Compare commits
3 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
60f09427cf | |||
d6d31190eb | |||
2ec574c59d |
3
Makefile
3
Makefile
@@ -9,6 +9,9 @@ else
|
||||
endif
|
||||
|
||||
test:
|
||||
src/decimate.py
|
||||
|
||||
test_insert:
|
||||
@make install >/dev/null
|
||||
src/insert.py --file --dry-run /test/foo </dev/null
|
||||
|
||||
|
@@ -41,41 +41,45 @@ def main(argv = None):
|
||||
|
||||
# If source is decimated, we have to decimate a bit differently
|
||||
if "decimate_source" in f.client_src.stream_get_metadata(args.srcpath):
|
||||
n = f.src.layout_count // 3
|
||||
f.process_python(function = decimate_again, rows = args.factor,
|
||||
args = (n,))
|
||||
again = True
|
||||
else:
|
||||
n = f.src.layout_count
|
||||
f.process_python(function = decimate_first, rows = args.factor,
|
||||
args = (n,))
|
||||
again = False
|
||||
f.process_numpy(decimate, args = (args.factor, again))
|
||||
|
||||
def decimate_first(data, n):
|
||||
"""Decimate original data -- result has 3 times as many columns"""
|
||||
# For this simple calculation, converting to a Numpy array
|
||||
# and doing the math is slower than just doing it directly.
|
||||
rows = iter(data)
|
||||
r_sum = r_min = r_max = rows.next()
|
||||
for row in rows:
|
||||
r_sum = map(operator.add, r_sum, row)
|
||||
r_min = map(min, r_min, row)
|
||||
r_max = map(max, r_max, row)
|
||||
r_mean = [ x / len(data) for x in r_sum ]
|
||||
return [ [ r_mean[0] ] + r_mean[1:] + r_min[1:] + r_max[1:] ]
|
||||
def decimate(data, interval, args, insert_function, final):
|
||||
"""Decimate data"""
|
||||
(factor, again) = args
|
||||
(n, m) = data.shape
|
||||
|
||||
def decimate_again(data, n):
|
||||
"""Decimate already-decimated data -- result has the same number
|
||||
of columns"""
|
||||
rows = iter(data)
|
||||
r = rows.next()
|
||||
r_sum = r[0:(n+1)]
|
||||
r_min = r[(n+1):(2*n+1)]
|
||||
r_max = r[(2*n+1):(3*n+1)]
|
||||
for r in rows:
|
||||
r_sum = map(operator.add, r_sum, r[0:(n+1)])
|
||||
r_min = map(min, r_min, r[(n+1):(2*n+1)])
|
||||
r_max = map(max, r_max, r[(2*n+1):(3*n+1)])
|
||||
r_mean = [ x / len(data) for x in r_sum ]
|
||||
return [ r_mean + r_min + r_max ]
|
||||
# Figure out which columns to use as the source for mean, min, and max,
|
||||
# depending on whether this is the first decimation or we're decimating
|
||||
# again. Note that we include the timestamp in the means.
|
||||
if again:
|
||||
c = (m - 1) // 3
|
||||
# e.g. c = 3
|
||||
# ts mean1 mean2 mean3 min1 min2 min3 max1 max2 max3
|
||||
mean_col = slice(0, c + 1)
|
||||
min_col = slice(c + 1, 2 * c + 1)
|
||||
max_col = slice(2 * c + 1, 3 * c + 1)
|
||||
else:
|
||||
mean_col = slice(0, m)
|
||||
min_col = slice(1, m)
|
||||
max_col = slice(1, m)
|
||||
|
||||
# Discard extra rows that aren't a multiple of factor
|
||||
n = n // factor * factor
|
||||
data = data[:n,:]
|
||||
|
||||
# Reshape it into 3D so we can process 'factor' rows at a time
|
||||
data.shape = (n // factor, factor, m)
|
||||
|
||||
# Fill the result
|
||||
out = np.c_[ np.mean(data[:,:,mean_col], axis=1),
|
||||
np.min(data[:,:,min_col], axis=1),
|
||||
np.max(data[:,:,max_col], axis=1) ]
|
||||
|
||||
insert_function(out)
|
||||
return n
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -367,8 +367,11 @@ class Filter(object):
|
||||
extract = extractor(self.src.path, interval.start, interval.end)
|
||||
old_array = np.array([])
|
||||
for batched in batch(extract, rows):
|
||||
# Read in this batch of data
|
||||
new_array = np.loadtxt(batched)
|
||||
# Read in this batch of data. This turns out to
|
||||
# be a very fast way to read and convert it (order
|
||||
# of magnitude faster than numpy.loadtxt)
|
||||
new_array = np.fromstring("\n".join(batched), sep=' ')
|
||||
new_array = new_array.reshape(-1, self.src.total_count)
|
||||
|
||||
# If we still had old data left, combine it
|
||||
if old_array.shape[0] != 0:
|
||||
|
Reference in New Issue
Block a user