Compare commits
16 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
4f6bc48619 | |||
cf9eb0ed48 | |||
32066fc260 | |||
739da3f973 | |||
83ad18ebf6 | |||
c76d527f95 | |||
b8a73278e7 | |||
ce0691d6c4 | |||
4da658e960 | |||
8ab31eafc2 | |||
979ab13bff | |||
f4fda837ae | |||
5547d266d0 | |||
372e977e4a | |||
640a680704 | |||
2e74e6cd63 |
@@ -5,10 +5,10 @@ by Jim Paris <jim@jtan.com>
|
||||
Prerequisites:
|
||||
|
||||
# Runtime and build environments
|
||||
sudo apt-get install python2.7 python2.7-dev python-setuptools
|
||||
sudo apt-get install python-numpy python-scipy python-matplotlib
|
||||
sudo apt-get install python2.7 python2.7-dev python-setuptools python-pip
|
||||
sudo apt-get install python-numpy python-scipy
|
||||
|
||||
nilmdb (1.5.0+)
|
||||
nilmdb (1.6.3+)
|
||||
|
||||
Install:
|
||||
|
||||
|
5
setup.py
5
setup.py
@@ -61,10 +61,10 @@ setup(name='nilmtools',
|
||||
long_description = "NILM Database Tools",
|
||||
license = "Proprietary",
|
||||
author_email = 'jim@jtan.com',
|
||||
install_requires = [ 'nilmdb >= 1.5.0',
|
||||
install_requires = [ 'nilmdb >= 1.6.3',
|
||||
'numpy',
|
||||
'scipy',
|
||||
'matplotlib',
|
||||
#'matplotlib',
|
||||
],
|
||||
packages = [ 'nilmtools',
|
||||
],
|
||||
@@ -79,6 +79,7 @@ setup(name='nilmtools',
|
||||
'nilm-copy-wildcard = nilmtools.copy_wildcard:main',
|
||||
'nilm-sinefit = nilmtools.sinefit:main',
|
||||
'nilm-cleanup = nilmtools.cleanup:main',
|
||||
'nilm-median = nilmtools.median:main',
|
||||
],
|
||||
},
|
||||
zip_safe = False,
|
||||
|
@@ -238,12 +238,15 @@ def main(argv = None):
|
||||
timestamp_to_seconds(total)))
|
||||
continue
|
||||
printf(" removing data before %s\n", timestamp_to_human(remove_before))
|
||||
if args.yes:
|
||||
client.stream_remove(path, None, remove_before)
|
||||
for ap in streams[path].also_clean_paths:
|
||||
printf(" also removing from %s\n", ap)
|
||||
# Clean in reverse order. Since we only use the primary stream and not
|
||||
# the decimated streams to figure out which data to remove, removing
|
||||
# the primary stream last means that we might recover more nicely if
|
||||
# we are interrupted and restarted.
|
||||
clean_paths = list(reversed(streams[path].also_clean_paths)) + [ path ]
|
||||
for p in clean_paths:
|
||||
printf(" removing from %s\n", p)
|
||||
if args.yes:
|
||||
client.stream_remove(ap, None, remove_before)
|
||||
client.stream_remove(p, None, remove_before)
|
||||
|
||||
# All done
|
||||
if not args.yes:
|
||||
|
@@ -67,7 +67,7 @@ def get_stream_info(client, path):
|
||||
|
||||
class Filter(object):
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, parser_description = None):
|
||||
self._parser = None
|
||||
self._client_src = None
|
||||
self._client_dest = None
|
||||
@@ -78,6 +78,9 @@ class Filter(object):
|
||||
self.end = None
|
||||
self.interhost = False
|
||||
self.force_metadata = False
|
||||
if parser_description is not None:
|
||||
self.setup_parser(parser_description)
|
||||
self.parse_args()
|
||||
|
||||
@property
|
||||
def client_src(self):
|
||||
@@ -233,8 +236,14 @@ class Filter(object):
|
||||
metadata = self._client_dest.stream_get_metadata(self.dest.path)
|
||||
if not self.force_metadata:
|
||||
for key in data:
|
||||
wanted = str(data[key])
|
||||
wanted = data[key]
|
||||
if not isinstance(wanted, basestring):
|
||||
wanted = str(wanted)
|
||||
val = metadata.get(key, wanted)
|
||||
# Force UTF-8 encoding for comparison and display
|
||||
wanted = wanted.encode('utf-8')
|
||||
val = val.encode('utf-8')
|
||||
key = key.encode('utf-8')
|
||||
if val != wanted and self.dest.rows > 0:
|
||||
m = "Metadata in destination stream:\n"
|
||||
m += " %s = %s\n" % (key, val)
|
||||
@@ -275,6 +284,10 @@ class Filter(object):
|
||||
Return value of 'function' is the number of data rows processed.
|
||||
Unprocessed data will be provided again in a subsequent call
|
||||
(unless 'final' is True).
|
||||
|
||||
If unprocessed data remains after 'final' is True, the interval
|
||||
being inserted will be ended at the timestamp of the first
|
||||
unprocessed data point.
|
||||
"""
|
||||
if args is None:
|
||||
args = []
|
||||
@@ -319,7 +332,13 @@ class Filter(object):
|
||||
|
||||
# Last call for this contiguous interval
|
||||
if old_array.shape[0] != 0:
|
||||
function(old_array, interval, args, insert_function, True)
|
||||
processed = function(old_array, interval, args,
|
||||
insert_function, True)
|
||||
if processed != old_array.shape[0]:
|
||||
# Truncate the interval we're inserting at the first
|
||||
# unprocessed data point. This ensures that
|
||||
# we'll not miss any data when we run again later.
|
||||
insert_ctx.update_end(old_array[processed][0])
|
||||
|
||||
def main(argv = None):
|
||||
# This is just a dummy function; actual filters can use the other
|
||||
|
43
src/median.py
Executable file
43
src/median.py
Executable file
@@ -0,0 +1,43 @@
|
||||
#!/usr/bin/python
|
||||
import nilmtools.filter, scipy.signal
|
||||
|
||||
def main(argv = None):
|
||||
f = nilmtools.filter.Filter()
|
||||
parser = f.setup_parser("Median Filter")
|
||||
group = parser.add_argument_group("Median filter options")
|
||||
group.add_argument("-z", "--size", action="store", type=int, default=25,
|
||||
help = "median filter size (default %(default)s)")
|
||||
group.add_argument("-d", "--difference", action="store_true",
|
||||
help = "store difference rather than filtered values")
|
||||
|
||||
try:
|
||||
args = f.parse_args(argv)
|
||||
except nilmtools.filter.MissingDestination as e:
|
||||
print "Source is %s (%s)" % (e.src.path, e.src.layout)
|
||||
print "Destination %s doesn't exist" % (e.dest.path)
|
||||
print "You could make it with a command like:"
|
||||
print " nilmtool -u %s create %s %s" % (e.dest.url,
|
||||
e.dest.path, e.src.layout)
|
||||
raise SystemExit(1)
|
||||
|
||||
meta = f.client_src.stream_get_metadata(f.src.path)
|
||||
f.check_dest_metadata({ "median_filter_source": f.src.path,
|
||||
"median_filter_size": args.size,
|
||||
"median_filter_difference": repr(args.difference) })
|
||||
|
||||
f.process_numpy(median_filter, args = (args.size, args.difference))
|
||||
|
||||
def median_filter(data, interval, args, insert, final):
|
||||
(size, diff) = args
|
||||
(rows, cols) = data.shape
|
||||
for i in range(cols - 1):
|
||||
filtered = scipy.signal.medfilt(data[:, i+1], size)
|
||||
if diff:
|
||||
data[:, i+1] -= filtered
|
||||
else:
|
||||
data[:, i+1] = filtered
|
||||
insert(data)
|
||||
return rows
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
15
src/prep.py
15
src/prep.py
@@ -3,6 +3,8 @@
|
||||
# Spectral envelope preprocessor.
|
||||
# Requires two streams as input: the original raw data, and sinefit data.
|
||||
|
||||
from nilmdb.utils.printf import *
|
||||
from nilmdb.utils.time import timestamp_to_human
|
||||
import nilmtools.filter
|
||||
import nilmdb.client
|
||||
from numpy import *
|
||||
@@ -78,7 +80,7 @@ def main(argv = None):
|
||||
f.check_dest_metadata({ "prep_raw_source": f.src.path,
|
||||
"prep_sinefit_source": sinefit.path,
|
||||
"prep_column": args.column,
|
||||
"prep_rotation": rotation })
|
||||
"prep_rotation": repr(rotation) })
|
||||
|
||||
# Run the processing function on all data
|
||||
f.process_numpy(process, args = (client_sinefit, sinefit.path, args.column,
|
||||
@@ -106,7 +108,6 @@ def process(data, interval, args, insert_function, final):
|
||||
# Pull out sinefit data for the entire time range of this block
|
||||
for sinefit_line in client.stream_extract(sinefit_path,
|
||||
data[0, 0], data[rows-1, 0]):
|
||||
|
||||
def prep_period(t_min, t_max, rot):
|
||||
"""
|
||||
Compute prep coefficients from time t_min to t_max, which
|
||||
@@ -163,7 +164,15 @@ def process(data, interval, args, insert_function, final):
|
||||
break
|
||||
processed = idx_max
|
||||
|
||||
print "Processed", processed, "of", rows, "rows"
|
||||
# If we processed no data but there's lots in here, pretend we
|
||||
# processed half of it.
|
||||
if processed == 0 and rows > 10000:
|
||||
processed = rows / 2
|
||||
printf("%s: warning: no periods found; skipping %d rows\n",
|
||||
timestamp_to_human(data[0][0]), processed)
|
||||
else:
|
||||
printf("%s: processed %d of %d rows\n",
|
||||
timestamp_to_human(data[0][0]), processed, rows)
|
||||
return processed
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@@ -2,12 +2,18 @@
|
||||
|
||||
# Sine wave fitting. This runs about 5x faster than realtime on raw data.
|
||||
|
||||
from nilmdb.utils.printf import *
|
||||
import nilmtools.filter
|
||||
import nilmdb.client
|
||||
from nilmdb.utils.time import (timestamp_to_human,
|
||||
timestamp_to_seconds,
|
||||
seconds_to_timestamp)
|
||||
|
||||
from numpy import *
|
||||
from scipy import *
|
||||
#import pylab as p
|
||||
import operator
|
||||
import sys
|
||||
|
||||
def main(argv = None):
|
||||
f = nilmtools.filter.Filter()
|
||||
@@ -25,7 +31,7 @@ def main(argv = None):
|
||||
help='Maximum valid frequency '
|
||||
'(default: approximate frequency * 2))')
|
||||
group.add_argument('-a', '--min-amp', action='store', type=float,
|
||||
default=10.0,
|
||||
default=20.0,
|
||||
help='Minimum signal amplitude (default: %(default)s)')
|
||||
|
||||
# Parse arguments
|
||||
@@ -59,12 +65,40 @@ def main(argv = None):
|
||||
f.process_numpy(process, args = (args.column, args.frequency, args.min_amp,
|
||||
args.min_freq, args.max_freq))
|
||||
|
||||
class SuppressibleWarning(object):
|
||||
def __init__(self, maxcount = 10, maxsuppress = 100):
|
||||
self.maxcount = maxcount
|
||||
self.maxsuppress = maxsuppress
|
||||
self.count = 0
|
||||
self.last_msg = ""
|
||||
|
||||
def _write(self, sec, msg):
|
||||
if sec:
|
||||
now = timestamp_to_human(seconds_to_timestamp(sec)) + ": "
|
||||
else:
|
||||
now = ""
|
||||
sys.stderr.write(now + msg)
|
||||
|
||||
def warn(self, msg, seconds = None):
|
||||
self.count += 1
|
||||
if self.count <= self.maxcount:
|
||||
self._write(seconds, msg)
|
||||
if (self.count - self.maxcount) >= self.maxsuppress:
|
||||
self.reset(seconds)
|
||||
|
||||
def reset(self, seconds = None):
|
||||
if self.count > self.maxcount:
|
||||
self._write(seconds, sprintf("(%d warnings suppressed)\n",
|
||||
self.count - self.maxcount))
|
||||
self.count = 0
|
||||
|
||||
def process(data, interval, args, insert_function, final):
|
||||
(column, f_expected, a_min, f_min, f_max) = args
|
||||
rows = data.shape[0]
|
||||
|
||||
# Estimate sampling frequency from timestamps
|
||||
fs = 1e6 * (rows-1) / (data[-1][0] - data[0][0])
|
||||
fs = (rows-1) / (timestamp_to_seconds(data[-1][0]) -
|
||||
timestamp_to_seconds(data[0][0]))
|
||||
|
||||
# Pull out about 3.5 periods of data at once;
|
||||
# we'll expect to match 3 zero crossings in each window
|
||||
@@ -74,36 +108,41 @@ def process(data, interval, args, insert_function, final):
|
||||
if rows < N:
|
||||
return 0
|
||||
|
||||
warn = SuppressibleWarning(3, 1000)
|
||||
|
||||
# Process overlapping windows
|
||||
start = 0
|
||||
num_zc = 0
|
||||
last_inserted_timestamp = None
|
||||
while start < (rows - N):
|
||||
this = data[start:start+N, column]
|
||||
t_min = data[start, 0]/1e6
|
||||
t_max = data[start+N-1, 0]/1e6
|
||||
t_min = timestamp_to_seconds(data[start, 0])
|
||||
t_max = timestamp_to_seconds(data[start+N-1, 0])
|
||||
|
||||
# Do 4-parameter sine wave fit
|
||||
(A, f0, phi, C) = sfit4(this, fs)
|
||||
|
||||
# Check bounds. If frequency is too crazy, ignore this window
|
||||
if f0 < f_min or f0 > f_max:
|
||||
print "frequency", f0, "outside valid range", f_min, "-", f_max
|
||||
warn.warn(sprintf("frequency %s outside valid range %s - %s\n",
|
||||
str(f0), str(f_min), str(f_max)), t_min)
|
||||
start += N
|
||||
continue
|
||||
|
||||
# If amplitude is too low, results are probably just noise
|
||||
if A < a_min:
|
||||
print "amplitude", A, "below minimum threshold", a_min
|
||||
warn.warn(sprintf("amplitude %s below minimum threshold %s\n",
|
||||
str(A), str(a_min)), t_min)
|
||||
start += N
|
||||
continue
|
||||
|
||||
#p.plot(arange(N), this)
|
||||
#p.plot(arange(N), A * cos(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||
#p.plot(arange(N), A * sin(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||
|
||||
# Period starts when the argument of cosine is 3*pi/2 degrees,
|
||||
# Period starts when the argument of sine is 0 degrees,
|
||||
# so we're looking for sample number:
|
||||
# n = (3 * pi / 2 - phi) / (f0/fs * 2 * pi)
|
||||
zc_n = (3 * pi / 2 - phi) / (f0 / fs * 2 * pi)
|
||||
# n = (0 - phi) / (f0/fs * 2 * pi)
|
||||
zc_n = (0 - phi) / (f0 / fs * 2 * pi)
|
||||
period_n = fs/f0
|
||||
|
||||
# Add periods to make N positive
|
||||
@@ -116,7 +155,13 @@ def process(data, interval, args, insert_function, final):
|
||||
while zc_n < (N - period_n/2):
|
||||
#p.plot(zc_n, C, 'ro')
|
||||
t = t_min + zc_n / fs
|
||||
insert_function([[t * 1e6, f0, A, C]])
|
||||
if (last_inserted_timestamp is None or
|
||||
t > last_inserted_timestamp):
|
||||
insert_function([[seconds_to_timestamp(t), f0, A, C]])
|
||||
last_inserted_timestamp = t
|
||||
warn.reset(t)
|
||||
else:
|
||||
warn.warn("timestamp overlap\n", t)
|
||||
num_zc += 1
|
||||
last_zc = zc_n
|
||||
zc_n += period_n
|
||||
@@ -134,7 +179,13 @@ def process(data, interval, args, insert_function, final):
|
||||
start = int(round(start + advance))
|
||||
|
||||
# Return the number of rows we've processed
|
||||
print "Marked", num_zc, "zero-crossings in", start, "rows"
|
||||
warn.reset(last_inserted_timestamp)
|
||||
if last_inserted_timestamp:
|
||||
now = timestamp_to_human(seconds_to_timestamp(
|
||||
last_inserted_timestamp)) + ": "
|
||||
else:
|
||||
now = ""
|
||||
printf("%sMarked %d zero-crossings in %d rows\n", now, num_zc, start)
|
||||
return start
|
||||
|
||||
def sfit4(data, fs):
|
||||
@@ -149,15 +200,15 @@ def sfit4(data, fs):
|
||||
|
||||
Output:
|
||||
Parameters [A, f0, phi, C] to fit the equation
|
||||
x[n] = A * cos(f0/fs * 2 * pi * n + phi) + C
|
||||
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
|
||||
where n is sample number. Or, as a function of time:
|
||||
x(t) = A * cos(f0 * 2 * pi * t + phi) + C
|
||||
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
|
||||
|
||||
by Jim Paris
|
||||
(Verified to match sfit4.m)
|
||||
"""
|
||||
N = len(data)
|
||||
t = linspace(0, (N-1) / fs, N)
|
||||
t = linspace(0, (N-1) / float(fs), N)
|
||||
|
||||
## Estimate frequency using FFT (step b)
|
||||
Fc = fft(data)
|
||||
@@ -182,18 +233,17 @@ def sfit4(data, fs):
|
||||
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
|
||||
|
||||
# Convert to Hz
|
||||
f0 = i * fs / N
|
||||
f0 = i * float(fs) / N
|
||||
|
||||
# Fit it. We'll catch exceptions here and just returns zeros
|
||||
# if something fails with the least squares fit, etc.
|
||||
try:
|
||||
# first guess for A0, B0 using 3-parameter fit (step c)
|
||||
s = zeros(3)
|
||||
w = 2*pi*f0
|
||||
D = c_[cos(w*t), sin(w*t), ones(N)]
|
||||
s = linalg.lstsq(D, data)[0]
|
||||
|
||||
# Now iterate 6 times (step i)
|
||||
for idx in range(6):
|
||||
# Now iterate 7 times (step b, plus 6 iterations of step i)
|
||||
for idx in range(7):
|
||||
D = c_[cos(w*t), sin(w*t), ones(N),
|
||||
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
||||
s = linalg.lstsq(D, data)[0] # eqn B.18
|
||||
@@ -202,7 +252,7 @@ def sfit4(data, fs):
|
||||
## Extract results
|
||||
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
||||
f0 = w / (2*pi)
|
||||
phi = -arctan2(s[1], s[0]) # eqn B.22
|
||||
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
|
||||
C = s[2]
|
||||
return (A, f0, phi, C)
|
||||
except Exception as e:
|
||||
|
Reference in New Issue
Block a user