Compare commits
23 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
![]() |
8b9c5d4898 | ||
cf2c28b0fb | |||
87a26c907b | |||
def465b57c | |||
0589b8d316 | |||
9c5f07106d | |||
62e11a11c0 | |||
2bdcee2c36 | |||
6dce8c5296 | |||
25c35a56f6 | |||
d610deaef0 | |||
d7d5ccc9a7 | |||
f28753ff5c | |||
c9c2e0d5a8 | |||
5a2a32bec5 | |||
706c3933f9 | |||
cfd1719152 | |||
c62fb45980 | |||
57d856f2fa | |||
5d83d93019 | |||
5f847a0513 | |||
29cd7eb6c7 | |||
62c8af41ea |
43
Makefile
43
Makefile
@@ -8,22 +8,37 @@ else
|
||||
@echo "Try 'make install'"
|
||||
endif
|
||||
|
||||
test: test_cleanup
|
||||
test: test_pipewatch
|
||||
|
||||
test_pipewatch:
|
||||
nilmtools/pipewatch.py -t 3 "seq 10 20" "seq 20 30"
|
||||
|
||||
test_trainola:
|
||||
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
|
||||
/sharon/prep-a-matches
|
||||
nilmtools/trainola.py "$$(cat extras/trainola-test-param-2.js)"
|
||||
-nilmtool -u http://bucket/nilmdb remove -s min -e max \
|
||||
/sharon/prep-a-matches
|
||||
nilmtools/trainola.py "$$(cat extras/trainola-test-param.js)"
|
||||
|
||||
|
||||
test_cleanup:
|
||||
src/cleanup.py -e extras/cleanup.cfg
|
||||
src/cleanup.py extras/cleanup.cfg
|
||||
nilmtools/cleanup.py -e extras/cleanup.cfg
|
||||
nilmtools/cleanup.py extras/cleanup.cfg
|
||||
|
||||
test_insert:
|
||||
@make install >/dev/null
|
||||
src/insert.py --file --dry-run /test/foo </dev/null
|
||||
nilmtools/insert.py --file --dry-run /test/foo </dev/null
|
||||
|
||||
test_copy:
|
||||
@make install >/dev/null
|
||||
src/copy_wildcard.py -U "http://nilmdb.com/bucket/" -D /lees*
|
||||
nilmtools/copy_wildcard.py -U "http://nilmdb.com/bucket/" -D /lees*
|
||||
|
||||
test_prep:
|
||||
@make install >/dev/null
|
||||
/tmp/raw.dat:
|
||||
octave --eval 'fs = 8000;' \
|
||||
--eval 't = (0:fs*10)*2*pi*60/fs;' \
|
||||
--eval 'raw = transpose([sin(t); 0.3*sin(3*t)+sin(t)]);' \
|
||||
--eval 'save("-ascii","/tmp/raw.dat","raw");'
|
||||
|
||||
test_prep: /tmp/raw.dat
|
||||
-nilmtool destroy -R /test/raw
|
||||
-nilmtool destroy -R /test/sinefit
|
||||
-nilmtool destroy -R /test/prep
|
||||
@@ -31,8 +46,8 @@ test_prep:
|
||||
nilmtool create /test/sinefit float32_3
|
||||
nilmtool create /test/prep float32_8
|
||||
nilmtool insert -s '@0' -t -r 8000 /test/raw /tmp/raw.dat
|
||||
src/sinefit.py -c 1 /test/raw /test/sinefit
|
||||
src/prep.py -c 2 /test/raw /test/sinefit /test/prep
|
||||
nilmtools/sinefit.py -a 0.5 -c 1 /test/raw /test/sinefit
|
||||
nilmtools/prep.py -c 2 /test/raw /test/sinefit /test/prep
|
||||
nilmtool extract -s min -e max /test/prep | head -20
|
||||
|
||||
test_decimate:
|
||||
@@ -40,8 +55,8 @@ test_decimate:
|
||||
-@nilmtool destroy /lees-compressor/no-leak/raw/16 || true
|
||||
-@nilmtool create /lees-compressor/no-leak/raw/4 float32_18 || true
|
||||
-@nilmtool create /lees-compressor/no-leak/raw/16 float32_18 || true
|
||||
time python src/decimate.py -s '2013-02-04 18:10:00' -e '2013-02-04 18:11:00' /lees-compressor/no-leak/raw/1 /lees-compressor/no-leak/raw/4
|
||||
python src/decimate.py -s '2013-02-04 18:10:00' -e '2013-02-04 18:11:00' /lees-compressor/no-leak/raw/4 /lees-compressor/no-leak/raw/16
|
||||
time python nilmtools/decimate.py -s '2013-02-04 18:10:00' -e '2013-02-04 18:11:00' /lees-compressor/no-leak/raw/1 /lees-compressor/no-leak/raw/4
|
||||
python nilmtools/decimate.py -s '2013-02-04 18:10:00' -e '2013-02-04 18:11:00' /lees-compressor/no-leak/raw/4 /lees-compressor/no-leak/raw/16
|
||||
|
||||
version:
|
||||
python setup.py version
|
||||
@@ -63,4 +78,4 @@ clean::
|
||||
gitclean::
|
||||
git clean -dXf
|
||||
|
||||
.PHONY: all version dist sdist install clean gitclean
|
||||
.PHONY: all version dist sdist install clean gitclean test
|
||||
|
@@ -5,10 +5,10 @@ by Jim Paris <jim@jtan.com>
|
||||
Prerequisites:
|
||||
|
||||
# Runtime and build environments
|
||||
sudo apt-get install python2.7 python2.7-dev python-setuptools python-pip
|
||||
sudo apt-get install python-numpy python-scipy
|
||||
sudo apt-get install python2.7 python2.7-dev python-setuptools
|
||||
sudo apt-get install python-numpy python-scipy python-daemon
|
||||
|
||||
nilmdb (1.6.3+)
|
||||
nilmdb (1.8.1+)
|
||||
|
||||
Install:
|
||||
|
||||
|
29
extras/trainola-test-param-2.js
Normal file
29
extras/trainola-test-param-2.js
Normal file
@@ -0,0 +1,29 @@
|
||||
{ "columns" : [ { "index" : 0, "name" : "P1" },
|
||||
{ "index" : 1, "name" : "Q1" },
|
||||
{ "index" : 2, "name" : "P3" } ],
|
||||
"stream" : "/sharon/prep-a",
|
||||
"url" : "http://bucket.mit.edu/nilmdb",
|
||||
"dest_stream" : "/sharon/prep-a-matches",
|
||||
"start" : 1365153062643133.5,
|
||||
"end" : 1365168814443575.5,
|
||||
"exemplars" : [ { "columns" : [ { "index" : 0,
|
||||
"name" : "P1"
|
||||
} ],
|
||||
"dest_column" : 0,
|
||||
"end" : 1365073657682000,
|
||||
"name" : "Turn ON",
|
||||
"start" : 1365073654321000,
|
||||
"stream" : "/sharon/prep-a",
|
||||
"url" : "http://bucket.mit.edu/nilmdb"
|
||||
},
|
||||
{ "columns" : [ { "index" : 2, "name" : "P3" },
|
||||
{ "index" : 0, "name" : "P1" } ],
|
||||
"dest_column" : 1,
|
||||
"end" : 1365176528818000,
|
||||
"name" : "Type 2 turn ON",
|
||||
"start" : 1365176520030000,
|
||||
"stream" : "/sharon/prep-a",
|
||||
"url" : "http://bucket.mit.edu/nilmdb"
|
||||
}
|
||||
]
|
||||
}
|
31
extras/trainola-test-param.js
Normal file
31
extras/trainola-test-param.js
Normal file
@@ -0,0 +1,31 @@
|
||||
{ "url": "http://bucket.mit.edu/nilmdb",
|
||||
"dest_stream": "/sharon/prep-a-matches",
|
||||
"stream": "/sharon/prep-a",
|
||||
"start": 1366111383280463,
|
||||
"end": 1366126163457797,
|
||||
"columns": [ { "name": "P1", "index": 0 },
|
||||
{ "name": "Q1", "index": 1 },
|
||||
{ "name": "P3", "index": 2 } ],
|
||||
"exemplars": [
|
||||
{ "name": "Boiler Pump ON",
|
||||
"url": "http://bucket.mit.edu/nilmdb",
|
||||
"stream": "/sharon/prep-a",
|
||||
"start": 1366260494269078,
|
||||
"end": 1366260608185031,
|
||||
"dest_column": 0,
|
||||
"columns": [ { "name": "P1", "index": 0 },
|
||||
{ "name": "Q1", "index": 1 }
|
||||
]
|
||||
},
|
||||
{ "name": "Boiler Pump OFF",
|
||||
"url": "http://bucket.mit.edu/nilmdb",
|
||||
"stream": "/sharon/prep-a",
|
||||
"start": 1366260864215764,
|
||||
"end": 1366260870882998,
|
||||
"dest_column": 1,
|
||||
"columns": [ { "name": "P1", "index": 0 },
|
||||
{ "name": "Q1", "index": 1 }
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
@@ -181,7 +181,7 @@ def versions_from_parentdir(parentdir_prefix, versionfile_source, verbose=False)
|
||||
|
||||
tag_prefix = "nilmtools-"
|
||||
parentdir_prefix = "nilmtools-"
|
||||
versionfile_source = "src/_version.py"
|
||||
versionfile_source = "nilmtools/_version.py"
|
||||
|
||||
def get_versions(default={"version": "unknown", "full": ""}, verbose=False):
|
||||
variables = { "refnames": git_refnames, "full": git_full }
|
@@ -19,6 +19,10 @@ import re
|
||||
import argparse
|
||||
import numpy as np
|
||||
import cStringIO
|
||||
import functools
|
||||
|
||||
class ArgumentError(Exception):
|
||||
pass
|
||||
|
||||
class MissingDestination(Exception):
|
||||
def __init__(self, args, src, dest):
|
||||
@@ -65,6 +69,70 @@ def get_stream_info(client, path):
|
||||
return None
|
||||
return StreamInfo(client.geturl(), streams[0])
|
||||
|
||||
# Filter processing for a single interval of data.
|
||||
def process_numpy_interval(interval, extractor, inserter, warn_rows,
|
||||
function, args = None):
|
||||
"""For the given 'interval' of data, extract data, process it
|
||||
through 'function', and insert the result.
|
||||
|
||||
'extractor' should be a function like NumpyClient.stream_extract_numpy
|
||||
but with the the interval 'start' and 'end' as the only parameters,
|
||||
e.g.:
|
||||
extractor = functools.partial(NumpyClient.stream_extract_numpy,
|
||||
src_path, layout = l, maxrows = m)
|
||||
|
||||
'inserter' should be a function like NumpyClient.stream_insert_context
|
||||
but with the interval 'start' and 'end' as the only parameters, e.g.:
|
||||
inserter = functools.partial(NumpyClient.stream_insert_context,
|
||||
dest_path)
|
||||
|
||||
If 'warn_rows' is not None, print a warning to stdout when the
|
||||
number of unprocessed rows exceeds this amount.
|
||||
|
||||
See process_numpy for details on 'function' and 'args'.
|
||||
"""
|
||||
if args is None:
|
||||
args = []
|
||||
|
||||
with inserter(interval.start, interval.end) as insert_ctx:
|
||||
insert_func = insert_ctx.insert
|
||||
old_array = np.array([])
|
||||
for new_array in extractor(interval.start, interval.end):
|
||||
# If we still had old data left, combine it
|
||||
if old_array.shape[0] != 0:
|
||||
array = np.vstack((old_array, new_array))
|
||||
else:
|
||||
array = new_array
|
||||
|
||||
# Pass the data to the user provided function
|
||||
processed = function(array, interval, args, insert_func, False)
|
||||
|
||||
# Send any pending data that the user function inserted
|
||||
insert_ctx.send()
|
||||
|
||||
# Save the unprocessed parts
|
||||
if processed >= 0:
|
||||
old_array = array[processed:]
|
||||
else:
|
||||
raise Exception(
|
||||
sprintf("%s return value %s must be >= 0",
|
||||
str(function), str(processed)))
|
||||
|
||||
# Warn if there's too much data remaining
|
||||
if warn_rows is not None and old_array.shape[0] > warn_rows:
|
||||
printf("warning: %d unprocessed rows in buffer\n",
|
||||
old_array.shape[0])
|
||||
|
||||
# Last call for this contiguous interval
|
||||
if old_array.shape[0] != 0:
|
||||
processed = function(old_array, interval, args,
|
||||
insert_func, True)
|
||||
if processed != old_array.shape[0]:
|
||||
# Truncate the interval we're inserting at the first
|
||||
# unprocessed data point. This ensures that
|
||||
# we'll not miss any data when we run again later.
|
||||
insert_ctx.update_end(old_array[processed][0])
|
||||
|
||||
class Filter(object):
|
||||
|
||||
def __init__(self, parser_description = None):
|
||||
@@ -134,63 +202,52 @@ class Filter(object):
|
||||
self._parser = parser
|
||||
return parser
|
||||
|
||||
def interval_string(self, interval):
|
||||
return sprintf("[ %s -> %s ]",
|
||||
timestamp_to_human(interval.start),
|
||||
timestamp_to_human(interval.end))
|
||||
|
||||
def parse_args(self, argv = None):
|
||||
args = self._parser.parse_args(argv)
|
||||
|
||||
if args.dest_url is None:
|
||||
args.dest_url = args.url
|
||||
if args.url != args.dest_url:
|
||||
def set_args(self, url, dest_url, srcpath, destpath, start, end,
|
||||
parsed_args = None, quiet = True):
|
||||
"""Set arguments directly from parameters"""
|
||||
if dest_url is None:
|
||||
dest_url = url
|
||||
if url != dest_url:
|
||||
self.interhost = True
|
||||
|
||||
self._client_src = Client(args.url)
|
||||
self._client_dest = Client(args.dest_url)
|
||||
self._client_src = Client(url)
|
||||
self._client_dest = Client(dest_url)
|
||||
|
||||
if (not self.interhost) and (args.srcpath == args.destpath):
|
||||
self._parser.error("source and destination path must be different")
|
||||
if (not self.interhost) and (srcpath == destpath):
|
||||
raise ArgumentError("source and destination path must be different")
|
||||
|
||||
# Open and print info about the streams
|
||||
self.src = get_stream_info(self._client_src, args.srcpath)
|
||||
# Open the streams
|
||||
self.src = get_stream_info(self._client_src, srcpath)
|
||||
if not self.src:
|
||||
self._parser.error("source path " + args.srcpath + " not found")
|
||||
raise ArgumentError("source path " + srcpath + " not found")
|
||||
|
||||
self.dest = get_stream_info(self._client_dest, args.destpath)
|
||||
self.dest = get_stream_info(self._client_dest, destpath)
|
||||
if not self.dest:
|
||||
raise MissingDestination(args, self.src,
|
||||
StreamInfo(args.dest_url, [args.destpath]))
|
||||
raise MissingDestination(parsed_args, self.src,
|
||||
StreamInfo(dest_url, [destpath]))
|
||||
|
||||
print "Source:", self.src.string(self.interhost)
|
||||
print " Dest:", self.dest.string(self.interhost)
|
||||
self.start = start
|
||||
self.end = end
|
||||
|
||||
if args.dry_run:
|
||||
for interval in self.intervals():
|
||||
print self.interval_string(interval)
|
||||
raise SystemExit(0)
|
||||
# Print info
|
||||
if not quiet:
|
||||
print "Source:", self.src.string(self.interhost)
|
||||
print " Dest:", self.dest.string(self.interhost)
|
||||
|
||||
def parse_args(self, argv = None):
|
||||
"""Parse arguments from a command line"""
|
||||
args = self._parser.parse_args(argv)
|
||||
|
||||
self.set_args(args.url, args.dest_url, args.srcpath, args.destpath,
|
||||
args.start, args.end, quiet = False, parsed_args = args)
|
||||
|
||||
self.force_metadata = args.force_metadata
|
||||
|
||||
self.start = args.start
|
||||
self.end = args.end
|
||||
|
||||
if args.dry_run:
|
||||
for interval in self.intervals():
|
||||
print interval.human_string()
|
||||
raise SystemExit(0)
|
||||
return args
|
||||
|
||||
def _optimize_int(self, it):
|
||||
"""Join and yield adjacent intervals from the iterator 'it'"""
|
||||
saved_int = None
|
||||
for interval in it:
|
||||
if saved_int is not None:
|
||||
if saved_int.end == interval.start:
|
||||
interval.start = saved_int.start
|
||||
else:
|
||||
yield saved_int
|
||||
saved_int = interval
|
||||
if saved_int is not None:
|
||||
yield saved_int
|
||||
|
||||
def intervals(self):
|
||||
"""Generate all the intervals that this filter should process"""
|
||||
self._using_client = True
|
||||
@@ -217,12 +274,13 @@ class Filter(object):
|
||||
self.src.path, diffpath = self.dest.path,
|
||||
start = self.start, end = self.end) )
|
||||
# Optimize intervals: join intervals that are adjacent
|
||||
for interval in self._optimize_int(intervals):
|
||||
for interval in nilmdb.utils.interval.optimize(intervals):
|
||||
yield interval
|
||||
self._using_client = False
|
||||
|
||||
# Misc helpers
|
||||
def arg_time(self, toparse):
|
||||
@staticmethod
|
||||
def arg_time(toparse):
|
||||
"""Parse a time string argument"""
|
||||
try:
|
||||
return nilmdb.utils.time.parse_time(toparse)
|
||||
@@ -259,13 +317,16 @@ class Filter(object):
|
||||
|
||||
# The main filter processing method.
|
||||
def process_numpy(self, function, args = None, rows = 100000):
|
||||
"""For all intervals that exist in self.src but don't exist in
|
||||
self.dest, call 'function' with a Numpy array corresponding to
|
||||
the data. The data is converted to a Numpy array in chunks of
|
||||
'rows' rows at a time.
|
||||
"""Calls process_numpy_interval for each interval that currently
|
||||
exists in self.src, but doesn't exist in self.dest. It will
|
||||
process the data in chunks as follows:
|
||||
|
||||
For each chunk of data, call 'function' with a Numpy array
|
||||
corresponding to the data. The data is converted to a Numpy
|
||||
array in chunks of 'rows' rows at a time.
|
||||
|
||||
'function' should be defined as:
|
||||
def function(data, interval, args, insert_func, final)
|
||||
# def function(data, interval, args, insert_func, final)
|
||||
|
||||
'data': array of data to process -- may be empty
|
||||
|
||||
@@ -289,56 +350,18 @@ class Filter(object):
|
||||
being inserted will be ended at the timestamp of the first
|
||||
unprocessed data point.
|
||||
"""
|
||||
if args is None:
|
||||
args = []
|
||||
extractor = NumpyClient(self.src.url).stream_extract_numpy
|
||||
inserter = NumpyClient(self.dest.url).stream_insert_numpy_context
|
||||
|
||||
for interval in self.intervals():
|
||||
print "Processing", self.interval_string(interval)
|
||||
with inserter(self.dest.path,
|
||||
interval.start, interval.end) as insert_ctx:
|
||||
insert_function = insert_ctx.insert
|
||||
old_array = np.array([])
|
||||
for new_array in extractor(self.src.path,
|
||||
interval.start, interval.end,
|
||||
extractor_func = functools.partial(extractor, self.src.path,
|
||||
layout = self.src.layout,
|
||||
maxrows = rows):
|
||||
# If we still had old data left, combine it
|
||||
if old_array.shape[0] != 0:
|
||||
array = np.vstack((old_array, new_array))
|
||||
else:
|
||||
array = new_array
|
||||
maxrows = rows)
|
||||
inserter_func = functools.partial(inserter, self.dest.path)
|
||||
|
||||
# Pass it to the process function
|
||||
processed = function(array, interval, args,
|
||||
insert_function, False)
|
||||
|
||||
# Send any pending data
|
||||
insert_ctx.send()
|
||||
|
||||
# Save the unprocessed parts
|
||||
if processed >= 0:
|
||||
old_array = array[processed:]
|
||||
else:
|
||||
raise Exception(
|
||||
sprintf("%s return value %s must be >= 0",
|
||||
str(function), str(processed)))
|
||||
|
||||
# Warn if there's too much data remaining
|
||||
if old_array.shape[0] > 3 * rows:
|
||||
printf("warning: %d unprocessed rows in buffer\n",
|
||||
old_array.shape[0])
|
||||
|
||||
# Last call for this contiguous interval
|
||||
if old_array.shape[0] != 0:
|
||||
processed = function(old_array, interval, args,
|
||||
insert_function, True)
|
||||
if processed != old_array.shape[0]:
|
||||
# Truncate the interval we're inserting at the first
|
||||
# unprocessed data point. This ensures that
|
||||
# we'll not miss any data when we run again later.
|
||||
insert_ctx.update_end(old_array[processed][0])
|
||||
for interval in self.intervals():
|
||||
print "Processing", interval.human_string()
|
||||
process_numpy_interval(interval, extractor_func, inserter_func,
|
||||
rows * 3, function, args)
|
||||
|
||||
def main(argv = None):
|
||||
# This is just a dummy function; actual filters can use the other
|
||||
@@ -347,7 +370,7 @@ def main(argv = None):
|
||||
parser = f.setup_parser()
|
||||
args = f.parse_args(argv)
|
||||
for i in f.intervals():
|
||||
print "Generic filter: need to handle", f.interval_string(i)
|
||||
print "Generic filter: need to handle", i.human_string()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
168
nilmtools/pipewatch.py
Executable file
168
nilmtools/pipewatch.py
Executable file
@@ -0,0 +1,168 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
import nilmdb.client
|
||||
from nilmdb.utils.printf import *
|
||||
import nilmdb.utils.lock
|
||||
import nilmtools
|
||||
|
||||
import time
|
||||
import sys
|
||||
import os
|
||||
import argparse
|
||||
import subprocess
|
||||
import tempfile
|
||||
import threading
|
||||
import select
|
||||
import signal
|
||||
import Queue
|
||||
import daemon
|
||||
|
||||
def parse_args(argv = None):
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class = argparse.ArgumentDefaultsHelpFormatter,
|
||||
version = nilmtools.__version__,
|
||||
description = """\
|
||||
Pipe data from 'generator' to 'consumer'. This is intended to be
|
||||
executed frequently from cron, and will exit if another copy is
|
||||
already running. If 'generator' or 'consumer' returns an error,
|
||||
or if 'generator' stops sending data for a while, it will exit.
|
||||
|
||||
Intended for use with ethstream (generator) and nilm-insert
|
||||
(consumer). Commands are executed through the shell.
|
||||
""")
|
||||
parser.add_argument("-d", "--daemon", action="store_true",
|
||||
help="Run in background")
|
||||
parser.add_argument("-l", "--lock", metavar="FILENAME", action="store",
|
||||
default=tempfile.gettempdir() +
|
||||
"/nilm-pipewatch.lock",
|
||||
help="Lock file for detecting running instance")
|
||||
parser.add_argument("-t", "--timeout", metavar="SECONDS", action="store",
|
||||
type=float, default=30,
|
||||
help="Restart if no output from " +
|
||||
"generator for this long")
|
||||
group = parser.add_argument_group("commands to execute")
|
||||
group.add_argument("generator", action="store",
|
||||
help="Data generator (e.g. \"ethstream -r 8000\")")
|
||||
group.add_argument("consumer", action="store",
|
||||
help="Data consumer (e.g. \"nilm-insert /foo/bar\")")
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
return args
|
||||
|
||||
def reader_thread(queue, fd):
|
||||
# Read from a file descriptor, write to queue.
|
||||
try:
|
||||
while True:
|
||||
(r, w, x) = select.select([fd], [], [fd], 0.25)
|
||||
if x:
|
||||
raise Exception # generator died?
|
||||
if not r:
|
||||
# short timeout -- just try again. This is to catch the
|
||||
# fd being closed elsewhere, which is only detected
|
||||
# when select restarts.
|
||||
continue
|
||||
data = os.read(fd, 65536)
|
||||
if data == "": # generator EOF
|
||||
raise Exception
|
||||
queue.put(data)
|
||||
except Exception:
|
||||
queue.put(None)
|
||||
|
||||
def watcher_thread(queue, procs):
|
||||
# Put None in the queue if either process dies
|
||||
while True:
|
||||
for p in procs:
|
||||
if p.poll() is not None:
|
||||
queue.put(None)
|
||||
return
|
||||
time.sleep(0.25)
|
||||
|
||||
def pipewatch(args):
|
||||
# Run the processes, etc
|
||||
with open(os.devnull, "r") as devnull:
|
||||
generator = subprocess.Popen(args.generator, shell = True,
|
||||
bufsize = -1, close_fds = True,
|
||||
stdin = devnull,
|
||||
stdout = subprocess.PIPE,
|
||||
stderr = None)
|
||||
consumer = subprocess.Popen(args.consumer, shell = True,
|
||||
bufsize = -11, close_fds = True,
|
||||
stdin = subprocess.PIPE,
|
||||
stdout = None, stderr = None)
|
||||
|
||||
queue = Queue.Queue(maxsize = 32)
|
||||
reader = threading.Thread(target = reader_thread,
|
||||
args = (queue, generator.stdout.fileno()))
|
||||
reader.start()
|
||||
watcher = threading.Thread(target = watcher_thread,
|
||||
args = (queue, [generator, consumer]))
|
||||
watcher.start()
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
data = queue.get(True, args.timeout)
|
||||
if data is None:
|
||||
break
|
||||
consumer.stdin.write(data)
|
||||
except Queue.Empty:
|
||||
# Timeout: kill the generator
|
||||
fprintf(sys.stderr, "pipewatch: timeout\n")
|
||||
generator.terminate()
|
||||
break
|
||||
|
||||
generator.stdout.close()
|
||||
consumer.stdin.close()
|
||||
except IOError:
|
||||
fprintf(sys.stderr, "pipewatch: I/O error\n")
|
||||
|
||||
def kill(proc):
|
||||
# Wait for a process to end, or kill it
|
||||
def poll_timeout(proc, timeout):
|
||||
for x in range(1+int(timeout / 0.1)):
|
||||
if proc.poll() is not None:
|
||||
break
|
||||
time.sleep(0.1)
|
||||
return proc.poll()
|
||||
try:
|
||||
if poll_timeout(proc, 0.5) is None:
|
||||
proc.terminate()
|
||||
if poll_timeout(proc, 0.5) is None:
|
||||
proc.kill()
|
||||
except OSError:
|
||||
pass
|
||||
return poll_timeout(proc, 0.5)
|
||||
|
||||
# Wait for them to die, or kill them
|
||||
gret = kill(generator)
|
||||
cret = kill(consumer)
|
||||
|
||||
fprintf(sys.stderr, "pipewatch: generator returned %d, " +
|
||||
"consumer returned %d\n", gret, cret)
|
||||
if gret == 0 and cret == 0:
|
||||
sys.exit(0)
|
||||
sys.exit(1)
|
||||
|
||||
def main(argv = None):
|
||||
args = parse_args(argv)
|
||||
|
||||
lockfile = open(args.lock, "w")
|
||||
if not nilmdb.utils.lock.exclusive_lock(lockfile):
|
||||
printf("pipewatch process already running (according to %s)\n",
|
||||
args.lock)
|
||||
sys.exit(0)
|
||||
try:
|
||||
# Run as a daemon if requested, otherwise run directly.
|
||||
if args.daemon:
|
||||
with daemon.DaemonContext(files_preserve = [ lockfile ]):
|
||||
pipewatch(args)
|
||||
else:
|
||||
pipewatch(args)
|
||||
finally:
|
||||
# Clean up lockfile
|
||||
try:
|
||||
os.unlink(args.lock)
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -1,7 +1,6 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
# Sine wave fitting. This runs about 5x faster than realtime on raw data.
|
||||
|
||||
# Sine wave fitting.
|
||||
from nilmdb.utils.printf import *
|
||||
import nilmtools.filter
|
||||
import nilmdb.client
|
304
nilmtools/trainola.py
Executable file
304
nilmtools/trainola.py
Executable file
@@ -0,0 +1,304 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
from nilmdb.utils.printf import *
|
||||
import nilmdb.client
|
||||
import nilmtools.filter
|
||||
from nilmdb.utils.time import (timestamp_to_human,
|
||||
timestamp_to_seconds,
|
||||
seconds_to_timestamp)
|
||||
from nilmdb.utils import datetime_tz
|
||||
from nilmdb.utils.interval import Interval
|
||||
|
||||
import numpy as np
|
||||
import scipy
|
||||
import scipy.signal
|
||||
from numpy.core.umath_tests import inner1d
|
||||
import nilmrun
|
||||
from collections import OrderedDict
|
||||
import sys
|
||||
import time
|
||||
import functools
|
||||
import collections
|
||||
|
||||
class DataError(ValueError):
|
||||
pass
|
||||
|
||||
def build_column_mapping(colinfo, streaminfo):
|
||||
"""Given the 'columns' list from the JSON data, verify and
|
||||
pull out a dictionary mapping for the column names/numbers."""
|
||||
columns = OrderedDict()
|
||||
for c in colinfo:
|
||||
col_num = c['index'] + 1 # skip timestamp
|
||||
if (c['name'] in columns.keys() or col_num in columns.values()):
|
||||
raise DataError("duplicated columns")
|
||||
if (c['index'] < 0 or c['index'] >= streaminfo.layout_count):
|
||||
raise DataError("bad column number")
|
||||
columns[c['name']] = col_num
|
||||
if not len(columns):
|
||||
raise DataError("no columns")
|
||||
return columns
|
||||
|
||||
class Exemplar(object):
|
||||
def __init__(self, exinfo, min_rows = 10, max_rows = 100000):
|
||||
"""Given a dictionary entry from the 'exemplars' input JSON,
|
||||
verify the stream, columns, etc. Then, fetch all the data
|
||||
into self.data."""
|
||||
|
||||
self.name = exinfo['name']
|
||||
self.url = exinfo['url']
|
||||
self.stream = exinfo['stream']
|
||||
self.start = exinfo['start']
|
||||
self.end = exinfo['end']
|
||||
self.dest_column = exinfo['dest_column']
|
||||
|
||||
# Get stream info
|
||||
self.client = nilmdb.client.numpyclient.NumpyClient(self.url)
|
||||
self.info = nilmtools.filter.get_stream_info(self.client, self.stream)
|
||||
if not self.info:
|
||||
raise DataError(sprintf("exemplar stream '%s' does not exist " +
|
||||
"on server '%s'", self.stream, self.url))
|
||||
|
||||
# Build up name => index mapping for the columns
|
||||
self.columns = build_column_mapping(exinfo['columns'], self.info)
|
||||
|
||||
# Count points
|
||||
self.count = self.client.stream_count(self.stream, self.start, self.end)
|
||||
|
||||
# Verify count
|
||||
if self.count == 0:
|
||||
raise DataError("No data in this exemplar!")
|
||||
if self.count < min_rows:
|
||||
raise DataError("Too few data points: " + str(self.count))
|
||||
if self.count > max_rows:
|
||||
raise DataError("Too many data points: " + str(self.count))
|
||||
|
||||
# Extract the data
|
||||
datagen = self.client.stream_extract_numpy(self.stream,
|
||||
self.start, self.end,
|
||||
self.info.layout,
|
||||
maxrows = self.count)
|
||||
self.data = list(datagen)[0]
|
||||
|
||||
# Extract just the columns that were specified in self.columns,
|
||||
# skipping the timestamp.
|
||||
extract_columns = [ value for (key, value) in self.columns.items() ]
|
||||
self.data = self.data[:,extract_columns]
|
||||
|
||||
# Fix the column indices in e.columns, since we removed/reordered
|
||||
# columns in self.data
|
||||
for n, k in enumerate(self.columns):
|
||||
self.columns[k] = n
|
||||
|
||||
# Subtract the means from each column
|
||||
self.data = self.data - self.data.mean(axis=0)
|
||||
|
||||
# Get scale factors for each column by computing dot product
|
||||
# of each column with itself.
|
||||
self.scale = inner1d(self.data.T, self.data.T)
|
||||
|
||||
# Ensure a minimum (nonzero) scale and convert to list
|
||||
self.scale = np.maximum(self.scale, [1e-9]).tolist()
|
||||
|
||||
def __str__(self):
|
||||
return sprintf("\"%s\" %s [%s] %s rows",
|
||||
self.name, self.stream, ",".join(self.columns.keys()),
|
||||
self.count)
|
||||
|
||||
def peak_detect(data, delta):
|
||||
"""Simple min/max peak detection algorithm, taken from my code
|
||||
in the disagg.m from the 10-8-5 paper"""
|
||||
mins = [];
|
||||
maxs = [];
|
||||
cur_min = (None, np.inf)
|
||||
cur_max = (None, -np.inf)
|
||||
lookformax = False
|
||||
for (n, p) in enumerate(data):
|
||||
if p > cur_max[1]:
|
||||
cur_max = (n, p)
|
||||
if p < cur_min[1]:
|
||||
cur_min = (n, p)
|
||||
if lookformax:
|
||||
if p < (cur_max[1] - delta):
|
||||
maxs.append(cur_max)
|
||||
cur_min = (n, p)
|
||||
lookformax = False
|
||||
else:
|
||||
if p > (cur_min[1] + delta):
|
||||
mins.append(cur_min)
|
||||
cur_max = (n, p)
|
||||
lookformax = True
|
||||
return (mins, maxs)
|
||||
|
||||
def timestamp_to_short_human(timestamp):
|
||||
dt = datetime_tz.datetime_tz.fromtimestamp(timestamp_to_seconds(timestamp))
|
||||
return dt.strftime("%H:%M:%S")
|
||||
|
||||
def trainola_matcher(data, interval, args, insert_func, final_chunk):
|
||||
"""Perform cross-correlation match"""
|
||||
( src_columns, dest_count, exemplars ) = args
|
||||
nrows = data.shape[0]
|
||||
|
||||
# We want at least 10% more points than the widest exemplar.
|
||||
widest = max([ x.count for x in exemplars ])
|
||||
if (widest * 1.1) > nrows:
|
||||
return 0
|
||||
|
||||
# This is how many points we'll consider valid in the
|
||||
# cross-correlation.
|
||||
valid = nrows + 1 - widest
|
||||
matches = collections.defaultdict(list)
|
||||
|
||||
# Try matching against each of the exemplars
|
||||
for e in exemplars:
|
||||
corrs = []
|
||||
|
||||
# Compute cross-correlation for each column
|
||||
for col_name in e.columns:
|
||||
a = data[:, src_columns[col_name]]
|
||||
b = e.data[:, e.columns[col_name]]
|
||||
corr = scipy.signal.fftconvolve(a, np.flipud(b), 'valid')[0:valid]
|
||||
|
||||
# Scale by the norm of the exemplar
|
||||
corr = corr / e.scale[e.columns[col_name]]
|
||||
corrs.append(corr)
|
||||
|
||||
# Find the peaks using the column with the largest amplitude
|
||||
biggest = e.scale.index(max(e.scale))
|
||||
peaks_minmax = peak_detect(corrs[biggest], 0.1)
|
||||
peaks = [ p[0] for p in peaks_minmax[1] ]
|
||||
|
||||
# Now look at every peak
|
||||
for row in peaks:
|
||||
# Correlation for each column must be close enough to 1.
|
||||
for (corr, scale) in zip(corrs, e.scale):
|
||||
# The accepted distance from 1 is based on the relative
|
||||
# amplitude of the column. Use a linear mapping:
|
||||
# scale 1.0 -> distance 0.1
|
||||
# scale 0.0 -> distance 1.0
|
||||
distance = 1 - 0.9 * (scale / e.scale[biggest])
|
||||
if abs(corr[row] - 1) > distance:
|
||||
# No match
|
||||
break
|
||||
else:
|
||||
# Successful match
|
||||
matches[row].append(e)
|
||||
|
||||
# Insert matches into destination stream.
|
||||
matched_rows = sorted(matches.keys())
|
||||
out = np.zeros((len(matched_rows), dest_count + 1))
|
||||
|
||||
for n, row in enumerate(matched_rows):
|
||||
# Fill timestamp
|
||||
out[n][0] = data[row, 0]
|
||||
|
||||
# Mark matched exemplars
|
||||
for exemplar in matches[row]:
|
||||
out[n, exemplar.dest_column + 1] = 1.0
|
||||
|
||||
# Insert it
|
||||
insert_func(out)
|
||||
|
||||
# Return how many rows we processed
|
||||
valid = max(valid, 0)
|
||||
printf(" [%s] matched %d exemplars in %d rows\n",
|
||||
timestamp_to_short_human(data[0][0]), np.sum(out[:,1:]), valid)
|
||||
return valid
|
||||
|
||||
def trainola(conf):
|
||||
print "Trainola", nilmtools.__version__
|
||||
|
||||
# Load main stream data
|
||||
url = conf['url']
|
||||
src_path = conf['stream']
|
||||
dest_path = conf['dest_stream']
|
||||
start = conf['start']
|
||||
end = conf['end']
|
||||
|
||||
# Get info for the src and dest streams
|
||||
src_client = nilmdb.client.numpyclient.NumpyClient(url)
|
||||
src = nilmtools.filter.get_stream_info(src_client, src_path)
|
||||
if not src:
|
||||
raise DataError("source path '" + src_path + "' does not exist")
|
||||
src_columns = build_column_mapping(conf['columns'], src)
|
||||
|
||||
dest_client = nilmdb.client.numpyclient.NumpyClient(url)
|
||||
dest = nilmtools.filter.get_stream_info(dest_client, dest_path)
|
||||
if not dest:
|
||||
raise DataError("destination path '" + dest_path + "' does not exist")
|
||||
|
||||
printf("Source:\n")
|
||||
printf(" %s [%s]\n", src.path, ",".join(src_columns.keys()))
|
||||
printf("Destination:\n")
|
||||
printf(" %s (%s columns)\n", dest.path, dest.layout_count)
|
||||
|
||||
# Pull in the exemplar data
|
||||
exemplars = []
|
||||
for n, exinfo in enumerate(conf['exemplars']):
|
||||
printf("Loading exemplar %d:\n", n)
|
||||
e = Exemplar(exinfo)
|
||||
col = e.dest_column
|
||||
if col < 0 or col >= dest.layout_count:
|
||||
raise DataError(sprintf("bad destination column number %d\n" +
|
||||
"dest stream only has 0 through %d",
|
||||
col, dest.layout_count - 1))
|
||||
printf(" %s, output column %d\n", str(e), col)
|
||||
exemplars.append(e)
|
||||
if len(exemplars) == 0:
|
||||
raise DataError("missing exemplars")
|
||||
|
||||
# Verify that the exemplar columns are all represented in the main data
|
||||
for n, ex in enumerate(exemplars):
|
||||
for col in ex.columns:
|
||||
if col not in src_columns:
|
||||
raise DataError(sprintf("Exemplar %d column %s is not "
|
||||
"available in source data", n, col))
|
||||
|
||||
# Figure out which intervals we should process
|
||||
intervals = ( Interval(s, e) for (s, e) in
|
||||
src_client.stream_intervals(src_path,
|
||||
diffpath = dest_path,
|
||||
start = start, end = end) )
|
||||
intervals = nilmdb.utils.interval.optimize(intervals)
|
||||
|
||||
# Do the processing
|
||||
rows = 100000
|
||||
extractor = functools.partial(src_client.stream_extract_numpy,
|
||||
src.path, layout = src.layout, maxrows = rows)
|
||||
inserter = functools.partial(dest_client.stream_insert_numpy_context,
|
||||
dest.path)
|
||||
start = time.time()
|
||||
processed_time = 0
|
||||
printf("Processing intervals:\n")
|
||||
for interval in intervals:
|
||||
printf("%s\n", interval.human_string())
|
||||
nilmtools.filter.process_numpy_interval(
|
||||
interval, extractor, inserter, rows * 3,
|
||||
trainola_matcher, (src_columns, dest.layout_count, exemplars))
|
||||
processed_time += (timestamp_to_seconds(interval.end) -
|
||||
timestamp_to_seconds(interval.start))
|
||||
elapsed = max(time.time() - start, 1e-3)
|
||||
|
||||
printf("Done. Processed %.2f seconds per second.\n",
|
||||
processed_time / elapsed)
|
||||
|
||||
def main(argv = None):
|
||||
import simplejson as json
|
||||
import sys
|
||||
|
||||
if argv is None:
|
||||
argv = sys.argv[1:]
|
||||
if len(argv) != 1:
|
||||
raise DataError("need one argument, either a dictionary or JSON string")
|
||||
|
||||
try:
|
||||
# Passed in a JSON string (e.g. on the command line)
|
||||
conf = json.loads(argv[0])
|
||||
except TypeError as e:
|
||||
# Passed in the config dictionary (e.g. from NilmRun)
|
||||
conf = argv[0]
|
||||
|
||||
return trainola(conf)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
8
setup.py
8
setup.py
@@ -30,7 +30,7 @@ except ImportError:
|
||||
# Versioneer manages version numbers from git tags.
|
||||
# https://github.com/warner/python-versioneer
|
||||
import versioneer
|
||||
versioneer.versionfile_source = 'src/_version.py'
|
||||
versioneer.versionfile_source = 'nilmtools/_version.py'
|
||||
versioneer.versionfile_build = 'nilmtools/_version.py'
|
||||
versioneer.tag_prefix = 'nilmtools-'
|
||||
versioneer.parentdir_prefix = 'nilmtools-'
|
||||
@@ -61,14 +61,14 @@ setup(name='nilmtools',
|
||||
long_description = "NILM Database Tools",
|
||||
license = "Proprietary",
|
||||
author_email = 'jim@jtan.com',
|
||||
install_requires = [ 'nilmdb >= 1.6.3',
|
||||
install_requires = [ 'nilmdb >= 1.8.1',
|
||||
'numpy',
|
||||
'scipy',
|
||||
'python-daemon >= 1.5',
|
||||
#'matplotlib',
|
||||
],
|
||||
packages = [ 'nilmtools',
|
||||
],
|
||||
package_dir = { 'nilmtools': 'src' },
|
||||
entry_points = {
|
||||
'console_scripts': [
|
||||
'nilm-decimate = nilmtools.decimate:main',
|
||||
@@ -80,6 +80,8 @@ setup(name='nilmtools',
|
||||
'nilm-sinefit = nilmtools.sinefit:main',
|
||||
'nilm-cleanup = nilmtools.cleanup:main',
|
||||
'nilm-median = nilmtools.median:main',
|
||||
'nilm-trainola = nilmtools.trainola:main',
|
||||
'nilm-pipewatch = nilmtools.pipewatch:main',
|
||||
],
|
||||
},
|
||||
zip_safe = False,
|
||||
|
Reference in New Issue
Block a user