):
"""
Format raw data from the database, using the current layout,
as lines of ACSII text.
"""
text = cStringIO.StringIO()
try:
for row in data:
text.write(self.layout.format(row))
except (ValueError, IndexError, TypeError) as e:
raise FormatterError("formatting error: " + e.message)
return text.getvalue()

View File

@@ -12,8 +12,10 @@ Manages both the SQL database and the table storage backend.
from __future__ import absolute_import
import nilmdb.utils
from nilmdb.utils.printf import *
from nilmdb.server.interval import (Interval, DBInterval,
IntervalSet, IntervalError)
from nilmdb.utils.interval import IntervalError
from nilmdb.server.interval import Interval, DBInterval, IntervalSet
from nilmdb.server import bulkdata
from nilmdb.server.errors import NilmDBError, StreamError, OverlapError
@@ -35,7 +37,7 @@ import bisect
# seems that 'PRAGMA synchronous=NORMAL' and 'PRAGMA journal_mode=WAL'
# give an equivalent speedup more safely. That is what is used here.
_sql_schema_updates = {
0: """
0: { "next": 1, "sql": """
-- All streams
CREATE TABLE streams(
id INTEGER PRIMARY KEY, -- stream ID
@@ -59,16 +61,21 @@ _sql_schema_updates = {
end_pos INTEGER NOT NULL
);
CREATE INDEX _ranges_index ON ranges (stream_id, start_time, end_time);
""",
""" },
1: """
1: { "next": 3, "sql": """
-- Generic dictionary-type metadata that can be associated with a stream
CREATE TABLE metadata(
stream_id INTEGER NOT NULL,
key TEXT NOT NULL,
value TEXT
);
""",
""" },
2: { "error": "old format with floating-point timestamps requires "
"nilmdb 1.3.1 or older" },
3: { "next": None },
}
@nilmdb.utils.must_close()
@@ -96,7 +103,10 @@ class NilmDB(object):
# SQLite database too
sqlfilename = os.path.join(self.basepath, "data.sql")
self.con = sqlite3.connect(sqlfilename, check_same_thread = True)
try:
self._sql_schema_update()
finally: # pragma: no cover
self.data.close()
# See big comment at top about the performance implications of this
self.con.execute("PRAGMA synchronous=NORMAL")
@@ -123,11 +133,20 @@ class NilmDB(object):
version = cur.execute("PRAGMA user_version").fetchone()[0]
oldversion = version
while version in _sql_schema_updates:
cur.executescript(_sql_schema_updates[version])
version = version + 1
while True:
if version not in _sql_schema_updates: # pragma: no cover
raise Exception(self.basepath + ": unknown database version "
+ str(version))
update = _sql_schema_updates[version]
if "error" in update: # pragma: no cover
raise Exception(self.basepath + ": can't use database version "
+ str(version) + ": " + update["error"])
if update["next"] is None:
break
cur.executescript(update["sql"])
version = update["next"]
if self.verbose: # pragma: no cover
printf("Schema updated to %d\n", version)
printf("Database schema updated to %d\n", version)
if version != oldversion:
with self.con:
@@ -135,9 +154,9 @@ class NilmDB(object):
def _check_user_times(self, start, end):
if start is None:
start = -1e12
start = nilmdb.utils.time.min_timestamp
if end is None:
end = 1e12
end = nilmdb.utils.time.max_timestamp
if start >= end:
raise NilmDBError("start must precede end")
return (start, end)
@@ -284,7 +303,7 @@ class NilmDB(object):
interval_min (earliest interval start)
interval_max (latest interval end)
rows (total number of rows of data)
seconds (total time covered by this stream)
time (total time covered by this stream, in timestamp units)
"""
params = ()
query = "SELECT streams.path, streams.layout"
@@ -311,7 +330,7 @@ class NilmDB(object):
List all intervals in 'path' between 'start' and 'end'. If
'diffpath' is not none, list instead the set-difference
between the intervals in the two streams; i.e. all interval
ranges that are present in 'path' but not 'path2'.
ranges that are present in 'path' but not 'diffpath'.
Returns (intervals, restart) tuple.
@@ -333,7 +352,9 @@ class NilmDB(object):
requested = Interval(start, end)
result = []
if diffpath:
getter = intervals.set_difference(diffintervals, requested)
getter = nilmdb.utils.interval.set_difference(
intervals.intersection(requested),
diffintervals.intersection(requested))
else:
getter = intervals.intersection(requested)
for n, i in enumerate(getter):
@@ -405,6 +426,18 @@ class NilmDB(object):
data.update(newdata)
self.stream_set_metadata(path, data)
def stream_rename(self, oldpath, newpath):
"""Rename a stream."""
stream_id = self._stream_id(oldpath)
# Rename the data
self.data.rename(oldpath, newpath)
# Rename the stream in the database
with self.con as con:
con.execute("UPDATE streams SET path=? WHERE id=?",
(newpath, stream_id))
def stream_destroy(self, path):
"""Fully remove a table and all of its data from the database.
No way to undo it! Metadata is removed."""
@@ -460,7 +493,7 @@ class NilmDB(object):
# Optimization for the common case where an interval wasn't truncated
if dbinterval.start == dbinterval.db_start:
return dbinterval.db_startpos
return bisect.bisect_left(bulkdata.TimestampOnlyTable(table),
return bisect.bisect_left(table,
dbinterval.start,
dbinterval.db_startpos,
dbinterval.db_endpos)
@@ -479,7 +512,7 @@ class NilmDB(object):
# want to include the given timestamp in the results. This is
# so a queries like 1:00 -> 2:00 and 2:00 -> 3:00 return
# non-overlapping data.
return bisect.bisect_left(bulkdata.TimestampOnlyTable(table),
return bisect.bisect_left(table,
dbinterval.end,
dbinterval.db_startpos,
dbinterval.db_endpos)
@@ -527,10 +560,10 @@ class NilmDB(object):
row_max = row_start + remaining
if row_max < row_end:
row_end = row_max
restart = table[row_max][0]
restart = table[row_max]
# Gather these results up
result.append(table.get_as_text(row_start, row_end))
result.append(table.get_data(row_start, row_end))
# Count them
remaining -= row_end - row_start

View File

@@ -1,143 +0,0 @@
# Python implementation of the "rocket" data parsing interface.
# This interface translates between the binary format on disk
# and the ASCII format used when communicating with clients.
# This is slow! Use the C version instead.
from __future__ import absolute_import
import struct
import cStringIO
import itertools
from . import layout as _layout
import nilmdb.utils
from nilmdb.utils.time import float_time_to_string as ftts
ERR_UNKNOWN = 0
ERR_NON_MONOTONIC = 1
ERR_OUT_OF_INTERVAL = 2
class ParseError(Exception):
pass
@nilmdb.utils.must_close(wrap_verify = False)
class Rocket(object):
def __init__(self, layout, filename):
self.layout = layout
if filename:
self.file = open(filename, "a+b")
else:
self.file = None
# For packing/unpacking into a binary file.
# This will change in the C version
try:
(self.ltype, lcount) = layout.split('_', 2)
self.lcount = int(lcount)
except:
raise ValueError("no such layout: badly formatted string")
if self.lcount < 1:
raise ValueError("no such layout: bad count")
try:
struct_fmt = '<d' # Little endian, double timestamp
struct_mapping = {
"int8": 'b',
"uint8": 'B',
"int16": 'h',
"uint16": 'H',
"int32": 'i',
"uint32": 'I',
"int64": 'q',
"uint64": 'Q',
"float32": 'f',
"float64": 'd',
}
struct_fmt += struct_mapping[self.ltype] * self.lcount
except KeyError:
raise ValueError("no such layout: bad data type")
self.packer = struct.Struct(struct_fmt)
# For packing/unpacking from strings.
self.layoutparser = _layout.Layout(self.layout)
self.formatter = _layout.Formatter(self.layout)
def close(self):
if self.file:
self.file.close()
@property
def binary_size(self):
"""Return size of one row of data in the binary file, in bytes"""
return self.packer.size
def append_iter(self, maxrows, data):
"""Append the list data to the file"""
# We assume the file is opened in append mode,
# so all writes go to the end.
written = 0
for row in itertools.islice(data, maxrows):
self.file.write(self.packer.pack(*row))
written += 1
self.file.flush()
return written
def append_string(self, count, data, data_offset, linenum,
start, end, last_timestamp):
"""Parse string and append data.
count: maximum number of rows to add
data: string data
data_offset: byte offset into data to start parsing
linenum: current line number of data
start: starting timestamp for interval
end: end timestamp for interval
last_timestamp: last timestamp that was previously parsed
Raises ParseError if timestamps are non-monotonic, outside the
start/end interval, etc.
On success, return a tuple with three values:
added_rows: how many rows were added from the file
data_offset: current offset into the data string
last_timestamp: last timestamp we parsed
"""
# Parse the input data
indata = cStringIO.StringIO(data)
indata.seek(data_offset)
written = 0
while written < count:
line = indata.readline()
linenum += 1
if line == "":
break
comment = line.find('#')
if comment >= 0:
line = line.split('#', 1)[0]
line = line.strip()
if line == "":
continue
try:
(ts, row) = self.layoutparser.parse(line)
except ValueError as e:
raise ParseError(linenum, 0, ERR_UNKNOWN, e)
if ts <= last_timestamp:
raise ParseError(linenum, 0, ERR_NON_MONOTONIC, ts)
last_timestamp = ts
if ts < start or ts >= end:
raise ParseError(linenum, 0, ERR_OUT_OF_INTERVAL, ts)
self.append_iter(1, [row])
written += 1
return (written, indata.tell(), last_timestamp, linenum)
def extract_list(self, offset, count):
"""Extract count rows of data from the file at offset offset.
Return a list of lists [[row],[row],...]"""
ret = []
self.file.seek(offset)
for i in xrange(count):
data = self.file.read(self.binary_size)
ret.append(list(self.packer.unpack(data)))
return ret
def extract_string(self, offset, count):
"""Extract count rows of data from the file at offset offset.
Return an ascii formatted string according to the layout"""
return self.formatter.format(self.extract_list(offset, count))

View File

@@ -17,6 +17,15 @@
#define FLOAT64_MIN 0
#define FLOAT64_MAX 0
typedef int64_t timestamp_t;
/* This code probably needs to be double-checked for the case where
sizeof(long) != 8, so enforce that here with something that will
fail at build time. We assume that the python integer type can
hold an int64_t. */
const static char __long_ok[1 - 2*!(sizeof(int64_t) ==
sizeof(long int))] = { 0 };
/* Somewhat arbitrary, just so we can use fixed sizes for strings
etc. */
static const int MAX_LAYOUT_COUNT = 128;
@@ -46,10 +55,10 @@ static PyObject *raise_str(int line, int col, int code, const char *string)
}
return NULL;
}
static PyObject *raise_num(int line, int col, int code, double num)
static PyObject *raise_int(int line, int col, int code, int64_t num)
{
PyObject *o;
o = Py_BuildValue("(iiid)", line, col, code, num);
o = Py_BuildValue("(iiil)", line, col, code, num);
if (o != NULL) {
PyErr_SetObject(ParseError, o);
Py_DECREF(o);
@@ -237,106 +246,6 @@ static PyObject *Rocket_get_file_size(Rocket *self)
return PyInt_FromLong(self->file_size);
}
/****
* Append from iterator
*/
/* Helper for writing Python objects to the file */
static inline void append_pyobject(FILE *out, PyObject *val, layout_type_t type)
{
union8_t t8;
union16_t t16;
union32_t t32;
union64_t t64;
int ret = 0;
switch (type) {
#define CASE(type, pyconvert, pytype, disktype, htole, bytes) \
case LAYOUT_TYPE_##type: \
pytype = pyconvert(val); \
if (PyErr_Occurred()) \
return; \
disktype = htole(disktype); \
ret = fwrite(&disktype, bytes, 1, out); \
break
CASE(INT8, PyInt_AsLong, t8.i, t8.u, , 1);
CASE(UINT8, PyInt_AsLong, t8.u, t8.u, , 1);
CASE(INT16, PyInt_AsLong, t16.i, t16.u, htole16, 2);
CASE(UINT16, PyInt_AsLong, t16.u, t16.u, htole16, 2);
CASE(INT32, PyInt_AsLong, t32.i, t32.u, htole32, 4);
CASE(UINT32, PyInt_AsLong, t32.u, t32.u, htole32, 4);
CASE(INT64, PyInt_AsLong, t64.i, t64.u, htole64, 8);
CASE(UINT64, PyInt_AsLong, t64.u, t64.u, htole64, 8);
CASE(FLOAT32, PyFloat_AsDouble, t32.f, t32.u, htole32, 4);
CASE(FLOAT64, PyFloat_AsDouble, t64.d, t64.u, htole64, 8);
#undef CASE
default:
PyErr_SetString(PyExc_TypeError, "unknown type");
return;
}
if (ret <= 0) {
PyErr_SetFromErrno(PyExc_OSError);
}
}
/* .append_iter(maxrows, dataiter) */
static PyObject *Rocket_append_iter(Rocket *self, PyObject *args)
{
int maxrows;
PyObject *iter;
PyObject *rowlist;
if (!PyArg_ParseTuple(args, "iO:append_iter", &maxrows, &iter))
return NULL;
if (!PyIter_Check(iter)) {
PyErr_SetString(PyExc_TypeError, "need an iterable");
return NULL;
}
if (!self->file) {
PyErr_SetString(PyExc_Exception, "no file");
return NULL;
}
/* Mark file size so that it will get updated next time it's read */
self->file_size = -1;
int row;
for (row = 0; row < maxrows; row++) {
rowlist = PyIter_Next(iter);
if (!rowlist)
break;
if (!PyList_Check(rowlist)) {
PyErr_SetString(PyExc_TypeError, "rows must be lists");
goto row_err;
}
if (PyList_Size(rowlist) != self->layout_count + 1) {
PyErr_SetString(PyExc_TypeError, "short row");
goto row_err;
}
/* Extract and write timestamp */
append_pyobject(self->file, PyList_GetItem(rowlist, 0),
LAYOUT_TYPE_FLOAT64);
if (PyErr_Occurred())
goto row_err;
/* Extract and write values */
int i;
for (i = 0; i < self->layout_count; i++) {
append_pyobject(self->file,
PyList_GetItem(rowlist, i+1),
self->layout_type);
if (PyErr_Occurred())
goto row_err;
}
}
fflush(self->file);
/* All done */
return PyLong_FromLong(row);
row_err:
fflush(self->file);
Py_DECREF(rowlist);
return NULL;
}
/****
* Append from string
*/
@@ -355,9 +264,9 @@ static PyObject *Rocket_append_string(Rocket *self, PyObject *args)
int offset;
const char *linestart;
int linenum;
double start;
double end;
double last_timestamp;
timestamp_t start;
timestamp_t end;
timestamp_t last_timestamp;
int written = 0;
char *endptr;
@@ -371,7 +280,7 @@ static PyObject *Rocket_append_string(Rocket *self, PyObject *args)
but we need the null termination for strto*. If we had
strnto* that took a length, we could use t# and not require
a copy. */
if (!PyArg_ParseTuple(args, "isiiddd:append_string", &count,
if (!PyArg_ParseTuple(args, "isiilll:append_string", &count,
&data, &offset, &linenum,
&start, &end, &last_timestamp))
return NULL;
@@ -401,17 +310,23 @@ static PyObject *Rocket_append_string(Rocket *self, PyObject *args)
}
/* Extract timestamp */
t64.i = strtoll(buf, &endptr, 10);
if (endptr == buf || !isspace(*endptr)) {
/* Try parsing as a double instead */
t64.d = strtod(buf, &endptr);
if (endptr == buf)
return raise_str(linenum, buf - linestart + 1,
ERR_OTHER, "bad timestamp");
if (t64.d <= last_timestamp)
return raise_num(linenum, buf - linestart + 1,
ERR_NON_MONOTONIC, t64.d);
last_timestamp = t64.d;
if (t64.d < start || t64.d >= end)
return raise_num(linenum, buf - linestart + 1,
ERR_OUT_OF_INTERVAL, t64.d);
goto bad_timestamp;
if (!isspace(*endptr))
goto cant_parse_value;
t64.i = round(t64.d);
}
if (t64.i <= last_timestamp)
return raise_int(linenum, buf - linestart + 1,
ERR_NON_MONOTONIC, t64.i);
last_timestamp = t64.i;
if (t64.i < start || t64.i >= end)
return raise_int(linenum, buf - linestart + 1,
ERR_OUT_OF_INTERVAL, t64.i);
t64.u = le64toh(t64.u);
if (fwrite(&t64.u, 8, 1, self->file) != 1)
goto err;
@@ -479,14 +394,17 @@ static PyObject *Rocket_append_string(Rocket *self, PyObject *args)
fflush(self->file);
/* Build return value and return*/
/* Build return value and return */
offset = buf - data;
PyObject *o;
o = Py_BuildValue("(iidi)", written, offset, last_timestamp, linenum);
o = Py_BuildValue("(iili)", written, offset, last_timestamp, linenum);
return o;
err:
PyErr_SetFromErrno(PyExc_OSError);
return NULL;
bad_timestamp:
return raise_str(linenum, buf - linestart + 1,
ERR_OTHER, "bad timestamp");
cant_parse_value:
return raise_str(linenum, buf - linestart + 1,
ERR_OTHER, "can't parse value");
@@ -501,116 +419,6 @@ extra_data_on_line:
ERR_OTHER, "extra data on line");
}
/****
* Extract to Python list
*/
static int _extract_handle_params(Rocket *self, PyObject *args, long *count)
{
long offset;
if (!PyArg_ParseTuple(args, "ll", &offset, count))
return -1;
if (!self->file) {
PyErr_SetString(PyExc_Exception, "no file");
return -1;
}
/* Seek to target location */
if (fseek(self->file, offset, SEEK_SET) < 0) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
return 0;
}
/* Helper for extracting data from a file as a Python object */
static inline void *extract_pyobject(FILE *in, layout_type_t type)
{
union8_t t8;
union16_t t16;
union32_t t32;
union64_t t64;
switch (type) {
#define CASE(type, pyconvert, pytype, disktype, letoh, bytes) \
case LAYOUT_TYPE_##type: \
if (fread(&disktype, bytes, 1, in) <= 0) \
break; \
disktype = letoh(disktype); \
return pyconvert(pytype); \
break
CASE(INT8, PyInt_FromLong, t8.i, t8.u, , 1);
CASE(UINT8, PyInt_FromLong, t8.u, t8.u, , 1);
CASE(INT16, PyInt_FromLong, t16.i, t16.u, le16toh, 2);
CASE(UINT16, PyInt_FromLong, t16.u, t16.u, le16toh, 2);
CASE(INT32, PyInt_FromLong, t32.i, t32.u, le32toh, 4);
CASE(UINT32, PyInt_FromLong, t32.u, t32.u, le32toh, 4);
CASE(INT64, PyInt_FromLong, t64.i, t64.u, le64toh, 8);
CASE(UINT64, PyInt_FromLong, t64.u, t64.u, le64toh, 8);
CASE(FLOAT32, PyFloat_FromDouble, t32.f, t32.u, le32toh, 4);
CASE(FLOAT64, PyFloat_FromDouble, t64.d, t64.u, le64toh, 8);
#undef CASE
default:
PyErr_SetString(PyExc_TypeError, "unknown type");
return NULL;
}
PyErr_SetString(PyExc_OSError, "failed to read from file");
return NULL;
}
static PyObject *Rocket_extract_list(Rocket *self, PyObject *args)
{
long count;
if (_extract_handle_params(self, args, &count) < 0)
return NULL;
/* Make a list to return */
PyObject *retlist = PyList_New(0);
if (!retlist)
return NULL;
/* Read data into new Python lists */
int row;
for (row = 0; row < count; row++)
{
PyObject *rowlist = PyList_New(self->layout_count + 1);
if (!rowlist) {
Py_DECREF(retlist);
return NULL;
}
/* Timestamp */
PyObject *entry = extract_pyobject(self->file,
LAYOUT_TYPE_FLOAT64);
if (!entry || (PyList_SetItem(rowlist, 0, entry) < 0)) {
Py_DECREF(rowlist);
Py_DECREF(retlist);
return NULL;
}
/* Data */
int i;
for (i = 0; i < self->layout_count; i++) {
PyObject *ent = extract_pyobject(self->file,
self->layout_type);
if (!ent || (PyList_SetItem(rowlist, i+1, ent) < 0)) {
Py_DECREF(rowlist);
Py_DECREF(retlist);
return NULL;
}
}
/* Add row to return value */
if (PyList_Append(retlist, rowlist) < 0) {
Py_DECREF(rowlist);
Py_DECREF(retlist);
return NULL;
}
Py_DECREF(rowlist);
}
return retlist;
}
/****
* Extract to string
*/
@@ -618,8 +426,19 @@ static PyObject *Rocket_extract_list(Rocket *self, PyObject *args)
static PyObject *Rocket_extract_string(Rocket *self, PyObject *args)
{
long count;
if (_extract_handle_params(self, args, &count) < 0)
long offset;
if (!PyArg_ParseTuple(args, "ll", &offset, &count))
return NULL;
if (!self->file) {
PyErr_SetString(PyExc_Exception, "no file");
return NULL;
}
/* Seek to target location */
if (fseek(self->file, offset, SEEK_SET) < 0) {
PyErr_SetFromErrno(PyExc_OSError);
return NULL;
}
char *str = NULL, *new;
long len_alloc = 0;
@@ -653,8 +472,7 @@ static PyObject *Rocket_extract_string(Rocket *self, PyObject *args)
if (fread(&t64.u, 8, 1, self->file) != 1)
goto err;
t64.u = le64toh(t64.u);
/* Timestamps are always printed to the microsecond */
ret = sprintf(&str[len], "%.6f", t64.d);
ret = sprintf(&str[len], "%ld", t64.i);
if (ret <= 0)
goto err;
len += ret;
@@ -709,6 +527,33 @@ err:
return NULL;
}
/****
* Extract timestamp
*/
static PyObject *Rocket_extract_timestamp(Rocket *self, PyObject *args)
{
long offset;
union64_t t64;
if (!PyArg_ParseTuple(args, "l", &offset))
return NULL;
if (!self->file) {
PyErr_SetString(PyExc_Exception, "no file");
return NULL;
}
/* Seek to target location and read timestamp */
if ((fseek(self->file, offset, SEEK_SET) < 0) ||
(fread(&t64.u, 8, 1, self->file) != 1)) {
PyErr_SetFromErrno(PyExc_OSError);
return NULL;
}
/* Convert and return */
t64.u = le64toh(t64.u);
return Py_BuildValue("l", t64.i);
}
/****
* Module and type setup
*/
@@ -730,10 +575,6 @@ static PyMethodDef Rocket_methods[] = {
"close(self)\n\n"
"Close file handle" },
{ "append_iter", (PyCFunction)Rocket_append_iter, METH_VARARGS,
"append_iter(self, maxrows, iterable)\n\n"
"Append up to maxrows of data from iter to the file" },
{ "append_string", (PyCFunction)Rocket_append_string, METH_VARARGS,
"append_string(self, count, data, offset, line, start, end, ts)\n\n"
"Parse string and append data.\n"
@@ -754,16 +595,16 @@ static PyMethodDef Rocket_methods[] = {
" data_offset: current offset into the data string\n"
" last_timestamp: last timestamp we parsed" },
{ "extract_list", (PyCFunction)Rocket_extract_list, METH_VARARGS,
"extract_list(self, offset, count)\n\n"
"Extract count rows of data from the file at offset offset.\n"
"Return a list of lists [[row],[row],...]" },
{ "extract_string", (PyCFunction)Rocket_extract_string, METH_VARARGS,
"extract_string(self, offset, count)\n\n"
"Extract count rows of data from the file at offset offset.\n"
"Return an ascii formatted string according to the layout" },
{ "extract_timestamp",
(PyCFunction)Rocket_extract_timestamp, METH_VARARGS,
"extract_timestamp(self, offset)\n\n"
"Extract a single timestamp from the file" },
{ NULL },
};

View File

@@ -6,6 +6,7 @@ from __future__ import absolute_import
import nilmdb.server
from nilmdb.utils.printf import *
from nilmdb.server.errors import NilmDBError
from nilmdb.utils.time import string_to_timestamp
import cherrypy
import sys
@@ -212,6 +213,16 @@ class Stream(NilmApp):
"""Delete a stream and its associated data."""
return self.db.stream_destroy(path)
# /stream/rename?oldpath=/newton/prep&newpath=/newton/prep/1
@cherrypy.expose
@cherrypy.tools.json_in()
@cherrypy.tools.json_out()
@exception_to_httperror(NilmDBError, ValueError)
@cherrypy.tools.CORS_allow(methods = ["POST"])
def rename(self, oldpath, newpath):
"""Rename a stream."""
return self.db.stream_rename(oldpath, newpath)
# /stream/get_metadata?path=/newton/prep
# /stream/get_metadata?path=/newton/prep&key=foo&key=bar
@cherrypy.expose
@@ -294,8 +305,8 @@ class Stream(NilmApp):
raise cherrypy.HTTPError("404 Not Found", "No such stream")
# Check limits
start = float(start)
end = float(end)
start = string_to_timestamp(start)
end = string_to_timestamp(end)
if start >= end:
raise cherrypy.HTTPError("400 Bad Request",
"start must precede end")
@@ -321,9 +332,9 @@ class Stream(NilmApp):
removed.
"""
if start is not None:
start = float(start)
start = string_to_timestamp(start)
if end is not None:
end = float(end)
end = string_to_timestamp(end)
if start is not None and end is not None:
if start >= end:
raise cherrypy.HTTPError("400 Bad Request",
@@ -352,9 +363,9 @@ class Stream(NilmApp):
'application/x-json-stream' for lack of a better option.
"""
if start is not None:
start = float(start)
start = string_to_timestamp(start)
if end is not None:
end = float(end)
end = string_to_timestamp(end)
if start is not None and end is not None:
if start >= end:
@@ -394,9 +405,9 @@ class Stream(NilmApp):
Add count=True to return a count rather than actual data.
"""
if start is not None:
start = float(start)
start = string_to_timestamp(start)
if end is not None:
end = float(end)
end = string_to_timestamp(end)
# Check parameters
if start is not None and end is not None:

View File

@@ -11,3 +11,4 @@ import nilmdb.utils.threadsafety
import nilmdb.utils.fallocate
import nilmdb.utils.time
import nilmdb.utils.iterator
import nilmdb.utils.interval

106
nilmdb/utils/interval.py Normal file
View File

@@ -0,0 +1,106 @@
"""Interval. Like nilmdb.server.interval, but re-implemented here
in plain Python so clients have easier access to it.
Intervals are half-open, ie. they include data points with timestamps
[start, end)
"""
import nilmdb.utils.time
import nilmdb.utils.iterator
class IntervalError(Exception):
"""Error due to interval overlap, etc"""
pass
# Interval
class Interval:
"""Represents an interval of time."""
def __init__(self, start, end):
"""
'start' and 'end' are arbitrary numbers that represent time
"""
if start >= end:
# Explicitly disallow zero-width intervals (since they're half-open)
raise IntervalError("start %s must precede end %s" % (start, end))
self.start = start
self.end = end
def __repr__(self):
s = repr(self.start) + ", " + repr(self.end)
return self.__class__.__name__ + "(" + s + ")"
def __str__(self):
return ("[" + nilmdb.utils.time.timestamp_to_string(self.start) +
" -> " + nilmdb.utils.time.timestamp_to_string(self.end) + ")")
def __cmp__(self, other):
"""Compare two intervals. If non-equal, order by start then end"""
return cmp(self.start, other.start) or cmp(self.end, other.end)
def intersects(self, other):
"""Return True if two Interval objects intersect"""
if not isinstance(other, Interval):
raise TypeError("need an Interval")
if self.end <= other.start or self.start >= other.end:
return False
return True
def subset(self, start, end):
"""Return a new Interval that is a subset of this one"""
# A subclass that tracks additional data might override this.
if start < self.start or end > self.end:
raise IntervalError("not a subset")
return Interval(start, end)
def set_difference(a, b):
"""
Compute the difference (a \\ b) between the intervals in 'a' and
the intervals in 'b'; i.e., the ranges that are present in 'self'
but not 'other'.
'a' and 'b' must both be iterables.
Returns a generator that yields each interval in turn.
Output intervals are built as subsets of the intervals in the
first argument (a).
"""
# Iterate through all starts and ends in sorted order. Add a
# tag to the iterator so that we can figure out which one they
# were, after sorting.
def decorate(it, key_start, key_end):
for i in it:
yield i.start, key_start, i
yield i.end, key_end, i
a_iter = decorate(iter(a), 0, 2)
b_iter = decorate(iter(b), 1, 3)
# Now iterate over the timestamps of each start and end.
# At each point, evaluate which type of end it is, to determine
# how to build up the output intervals.
a_interval = None
b_interval = None
out_start = None
for (ts, k, i) in nilmdb.utils.iterator.imerge(a_iter, b_iter):
if k == 0:
# start a interval
a_interval = i
if b_interval is None:
out_start = ts
elif k == 1:
# start b interval
b_interval = i
if out_start is not None and out_start != ts:
yield a_interval.subset(out_start, ts)
out_start = None
elif k == 2:
# end a interval
if out_start is not None and out_start != ts:
yield a_interval.subset(out_start, ts)
out_start = None
a_interval = None
elif k == 3:
# end b interval
b_interval = None
if a_interval:
out_start = ts

View File

@@ -1,11 +1,62 @@
from nilmdb.utils import datetime_tz
import re
import time
# Range
min_timestamp = (-2**63)
max_timestamp = (2**62 - 1)
# Smallest representable step
epsilon = 1
def string_to_timestamp(str):
"""Convert a string that represents an integer number of microseconds
since epoch."""
try:
# Parse a string like "1234567890123456" and return an integer
return int(str)
except ValueError:
# Try parsing as a float, in case it's "1234567890123456.0"
return int(round(float(str)))
def timestamp_to_string(timestamp):
"""Convert a timestamp (integer microseconds since epoch) to a string"""
if isinstance(timestamp, float):
return str(int(round(timestamp)))
else:
return str(timestamp)
def timestamp_to_human(timestamp):
"""Convert a timestamp (integer microseconds since epoch) to a
human-readable string, using the local timezone for display
(e.g. from the TZ env var)."""
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp_to_unix(timestamp))
return dt.strftime("%a, %d %b %Y %H:%M:%S.%f %z")
def unix_to_timestamp(unix):
"""Convert a Unix timestamp (floating point seconds since epoch)
into a NILM timestamp (integer microseconds since epoch)"""
return int(round(unix * 1e6))
seconds_to_timestamp = unix_to_timestamp
def timestamp_to_unix(timestamp):
"""Convert a NILM timestamp (integer microseconds since epoch)
into a Unix timestamp (floating point seconds since epoch)"""
return timestamp / 1e6
timestamp_to_seconds = timestamp_to_unix
def rate_to_period(hz, cycles = 1):
"""Convert a rate (in Hz) to a period (in timestamp units).
Returns an integer."""
period = unix_to_timestamp(cycles) / float(hz)
return int(round(period))
def parse_time(toparse):
"""
Parse a free-form time string and return a datetime_tz object.
If the string doesn't contain a timestamp, the current local
timezone is assumed (e.g. from the TZ env var).
Parse a free-form time string and return a nilmdb timestamp
(integer seconds since epoch). If the string doesn't contain a
timestamp, the current local timezone is assumed (e.g. from the TZ
env var).
"""
# If string isn't "now" and doesn't contain at least 4 digits,
# consider it invalid. smartparse might otherwise accept
@@ -15,17 +66,28 @@ def parse_time(toparse):
# Try to just parse the time as given
try:
return datetime_tz.datetime_tz.smartparse(toparse)
except ValueError:
return unix_to_timestamp(datetime_tz.datetime_tz.
smartparse(toparse).totimestamp())
except (ValueError, OverflowError):
pass
# Try to treat it as a single double
# If it starts with @, treat it as a NILM timestamp
# (integer microseconds since epoch)
try:
timestamp = float(toparse)
# range is from about year 2001 - 2065
if timestamp < 1e9 or timestamp > 3e9:
raise ValueError
return datetime_tz.datetime_tz.fromtimestamp(timestamp)
if toparse[0] == '@':
return int(toparse[1:])
except (ValueError, KeyError):
pass
# If it's parseable as a float, treat it as a Unix or NILM
# timestamp based on its range.
try:
val = float(toparse)
# range is from about year 2001 - 2128
if val > 1e9 and val < 5e9:
return unix_to_timestamp(val)
if val > 1e15 and val < 5e15:
return val
except ValueError:
pass
@@ -47,7 +109,8 @@ def parse_time(toparse):
r")", toparse)
if res is not None:
try:
return datetime_tz.datetime_tz.smartparse(res.group(2))
return unix_to_timestamp(datetime_tz.datetime_tz.
smartparse(res.group(2)).totimestamp())
except ValueError:
pass
@@ -55,15 +118,6 @@ def parse_time(toparse):
# just give up for now.
raise ValueError("unable to parse timestamp")
def format_time(timestamp):
"""
Convert a Unix timestamp to a string for printing, using the
local timezone for display (e.g. from the TZ env var).
"""
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp)
return dt.strftime("%a, %d %b %Y %H:%M:%S.%f %z")
def float_time_to_string(timestamp):
"""Convert a floating-point Unix timestamp to a string,
like '1234567890.000000'"""
return "%.6f" % timestamp
def now():
"""Return current timestamp"""
return unix_to_timestamp(time.time())

View File

@@ -1,7 +1,7 @@
"""File-like objects that add timestamps to the input lines"""
from nilmdb.utils.printf import *
from nilmdb.utils import datetime_tz
import nilmdb.utils.time
class Timestamper(object):
"""A file-like object that adds timestamps to lines of an input file."""
@@ -61,31 +61,33 @@ class TimestamperRate(Timestamper):
end: If specified, raise StopIteration before outputting a value
greater than this."""
timestamp_to_string = nilmdb.utils.time.timestamp_to_string
rate_to_period = nilmdb.utils.time.rate_to_period
def iterator(start, rate, end):
n = 0
rate = float(rate)
while True:
now = start + n / rate
now = start + rate_to_period(rate, n)
if end and now >= end:
raise StopIteration
yield sprintf("%.6f ", start + n / rate)
yield timestamp_to_string(now) + " "
n += 1
Timestamper.__init__(self, infile, iterator(start, rate, end))
self.start = start
self.rate = rate
def __str__(self):
start = datetime_tz.datetime_tz.fromtimestamp(self.start)
start = start.strftime("%a, %d %b %Y %H:%M:%S %Z")
return sprintf("TimestamperRate(..., start=\"%s\", rate=%g)",
str(start), self.rate)
nilmdb.utils.time.timestamp_to_human(self.start),
self.rate)
class TimestamperNow(Timestamper):
"""Timestamper that uses current time"""
def __init__(self, infile):
timestamp_to_string = nilmdb.utils.time.timestamp_to_string
get_now = nilmdb.utils.time.now
def iterator():
while True:
now = datetime_tz.datetime_tz.utcnow().totimestamp()
yield sprintf("%.6f ", now)
yield timestamp_to_string(get_now()) + " "
Timestamper.__init__(self, infile, iterator())
def __str__(self):
return "TimestamperNow(...)"

View File

@@ -43,7 +43,6 @@ except: pass
# Use Cython if it's new enough, otherwise use preexisting C files.
cython_modules = [ 'nilmdb.server.interval',
'nilmdb.server.layout',
'nilmdb.server.rbtree' ]
try:
import Cython
@@ -91,6 +90,9 @@ include tests/test.order
# Docs
recursive-include docs Makefile *.md
# Extras
recursive-include extras *
""")
# Run setup

View File

@@ -2,123 +2,123 @@
# layout: float32_8
# start: Fri, 23 Mar 2012 10:00:30.000000 +0000
# end: Fri, 23 Mar 2012 10:00:31.000000 +0000
1332496830.000000 2.517740e+05 2.242410e+05 5.688100e+03 1.915530e+03 9.329220e+03 4.183710e+03 1.212350e+03 2.641790e+03
1332496830.008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
1332496830.016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
1332496830.025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
1332496830.033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
1332496830.041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
1332496830.050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
1332496830.058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
1332496830.066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
1332496830.075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
1332496830.083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
1332496830.091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
1332496830.100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
1332496830.108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
1332496830.116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
1332496830.125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
1332496830.133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
1332496830.141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
1332496830.150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
1332496830.158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
1332496830.166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
1332496830.175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
1332496830.183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
1332496830.191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
1332496830.200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
1332496830.208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
1332496830.216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
1332496830.225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
1332496830.233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
1332496830.241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
1332496830.250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
1332496830.258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
1332496830.266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
1332496830.275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
1332496830.283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
1332496830.291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
1332496830.300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
1332496830.308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
1332496830.316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
1332496830.325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
1332496830.333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
1332496830.341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
1332496830.350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
1332496830.358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
1332496830.366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
1332496830.375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
1332496830.383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
1332496830.391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
1332496830.400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
1332496830.408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
1332496830.416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
1332496830.425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
1332496830.433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
1332496830.441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
1332496830.450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
1332496830.458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
1332496830.466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
1332496830.475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
1332496830.483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
1332496830.491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
1332496830.500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
1332496830.508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
1332496830.516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
1332496830.525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
1332496830.533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
1332496830.541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
1332496830.550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
1332496830.558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
1332496830.566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
1332496830.575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
1332496830.583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
1332496830.591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
1332496830.600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
1332496830.608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
1332496830.616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
1332496830.625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
1332496830.633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
1332496830.641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
1332496830.650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
1332496830.658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
1332496830.666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
1332496830.675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
1332496830.683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
1332496830.691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
1332496830.700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
1332496830.708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
1332496830.716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
1332496830.725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
1332496830.733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
1332496830.741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
1332496830.750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
1332496830.758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
1332496830.766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
1332496830.775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
1332496830.783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
1332496830.791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
1332496830.800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
1332496830.808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
1332496830.816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
1332496830.825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
1332496830.833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
1332496830.841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
1332496830.850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
1332496830.858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
1332496830.866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
1332496830.875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
1332496830.883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
1332496830.891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
1332496830.900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
1332496830.908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
1332496830.916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
1332496830.925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
1332496830.933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
1332496830.941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
1332496830.950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
1332496830.958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
1332496830.966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
1332496830.975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
1332496830.983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
1332496830.991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03
1332496830000000 2.517740e+05 2.242410e+05 5.688100e+03 1.915530e+03 9.329220e+03 4.183710e+03 1.212350e+03 2.641790e+03
1332496830008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
1332496830016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
1332496830025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
1332496830033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
1332496830041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
1332496830050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
1332496830058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
1332496830066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
1332496830075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
1332496830083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
1332496830091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
1332496830100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
1332496830108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
1332496830116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
1332496830125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
1332496830133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
1332496830141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
1332496830150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
1332496830158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
1332496830166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
1332496830175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
1332496830183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
1332496830191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
1332496830200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
1332496830208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
1332496830216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
1332496830225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
1332496830233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
1332496830241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
1332496830250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
1332496830258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
1332496830266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
1332496830275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
1332496830283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
1332496830291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
1332496830300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
1332496830308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
1332496830316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
1332496830325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
1332496830333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
1332496830341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
1332496830350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
1332496830358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
1332496830366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
1332496830375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
1332496830383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
1332496830391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
1332496830400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
1332496830408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
1332496830416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
1332496830425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
1332496830433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
1332496830441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
1332496830450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
1332496830458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
1332496830466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
1332496830475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
1332496830483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
1332496830491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
1332496830500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
1332496830508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
1332496830516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
1332496830525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
1332496830533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
1332496830541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
1332496830550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
1332496830558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
1332496830566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
1332496830575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
1332496830583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
1332496830591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
1332496830600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
1332496830608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
1332496830616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
1332496830625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
1332496830633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
1332496830641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
1332496830650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
1332496830658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
1332496830666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
1332496830675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
1332496830683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
1332496830691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
1332496830700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
1332496830708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
1332496830716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
1332496830725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
1332496830733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
1332496830741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
1332496830750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
1332496830758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
1332496830766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
1332496830775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
1332496830783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
1332496830791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
1332496830800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
1332496830808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
1332496830816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
1332496830825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
1332496830833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
1332496830841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
1332496830850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
1332496830858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
1332496830866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
1332496830875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
1332496830883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
1332496830891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
1332496830900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
1332496830908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
1332496830916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
1332496830925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
1332496830933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
1332496830941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
1332496830950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
1332496830958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
1332496830966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
1332496830975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
1332496830983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
1332496830991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03

View File

@@ -1,119 +1,119 @@
1332496830.008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
1332496830.016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
1332496830.025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
1332496830.033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
1332496830.041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
1332496830.050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
1332496830.058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
1332496830.066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
1332496830.075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
1332496830.083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
1332496830.091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
1332496830.100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
1332496830.108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
1332496830.116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
1332496830.125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
1332496830.133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
1332496830.141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
1332496830.150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
1332496830.158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
1332496830.166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
1332496830.175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
1332496830.183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
1332496830.191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
1332496830.200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
1332496830.208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
1332496830.216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
1332496830.225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
1332496830.233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
1332496830.241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
1332496830.250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
1332496830.258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
1332496830.266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
1332496830.275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
1332496830.283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
1332496830.291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
1332496830.300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
1332496830.308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
1332496830.316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
1332496830.325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
1332496830.333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
1332496830.341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
1332496830.350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
1332496830.358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
1332496830.366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
1332496830.375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
1332496830.383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
1332496830.391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
1332496830.400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
1332496830.408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
1332496830.416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
1332496830.425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
1332496830.433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
1332496830.441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
1332496830.450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
1332496830.458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
1332496830.466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
1332496830.475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
1332496830.483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
1332496830.491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
1332496830.500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
1332496830.508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
1332496830.516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
1332496830.525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
1332496830.533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
1332496830.541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
1332496830.550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
1332496830.558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
1332496830.566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
1332496830.575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
1332496830.583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
1332496830.591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
1332496830.600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
1332496830.608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
1332496830.616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
1332496830.625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
1332496830.633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
1332496830.641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
1332496830.650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
1332496830.658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
1332496830.666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
1332496830.675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
1332496830.683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
1332496830.691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
1332496830.700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
1332496830.708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
1332496830.716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
1332496830.725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
1332496830.733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
1332496830.741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
1332496830.750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
1332496830.758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
1332496830.766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
1332496830.775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
1332496830.783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
1332496830.791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
1332496830.800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
1332496830.808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
1332496830.816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
1332496830.825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
1332496830.833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
1332496830.841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
1332496830.850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
1332496830.858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
1332496830.866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
1332496830.875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
1332496830.883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
1332496830.891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
1332496830.900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
1332496830.908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
1332496830.916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
1332496830.925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
1332496830.933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
1332496830.941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
1332496830.950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
1332496830.958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
1332496830.966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
1332496830.975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
1332496830.983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
1332496830.991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03
1332496830008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
1332496830016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
1332496830025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
1332496830033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
1332496830041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
1332496830050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
1332496830058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
1332496830066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
1332496830075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
1332496830083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
1332496830091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
1332496830100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
1332496830108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
1332496830116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
1332496830125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
1332496830133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
1332496830141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
1332496830150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
1332496830158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
1332496830166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
1332496830175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
1332496830183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
1332496830191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
1332496830200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
1332496830208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
1332496830216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
1332496830225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
1332496830233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
1332496830241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
1332496830250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
1332496830258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
1332496830266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
1332496830275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
1332496830283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
1332496830291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
1332496830300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
1332496830308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
1332496830316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
1332496830325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
1332496830333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
1332496830341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
1332496830350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
1332496830358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
1332496830366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
1332496830375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
1332496830383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
1332496830391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
1332496830400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
1332496830408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
1332496830416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
1332496830425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
1332496830433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
1332496830441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
1332496830450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
1332496830458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
1332496830466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
1332496830475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
1332496830483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
1332496830491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
1332496830500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
1332496830508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
1332496830516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
1332496830525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
1332496830533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
1332496830541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
1332496830550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
1332496830558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
1332496830566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
1332496830575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
1332496830583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
1332496830591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
1332496830600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
1332496830608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
1332496830616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
1332496830625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
1332496830633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
1332496830641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
1332496830650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
1332496830658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
1332496830666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
1332496830675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
1332496830683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
1332496830691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
1332496830700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
1332496830708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
1332496830716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
1332496830725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
1332496830733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
1332496830741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
1332496830750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
1332496830758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
1332496830766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
1332496830775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
1332496830783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
1332496830791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
1332496830800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
1332496830808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
1332496830816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
1332496830825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
1332496830833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
1332496830841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
1332496830850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
1332496830858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
1332496830866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
1332496830875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
1332496830883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
1332496830891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
1332496830900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
1332496830908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
1332496830916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
1332496830925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
1332496830933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
1332496830941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
1332496830950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
1332496830958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
1332496830966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
1332496830975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
1332496830983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
1332496830991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03

View File

@@ -1 +1 @@
1332496830.008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
1332496830008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03

View File

@@ -1,2 +1,2 @@
1332496830.008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
1332496830.016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
1332496830008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
1332496830016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03

View File

@@ -1,124 +1,124 @@
# path: /newton/prep
# layout: float32_8
# start: 1332496830.000000
# end: 1332496830.999000
1332496830.000000 2.517740e+05 2.242410e+05 5.688100e+03 1.915530e+03 9.329220e+03 4.183710e+03 1.212350e+03 2.641790e+03
1332496830.008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
1332496830.016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
1332496830.025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
1332496830.033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
1332496830.041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
1332496830.050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
1332496830.058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
1332496830.066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
1332496830.075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
1332496830.083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
1332496830.091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
1332496830.100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
1332496830.108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
1332496830.116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
1332496830.125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
1332496830.133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
1332496830.141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
1332496830.150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
1332496830.158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
1332496830.166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
1332496830.175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
1332496830.183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
1332496830.191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
1332496830.200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
1332496830.208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
1332496830.216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
1332496830.225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
1332496830.233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
1332496830.241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
1332496830.250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
1332496830.258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
1332496830.266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
1332496830.275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
1332496830.283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
1332496830.291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
1332496830.300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
1332496830.308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
1332496830.316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
1332496830.325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
1332496830.333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
1332496830.341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
1332496830.350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
1332496830.358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
1332496830.366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
1332496830.375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
1332496830.383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
1332496830.391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
1332496830.400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
1332496830.408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
1332496830.416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
1332496830.425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
1332496830.433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
1332496830.441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
1332496830.450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
1332496830.458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
1332496830.466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
1332496830.475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
1332496830.483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
1332496830.491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
1332496830.500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
1332496830.508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
1332496830.516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
1332496830.525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
1332496830.533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
1332496830.541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
1332496830.550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
1332496830.558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
1332496830.566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
1332496830.575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
1332496830.583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
1332496830.591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
1332496830.600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
1332496830.608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
1332496830.616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
1332496830.625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
1332496830.633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
1332496830.641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
1332496830.650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
1332496830.658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
1332496830.666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
1332496830.675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
1332496830.683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
1332496830.691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
1332496830.700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
1332496830.708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
1332496830.716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
1332496830.725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
1332496830.733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
1332496830.741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
1332496830.750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
1332496830.758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
1332496830.766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
1332496830.775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
1332496830.783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
1332496830.791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
1332496830.800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
1332496830.808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
1332496830.816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
1332496830.825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
1332496830.833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
1332496830.841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
1332496830.850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
1332496830.858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
1332496830.866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
1332496830.875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
1332496830.883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
1332496830.891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
1332496830.900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
1332496830.908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
1332496830.916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
1332496830.925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
1332496830.933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
1332496830.941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
1332496830.950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
1332496830.958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
1332496830.966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
1332496830.975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
1332496830.983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
1332496830.991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03
# start: 1332496830000000
# end: 1332496830999000
1332496830000000 2.517740e+05 2.242410e+05 5.688100e+03 1.915530e+03 9.329220e+03 4.183710e+03 1.212350e+03 2.641790e+03
1332496830008333 2.595670e+05 2.226980e+05 6.207600e+03 6.786720e+02 9.380230e+03 4.575580e+03 2.830610e+03 2.688630e+03
1332496830016667 2.630730e+05 2.233040e+05 4.961640e+03 2.197120e+03 7.687310e+03 4.861860e+03 2.732780e+03 3.008540e+03
1332496830025000 2.576140e+05 2.233230e+05 5.003660e+03 3.525140e+03 7.165310e+03 4.685620e+03 1.715380e+03 3.440480e+03
1332496830033333 2.557800e+05 2.219150e+05 6.357310e+03 2.145290e+03 8.426970e+03 3.775350e+03 1.475390e+03 3.797240e+03
1332496830041667 2.601660e+05 2.230080e+05 6.702590e+03 1.484960e+03 9.288100e+03 3.330830e+03 1.228500e+03 3.214320e+03
1332496830050000 2.612310e+05 2.264260e+05 4.980060e+03 2.982380e+03 8.499630e+03 4.267670e+03 9.940890e+02 2.292890e+03
1332496830058333 2.551170e+05 2.266420e+05 4.584410e+03 4.656440e+03 7.860150e+03 5.317310e+03 1.473600e+03 2.111690e+03
1332496830066667 2.533000e+05 2.235540e+05 6.455090e+03 3.036650e+03 8.869750e+03 4.986310e+03 2.607360e+03 2.839590e+03
1332496830075000 2.610610e+05 2.212630e+05 6.951980e+03 1.500240e+03 9.386100e+03 3.791680e+03 2.677010e+03 3.980630e+03
1332496830083333 2.665030e+05 2.231980e+05 5.189610e+03 2.594560e+03 8.571530e+03 3.175000e+03 9.198400e+02 3.792010e+03
1332496830091667 2.606920e+05 2.251840e+05 3.782480e+03 4.642880e+03 7.662960e+03 3.917790e+03 -2.510970e+02 2.907060e+03
1332496830100000 2.539630e+05 2.250810e+05 5.123530e+03 3.839550e+03 8.669030e+03 4.877820e+03 9.437240e+02 2.527450e+03
1332496830108333 2.565550e+05 2.241690e+05 5.930600e+03 2.298540e+03 8.906710e+03 5.331680e+03 2.549910e+03 3.053560e+03
1332496830116667 2.608890e+05 2.250100e+05 4.681130e+03 2.971870e+03 7.900040e+03 4.874080e+03 2.322430e+03 3.649120e+03
1332496830125000 2.579440e+05 2.249230e+05 3.291140e+03 4.357090e+03 7.131590e+03 4.385560e+03 1.077050e+03 3.664040e+03
1332496830133333 2.550090e+05 2.230180e+05 4.584820e+03 2.864000e+03 8.469490e+03 3.625580e+03 9.855570e+02 3.504230e+03
1332496830141667 2.601140e+05 2.219470e+05 5.676190e+03 1.210340e+03 9.393780e+03 3.390240e+03 1.654020e+03 3.018700e+03
1332496830150000 2.642770e+05 2.244380e+05 4.446620e+03 2.176720e+03 8.142090e+03 4.584880e+03 2.327830e+03 2.615800e+03
1332496830158333 2.592210e+05 2.264710e+05 2.734440e+03 4.182760e+03 6.389550e+03 5.540520e+03 1.958880e+03 2.720120e+03
1332496830166667 2.526500e+05 2.248310e+05 4.163640e+03 2.989990e+03 7.179200e+03 5.213060e+03 1.929550e+03 3.457660e+03
1332496830175000 2.570830e+05 2.220480e+05 5.759040e+03 7.024410e+02 8.566550e+03 3.552020e+03 1.832940e+03 3.956190e+03
1332496830183333 2.631300e+05 2.229670e+05 5.141140e+03 1.166120e+03 8.666960e+03 2.720370e+03 9.713740e+02 3.479730e+03
1332496830191667 2.602360e+05 2.252650e+05 3.425140e+03 3.339080e+03 7.853610e+03 3.674950e+03 5.259080e+02 2.443310e+03
1332496830200000 2.535030e+05 2.245270e+05 4.398130e+03 2.927430e+03 8.110280e+03 4.842470e+03 1.513870e+03 2.467100e+03
1332496830208333 2.561260e+05 2.226930e+05 6.043530e+03 6.562240e+02 8.797560e+03 4.832410e+03 2.832370e+03 3.426140e+03
1332496830216667 2.616770e+05 2.236080e+05 5.830460e+03 1.033910e+03 8.123940e+03 3.980690e+03 1.927960e+03 4.092720e+03
1332496830225000 2.594570e+05 2.255360e+05 4.015570e+03 2.995990e+03 7.135440e+03 3.713550e+03 3.072200e+02 3.849430e+03
1332496830233333 2.533520e+05 2.242160e+05 4.650560e+03 3.196620e+03 8.131280e+03 3.586160e+03 7.083230e+01 3.074180e+03
1332496830241667 2.561240e+05 2.215130e+05 6.100480e+03 8.219800e+02 9.757540e+03 3.474510e+03 1.647520e+03 2.559860e+03
1332496830250000 2.630240e+05 2.215590e+05 5.789960e+03 6.994170e+02 9.129740e+03 4.153080e+03 2.829250e+03 2.677270e+03
1332496830258333 2.617200e+05 2.240150e+05 4.358500e+03 2.645360e+03 7.414110e+03 4.810670e+03 2.225990e+03 3.185990e+03
1332496830266667 2.547560e+05 2.242400e+05 4.857380e+03 3.229680e+03 7.539310e+03 4.769140e+03 1.507130e+03 3.668260e+03
1332496830275000 2.568890e+05 2.226580e+05 6.473420e+03 1.214110e+03 9.010760e+03 3.848730e+03 1.303840e+03 3.778500e+03
1332496830283333 2.642080e+05 2.233160e+05 5.700450e+03 1.116560e+03 9.087610e+03 3.846680e+03 1.293590e+03 2.891560e+03
1332496830291667 2.633100e+05 2.257190e+05 3.936120e+03 3.252360e+03 7.552850e+03 4.897860e+03 1.156630e+03 2.037160e+03
1332496830300000 2.550790e+05 2.250860e+05 4.536450e+03 3.960110e+03 7.454590e+03 5.479070e+03 1.596360e+03 2.190800e+03
1332496830308333 2.544870e+05 2.225080e+05 6.635860e+03 1.758850e+03 8.732970e+03 4.466970e+03 2.650360e+03 3.139310e+03
1332496830316667 2.612410e+05 2.224320e+05 6.702270e+03 1.085130e+03 8.989230e+03 3.112990e+03 1.933560e+03 3.828410e+03
1332496830325000 2.621190e+05 2.255870e+05 4.714950e+03 2.892360e+03 8.107820e+03 2.961310e+03 2.399780e+02 3.273720e+03
1332496830333333 2.549990e+05 2.265140e+05 4.532090e+03 4.126900e+03 8.200130e+03 3.872590e+03 5.608900e+01 2.370580e+03
1332496830341667 2.542890e+05 2.240330e+05 6.538810e+03 2.251440e+03 9.419430e+03 4.564450e+03 2.077810e+03 2.508170e+03
1332496830350000 2.618900e+05 2.219600e+05 6.846090e+03 1.475270e+03 9.125590e+03 4.598290e+03 3.299220e+03 3.475420e+03
1332496830358333 2.645020e+05 2.230850e+05 5.066380e+03 3.270560e+03 7.933170e+03 4.173710e+03 1.908910e+03 3.867460e+03
1332496830366667 2.578890e+05 2.236560e+05 4.201660e+03 4.473640e+03 7.688340e+03 4.161580e+03 6.875790e+02 3.653690e+03
1332496830375000 2.542700e+05 2.231510e+05 5.715140e+03 2.752140e+03 9.273320e+03 3.772950e+03 8.964040e+02 3.256060e+03
1332496830383333 2.582570e+05 2.242170e+05 6.114310e+03 1.856860e+03 9.604320e+03 4.200490e+03 1.764380e+03 2.939220e+03
1332496830391667 2.600200e+05 2.268680e+05 4.237530e+03 3.605880e+03 8.066220e+03 5.430250e+03 2.138580e+03 2.696710e+03
1332496830400000 2.550830e+05 2.259240e+05 3.350310e+03 4.853070e+03 7.045820e+03 5.925200e+03 1.893610e+03 2.897340e+03
1332496830408333 2.544530e+05 2.221270e+05 5.271330e+03 2.491500e+03 8.436680e+03 5.032080e+03 2.436050e+03 3.724590e+03
1332496830416667 2.625880e+05 2.199500e+05 5.994620e+03 7.892740e+02 9.029650e+03 3.515740e+03 1.953570e+03 4.014520e+03
1332496830425000 2.656100e+05 2.233330e+05 4.391410e+03 2.400960e+03 8.146460e+03 3.536960e+03 5.302320e+02 3.133920e+03
1332496830433333 2.574700e+05 2.269770e+05 2.975320e+03 4.633530e+03 7.278560e+03 4.640100e+03 -5.015020e+01 2.024960e+03
1332496830441667 2.506870e+05 2.263310e+05 4.517860e+03 3.183800e+03 8.072600e+03 5.281660e+03 1.605140e+03 2.335140e+03
1332496830450000 2.555630e+05 2.244950e+05 5.551000e+03 1.101300e+03 8.461490e+03 4.725700e+03 2.726670e+03 3.480540e+03
1332496830458333 2.613350e+05 2.246450e+05 4.764680e+03 1.557020e+03 7.833350e+03 3.524810e+03 1.577410e+03 4.038620e+03
1332496830466667 2.602690e+05 2.240080e+05 3.558030e+03 2.987610e+03 7.362440e+03 3.279230e+03 5.624420e+02 3.786550e+03
1332496830475000 2.574350e+05 2.217770e+05 4.972600e+03 2.166880e+03 8.481440e+03 3.328720e+03 1.037130e+03 3.271370e+03
1332496830483333 2.610460e+05 2.215500e+05 5.816180e+03 5.902170e+02 9.120930e+03 3.895400e+03 2.382670e+03 2.824170e+03
1332496830491667 2.627660e+05 2.244730e+05 4.835050e+03 1.785770e+03 7.880760e+03 4.745620e+03 2.443660e+03 3.229550e+03
1332496830500000 2.565090e+05 2.264130e+05 3.758870e+03 3.461200e+03 6.743770e+03 4.928960e+03 1.536620e+03 3.546690e+03
1332496830508333 2.507930e+05 2.243720e+05 5.218490e+03 2.865260e+03 7.803960e+03 4.351090e+03 1.333820e+03 3.680490e+03
1332496830516667 2.563190e+05 2.220660e+05 6.403970e+03 7.323450e+02 9.627760e+03 3.089300e+03 1.516780e+03 3.653690e+03
1332496830525000 2.633430e+05 2.232350e+05 5.200430e+03 1.388580e+03 9.372850e+03 3.371230e+03 1.450390e+03 2.678910e+03
1332496830533333 2.609030e+05 2.251100e+05 3.722580e+03 3.246660e+03 7.876540e+03 4.716810e+03 1.498440e+03 2.116520e+03
1332496830541667 2.544160e+05 2.237690e+05 4.841650e+03 2.956400e+03 8.115920e+03 5.392360e+03 2.142810e+03 2.652320e+03
1332496830550000 2.566980e+05 2.221720e+05 6.471230e+03 9.703960e+02 8.834980e+03 4.816840e+03 2.376630e+03 3.605860e+03
1332496830558333 2.618410e+05 2.235370e+05 5.500740e+03 1.189660e+03 8.365730e+03 4.016470e+03 1.042270e+03 3.821200e+03
1332496830566667 2.595030e+05 2.258400e+05 3.827930e+03 3.088840e+03 7.676140e+03 3.978310e+03 -3.570070e+02 3.016420e+03
1332496830575000 2.534570e+05 2.246360e+05 4.914610e+03 3.097450e+03 8.224900e+03 4.321440e+03 1.713740e+02 2.412360e+03
1332496830583333 2.560290e+05 2.222210e+05 6.841800e+03 1.028500e+03 9.252300e+03 4.387570e+03 2.418140e+03 2.510100e+03
1332496830591667 2.628400e+05 2.225500e+05 6.210250e+03 1.410730e+03 8.538900e+03 4.152580e+03 3.009300e+03 3.219760e+03
1332496830600000 2.616330e+05 2.250650e+05 4.284530e+03 3.357210e+03 7.282170e+03 3.823590e+03 1.402840e+03 3.644670e+03
1332496830608333 2.545910e+05 2.251090e+05 4.693160e+03 3.647740e+03 7.745160e+03 3.686380e+03 4.901610e+02 3.448860e+03
1332496830616667 2.547800e+05 2.235990e+05 6.527380e+03 1.569870e+03 9.438430e+03 3.456580e+03 1.162520e+03 3.252010e+03
1332496830625000 2.606390e+05 2.241070e+05 6.531050e+03 1.633050e+03 9.283720e+03 4.174020e+03 2.089550e+03 2.775750e+03
1332496830633333 2.611080e+05 2.254720e+05 4.968260e+03 3.527850e+03 7.692870e+03 5.137100e+03 2.207390e+03 2.436660e+03
1332496830641667 2.557750e+05 2.237080e+05 4.963450e+03 4.017370e+03 7.701420e+03 5.269650e+03 2.284400e+03 2.842080e+03
1332496830650000 2.573980e+05 2.209470e+05 6.767500e+03 1.645710e+03 9.107070e+03 4.000180e+03 2.548860e+03 3.624770e+03
1332496830658333 2.649240e+05 2.215590e+05 6.471460e+03 1.110330e+03 9.459650e+03 3.108170e+03 1.696970e+03 3.893440e+03
1332496830666667 2.653390e+05 2.257330e+05 4.348800e+03 3.459510e+03 8.475300e+03 4.031240e+03 5.733470e+02 2.910270e+03
1332496830675000 2.568140e+05 2.269950e+05 3.479540e+03 4.949790e+03 7.499910e+03 5.624710e+03 7.516560e+02 2.347710e+03
1332496830683333 2.533160e+05 2.251610e+05 5.147060e+03 3.218430e+03 8.460160e+03 5.869300e+03 2.336320e+03 2.987960e+03
1332496830691667 2.593600e+05 2.231010e+05 5.549120e+03 1.869950e+03 8.740760e+03 4.668940e+03 2.457910e+03 3.758820e+03
1332496830700000 2.620120e+05 2.240160e+05 4.173610e+03 3.004130e+03 8.157040e+03 3.704730e+03 9.879640e+02 3.652750e+03
1332496830708333 2.571760e+05 2.244200e+05 3.517300e+03 4.118750e+03 7.822240e+03 3.718230e+03 3.726490e+01 2.953680e+03
1332496830716667 2.551460e+05 2.233220e+05 4.923980e+03 2.330680e+03 9.095910e+03 3.792400e+03 1.013070e+03 2.711240e+03
1332496830725000 2.605240e+05 2.236510e+05 5.413630e+03 1.146210e+03 8.817170e+03 4.419650e+03 2.446650e+03 2.832050e+03
1332496830733333 2.620980e+05 2.257520e+05 4.262980e+03 2.270970e+03 7.135480e+03 5.067120e+03 2.294680e+03 3.376620e+03
1332496830741667 2.568890e+05 2.253790e+05 3.606460e+03 3.568190e+03 6.552650e+03 4.970270e+03 1.516380e+03 3.662570e+03
1332496830750000 2.539480e+05 2.226310e+05 5.511700e+03 2.066300e+03 7.952660e+03 4.019910e+03 1.513140e+03 3.752630e+03
1332496830758333 2.597990e+05 2.220670e+05 5.873500e+03 6.085840e+02 9.253780e+03 2.870740e+03 1.348240e+03 3.344200e+03
1332496830766667 2.625470e+05 2.249010e+05 4.346080e+03 1.928100e+03 8.590970e+03 3.455460e+03 9.043910e+02 2.379270e+03
1332496830775000 2.561370e+05 2.267610e+05 3.423560e+03 3.379080e+03 7.471150e+03 4.894170e+03 1.153540e+03 2.031410e+03
1332496830783333 2.503260e+05 2.250130e+05 5.519980e+03 2.423970e+03 7.991760e+03 5.117950e+03 2.098790e+03 3.099240e+03
1332496830791667 2.554540e+05 2.229920e+05 6.547950e+03 4.964960e+02 8.751340e+03 3.900560e+03 2.132290e+03 4.076810e+03
1332496830800000 2.612860e+05 2.234890e+05 5.152850e+03 1.501510e+03 8.425610e+03 2.888030e+03 7.761140e+02 3.786360e+03
1332496830808333 2.589690e+05 2.240690e+05 3.832610e+03 3.001980e+03 7.979260e+03 3.182310e+03 5.271600e+01 2.874800e+03
1332496830816667 2.549460e+05 2.220350e+05 5.317880e+03 2.139800e+03 9.103140e+03 3.955610e+03 1.235170e+03 2.394150e+03
1332496830825000 2.586760e+05 2.212050e+05 6.594910e+03 5.053440e+02 9.423360e+03 4.562470e+03 2.913740e+03 2.892350e+03
1332496830833333 2.621250e+05 2.235660e+05 5.116750e+03 1.773600e+03 8.082200e+03 4.776370e+03 2.386390e+03 3.659730e+03
1332496830841667 2.578350e+05 2.259180e+05 3.714300e+03 3.477080e+03 7.205370e+03 4.554610e+03 7.115390e+02 3.878420e+03
1332496830850000 2.536600e+05 2.243710e+05 5.022450e+03 2.592430e+03 8.277200e+03 4.119370e+03 4.865080e+02 3.666740e+03
1332496830858333 2.595030e+05 2.220610e+05 6.589950e+03 6.599360e+02 9.596920e+03 3.598100e+03 1.702490e+03 3.036600e+03
1332496830866667 2.654950e+05 2.228430e+05 5.541850e+03 1.728430e+03 8.459960e+03 4.492000e+03 2.231970e+03 2.430620e+03
1332496830875000 2.609290e+05 2.249960e+05 4.000950e+03 3.745990e+03 6.983790e+03 5.430860e+03 1.855260e+03 2.533380e+03
1332496830883333 2.527160e+05 2.243350e+05 5.086560e+03 3.401150e+03 7.597970e+03 5.196120e+03 1.755720e+03 3.079760e+03
1332496830891667 2.541100e+05 2.231110e+05 6.822190e+03 1.229080e+03 9.164340e+03 3.761230e+03 1.679390e+03 3.584880e+03
1332496830900000 2.599690e+05 2.246930e+05 6.183950e+03 1.538500e+03 9.222080e+03 3.139170e+03 9.499020e+02 3.180800e+03
1332496830908333 2.590780e+05 2.269130e+05 4.388890e+03 3.694820e+03 8.195020e+03 3.933000e+03 4.260800e+02 2.388450e+03
1332496830916667 2.545630e+05 2.247600e+05 5.168440e+03 4.020940e+03 8.450270e+03 4.758910e+03 1.458900e+03 2.286430e+03
1332496830925000 2.580590e+05 2.212170e+05 6.883460e+03 1.649530e+03 9.232780e+03 4.457650e+03 3.057820e+03 3.031950e+03
1332496830933333 2.646670e+05 2.211770e+05 6.218510e+03 1.645730e+03 8.657180e+03 3.663500e+03 2.528280e+03 3.978340e+03
1332496830941667 2.629250e+05 2.243820e+05 4.627500e+03 3.635930e+03 7.892800e+03 3.431320e+03 6.045090e+02 3.901370e+03
1332496830950000 2.547080e+05 2.254480e+05 4.408250e+03 4.461040e+03 8.197170e+03 3.953750e+03 -4.453460e+01 3.154870e+03
1332496830958333 2.537020e+05 2.246350e+05 5.825770e+03 2.577050e+03 9.590050e+03 4.569250e+03 1.460270e+03 2.785170e+03
1332496830966667 2.602060e+05 2.241400e+05 5.387980e+03 1.951160e+03 8.789510e+03 5.131660e+03 2.706380e+03 2.972480e+03
1332496830975000 2.612400e+05 2.247370e+05 3.860810e+03 3.418310e+03 7.414530e+03 5.284520e+03 2.271380e+03 3.183150e+03
1332496830983333 2.561400e+05 2.232520e+05 3.850010e+03 3.957140e+03 7.262650e+03 4.964640e+03 1.499510e+03 3.453130e+03
1332496830991667 2.561160e+05 2.213490e+05 5.594480e+03 2.054400e+03 8.835130e+03 3.662010e+03 1.485510e+03 3.613010e+03

View File

@@ -1,11 +1,11 @@
1332497040.000000 2.56439e+05 2.24775e+05 2.92897e+03 4.66646e+03 7.58491e+03 3.57351e+03 -4.34171e+02 2.98819e+03
1332497040.010000 2.51903e+05 2.23202e+05 4.23696e+03 3.49363e+03 8.53493e+03 4.29416e+03 8.49573e+02 2.38189e+03
1332497040.020000 2.57625e+05 2.20247e+05 5.47017e+03 1.35872e+03 9.18903e+03 4.56136e+03 2.65599e+03 2.60912e+03
1332497040.030000 2.63375e+05 2.20706e+05 4.51842e+03 1.80758e+03 8.17208e+03 4.17463e+03 2.57884e+03 3.32848e+03
1332497040.040000 2.59221e+05 2.22346e+05 2.98879e+03 3.66264e+03 6.87274e+03 3.94223e+03 1.25928e+03 3.51786e+03
1332497040.050000 2.51918e+05 2.22281e+05 4.22677e+03 2.84764e+03 7.78323e+03 3.81659e+03 8.04944e+02 3.46314e+03
1332497040.050000 2.54478e+05 2.21701e+05 5.61366e+03 1.02262e+03 9.26581e+03 3.50152e+03 1.29331e+03 3.07271e+03
1332497040.060000 2.59568e+05 2.22945e+05 4.97190e+03 1.28250e+03 8.62081e+03 4.06316e+03 1.85717e+03 2.61990e+03
1332497040.070000 2.57269e+05 2.23697e+05 3.60527e+03 3.05749e+03 7.22363e+03 4.90330e+03 1.93736e+03 2.35357e+03
1332497040.080000 2.52274e+05 2.21438e+05 5.01228e+03 2.86309e+03 7.87115e+03 4.80448e+03 2.18291e+03 2.93397e+03
1332497040.090000 2.56468e+05 2.19205e+05 6.29804e+03 8.09467e+02 9.12895e+03 3.52055e+03 2.16980e+03 3.88739e+03
1332497040000000 2.56439e+05 2.24775e+05 2.92897e+03 4.66646e+03 7.58491e+03 3.57351e+03 -4.34171e+02 2.98819e+03
1332497040010000 2.51903e+05 2.23202e+05 4.23696e+03 3.49363e+03 8.53493e+03 4.29416e+03 8.49573e+02 2.38189e+03
1332497040020000 2.57625e+05 2.20247e+05 5.47017e+03 1.35872e+03 9.18903e+03 4.56136e+03 2.65599e+03 2.60912e+03
1332497040030000 2.63375e+05 2.20706e+05 4.51842e+03 1.80758e+03 8.17208e+03 4.17463e+03 2.57884e+03 3.32848e+03
1332497040040000 2.59221e+05 2.22346e+05 2.98879e+03 3.66264e+03 6.87274e+03 3.94223e+03 1.25928e+03 3.51786e+03
1332497040050000 2.51918e+05 2.22281e+05 4.22677e+03 2.84764e+03 7.78323e+03 3.81659e+03 8.04944e+02 3.46314e+03
1332497040050000 2.54478e+05 2.21701e+05 5.61366e+03 1.02262e+03 9.26581e+03 3.50152e+03 1.29331e+03 3.07271e+03
1332497040060000 2.59568e+05 2.22945e+05 4.97190e+03 1.28250e+03 8.62081e+03 4.06316e+03 1.85717e+03 2.61990e+03
1332497040070000 2.57269e+05 2.23697e+05 3.60527e+03 3.05749e+03 7.22363e+03 4.90330e+03 1.93736e+03 2.35357e+03
1332497040080000 2.52274e+05 2.21438e+05 5.01228e+03 2.86309e+03 7.87115e+03 4.80448e+03 2.18291e+03 2.93397e+03
1332497040090000 2.56468e+05 2.19205e+05 6.29804e+03 8.09467e+02 9.12895e+03 3.52055e+03 2.16980e+03 3.88739e+03

File diff suppressed because it is too large Load Diff

View File

@@ -7,7 +7,6 @@ test_serializer.py
test_iteratorizer.py
test_timestamper.py
test_layout.py
test_rbtree.py
test_interval.py

View File

@@ -49,31 +49,40 @@ class TestBulkData(object):
nodes.append(data.getnode("/foo/baz/quux"))
del nodes
def get_node_slice(key):
if isinstance(key, slice):
return [ node.get_data(x, x+1) for x in
xrange(*key.indices(node.nrows)) ]
return node.get_data(key, key+1)
# Test node
node = data.getnode("/foo/bar")
with assert_raises(IndexError):
x = node[0]
x = get_node_slice(0)
with assert_raises(IndexError):
x = node[0] # timestamp
raw = []
for i in range(1000):
raw.append([10000+i, 1, 2, 3, 4, 5, 6, 7, 8 ])
node.append(raw[0:1])
node.append(raw[1:100])
node.append(raw[100:])
raw.append("%d 1 2 3 4 5 6 7 8\n" % (10000 + i))
node.append_string("".join(raw[0:1]), 0, 50000)
node.append_string("".join(raw[1:100]), 0, 50000)
node.append_string("".join(raw[100:]), 0, 50000)
misc_slices = [ 0, 100, slice(None), slice(0), slice(10),
slice(5,10), slice(3,None), slice(3,-3),
slice(20,10), slice(200,100,-1), slice(None,0,-1),
slice(100,500,5) ]
# Extract slices
for s in misc_slices:
eq_(node[s], raw[s])
eq_(get_node_slice(s), raw[s])
# Extract misc slices while appending, to make sure the
# data isn't being added in the middle of the file
for s in [2, slice(1,5), 2, slice(1,5)]:
node.append([[0,0,0,0,0,0,0,0,0]])
raw.append([0,0,0,0,0,0,0,0,0])
eq_(node[s], raw[s])
node.append_string("0 0 0 0 0 0 0 0 0\n", 0, 50000)
raw.append("0 0 0 0 0 0 0 0 0\n")
eq_(get_node_slice(s), raw[s])
# Get some coverage of remove; remove is more fully tested
# in cmdline
@@ -91,7 +100,7 @@ class TestBulkData(object):
# Extract slices
for s in misc_slices:
eq_(node[s], raw[s])
eq_(get_node_slice(s), raw[s])
# destroy
with assert_raises(ValueError):

View File

@@ -186,8 +186,7 @@ class TestClient(object):
datetime_tz.localtz_set("America/New_York")
testfile = "tests/data/prep-20120323T1000"
start = datetime_tz.datetime_tz.smartparse("20120323T1000")
start = start.totimestamp()
start = nilmdb.utils.time.parse_time("20120323T1000")
rate = 120
# First try a nonexistent path
@@ -243,32 +242,32 @@ class TestClient(object):
data = timestamper.TimestamperRate(testfile, start, 120)
with assert_raises(ClientError) as e:
result = client.stream_insert("/newton/prep", data,
start + 5, start + 120)
start + 5000000, start + 120000000)
in_("400 Bad Request", str(e.exception))
in_("Data timestamp 1332511200.000000 < start time 1332511205.000000",
in_("Data timestamp 1332511200000000 < start time 1332511205000000",
str(e.exception))
# Specify start/end (ends too early)
data = timestamper.TimestamperRate(testfile, start, 120)
with assert_raises(ClientError) as e:
result = client.stream_insert("/newton/prep", data,
start, start + 1)
start, start + 1000000)
in_("400 Bad Request", str(e.exception))
# Client chunks the input, so the exact timestamp here might change
# if the chunk positions change.
assert(re.search("Data timestamp 13325[0-9]+\.[0-9]+ "
">= end time 1332511201.000000", str(e.exception))
assert(re.search("Data timestamp 13325[0-9]+ "
">= end time 1332511201000000", str(e.exception))
is not None)
# Now do the real load
data = timestamper.TimestamperRate(testfile, start, 120)
result = client.stream_insert("/newton/prep", data,
start, start + 119.999777)
start, start + 119999777)
# Verify the intervals. Should be just one, even if the data
# was inserted in chunks, due to nilmdb interval concatenation.
intervals = list(client.stream_intervals("/newton/prep"))
eq_(intervals, [[start, start + 119.999777]])
eq_(intervals, [[start, start + 119999777]])
# Try some overlapping data -- just insert it again
data = timestamper.TimestamperRate(testfile, start, 120)
@@ -284,11 +283,12 @@ class TestClient(object):
# Misc tests for extract and remove. Most of them are in test_cmdline.
client = nilmdb.client.Client(url = testurl)
for x in client.stream_extract("/newton/prep", 999123, 999124):
for x in client.stream_extract("/newton/prep",
999123000000, 999124000000):
raise AssertionError("shouldn't be any data for this request")
with assert_raises(ClientError) as e:
client.stream_remove("/newton/prep", 123, 120)
client.stream_remove("/newton/prep", 123000000, 120000000)
# Test count
eq_(client.stream_count("/newton/prep"), 14400)
@@ -301,13 +301,11 @@ class TestClient(object):
client = nilmdb.client.Client(url = testurl)
# Trigger a client error in generator
start = datetime_tz.datetime_tz.smartparse("20120323T2000")
end = datetime_tz.datetime_tz.smartparse("20120323T1000")
start = nilmdb.utils.time.parse_time("20120323T2000")
end = nilmdb.utils.time.parse_time("20120323T1000")
for function in [ client.stream_intervals, client.stream_extract ]:
with assert_raises(ClientError) as e:
function("/newton/prep",
start.totimestamp(),
end.totimestamp()).next()
function("/newton/prep", start, end).next()
in_("400 Bad Request", str(e.exception))
in_("start must precede end", str(e.exception))
@@ -455,21 +453,21 @@ class TestClient(object):
ctx.insert(" 105 1\n")
ctx.finalize()
ctx.insert("106 1\n")
ctx.update_end(106.5)
ctx.finalize()
ctx.update_start(106.8)
ctx.insert("107 1\n")
ctx.insert("108 1\n")
ctx.insert("109 1\n")
ctx.update_end(108)
ctx.finalize()
ctx.update_start(109)
ctx.insert("110 1\n")
ctx.insert("111 1\n")
ctx.update_end(113)
ctx.insert("112 1\n")
ctx.update_end(114)
ctx.insert("113 1\n")
ctx.update_end(115)
ctx.insert("114 1" +
ctx.insert("114 1\n")
ctx.update_end(116)
ctx.insert("115 1\n")
ctx.update_end(117)
ctx.insert("116 1\n")
ctx.update_end(118)
ctx.insert("117 1" +
" # this is super long" * 100 +
"\n")
ctx.finalize()
@@ -477,11 +475,11 @@ class TestClient(object):
with assert_raises(ClientError):
with client.stream_insert_context("/context/test", 100, 200) as ctx:
ctx.insert("115 1\n")
ctx.insert("118 1\n")
with assert_raises(ClientError):
with client.stream_insert_context("/context/test", 200, 300) as ctx:
ctx.insert("115 1\n")
ctx.insert("118 1\n")
with assert_raises(ClientError):
with client.stream_insert_context("/context/test") as ctx:
@@ -503,9 +501,9 @@ class TestClient(object):
ctx.finalize()
eq_(list(client.stream_intervals("/context/test")),
[ [ 100, 105.000001 ],
[ 106, 106.5 ],
[ 106.8, 115 ],
[ [ 100, 106 ],
[ 107, 108 ],
[ 109, 118 ],
[ 200, 300 ] ])
client.stream_destroy("/context/test")
@@ -567,7 +565,7 @@ class TestClient(object):
ctx.finalize() # nothing
ctx.finalize() # nothing
ctx.insert("1100 1\n")
ctx.finalize() # inserts [1100, 1100.000001]
ctx.finalize() # inserts [1100, 1101]
ctx.update_start(1199)
ctx.insert("1200 1\n")
ctx.update_end(1250)
@@ -595,7 +593,7 @@ class TestClient(object):
(0, [400, 450]),
(0, [500, 550]),
(0, [1000, 1050]),
(1, [1100, 1100.000001]),
(1, [1100, 1101]),
(1, [1199, 1250]),
(0, [1400, 1450]),
(0, [1500, 1550]),
@@ -639,3 +637,29 @@ class TestClient(object):
# Clean up
c.stream_destroy("/persist/test")
eq_(connections(), (1, 6))
def test_client_13_timestamp_rounding(self):
# Test potentially bad timestamps (due to floating point
# roundoff etc). The server will round floating point values
# to the nearest int.
client = nilmdb.client.Client(testurl)
client.stream_create("/rounding/test", "uint16_1")
with client.stream_insert_context("/rounding/test",
100000000, 200000000.1) as ctx:
ctx.insert("100000000.1 1\n")
ctx.insert("150000000.00003 1\n")
ctx.insert("199999999.4 1\n")
eq_(list(client.stream_intervals("/rounding/test")),
[ [ 100000000, 200000000 ] ])
with assert_raises(ClientError):
with client.stream_insert_context("/rounding/test",
200000000, 300000000) as ctx:
ctx.insert("200000000 1\n")
ctx.insert("250000000 1\n")
# Server will round this and give an error on finalize()
ctx.insert("299999999.99 1\n")
client.stream_destroy("/rounding/test")
client.close()

View File

@@ -15,6 +15,7 @@ import re
import sys
import StringIO
import shlex
import warnings
from testutil.helpers import *
@@ -215,9 +216,11 @@ class TestCmdline(object):
def test_02_parsetime(self):
os.environ['TZ'] = "America/New_York"
test = datetime_tz.datetime_tz.now()
u2ts = nilmdb.utils.time.unix_to_timestamp
parse_time = nilmdb.utils.time.parse_time
eq_(parse_time(str(test)), test)
test = datetime_tz.datetime_tz.smartparse("20120405 1400-0400")
eq_(parse_time(str(test)), u2ts(test.totimestamp()))
test = u2ts(datetime_tz.datetime_tz.smartparse("20120405 1400-0400").
totimestamp())
eq_(parse_time("hi there 20120405 1400-0400 testing! 123"), test)
eq_(parse_time("20120405 1800 UTC"), test)
eq_(parse_time("20120405 1400-0400 UTC"), test)
@@ -227,6 +230,11 @@ class TestCmdline(object):
x = parse_time("now")
eq_(parse_time("snapshot-20120405-140000.raw.gz"), test)
eq_(parse_time("prep-20120405T1400"), test)
eq_(parse_time("1333648800.0"), test)
eq_(parse_time("1333648800000000"), test)
eq_(parse_time("@1333648800000000"), test)
with assert_raises(ValueError):
parse_time("@hashtag12345")
def test_03_info(self):
self.ok("info")
@@ -250,6 +258,15 @@ class TestCmdline(object):
self.fail("create /foo float32_8")
self.contain("invalid path")
self.fail("create /newton/prep/ float32_8")
self.contain("invalid path")
self.fail("create /newton/_format/prep float32_8")
self.contain("path name is invalid")
self.fail("create /_format/newton/prep float32_8")
self.contain("path name is invalid")
self.fail("create /newton/prep/_format float32_8")
self.contain("path name is invalid")
# Bad layout type
self.fail("create /newton/prep NoSuchLayout")
@@ -264,6 +281,10 @@ class TestCmdline(object):
self.ok("create /newton/prep float32_8")
self.ok("create /newton/raw uint16_6")
# Create a stream that already exists
self.fail("create /newton/raw uint16_6")
self.contain("stream already exists at this path")
# Should not be able to create a stream with another stream as
# its parent
self.fail("create /newton/prep/blah float32_8")
@@ -491,14 +512,14 @@ class TestCmdline(object):
self.ok("list --detail --path *prep --timestamp-raw "
"--start='23 Mar 2012 10:05:15.50'")
lines_(self.captured, 2)
self.contain("[ 1332497115.500000 -> 1332497160.000000 ]")
self.contain("[ 1332497115500000 -> 1332497160000000 ]")
# bad time
self.fail("list --detail --path *prep -T --start='9332497115.612'")
# good time
self.ok("list --detail --path *prep -T --start='1332497115.612'")
lines_(self.captured, 2)
self.contain("[ 1332497115.612000 -> 1332497160.000000 ]")
self.contain("[ 1332497115612000 -> 1332497160000000 ]")
# Check --ext output
self.ok("list --ext")
@@ -506,7 +527,7 @@ class TestCmdline(object):
self.ok("list -E -T")
c = self.contain
c("\n interval extents: 1332496800.000000 -> 1332497160.000000\n")
c("\n interval extents: 1332496800000000 -> 1332497160000000\n")
c("\n total data: 43200 rows, 359.983336 seconds\n")
c("\n interval extents: (no data)\n")
c("\n total data: 0 rows, 0.000000 seconds\n")
@@ -955,3 +976,85 @@ class TestCmdline(object):
self.ok("destroy /diff/1")
self.ok("destroy /diff/2")
def test_16_rename(self):
# Test renaming. Force file size smaller so we get more files
server_stop()
recursive_unlink(testdb)
server_start(bulkdata_args = { "file_size" : 920, # 23 rows per file
"files_per_dir" : 3 })
# Fill data
self.ok("create /newton/prep float32_8")
os.environ['TZ'] = "UTC"
with open("tests/data/prep-20120323T1004-timestamped") as input:
self.ok("insert -s 20120323T1004 -e 20120323T1006 /newton/prep",
input)
# Extract it
self.ok("extract /newton/prep --start '2000-01-01' " +
"--end '2012-03-23 10:04:01'")
extract_before = self.captured
def check_path(*components):
# Verify the paths look right on disk
seek = os.path.join(testdb, "data", *components)
for (dirpath, dirnames, filenames) in os.walk(testdb):
if "_format" in filenames:
if dirpath == seek:
break
raise AssertionError("data also found at " + dirpath)
else:
raise AssertionError("data not found at " + seek)
# Verify "list" output
self.ok("list")
self.match("/" + "/".join(components) + " float32_8\n")
# Lots of renames
check_path("newton", "prep")
self.fail("rename /newton/prep /newton/prep")
self.contain("old and new paths are the same")
check_path("newton", "prep")
self.fail("rename /newton/prep /newton")
self.contain("subdirs of this path already exist")
self.fail("rename /newton/prep /newton/prep/")
self.contain("invalid path")
self.ok("rename /newton/prep /newton/foo")
check_path("newton", "foo")
self.ok("rename /newton/foo /totally/different/thing")
check_path("totally", "different", "thing")
self.ok("rename /totally/different/thing /totally/something")
check_path("totally", "something")
self.ok("rename /totally/something /totally/something/cool")
check_path("totally", "something", "cool")
self.ok("rename /totally/something/cool /foo/bar")
check_path("foo", "bar")
self.ok("create /xxx/yyy/zzz float32_8")
self.fail("rename /foo/bar /xxx/yyy")
self.contain("subdirs of this path already exist")
self.fail("rename /foo/bar /xxx/yyy/zzz")
self.contain("stream already exists at this path")
self.fail("rename /foo/bar /xxx/yyy/zzz/www")
self.contain("path is subdir of existing node")
self.ok("rename /foo/bar /xxx/yyy/mmm")
self.ok("destroy /xxx/yyy/zzz")
check_path("xxx", "yyy", "mmm")
# Extract it at the final path
self.ok("extract /xxx/yyy/mmm --start '2000-01-01' " +
"--end '2012-03-23 10:04:01'")
eq_(self.captured, extract_before)
self.ok("destroy /xxx/yyy/mmm")
# Make sure temporary rename dirs weren't left around
for (dirpath, dirnames, filenames) in os.walk(testdb):
if "rename-" in dirpath:
raise AssertionError("temporary directories not cleaned up")
if "totally" in dirpath or "newton" in dirpath:
raise AssertionError("old directories not cleaned up")
server_stop()
server_start()

View File

@@ -8,8 +8,11 @@ from nose.tools import *
from nose.tools import assert_raises
import itertools
from nilmdb.server.interval import (Interval, DBInterval,
IntervalSet, IntervalError)
from nilmdb.utils.interval import IntervalError
from nilmdb.server.interval import Interval, DBInterval, IntervalSet
# so we can test them separately
from nilmdb.utils.interval import Interval as UtilsInterval
from testutil.helpers import *
import unittest
@@ -47,11 +50,20 @@ def makeset(string):
return iset
class TestInterval:
def test_client_interval(self):
# Run interval tests against the Python version of Interval.
global Interval
NilmdbInterval = Interval
Interval = UtilsInterval
self.test_interval()
self.test_interval_intersect()
Interval = NilmdbInterval
def test_interval(self):
# Test Interval class
os.environ['TZ'] = "America/New_York"
datetime_tz._localtz = None
(d1, d2, d3) = [ datetime_tz.datetime_tz.smartparse(x).totimestamp()
(d1, d2, d3) = [ nilmdb.utils.time.parse_time(x)
for x in [ "03/24/2012", "03/25/2012", "03/26/2012" ] ]
# basic construction
@@ -77,8 +89,8 @@ class TestInterval:
assert(Interval(d1, d3) > Interval(d1, d2))
assert(Interval(d1, d2) < Interval(d2, d3))
assert(Interval(d1, d3) < Interval(d2, d3))
assert(Interval(d2, d2+0.01) > Interval(d1, d3))
assert(Interval(d3, d3+0.01) == Interval(d3, d3+0.01))
assert(Interval(d2, d2+1) > Interval(d1, d3))
assert(Interval(d3, d3+1) == Interval(d3, d3+1))
#with assert_raises(TypeError): # was AttributeError, that's wrong
# x = (i == 123)
@@ -87,16 +99,16 @@ class TestInterval:
with assert_raises(IntervalError):
x = Interval(d2, d3).subset(d1, d2)
# big integers and floats
x = Interval(5000111222, 6000111222)
eq_(str(x), "[5000111222.000000 -> 6000111222.000000)")
x = Interval(123.45, 234.56)
eq_(str(x), "[123.450000 -> 234.560000)")
# big integers, negative integers
x = Interval(5000111222000000, 6000111222000000)
eq_(str(x), "[5000111222000000 -> 6000111222000000)")
x = Interval(-5000111222000000, -4000111222000000)
eq_(str(x), "[-5000111222000000 -> -4000111222000000)")
# misc
i = Interval(d1, d2)
eq_(repr(i), repr(eval(repr(i))))
eq_(str(i), "[1332561600.000000 -> 1332648000.000000)")
eq_(str(i), "[1332561600000000 -> 1332648000000000)")
def test_interval_intersect(self):
# Test Interval intersections
@@ -193,7 +205,7 @@ class TestInterval:
# misc
eq_(repr(iset), repr(eval(repr(iset))))
eq_(str(iset),
"[[100.000000 -> 200.000000), [200.000000 -> 300.000000)]")
"[[100 -> 200), [200 -> 300)]")
def test_intervalset_geniset(self):
# Test basic iset construction
@@ -222,7 +234,7 @@ class TestInterval:
eq_(ab,c)
# a \ b == d
eq_(IntervalSet(a.set_difference(b)), d)
eq_(IntervalSet(nilmdb.utils.interval.set_difference(a,b)), d)
# Intersection with intervals
do_test(makeset("[---|---)[)"),
@@ -287,10 +299,11 @@ class TestInterval:
b = makeset("[-) [--) [)")
c = makeset("[----) ")
d = makeset(" [-) ")
eq_(a.set_difference(b, list(c)[0]), d)
eq_(nilmdb.utils.interval.set_difference(
a.intersection(list(c)[0]), b.intersection(list(c)[0])), d)
# Empty second set
eq_(a.set_difference(IntervalSet()), a)
eq_(nilmdb.utils.interval.set_difference(a, IntervalSet()), a)
class TestIntervalDB:
def test_dbinterval(self):
@@ -379,7 +392,7 @@ class TestIntervalSpeed:
print
yappi.start()
speeds = {}
limit = 10 # was 20
limit = 22 # was 20
for j in [ 2**x for x in range(5,limit) ]:
start = time.time()
iset = IntervalSet()

View File

@@ -1,266 +0,0 @@
# -*- coding: utf-8 -*-
import nilmdb
from nilmdb.utils.printf import *
from nose.tools import *
from nose.tools import assert_raises
import distutils.version
import itertools
import os
import sys
import random
import unittest
from testutil.helpers import *
from nilmdb.server.layout import *
class TestLayouts(object):
# Some nilmdb.layout tests. Not complete, just fills in missing
# coverage.
def test_layouts(self):
x = nilmdb.server.layout.get_named("float32_8")
y = nilmdb.server.layout.get_named("float32_8")
eq_(x.count, y.count)
eq_(x.datatype, y.datatype)
y = nilmdb.server.layout.get_named("float32_7")
ne_(x.count, y.count)
eq_(x.datatype, y.datatype)
def test_parsing(self):
self.real_t_parsing("float32_8", "uint16_6", "uint16_9")
self.real_t_parsing("float32_8", "uint16_6", "uint16_9")
def real_t_parsing(self, name_prep, name_raw, name_rawnotch):
# invalid layouts
with assert_raises(TypeError) as e:
parser = Parser("NoSuchLayout")
with assert_raises(TypeError) as e:
parser = Parser("float32")
# too little data
parser = Parser(name_prep)
data = ( "1234567890.000000 1.1 2.2 3.3 4.4 5.5\n" +
"1234567890.100000 1.1 2.2 3.3 4.4 5.5\n")
with assert_raises(ParserError) as e:
parser.parse(data)
in_("error", str(e.exception))
# too much data
parser = Parser(name_prep)
data = ( "1234567890.000000 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9\n" +
"1234567890.100000 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9\n")
with assert_raises(ParserError) as e:
parser.parse(data)
in_("error", str(e.exception))
# just right
parser = Parser(name_prep)
data = ( "1234567890.000000 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8\n" +
"1234567890.100000 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8\n")
parser.parse(data)
eq_(parser.min_timestamp, 1234567890.0)
eq_(parser.max_timestamp, 1234567890.1)
eq_(parser.data, [[1234567890.0,1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8],
[1234567890.1,1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8]])
# try uint16_6 too, with clamping
parser = Parser(name_raw)
data = ( "1234567890.000000 1 2 3 4 5 6\n" +
"1234567890.100000 1 2 3 4 5 6\n" )
parser.parse(data)
eq_(parser.data, [[1234567890.0,1,2,3,4,5,6],
[1234567890.1,1,2,3,4,5,6]])
# pass an instantiated class
parser = Parser(get_named(name_rawnotch))
data = ( "1234567890.000000 1 2 3 4 5 6 7 8 9\n" +
"1234567890.100000 1 2 3 4 5 6 7 8 9\n" )
parser.parse(data)
# non-monotonic
parser = Parser(name_raw)
data = ( "1234567890.100000 1 2 3 4 5 6\n" +
"1234567890.099999 1 2 3 4 5 6\n" )
with assert_raises(ParserError) as e:
parser.parse(data)
in_("not monotonically increasing", str(e.exception))
parser = Parser(name_raw)
data = ( "1234567890.100000 1 2 3 4 5 6\n" +
"1234567890.100000 1 2 3 4 5 6\n" )
with assert_raises(ParserError) as e:
parser.parse(data)
in_("not monotonically increasing", str(e.exception))
parser = Parser(name_raw)
data = ( "1234567890.100000 1 2 3 4 5 6\n" +
"1234567890.100001 1 2 3 4 5 6\n" )
parser.parse(data)
# uint16_6 with values out of bounds
parser = Parser(name_raw)
data = ( "1234567890.000000 1 2 3 4 500000 6\n" +
"1234567890.100000 1 2 3 4 5 6\n" )
with assert_raises(ParserError) as e:
parser.parse(data)
in_("value out of range", str(e.exception))
# Empty data should work but is useless
parser = Parser(name_raw)
data = ""
parser.parse(data)
assert(parser.min_timestamp is None)
assert(parser.max_timestamp is None)
def test_formatting(self):
self.real_t_formatting("float32_8", "uint16_6", "uint16_9")
self.real_t_formatting("float32_8", "uint16_6", "uint16_9")
def real_t_formatting(self, name_prep, name_raw, name_rawnotch):
# invalid layout
with assert_raises(TypeError) as e:
formatter = Formatter("NoSuchLayout")
# too little data
formatter = Formatter(name_prep)
data = [ [ 1234567890.000000, 1.1, 2.2, 3.3, 4.4, 5.5 ],
[ 1234567890.100000, 1.1, 2.2, 3.3, 4.4, 5.5 ] ]
with assert_raises(FormatterError) as e:
formatter.format(data)
in_("error", str(e.exception))
# too much data
formatter = Formatter(name_prep)
data = [ [ 1234567890.000000, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
[ 1234567890.100000, 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]
with assert_raises(FormatterError) as e:
formatter.format(data)
in_("error", str(e.exception))
# just right
formatter = Formatter(name_prep)
data = [ [ 1234567890.000000, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8 ],
[ 1234567890.100000, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8 ] ]
text = formatter.format(data)
eq_(text,
"1234567890.000000 1.100000e+00 2.200000e+00 3.300000e+00 "
"4.400000e+00 5.500000e+00 6.600000e+00 7.700000e+00 "
"8.800000e+00\n" +
"1234567890.100000 1.100000e+00 2.200000e+00 3.300000e+00 "
"4.400000e+00 5.500000e+00 6.600000e+00 7.700000e+00 "
"8.800000e+00\n")
# try uint16_6 too
formatter = Formatter(name_raw)
data = [ [ 1234567890.000000, 1, 2, 3, 4, 5, 6 ],
[ 1234567890.100000, 1, 2, 3, 4, 5, 6 ] ]
text = formatter.format(data)
eq_(text,
"1234567890.000000 1 2 3 4 5 6\n" +
"1234567890.100000 1 2 3 4 5 6\n")
# pass an instantiated class
formatter = Formatter(get_named(name_rawnotch))
data = [ [ 1234567890.000000, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
[ 1234567890.100000, 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]
text = formatter.format(data)
eq_(text,
"1234567890.000000 1 2 3 4 5 6 7 8 9\n" +
"1234567890.100000 1 2 3 4 5 6 7 8 9\n")
# Empty data should work but is useless
formatter = Formatter(name_raw)
data = []
text = formatter.format(data)
eq_(text, "")
def test_roundtrip(self):
self.real_t_roundtrip("float32_8", "uint16_6", "uint16_9")
self.real_t_roundtrip("float32_8", "uint16_6", "uint16_9")
def real_t_roundtrip(self, name_prep, name_raw, name_rawnotch):
# Verify that textual data passed into the Parser, and then
# back through the Formatter, then back into the Parser,
# gives identical parsed representations
random.seed(12345)
def do_roundtrip(layout, datagen):
for i in range(100):
rows = random.randint(1,100)
data = ""
ts = 1234567890
for r in range(rows):
ts += random.uniform(0,1)
row = sprintf("%f", ts) + " "
row += " ".join(datagen())
row += "\n"
data += row
parser1 = Parser(layout)
formatter = Formatter(layout)
parser2 = Parser(layout)
parser1.parse(data)
parser2.parse(formatter.format(parser1.data))
eq_(parser1.data, parser2.data)
def datagen():
return [ sprintf("%.6e", random.uniform(-1000,1000))
for x in range(8) ]
do_roundtrip(name_prep, datagen)
def datagen():
return [ sprintf("%d", random.randint(0,65535))
for x in range(6) ]
do_roundtrip(name_raw, datagen)
def datagen():
return [ sprintf("%d", random.randint(0,65535))
for x in range(9) ]
do_roundtrip(name_rawnotch, datagen)
class TestLayoutSpeed:
@unittest.skip("this is slow")
def test_layout_speed(self):
import time
random.seed(54321)
def do_speedtest(layout, datagen, rows = 5000, times = 100):
# Build data once
data = ""
ts = 1234567890
for r in range(rows):
ts += random.uniform(0,1)
row = sprintf("%f", ts) + " "
row += " ".join(datagen())
row += "\n"
data += row
# Do lots of roundtrips
start = time.time()
for i in range(times):
parser = Parser(layout)
formatter = Formatter(layout)
parser.parse(data)
formatter.format(parser.data)
elapsed = time.time() - start
printf("roundtrip %s: %d ms, %.1f μs/row, %d rows/sec\n",
layout,
elapsed * 1e3,
(elapsed * 1e6) / (rows * times),
(rows * times) / elapsed)
print ""
def datagen():
return [ sprintf("%.6e", random.uniform(-1000,1000))
for x in range(10) ]
do_speedtest("float32_10", datagen)
def datagen():
return [ sprintf("%d", random.randint(0,65535))
for x in range(10) ]
do_speedtest("uint16_10", datagen)
def datagen():
return [ sprintf("%d", random.randint(0,65535))
for x in range(6) ]
do_speedtest("uint16_6", datagen)

View File

@@ -1,6 +1,5 @@
import nilmdb
from nilmdb.utils.printf import *
from nilmdb.utils import datetime_tz
from nose.tools import *
from nose.tools import assert_raises
@@ -20,11 +19,11 @@ class TestTimestamper(object):
def join(list):
return "\n".join(list) + "\n"
start = datetime_tz.datetime_tz.smartparse("03/24/2012").totimestamp()
start = nilmdb.utils.time.parse_time("03/24/2012")
lines_in = [ "hello", "world", "hello world", "# commented out" ]
lines_out = [ "1332561600.000000 hello",
"1332561600.000125 world",
"1332561600.000250 hello world" ]
lines_out = [ "1332561600000000 hello",
"1332561600000125 world",
"1332561600000250 hello world" ]
# full
input = cStringIO.StringIO(join(lines_in))
@@ -42,7 +41,7 @@ class TestTimestamper(object):
# stop iteration early
input = cStringIO.StringIO(join(lines_in))
ts = timestamper.TimestamperRate(input, start, 8000,
1332561600.000200)
1332561600000200)
foo = ""
for line in ts:
foo += line
@@ -51,14 +50,14 @@ class TestTimestamper(object):
# stop iteration early (readlines)
input = cStringIO.StringIO(join(lines_in))
ts = timestamper.TimestamperRate(input, start, 8000,
1332561600.000200)
1332561600000200)
foo = ts.readlines()
eq_(foo, join(lines_out[0:2]))
# stop iteration really early
input = cStringIO.StringIO(join(lines_in))
ts = timestamper.TimestamperRate(input, start, 8000,
1332561600.000000)
1332561600000000)
foo = ts.readlines()
eq_(foo, "")