Compare commits
3 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
4f6bc48619 | |||
cf9eb0ed48 | |||
32066fc260 |
4
setup.py
4
setup.py
@@ -61,10 +61,10 @@ setup(name='nilmtools',
|
||||
long_description = "NILM Database Tools",
|
||||
license = "Proprietary",
|
||||
author_email = 'jim@jtan.com',
|
||||
install_requires = [ 'nilmdb >= 1.6.0',
|
||||
install_requires = [ 'nilmdb >= 1.6.3',
|
||||
'numpy',
|
||||
'scipy',
|
||||
'matplotlib',
|
||||
#'matplotlib',
|
||||
],
|
||||
packages = [ 'nilmtools',
|
||||
],
|
||||
|
@@ -2,12 +2,18 @@
|
||||
|
||||
# Sine wave fitting. This runs about 5x faster than realtime on raw data.
|
||||
|
||||
from nilmdb.utils.printf import *
|
||||
import nilmtools.filter
|
||||
import nilmdb.client
|
||||
from nilmdb.utils.time import (timestamp_to_human,
|
||||
timestamp_to_seconds,
|
||||
seconds_to_timestamp)
|
||||
|
||||
from numpy import *
|
||||
from scipy import *
|
||||
#import pylab as p
|
||||
import operator
|
||||
import sys
|
||||
|
||||
def main(argv = None):
|
||||
f = nilmtools.filter.Filter()
|
||||
@@ -59,12 +65,40 @@ def main(argv = None):
|
||||
f.process_numpy(process, args = (args.column, args.frequency, args.min_amp,
|
||||
args.min_freq, args.max_freq))
|
||||
|
||||
class SuppressibleWarning(object):
|
||||
def __init__(self, maxcount = 10, maxsuppress = 100):
|
||||
self.maxcount = maxcount
|
||||
self.maxsuppress = maxsuppress
|
||||
self.count = 0
|
||||
self.last_msg = ""
|
||||
|
||||
def _write(self, sec, msg):
|
||||
if sec:
|
||||
now = timestamp_to_human(seconds_to_timestamp(sec)) + ": "
|
||||
else:
|
||||
now = ""
|
||||
sys.stderr.write(now + msg)
|
||||
|
||||
def warn(self, msg, seconds = None):
|
||||
self.count += 1
|
||||
if self.count <= self.maxcount:
|
||||
self._write(seconds, msg)
|
||||
if (self.count - self.maxcount) >= self.maxsuppress:
|
||||
self.reset(seconds)
|
||||
|
||||
def reset(self, seconds = None):
|
||||
if self.count > self.maxcount:
|
||||
self._write(seconds, sprintf("(%d warnings suppressed)\n",
|
||||
self.count - self.maxcount))
|
||||
self.count = 0
|
||||
|
||||
def process(data, interval, args, insert_function, final):
|
||||
(column, f_expected, a_min, f_min, f_max) = args
|
||||
rows = data.shape[0]
|
||||
|
||||
# Estimate sampling frequency from timestamps
|
||||
fs = 1e6 * (rows-1) / (data[-1][0] - data[0][0])
|
||||
fs = (rows-1) / (timestamp_to_seconds(data[-1][0]) -
|
||||
timestamp_to_seconds(data[0][0]))
|
||||
|
||||
# Pull out about 3.5 periods of data at once;
|
||||
# we'll expect to match 3 zero crossings in each window
|
||||
@@ -74,26 +108,31 @@ def process(data, interval, args, insert_function, final):
|
||||
if rows < N:
|
||||
return 0
|
||||
|
||||
warn = SuppressibleWarning(3, 1000)
|
||||
|
||||
# Process overlapping windows
|
||||
start = 0
|
||||
num_zc = 0
|
||||
last_inserted_timestamp = None
|
||||
while start < (rows - N):
|
||||
this = data[start:start+N, column]
|
||||
t_min = data[start, 0]/1e6
|
||||
t_max = data[start+N-1, 0]/1e6
|
||||
t_min = timestamp_to_seconds(data[start, 0])
|
||||
t_max = timestamp_to_seconds(data[start+N-1, 0])
|
||||
|
||||
# Do 4-parameter sine wave fit
|
||||
(A, f0, phi, C) = sfit4(this, fs)
|
||||
|
||||
# Check bounds. If frequency is too crazy, ignore this window
|
||||
if f0 < f_min or f0 > f_max:
|
||||
print "frequency", f0, "outside valid range", f_min, "-", f_max
|
||||
warn.warn(sprintf("frequency %s outside valid range %s - %s\n",
|
||||
str(f0), str(f_min), str(f_max)), t_min)
|
||||
start += N
|
||||
continue
|
||||
|
||||
# If amplitude is too low, results are probably just noise
|
||||
if A < a_min:
|
||||
print "amplitude", A, "below minimum threshold", a_min
|
||||
warn.warn(sprintf("amplitude %s below minimum threshold %s\n",
|
||||
str(A), str(a_min)), t_min)
|
||||
start += N
|
||||
continue
|
||||
|
||||
@@ -116,7 +155,13 @@ def process(data, interval, args, insert_function, final):
|
||||
while zc_n < (N - period_n/2):
|
||||
#p.plot(zc_n, C, 'ro')
|
||||
t = t_min + zc_n / fs
|
||||
insert_function([[t * 1e6, f0, A, C]])
|
||||
if (last_inserted_timestamp is None or
|
||||
t > last_inserted_timestamp):
|
||||
insert_function([[seconds_to_timestamp(t), f0, A, C]])
|
||||
last_inserted_timestamp = t
|
||||
warn.reset(t)
|
||||
else:
|
||||
warn.warn("timestamp overlap\n", t)
|
||||
num_zc += 1
|
||||
last_zc = zc_n
|
||||
zc_n += period_n
|
||||
@@ -134,7 +179,13 @@ def process(data, interval, args, insert_function, final):
|
||||
start = int(round(start + advance))
|
||||
|
||||
# Return the number of rows we've processed
|
||||
print "Marked", num_zc, "zero-crossings in", start, "rows"
|
||||
warn.reset(last_inserted_timestamp)
|
||||
if last_inserted_timestamp:
|
||||
now = timestamp_to_human(seconds_to_timestamp(
|
||||
last_inserted_timestamp)) + ": "
|
||||
else:
|
||||
now = ""
|
||||
printf("%sMarked %d zero-crossings in %d rows\n", now, num_zc, start)
|
||||
return start
|
||||
|
||||
def sfit4(data, fs):
|
||||
|
Reference in New Issue
Block a user