Compare commits
37 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
cf9eb0ed48 | |||
32066fc260 | |||
739da3f973 | |||
83ad18ebf6 | |||
c76d527f95 | |||
b8a73278e7 | |||
ce0691d6c4 | |||
4da658e960 | |||
8ab31eafc2 | |||
979ab13bff | |||
f4fda837ae | |||
5547d266d0 | |||
372e977e4a | |||
640a680704 | |||
2e74e6cd63 | |||
de2a794e00 | |||
065a40f265 | |||
65fa43aff1 | |||
57c23c3792 | |||
d4c8e4acb4 | |||
fd1b33401f | |||
4c748ec00c | |||
b72d6b6908 | |||
80d642e52e | |||
001b89b1d2 | |||
f978823505 | |||
ffd6675979 | |||
5b67b68fd2 | |||
97503b73b9 | |||
4e64c804bf | |||
189fb9df3a | |||
3323c997a7 | |||
e09153e34b | |||
5c56e9d075 | |||
60f09427cf | |||
d6d31190eb | |||
2ec574c59d |
24
Makefile
24
Makefile
@@ -8,7 +8,13 @@ else
|
||||
@echo "Try 'make install'"
|
||||
endif
|
||||
|
||||
test:
|
||||
test: test_cleanup
|
||||
|
||||
test_cleanup:
|
||||
src/cleanup.py -e extras/cleanup.cfg
|
||||
src/cleanup.py extras/cleanup.cfg
|
||||
|
||||
test_insert:
|
||||
@make install >/dev/null
|
||||
src/insert.py --file --dry-run /test/foo </dev/null
|
||||
|
||||
@@ -18,12 +24,16 @@ test_copy:
|
||||
|
||||
test_prep:
|
||||
@make install >/dev/null
|
||||
src/prep.py -c 3 \
|
||||
/lees-compressor/no-leak/raw \
|
||||
/lees-compressor/no-leak/sinefit \
|
||||
/lees-compressor/no-leak/prep \
|
||||
-s '2013-02-19 18:00:00' \
|
||||
-r 0
|
||||
-nilmtool destroy -R /test/raw
|
||||
-nilmtool destroy -R /test/sinefit
|
||||
-nilmtool destroy -R /test/prep
|
||||
nilmtool create /test/raw float32_2
|
||||
nilmtool create /test/sinefit float32_3
|
||||
nilmtool create /test/prep float32_8
|
||||
nilmtool insert -s '@0' -t -r 8000 /test/raw /tmp/raw.dat
|
||||
src/sinefit.py -c 1 /test/raw /test/sinefit
|
||||
src/prep.py -c 2 /test/raw /test/sinefit /test/prep
|
||||
nilmtool extract -s min -e max /test/prep | head -20
|
||||
|
||||
test_decimate:
|
||||
-@nilmtool destroy /lees-compressor/no-leak/raw/4 || true
|
||||
|
@@ -5,10 +5,10 @@ by Jim Paris <jim@jtan.com>
|
||||
Prerequisites:
|
||||
|
||||
# Runtime and build environments
|
||||
sudo apt-get install python2.7 python2.7-dev python-setuptools
|
||||
sudo apt-get install python-numpy python-scipy python-matplotlib
|
||||
sudo apt-get install python2.7 python2.7-dev python-setuptools python-pip
|
||||
sudo apt-get install python-numpy python-scipy
|
||||
|
||||
nilmdb (1.3.1+)
|
||||
nilmdb (1.6.3+)
|
||||
|
||||
Install:
|
||||
|
||||
|
22
extras/cleanup.cfg
Normal file
22
extras/cleanup.cfg
Normal file
@@ -0,0 +1,22 @@
|
||||
[/lees-compressor/no-leak/prep]
|
||||
keep = 2d
|
||||
rate = 60
|
||||
|
||||
[*/raw]
|
||||
keep = 2d
|
||||
|
||||
[*/something]
|
||||
rate = 10
|
||||
|
||||
[*/sinefit]
|
||||
keep = 1w
|
||||
decimated = False
|
||||
|
||||
[/test/raw]
|
||||
keep = 0.01d
|
||||
|
||||
[/test/sinefit]
|
||||
keep = 0.01d
|
||||
|
||||
[/test/prep]
|
||||
keep = 0.01d
|
6
setup.py
6
setup.py
@@ -61,10 +61,10 @@ setup(name='nilmtools',
|
||||
long_description = "NILM Database Tools",
|
||||
license = "Proprietary",
|
||||
author_email = 'jim@jtan.com',
|
||||
install_requires = [ 'nilmdb >= 1.4.6',
|
||||
install_requires = [ 'nilmdb >= 1.6.3',
|
||||
'numpy',
|
||||
'scipy',
|
||||
'matplotlib',
|
||||
#'matplotlib',
|
||||
],
|
||||
packages = [ 'nilmtools',
|
||||
],
|
||||
@@ -78,6 +78,8 @@ setup(name='nilmtools',
|
||||
'nilm-prep = nilmtools.prep:main',
|
||||
'nilm-copy-wildcard = nilmtools.copy_wildcard:main',
|
||||
'nilm-sinefit = nilmtools.sinefit:main',
|
||||
'nilm-cleanup = nilmtools.cleanup:main',
|
||||
'nilm-median = nilmtools.median:main',
|
||||
],
|
||||
},
|
||||
zip_safe = False,
|
||||
|
257
src/cleanup.py
Executable file
257
src/cleanup.py
Executable file
@@ -0,0 +1,257 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
from nilmdb.utils.printf import *
|
||||
from nilmdb.utils.time import (parse_time, timestamp_to_human,
|
||||
timestamp_to_seconds, seconds_to_timestamp)
|
||||
from nilmdb.utils.diskusage import human_size
|
||||
from nilmdb.utils.interval import Interval
|
||||
import nilmdb.client
|
||||
import nilmdb.client.numpyclient
|
||||
import nilmtools
|
||||
import argparse
|
||||
import ConfigParser
|
||||
import sys
|
||||
import collections
|
||||
import fnmatch
|
||||
import re
|
||||
|
||||
def warn(msg, *args):
|
||||
fprintf(sys.stderr, "warning: " + msg + "\n", *args)
|
||||
|
||||
class TimePeriod(object):
|
||||
_units = { 'h': ('hour', 60*60),
|
||||
'd': ('day', 60*60*24),
|
||||
'w': ('week', 60*60*24*7),
|
||||
'm': ('month', 60*60*24*30),
|
||||
'y': ('year', 60*60*24*365) }
|
||||
|
||||
def __init__(self, val):
|
||||
for u in self._units:
|
||||
if val.endswith(u):
|
||||
self.unit = self._units[u][0]
|
||||
self.scale = self._units[u][1]
|
||||
self.count = float(val[:-len(u)])
|
||||
break
|
||||
else:
|
||||
raise ValueError("unknown units: " + units)
|
||||
|
||||
def seconds(self):
|
||||
return self.count * self.scale
|
||||
|
||||
def describe_seconds(self, seconds):
|
||||
count = seconds / self.scale
|
||||
units = self.unit if count == 1 else (self.unit + "s")
|
||||
if count == int(count):
|
||||
return sprintf("%d %s", count, units)
|
||||
else:
|
||||
return sprintf("%.2f %s", count, units)
|
||||
|
||||
def __str__(self):
|
||||
return self.describe_seconds(self.seconds())
|
||||
|
||||
class StreamCleanupConfig(object):
|
||||
def __init__(self, info):
|
||||
self.path = info[0]
|
||||
self.layout = info[1]
|
||||
if info[4] != 0 and info[5] != 0:
|
||||
self.rate = info[4] / timestamp_to_seconds(info[5])
|
||||
else:
|
||||
self.rate = None
|
||||
self.keep = None
|
||||
self.clean_decimated = True
|
||||
self.decimated_from = None
|
||||
self.also_clean_paths = []
|
||||
|
||||
def main(argv = None):
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class = argparse.RawDescriptionHelpFormatter,
|
||||
version = nilmtools.__version__,
|
||||
description = """\
|
||||
Clean up old data from streams using a configuration file to specify
|
||||
which data to remove.
|
||||
|
||||
The format of the config file is as follows:
|
||||
|
||||
[/stream/path]
|
||||
keep = 3w # keep up to 3 weeks of data
|
||||
rate = 8000 # optional, used for the --estimate option
|
||||
decimated = false # whether to delete decimated data too (default true)
|
||||
|
||||
[*/prep]
|
||||
keep = 3.5m # or 2520h or 105d or 15w or 0.29y
|
||||
|
||||
The suffix for 'keep' is 'h' for hours, 'd' for days, 'w' for weeks,
|
||||
'm' for months, or 'y' for years.
|
||||
|
||||
Streams paths may include wildcards. If a path is matched by more than
|
||||
one config section, data from the last config section counts.
|
||||
|
||||
Decimated streams (paths containing '~decim-') are treated specially:
|
||||
- They don't match wildcards
|
||||
- When deleting data from a parent stream, data is also deleted
|
||||
from its decimated streams, unless decimated=false
|
||||
|
||||
Rate is optional and is only used for the --estimate option.
|
||||
""")
|
||||
parser.add_argument("-u", "--url", action="store",
|
||||
default="http://localhost/nilmdb/",
|
||||
help="NilmDB server URL (default: %(default)s)")
|
||||
parser.add_argument("-y", "--yes", action="store_true",
|
||||
default = False,
|
||||
help="Actually remove the data (default: no)")
|
||||
parser.add_argument("-e", "--estimate", action="store_true",
|
||||
default = False,
|
||||
help="Estimate how much disk space will be used")
|
||||
parser.add_argument("configfile", type=argparse.FileType('r'),
|
||||
help="Configuration file")
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
# Parse config file
|
||||
config = ConfigParser.RawConfigParser()
|
||||
config.readfp(args.configfile)
|
||||
|
||||
# List all streams
|
||||
client = nilmdb.client.Client(args.url)
|
||||
streamlist = client.stream_list(extended = True)
|
||||
|
||||
# Create config objects
|
||||
streams = collections.OrderedDict()
|
||||
for s in streamlist:
|
||||
streams[s[0]] = StreamCleanupConfig(s)
|
||||
m = re.search(r"^(.*)~decim-[0-9]+$", s[0])
|
||||
if m:
|
||||
streams[s[0]].decimated_from = m.group(1)
|
||||
|
||||
# Build up configuration
|
||||
for section in config.sections():
|
||||
matched = False
|
||||
for path in streams.iterkeys():
|
||||
# Decimated streams only allow exact matches
|
||||
if streams[path].decimated_from and path != section:
|
||||
continue
|
||||
if not fnmatch.fnmatch(path, section):
|
||||
continue
|
||||
matched = True
|
||||
options = config.options(section)
|
||||
|
||||
# Keep period (days, weeks, months, years)
|
||||
if 'keep' in options:
|
||||
streams[path].keep = TimePeriod(config.get(section, 'keep'))
|
||||
options.remove('keep')
|
||||
|
||||
# Rate
|
||||
if 'rate' in options:
|
||||
streams[path].rate = config.getfloat(section, 'rate')
|
||||
options.remove('rate')
|
||||
|
||||
# Decimated
|
||||
if 'decimated' in options:
|
||||
val = config.getboolean(section, 'decimated')
|
||||
streams[path].clean_decimated = val
|
||||
options.remove('decimated')
|
||||
|
||||
for leftover in options:
|
||||
warn("option '%s' for '%s' is unknown", leftover, section)
|
||||
|
||||
if not matched:
|
||||
warn("config for '%s' did not match any existing streams", section)
|
||||
|
||||
# List all decimated streams in the parent stream's info
|
||||
for path in streams.keys():
|
||||
src = streams[path].decimated_from
|
||||
if src and src in streams:
|
||||
if streams[src].clean_decimated:
|
||||
streams[src].also_clean_paths.append(path)
|
||||
del streams[path]
|
||||
|
||||
# Warn about streams that aren't getting cleaned up
|
||||
for path in streams.keys():
|
||||
if streams[path].keep is None or streams[path].keep.seconds() < 0:
|
||||
warn("no config for existing stream '%s'", path)
|
||||
del streams[path]
|
||||
|
||||
if args.estimate:
|
||||
# Estimate disk usage
|
||||
total = 0
|
||||
for path in streams.keys():
|
||||
rate = streams[path].rate
|
||||
if not rate or rate < 0:
|
||||
warn("unable to estimate disk usage for stream '%s' because "
|
||||
"the data rate is unknown", path)
|
||||
continue
|
||||
printf("%s:\n", path)
|
||||
layout = streams[path].layout
|
||||
dtype = nilmdb.client.numpyclient.layout_to_dtype(layout)
|
||||
per_row = dtype.itemsize
|
||||
per_sec = per_row * rate
|
||||
printf("%17s: %s per row, %s rows per second\n",
|
||||
"base rate",
|
||||
human_size(per_row),
|
||||
round(rate,1))
|
||||
printf("%17s: %s per hour, %s per day\n",
|
||||
"base size",
|
||||
human_size(per_sec * 3600),
|
||||
human_size(per_sec * 3600 * 24))
|
||||
|
||||
# If we'll be cleaning up decimated data, add an
|
||||
# estimation for how much room decimated data takes up.
|
||||
if streams[path].clean_decimated:
|
||||
d_layout = "float32_" + str(3*(int(layout.split('_')[1])))
|
||||
d_dtype = nilmdb.client.numpyclient.layout_to_dtype(d_layout)
|
||||
# Assume the decimations will be a factor of 4
|
||||
# sum_{k=0..inf} (rate / (n^k)) * d_dtype.itemsize
|
||||
d_per_row = d_dtype.itemsize
|
||||
factor = 4.0
|
||||
d_per_sec = d_per_row * (rate / factor) * (1 / (1 - (1/factor)))
|
||||
per_sec += d_per_sec
|
||||
printf("%17s: %s per hour, %s per day\n",
|
||||
"with decimation",
|
||||
human_size(per_sec * 3600),
|
||||
human_size(per_sec * 3600 * 24))
|
||||
|
||||
keep = per_sec * streams[path].keep.seconds()
|
||||
printf("%17s: %s\n\n",
|
||||
"keep " + str(streams[path].keep), human_size(keep))
|
||||
total += keep
|
||||
printf("Total estimated disk usage for these streams:\n")
|
||||
printf(" %s\n", human_size(total))
|
||||
raise SystemExit(0)
|
||||
|
||||
# Do the cleanup
|
||||
for path in streams:
|
||||
printf("%s: keep %s\n", path, streams[path].keep)
|
||||
|
||||
# Figure out the earliest timestamp we should keep.
|
||||
intervals = [ Interval(start, end) for (start, end) in
|
||||
reversed(list(client.stream_intervals(path))) ]
|
||||
total = 0
|
||||
keep = seconds_to_timestamp(streams[path].keep.seconds())
|
||||
for i in intervals:
|
||||
total += i.end - i.start
|
||||
if total <= keep:
|
||||
continue
|
||||
remove_before = i.start + (total - keep)
|
||||
break
|
||||
else:
|
||||
printf(" nothing to do (only %s of data present)\n",
|
||||
streams[path].keep.describe_seconds(
|
||||
timestamp_to_seconds(total)))
|
||||
continue
|
||||
printf(" removing data before %s\n", timestamp_to_human(remove_before))
|
||||
# Clean in reverse order. Since we only use the primary stream and not
|
||||
# the decimated streams to figure out which data to remove, removing
|
||||
# the primary stream last means that we might recover more nicely if
|
||||
# we are interrupted and restarted.
|
||||
clean_paths = list(reversed(streams[path].also_clean_paths)) + [ path ]
|
||||
for p in clean_paths:
|
||||
printf(" removing from %s\n", p)
|
||||
if args.yes:
|
||||
client.stream_remove(p, None, remove_before)
|
||||
|
||||
# All done
|
||||
if not args.yes:
|
||||
printf("Note: specify --yes to actually perform removals\n")
|
||||
return
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -5,6 +5,7 @@
|
||||
|
||||
import nilmtools.filter
|
||||
import nilmdb.client
|
||||
from nilmdb.client.numpyclient import NumpyClient
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
@@ -27,14 +28,14 @@ def main(argv = None):
|
||||
meta = f.client_src.stream_get_metadata(f.src.path)
|
||||
f.check_dest_metadata(meta)
|
||||
|
||||
# Copy all rows of data as ASCII strings
|
||||
extractor = nilmdb.client.Client(f.src.url).stream_extract
|
||||
inserter = nilmdb.client.Client(f.dest.url).stream_insert_context
|
||||
# Copy all rows of data using the faster Numpy interfaces
|
||||
extractor = NumpyClient(f.src.url).stream_extract_numpy
|
||||
inserter = NumpyClient(f.dest.url).stream_insert_numpy_context
|
||||
for i in f.intervals():
|
||||
print "Processing", f.interval_string(i)
|
||||
with inserter(f.dest.path, i.start, i.end) as insert_ctx:
|
||||
for row in extractor(f.src.path, i.start, i.end):
|
||||
insert_ctx.insert(row + "\n")
|
||||
for data in extractor(f.src.path, i.start, i.end):
|
||||
insert_ctx.insert(data)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -41,41 +41,45 @@ def main(argv = None):
|
||||
|
||||
# If source is decimated, we have to decimate a bit differently
|
||||
if "decimate_source" in f.client_src.stream_get_metadata(args.srcpath):
|
||||
n = f.src.layout_count // 3
|
||||
f.process_python(function = decimate_again, rows = args.factor,
|
||||
args = (n,))
|
||||
again = True
|
||||
else:
|
||||
n = f.src.layout_count
|
||||
f.process_python(function = decimate_first, rows = args.factor,
|
||||
args = (n,))
|
||||
again = False
|
||||
f.process_numpy(decimate, args = (args.factor, again))
|
||||
|
||||
def decimate_first(data, n):
|
||||
"""Decimate original data -- result has 3 times as many columns"""
|
||||
# For this simple calculation, converting to a Numpy array
|
||||
# and doing the math is slower than just doing it directly.
|
||||
rows = iter(data)
|
||||
r_sum = r_min = r_max = rows.next()
|
||||
for row in rows:
|
||||
r_sum = map(operator.add, r_sum, row)
|
||||
r_min = map(min, r_min, row)
|
||||
r_max = map(max, r_max, row)
|
||||
r_mean = [ x / len(data) for x in r_sum ]
|
||||
return [ [ r_mean[0] ] + r_mean[1:] + r_min[1:] + r_max[1:] ]
|
||||
def decimate(data, interval, args, insert_function, final):
|
||||
"""Decimate data"""
|
||||
(factor, again) = args
|
||||
(n, m) = data.shape
|
||||
|
||||
def decimate_again(data, n):
|
||||
"""Decimate already-decimated data -- result has the same number
|
||||
of columns"""
|
||||
rows = iter(data)
|
||||
r = rows.next()
|
||||
r_sum = r[0:(n+1)]
|
||||
r_min = r[(n+1):(2*n+1)]
|
||||
r_max = r[(2*n+1):(3*n+1)]
|
||||
for r in rows:
|
||||
r_sum = map(operator.add, r_sum, r[0:(n+1)])
|
||||
r_min = map(min, r_min, r[(n+1):(2*n+1)])
|
||||
r_max = map(max, r_max, r[(2*n+1):(3*n+1)])
|
||||
r_mean = [ x / len(data) for x in r_sum ]
|
||||
return [ r_mean + r_min + r_max ]
|
||||
# Figure out which columns to use as the source for mean, min, and max,
|
||||
# depending on whether this is the first decimation or we're decimating
|
||||
# again. Note that we include the timestamp in the means.
|
||||
if again:
|
||||
c = (m - 1) // 3
|
||||
# e.g. c = 3
|
||||
# ts mean1 mean2 mean3 min1 min2 min3 max1 max2 max3
|
||||
mean_col = slice(0, c + 1)
|
||||
min_col = slice(c + 1, 2 * c + 1)
|
||||
max_col = slice(2 * c + 1, 3 * c + 1)
|
||||
else:
|
||||
mean_col = slice(0, m)
|
||||
min_col = slice(1, m)
|
||||
max_col = slice(1, m)
|
||||
|
||||
# Discard extra rows that aren't a multiple of factor
|
||||
n = n // factor * factor
|
||||
data = data[:n,:]
|
||||
|
||||
# Reshape it into 3D so we can process 'factor' rows at a time
|
||||
data = data.reshape(n // factor, factor, m)
|
||||
|
||||
# Fill the result
|
||||
out = np.c_[ np.mean(data[:,:,mean_col], axis=1),
|
||||
np.min(data[:,:,min_col], axis=1),
|
||||
np.max(data[:,:,max_col], axis=1) ]
|
||||
|
||||
insert_function(out)
|
||||
return n
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -4,15 +4,19 @@ import nilmtools.filter
|
||||
import nilmtools.decimate
|
||||
import nilmdb.client
|
||||
import argparse
|
||||
import fnmatch
|
||||
|
||||
def main(argv = None):
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class = argparse.RawDescriptionHelpFormatter,
|
||||
version = "1.0",
|
||||
version = nilmtools.__version__,
|
||||
description = """\
|
||||
Automatically create multiple decimations from a single source
|
||||
stream, continuing until the last decimated level contains fewer
|
||||
than 500 points total.
|
||||
|
||||
Wildcards and multiple paths are accepted. Decimated paths are
|
||||
ignored when matching wildcards.
|
||||
""")
|
||||
parser.add_argument("-u", "--url", action="store",
|
||||
default="http://localhost/nilmdb/",
|
||||
@@ -23,20 +27,36 @@ def main(argv = None):
|
||||
default = False,
|
||||
help="Force metadata changes if the dest "
|
||||
"doesn't match")
|
||||
parser.add_argument("path", action="store",
|
||||
parser.add_argument("path", action="store", nargs='+',
|
||||
help='Path of base stream')
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
# Pull out info about the base stream
|
||||
client = nilmdb.client.Client(args.url)
|
||||
|
||||
info = nilmtools.filter.get_stream_info(client, args.path)
|
||||
if not info:
|
||||
raise Exception("path " + args.path + " not found")
|
||||
# Find list of paths to process
|
||||
streams = [ unicode(s[0]) for s in client.stream_list() ]
|
||||
streams = [ s for s in streams if "~decim-" not in s ]
|
||||
paths = []
|
||||
for path in args.path:
|
||||
new = fnmatch.filter(streams, unicode(path))
|
||||
if not new:
|
||||
print "error: no stream matched path:", path
|
||||
raise SystemExit(1)
|
||||
paths.extend(new)
|
||||
|
||||
meta = client.stream_get_metadata(args.path)
|
||||
for path in paths:
|
||||
do_decimation(client, args, path)
|
||||
|
||||
def do_decimation(client, args, path):
|
||||
print "Decimating", path
|
||||
info = nilmtools.filter.get_stream_info(client, path)
|
||||
if not info:
|
||||
raise Exception("path " + path + " not found")
|
||||
|
||||
meta = client.stream_get_metadata(path)
|
||||
if "decimate_source" in meta:
|
||||
print "Stream", args.path, "was decimated from", meta["decimate_source"]
|
||||
print "Stream", path, "was decimated from", meta["decimate_source"]
|
||||
print "You need to pass the base stream instead"
|
||||
raise SystemExit(1)
|
||||
|
||||
@@ -53,7 +73,7 @@ def main(argv = None):
|
||||
if info.rows <= 500:
|
||||
break
|
||||
factor *= args.factor
|
||||
new_path = "%s~decim-%d" % (args.path, factor)
|
||||
new_path = "%s~decim-%d" % (path, factor)
|
||||
|
||||
# Create the stream if needed
|
||||
new_info = nilmtools.filter.get_stream_info(client, new_path)
|
||||
@@ -72,5 +92,7 @@ def main(argv = None):
|
||||
# Update info using the newly decimated stream
|
||||
info = nilmtools.filter.get_stream_info(client, new_path)
|
||||
|
||||
return
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
122
src/filter.py
122
src/filter.py
@@ -4,6 +4,7 @@ from __future__ import absolute_import
|
||||
|
||||
import nilmdb.client
|
||||
from nilmdb.client import Client
|
||||
from nilmdb.client.numpyclient import NumpyClient
|
||||
from nilmdb.utils.printf import *
|
||||
from nilmdb.utils.time import (parse_time, timestamp_to_human,
|
||||
timestamp_to_seconds)
|
||||
@@ -66,7 +67,7 @@ def get_stream_info(client, path):
|
||||
|
||||
class Filter(object):
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, parser_description = None):
|
||||
self._parser = None
|
||||
self._client_src = None
|
||||
self._client_dest = None
|
||||
@@ -77,6 +78,9 @@ class Filter(object):
|
||||
self.end = None
|
||||
self.interhost = False
|
||||
self.force_metadata = False
|
||||
if parser_description is not None:
|
||||
self.setup_parser(parser_description)
|
||||
self.parse_args()
|
||||
|
||||
@property
|
||||
def client_src(self):
|
||||
@@ -232,8 +236,14 @@ class Filter(object):
|
||||
metadata = self._client_dest.stream_get_metadata(self.dest.path)
|
||||
if not self.force_metadata:
|
||||
for key in data:
|
||||
wanted = str(data[key])
|
||||
wanted = data[key]
|
||||
if not isinstance(wanted, basestring):
|
||||
wanted = str(wanted)
|
||||
val = metadata.get(key, wanted)
|
||||
# Force UTF-8 encoding for comparison and display
|
||||
wanted = wanted.encode('utf-8')
|
||||
val = val.encode('utf-8')
|
||||
key = key.encode('utf-8')
|
||||
if val != wanted and self.dest.rows > 0:
|
||||
m = "Metadata in destination stream:\n"
|
||||
m += " %s = %s\n" % (key, val)
|
||||
@@ -247,72 +257,7 @@ class Filter(object):
|
||||
# All good -- write the metadata in case it's not already there
|
||||
self._client_dest.stream_update_metadata(self.dest.path, data)
|
||||
|
||||
# Main processing helper
|
||||
def process_python(self, function, rows, args = None, partial = False):
|
||||
"""Process data in chunks of 'rows' data at a time.
|
||||
|
||||
This provides data as nested Python lists and expects the same
|
||||
back.
|
||||
|
||||
function: function to process the data
|
||||
rows: maximum number of rows to pass to 'function' at once
|
||||
args: tuple containing extra arguments to pass to 'function'
|
||||
partial: if true, less than 'rows' may be passed to 'function'.
|
||||
if false, partial data at the end of an interval will
|
||||
be dropped.
|
||||
|
||||
'function' should be defined like:
|
||||
function(data, *args)
|
||||
It will be passed a list containing up to 'rows' rows of
|
||||
data from the source stream, and any arguments passed in
|
||||
'args'. It should transform the data as desired, and return a
|
||||
new list of rdata, which will be inserted into the destination
|
||||
stream.
|
||||
"""
|
||||
if args is None:
|
||||
args = []
|
||||
extractor = Client(self.src.url).stream_extract
|
||||
inserter = Client(self.dest.url).stream_insert_context
|
||||
|
||||
# Parse input data. We use homogenous types for now, which
|
||||
# means the timestamp type will be either float or int.
|
||||
if "int" in self.src.layout_type:
|
||||
parser = lambda line: [ int(x) for x in line.split() ]
|
||||
else:
|
||||
parser = lambda line: [ float(x) for x in line.split() ]
|
||||
|
||||
# Format output data.
|
||||
formatter = lambda row: " ".join([repr(x) for x in row]) + "\n"
|
||||
|
||||
for interval in self.intervals():
|
||||
print "Processing", self.interval_string(interval)
|
||||
with inserter(self.dest.path,
|
||||
interval.start, interval.end) as insert_ctx:
|
||||
src_array = []
|
||||
for line in extractor(self.src.path,
|
||||
interval.start, interval.end):
|
||||
# Read in data
|
||||
src_array.append([ float(x) for x in line.split() ])
|
||||
|
||||
if len(src_array) == rows:
|
||||
# Pass through filter function
|
||||
dest_array = function(src_array, *args)
|
||||
|
||||
# Write result to destination
|
||||
out = [ formatter(row) for row in dest_array ]
|
||||
insert_ctx.insert("".join(out))
|
||||
|
||||
# Clear source array
|
||||
src_array = []
|
||||
|
||||
# Take care of partial chunk
|
||||
if len(src_array) and partial:
|
||||
dest_array = function(src_array, *args)
|
||||
out = [ formatter(row) for row in dest_array ]
|
||||
insert_ctx.insert("".join(out))
|
||||
|
||||
# Like process_python, but provides Numpy arrays and allows for
|
||||
# partial processing.
|
||||
# The main filter processing method.
|
||||
def process_numpy(self, function, args = None, rows = 100000):
|
||||
"""For all intervals that exist in self.src but don't exist in
|
||||
self.dest, call 'function' with a Numpy array corresponding to
|
||||
@@ -339,37 +284,26 @@ class Filter(object):
|
||||
Return value of 'function' is the number of data rows processed.
|
||||
Unprocessed data will be provided again in a subsequent call
|
||||
(unless 'final' is True).
|
||||
|
||||
If unprocessed data remains after 'final' is True, the interval
|
||||
being inserted will be ended at the timestamp of the first
|
||||
unprocessed data point.
|
||||
"""
|
||||
if args is None:
|
||||
args = []
|
||||
extractor = Client(self.src.url).stream_extract
|
||||
inserter = Client(self.dest.url).stream_insert_context
|
||||
|
||||
# Format output data.
|
||||
formatter = lambda row: " ".join([repr(x) for x in row]) + "\n"
|
||||
|
||||
def batch(iterable, size):
|
||||
c = itertools.count()
|
||||
for k, g in itertools.groupby(iterable, lambda x: c.next() // size):
|
||||
yield g
|
||||
extractor = NumpyClient(self.src.url).stream_extract_numpy
|
||||
inserter = NumpyClient(self.dest.url).stream_insert_numpy_context
|
||||
|
||||
for interval in self.intervals():
|
||||
print "Processing", self.interval_string(interval)
|
||||
with inserter(self.dest.path,
|
||||
interval.start, interval.end) as insert_ctx:
|
||||
def insert_function(array):
|
||||
s = cStringIO.StringIO()
|
||||
if len(np.shape(array)) != 2:
|
||||
raise Exception("array must be 2-dimensional")
|
||||
np.savetxt(s, array)
|
||||
insert_ctx.insert(s.getvalue())
|
||||
|
||||
extract = extractor(self.src.path, interval.start, interval.end)
|
||||
insert_function = insert_ctx.insert
|
||||
old_array = np.array([])
|
||||
for batched in batch(extract, rows):
|
||||
# Read in this batch of data
|
||||
new_array = np.loadtxt(batched)
|
||||
|
||||
for new_array in extractor(self.src.path,
|
||||
interval.start, interval.end,
|
||||
layout = self.src.layout,
|
||||
maxrows = rows):
|
||||
# If we still had old data left, combine it
|
||||
if old_array.shape[0] != 0:
|
||||
array = np.vstack((old_array, new_array))
|
||||
@@ -398,7 +332,13 @@ class Filter(object):
|
||||
|
||||
# Last call for this contiguous interval
|
||||
if old_array.shape[0] != 0:
|
||||
function(old_array, interval, args, insert_function, True)
|
||||
processed = function(old_array, interval, args,
|
||||
insert_function, True)
|
||||
if processed != old_array.shape[0]:
|
||||
# Truncate the interval we're inserting at the first
|
||||
# unprocessed data point. This ensures that
|
||||
# we'll not miss any data when we run again later.
|
||||
insert_ctx.update_end(old_array[processed][0])
|
||||
|
||||
def main(argv = None):
|
||||
# This is just a dummy function; actual filters can use the other
|
||||
|
43
src/median.py
Executable file
43
src/median.py
Executable file
@@ -0,0 +1,43 @@
|
||||
#!/usr/bin/python
|
||||
import nilmtools.filter, scipy.signal
|
||||
|
||||
def main(argv = None):
|
||||
f = nilmtools.filter.Filter()
|
||||
parser = f.setup_parser("Median Filter")
|
||||
group = parser.add_argument_group("Median filter options")
|
||||
group.add_argument("-z", "--size", action="store", type=int, default=25,
|
||||
help = "median filter size (default %(default)s)")
|
||||
group.add_argument("-d", "--difference", action="store_true",
|
||||
help = "store difference rather than filtered values")
|
||||
|
||||
try:
|
||||
args = f.parse_args(argv)
|
||||
except nilmtools.filter.MissingDestination as e:
|
||||
print "Source is %s (%s)" % (e.src.path, e.src.layout)
|
||||
print "Destination %s doesn't exist" % (e.dest.path)
|
||||
print "You could make it with a command like:"
|
||||
print " nilmtool -u %s create %s %s" % (e.dest.url,
|
||||
e.dest.path, e.src.layout)
|
||||
raise SystemExit(1)
|
||||
|
||||
meta = f.client_src.stream_get_metadata(f.src.path)
|
||||
f.check_dest_metadata({ "median_filter_source": f.src.path,
|
||||
"median_filter_size": args.size,
|
||||
"median_filter_difference": repr(args.difference) })
|
||||
|
||||
f.process_numpy(median_filter, args = (args.size, args.difference))
|
||||
|
||||
def median_filter(data, interval, args, insert, final):
|
||||
(size, diff) = args
|
||||
(rows, cols) = data.shape
|
||||
for i in range(cols - 1):
|
||||
filtered = scipy.signal.medfilt(data[:, i+1], size)
|
||||
if diff:
|
||||
data[:, i+1] -= filtered
|
||||
else:
|
||||
data[:, i+1] = filtered
|
||||
insert(data)
|
||||
return rows
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
129
src/prep.py
129
src/prep.py
@@ -3,12 +3,14 @@
|
||||
# Spectral envelope preprocessor.
|
||||
# Requires two streams as input: the original raw data, and sinefit data.
|
||||
|
||||
from nilmdb.utils.printf import *
|
||||
from nilmdb.utils.time import timestamp_to_human
|
||||
import nilmtools.filter
|
||||
import nilmdb.client
|
||||
from numpy import *
|
||||
import scipy.fftpack
|
||||
import scipy.signal
|
||||
from matplotlib import pyplot as p
|
||||
#from matplotlib import pyplot as p
|
||||
import bisect
|
||||
|
||||
def main(argv = None):
|
||||
@@ -19,12 +21,14 @@ def main(argv = None):
|
||||
group.add_argument("-c", "--column", action="store", type=int,
|
||||
help="Column number (first data column is 1)")
|
||||
group.add_argument("-n", "--nharm", action="store", type=int, default=4,
|
||||
help="number of odd harmonics to compute")
|
||||
help="number of odd harmonics to compute (default 4)")
|
||||
group.add_argument("-N", "--nshift", action="store", type=int, default=1,
|
||||
help="number of shifted FFTs per period (default 1)")
|
||||
exc = group.add_mutually_exclusive_group()
|
||||
exc.add_argument("-r", "--rotate", action="store", type=float,
|
||||
help="rotate FFT output by this many degrees")
|
||||
help="rotate FFT output by this many degrees (default 0)")
|
||||
exc.add_argument("-R", "--rotate-rad", action="store", type=float,
|
||||
help="rotate FFT output by this many radians")
|
||||
help="rotate FFT output by this many radians (default 0)")
|
||||
|
||||
group.add_argument("srcpath", action="store",
|
||||
help="Path of raw input, e.g. /foo/raw")
|
||||
@@ -44,6 +48,10 @@ def main(argv = None):
|
||||
print " nilmtool -u %s create %s %s" % (e.dest.url, e.dest.path, rec)
|
||||
raise SystemExit(1)
|
||||
|
||||
if f.dest.layout_count != args.nharm * 2:
|
||||
print "error: need", args.nharm*2, "columns in destination stream"
|
||||
raise SystemExit(1)
|
||||
|
||||
# Check arguments
|
||||
if args.column is None or args.column < 1:
|
||||
parser.error("need a column number >= 1")
|
||||
@@ -51,6 +59,9 @@ def main(argv = None):
|
||||
if args.nharm < 1 or args.nharm > 32:
|
||||
parser.error("number of odd harmonics must be 1-32")
|
||||
|
||||
if args.nshift < 1:
|
||||
parser.error("number of shifted FFTs must be >= 1")
|
||||
|
||||
if args.rotate is not None:
|
||||
rotation = args.rotate * 2.0 * pi / 360.0
|
||||
else:
|
||||
@@ -68,58 +79,100 @@ def main(argv = None):
|
||||
# Check and set metadata in prep stream
|
||||
f.check_dest_metadata({ "prep_raw_source": f.src.path,
|
||||
"prep_sinefit_source": sinefit.path,
|
||||
"prep_column": args.column })
|
||||
"prep_column": args.column,
|
||||
"prep_rotation": repr(rotation) })
|
||||
|
||||
# Run the processing function on all data
|
||||
f.process_numpy(process, args = (client_sinefit, sinefit.path, args.column,
|
||||
args.nharm, rotation))
|
||||
args.nharm, rotation, args.nshift))
|
||||
|
||||
def process(data, interval, args, insert_function, final):
|
||||
(client, sinefit_path, column, nharm, rotation) = args
|
||||
(client, sinefit_path, column, nharm, rotation, nshift) = args
|
||||
rows = data.shape[0]
|
||||
data_timestamps = data[:,0]
|
||||
|
||||
if rows < 2:
|
||||
return 0
|
||||
|
||||
last_inserted = [nilmdb.utils.time.min_timestamp]
|
||||
def insert_if_nonoverlapping(data):
|
||||
"""Call insert_function to insert data, but only if this
|
||||
data doesn't overlap with other data that we inserted."""
|
||||
if data[0][0] <= last_inserted[0]:
|
||||
return
|
||||
last_inserted[0] = data[-1][0]
|
||||
insert_function(data)
|
||||
|
||||
processed = 0
|
||||
out = zeros((1, nharm * 2 + 1))
|
||||
# Pull out sinefit data for the entire time range of this block
|
||||
for sinefit_line in client.stream_extract(sinefit_path,
|
||||
data[0, 0], data[rows-1, 0]):
|
||||
# Extract sinefit data to get zero crossing timestamps
|
||||
def prep_period(t_min, t_max, rot):
|
||||
"""
|
||||
Compute prep coefficients from time t_min to t_max, which
|
||||
are the timestamps of the start and end of one period.
|
||||
Results are rotated by an additional extra_rot before
|
||||
being inserted into the database. Returns the maximum
|
||||
index processed, or None if the period couldn't be
|
||||
processed.
|
||||
"""
|
||||
# Find the indices of data that correspond to (t_min, t_max)
|
||||
idx_min = bisect.bisect_left(data_timestamps, t_min)
|
||||
idx_max = bisect.bisect_left(data_timestamps, t_max)
|
||||
if idx_min >= idx_max or idx_max >= len(data_timestamps):
|
||||
return None
|
||||
|
||||
# Perform FFT over those indices
|
||||
N = idx_max - idx_min
|
||||
d = data[idx_min:idx_max, column]
|
||||
F = scipy.fftpack.fft(d) * 2.0 / N
|
||||
|
||||
# If we wanted more harmonics than the FFT gave us, pad with zeros
|
||||
if N < (nharm * 2):
|
||||
F = r_[F, zeros(nharm * 2 - N)]
|
||||
|
||||
# Fill output data.
|
||||
out[0, 0] = round(t_min)
|
||||
for k in range(nharm):
|
||||
Fk = F[2 * k + 1] * e**(rot * 1j * (k+1))
|
||||
out[0, 2 * k + 1] = -imag(Fk) # Pk
|
||||
out[0, 2 * k + 2] = real(Fk) # Qk
|
||||
|
||||
insert_if_nonoverlapping(out)
|
||||
return idx_max
|
||||
|
||||
# Extract sinefit data to get zero crossing timestamps.
|
||||
# t_min = beginning of period
|
||||
# t_max = end of period
|
||||
(t_min, f0, A, C) = [ float(x) for x in sinefit_line.split() ]
|
||||
t_max = t_min + 1e6 / f0
|
||||
|
||||
# Find the indices of data that correspond to (t_min, t_max)
|
||||
idx_min = bisect.bisect_left(data_timestamps, t_min)
|
||||
idx_max = bisect.bisect_left(data_timestamps, t_max)
|
||||
if idx_min >= idx_max:
|
||||
# something's wonky; ignore this period
|
||||
continue
|
||||
if idx_max >= len(data_timestamps):
|
||||
# max is likely past the end of our chunk, so stop
|
||||
# processing this chunk now.
|
||||
break
|
||||
# Compute prep over shifted windows of the period
|
||||
# (nshift is typically 1)
|
||||
for n in range(nshift):
|
||||
# Compute timestamps and rotations for shifted window
|
||||
time_shift = n * (t_max - t_min) / nshift
|
||||
shifted_min = t_min + time_shift
|
||||
shifted_max = t_max + time_shift
|
||||
angle_shift = n * 2 * pi / nshift
|
||||
shifted_rot = rotation - angle_shift
|
||||
|
||||
# Perform FFT over those indices
|
||||
N = idx_max - idx_min
|
||||
d = data[idx_min:idx_max, column]
|
||||
F = scipy.fftpack.fft(d) / N
|
||||
# Run prep computation
|
||||
idx_max = prep_period(shifted_min, shifted_max, shifted_rot)
|
||||
if not idx_max:
|
||||
break
|
||||
processed = idx_max
|
||||
|
||||
# If we wanted more harmonics than we have, pad with zeros
|
||||
if N < (nharm * 2):
|
||||
F = r_[F, zeros(nharm * 2 - N)]
|
||||
|
||||
# Fill output data
|
||||
out[0, 0] = t_min
|
||||
for k in range(nharm):
|
||||
Fk = F[2 * k + 1] * e**(rotation * 1j * (k+1))
|
||||
out[0, 2 * k + 1] = -imag(Fk) # Pk
|
||||
out[0, 2 * k + 2] = real(Fk) # Qk
|
||||
|
||||
# Insert it and continue
|
||||
insert_function(out)
|
||||
processed = idx_max
|
||||
|
||||
print "Processed", processed, "of", rows, "rows"
|
||||
# If we processed no data but there's lots in here, pretend we
|
||||
# processed half of it.
|
||||
if processed == 0 and rows > 10000:
|
||||
processed = rows / 2
|
||||
printf("%s: warning: no periods found; skipping %d rows\n",
|
||||
timestamp_to_human(data[0][0]), processed)
|
||||
else:
|
||||
printf("%s: processed %d of %d rows\n",
|
||||
timestamp_to_human(data[0][0]), processed, rows)
|
||||
return processed
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
145
src/sinefit.py
145
src/sinefit.py
@@ -2,12 +2,18 @@
|
||||
|
||||
# Sine wave fitting. This runs about 5x faster than realtime on raw data.
|
||||
|
||||
from nilmdb.utils.printf import *
|
||||
import nilmtools.filter
|
||||
import nilmdb.client
|
||||
from nilmdb.utils.time import (timestamp_to_human,
|
||||
timestamp_to_seconds,
|
||||
seconds_to_timestamp)
|
||||
|
||||
from numpy import *
|
||||
from scipy import *
|
||||
#import pylab as p
|
||||
import operator
|
||||
import sys
|
||||
|
||||
def main(argv = None):
|
||||
f = nilmtools.filter.Filter()
|
||||
@@ -18,6 +24,15 @@ def main(argv = None):
|
||||
group.add_argument('-f', '--frequency', action='store', type=float,
|
||||
default=60.0,
|
||||
help='Approximate frequency (default: %(default)s)')
|
||||
group.add_argument('-m', '--min-freq', action='store', type=float,
|
||||
help='Minimum valid frequency '
|
||||
'(default: approximate frequency / 2))')
|
||||
group.add_argument('-M', '--max-freq', action='store', type=float,
|
||||
help='Maximum valid frequency '
|
||||
'(default: approximate frequency * 2))')
|
||||
group.add_argument('-a', '--min-amp', action='store', type=float,
|
||||
default=20.0,
|
||||
help='Minimum signal amplitude (default: %(default)s)')
|
||||
|
||||
# Parse arguments
|
||||
try:
|
||||
@@ -34,17 +49,56 @@ def main(argv = None):
|
||||
parser.error("need a column number >= 1")
|
||||
if args.frequency < 0.1:
|
||||
parser.error("frequency must be >= 0.1")
|
||||
if args.min_freq is None:
|
||||
args.min_freq = args.frequency / 2
|
||||
if args.max_freq is None:
|
||||
args.max_freq = args.frequency * 2
|
||||
if (args.min_freq > args.max_freq or
|
||||
args.min_freq > args.frequency or
|
||||
args.max_freq < args.frequency):
|
||||
parser.error("invalid min or max frequency")
|
||||
if args.min_amp < 0:
|
||||
parser.error("min amplitude must be >= 0")
|
||||
|
||||
f.check_dest_metadata({ "sinefit_source": f.src.path,
|
||||
"sinefit_column": args.column })
|
||||
f.process_numpy(process, args = (args.column, args.frequency))
|
||||
f.process_numpy(process, args = (args.column, args.frequency, args.min_amp,
|
||||
args.min_freq, args.max_freq))
|
||||
|
||||
class SuppressibleWarning(object):
|
||||
def __init__(self, maxcount = 10, maxsuppress = 100):
|
||||
self.maxcount = maxcount
|
||||
self.maxsuppress = maxsuppress
|
||||
self.count = 0
|
||||
self.last_msg = ""
|
||||
|
||||
def _write(self, sec, msg):
|
||||
if sec:
|
||||
now = "[" + timestamp_to_human(seconds_to_timestamp(sec)) + "] "
|
||||
else:
|
||||
now = ""
|
||||
sys.stderr.write(now + msg)
|
||||
|
||||
def warn(self, msg, seconds = None):
|
||||
self.count += 1
|
||||
if self.count <= self.maxcount:
|
||||
self._write(seconds, msg)
|
||||
if (self.count - self.maxcount) >= self.maxsuppress:
|
||||
self.reset(seconds)
|
||||
|
||||
def reset(self, seconds = None):
|
||||
if self.count > self.maxcount:
|
||||
self._write(seconds, sprintf("(%d warnings suppressed)\n",
|
||||
self.count - self.maxcount))
|
||||
self.count = 0
|
||||
|
||||
def process(data, interval, args, insert_function, final):
|
||||
(column, f_expected) = args
|
||||
(column, f_expected, a_min, f_min, f_max) = args
|
||||
rows = data.shape[0]
|
||||
|
||||
# Estimate sampling frequency from timestamps
|
||||
fs = 1e6 * (rows-1) / (data[-1][0] - data[0][0])
|
||||
fs = (rows-1) / (timestamp_to_seconds(data[-1][0]) -
|
||||
timestamp_to_seconds(data[0][0]))
|
||||
|
||||
# Pull out about 3.5 periods of data at once;
|
||||
# we'll expect to match 3 zero crossings in each window
|
||||
@@ -54,30 +108,41 @@ def process(data, interval, args, insert_function, final):
|
||||
if rows < N:
|
||||
return 0
|
||||
|
||||
warn = SuppressibleWarning(3, 1000)
|
||||
|
||||
# Process overlapping windows
|
||||
start = 0
|
||||
num_zc = 0
|
||||
last_inserted_timestamp = None
|
||||
while start < (rows - N):
|
||||
this = data[start:start+N, column]
|
||||
t_min = data[start, 0]/1e6
|
||||
t_max = data[start+N-1, 0]/1e6
|
||||
t_min = timestamp_to_seconds(data[start, 0])
|
||||
t_max = timestamp_to_seconds(data[start+N-1, 0])
|
||||
|
||||
# Do 4-parameter sine wave fit
|
||||
(A, f0, phi, C) = sfit4(this, fs)
|
||||
|
||||
# Check bounds. If frequency is too crazy, ignore this window
|
||||
if f0 < (f_expected/2) or f0 > (f_expected*2):
|
||||
print "frequency", f0, "too far from expected value", f_expected
|
||||
if f0 < f_min or f0 > f_max:
|
||||
warn.warn(sprintf("frequency %s outside valid range %s - %s\n",
|
||||
str(f0), str(f_min), str(f_max)), t_min)
|
||||
start += N
|
||||
continue
|
||||
|
||||
# If amplitude is too low, results are probably just noise
|
||||
if A < a_min:
|
||||
warn.warn(sprintf("amplitude %s below minimum threshold %s\n",
|
||||
str(A), str(a_min)), t_min)
|
||||
start += N
|
||||
continue
|
||||
|
||||
#p.plot(arange(N), this)
|
||||
#p.plot(arange(N), A * cos(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||
#p.plot(arange(N), A * sin(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||
|
||||
# Period starts when the argument of cosine is 3*pi/2 degrees,
|
||||
# Period starts when the argument of sine is 0 degrees,
|
||||
# so we're looking for sample number:
|
||||
# n = (3 * pi / 2 - phi) / (f0/fs * 2 * pi)
|
||||
zc_n = (3 * pi / 2 - phi) / (f0 / fs * 2 * pi)
|
||||
# n = (0 - phi) / (f0/fs * 2 * pi)
|
||||
zc_n = (0 - phi) / (f0 / fs * 2 * pi)
|
||||
period_n = fs/f0
|
||||
|
||||
# Add periods to make N positive
|
||||
@@ -90,7 +155,13 @@ def process(data, interval, args, insert_function, final):
|
||||
while zc_n < (N - period_n/2):
|
||||
#p.plot(zc_n, C, 'ro')
|
||||
t = t_min + zc_n / fs
|
||||
insert_function([[t * 1e6, f0, A, C]])
|
||||
if (last_inserted_timestamp is None or
|
||||
t > last_inserted_timestamp):
|
||||
insert_function([[seconds_to_timestamp(t), f0, A, C]])
|
||||
last_inserted_timestamp = t
|
||||
warn.reset(t)
|
||||
else:
|
||||
warn.warn("timestamp overlap\n", t)
|
||||
num_zc += 1
|
||||
last_zc = zc_n
|
||||
zc_n += period_n
|
||||
@@ -108,6 +179,7 @@ def process(data, interval, args, insert_function, final):
|
||||
start = int(round(start + advance))
|
||||
|
||||
# Return the number of rows we've processed
|
||||
warn.reset(last_inserted_timestamp)
|
||||
print "Marked", num_zc, "zero-crossings in", start, "rows"
|
||||
return start
|
||||
|
||||
@@ -123,15 +195,15 @@ def sfit4(data, fs):
|
||||
|
||||
Output:
|
||||
Parameters [A, f0, phi, C] to fit the equation
|
||||
x[n] = A * cos(f0/fs * 2 * pi * n + phi) + C
|
||||
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
|
||||
where n is sample number. Or, as a function of time:
|
||||
x(t) = A * cos(f0 * 2 * pi * t + phi) + C
|
||||
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
|
||||
|
||||
by Jim Paris
|
||||
(Verified to match sfit4.m)
|
||||
"""
|
||||
N = len(data)
|
||||
t = linspace(0, (N-1) / fs, N)
|
||||
t = linspace(0, (N-1) / float(fs), N)
|
||||
|
||||
## Estimate frequency using FFT (step b)
|
||||
Fc = fft(data)
|
||||
@@ -156,32 +228,31 @@ def sfit4(data, fs):
|
||||
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
|
||||
|
||||
# Convert to Hz
|
||||
f0 = i * fs / N
|
||||
f0 = i * float(fs) / N
|
||||
|
||||
## Fit it
|
||||
# first guess for A0, B0 using 3-parameter fit (step c)
|
||||
w = 2*pi*f0
|
||||
D = c_[cos(w*t), sin(w*t), ones(N)]
|
||||
s = linalg.lstsq(D, data)[0]
|
||||
|
||||
# Now iterate 6 times (step i)
|
||||
for idx in range(6):
|
||||
D = c_[cos(w*t), sin(w*t), ones(N),
|
||||
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
||||
s = linalg.lstsq(D, data)[0] # eqn B.18
|
||||
w = w + s[3] # update frequency estimate
|
||||
|
||||
## Extract results
|
||||
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
||||
f0 = w / (2*pi)
|
||||
# Fit it. We'll catch exceptions here and just returns zeros
|
||||
# if something fails with the least squares fit, etc.
|
||||
try:
|
||||
phi = -arctan2(s[1], s[0]) # eqn B.22
|
||||
except TypeError:
|
||||
# first guess for A0, B0 using 3-parameter fit (step c)
|
||||
s = zeros(3)
|
||||
w = 2*pi*f0
|
||||
|
||||
# Now iterate 7 times (step b, plus 6 iterations of step i)
|
||||
for idx in range(7):
|
||||
D = c_[cos(w*t), sin(w*t), ones(N),
|
||||
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
||||
s = linalg.lstsq(D, data)[0] # eqn B.18
|
||||
w = w + s[3] # update frequency estimate
|
||||
|
||||
## Extract results
|
||||
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
||||
f0 = w / (2*pi)
|
||||
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
|
||||
C = s[2]
|
||||
return (A, f0, phi, C)
|
||||
except Exception as e:
|
||||
# something broke down, just return zeros
|
||||
return (0, 0, 0, 0)
|
||||
C = s[2]
|
||||
|
||||
return (A, f0, phi, C)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Reference in New Issue
Block a user