Compare commits

...

12 Commits

Author SHA1 Message Date
83ad18ebf6 Fix non-string arguments to metadata_check 2013-05-08 12:49:38 -04:00
c76d527f95 Fix unicode handling in filter metadata match 2013-05-07 12:40:53 -04:00
b8a73278e7 Always store metadata rotation as a string 2013-04-29 14:25:11 -04:00
ce0691d6c4 sineefit: Change sfit4 to fit to \sin instead of \cos
And adjust the period locator accordingly.
Fitting \sin is the same mathematically, it's just conceptually more
straightforward since we're locating zero crossings anyway.
2013-04-27 18:12:20 -04:00
4da658e960 sinefit: move initial estimate into the main iteration loop
Just a little less code.  Same results.
2013-04-27 17:50:23 -04:00
8ab31eafc2 Allow shorthand method for creating an option-less parser.
This is mostly just intended to make a simple filter example shorter.
2013-04-21 16:53:28 -04:00
979ab13bff Force fs to be a float in sfit4 2013-04-17 17:58:15 -04:00
f4fda837ae Bump required nilmdb version to 1.6.0 2013-04-11 11:55:11 -04:00
5547d266d0 filter: Don't include trailing unprocessed data in the inserted intervals 2013-04-11 11:53:17 -04:00
372e977e4a Reverse cleanup order to handle interruptions better 2013-04-10 18:38:41 -04:00
640a680704 Increase default min amplitude in sinefit 2013-04-10 17:09:52 -04:00
2e74e6cd63 Skip over data if we aren't able to process any. Change output format 2013-04-10 17:01:07 -04:00
5 changed files with 56 additions and 26 deletions

View File

@@ -61,7 +61,7 @@ setup(name='nilmtools',
long_description = "NILM Database Tools",
license = "Proprietary",
author_email = 'jim@jtan.com',
install_requires = [ 'nilmdb >= 1.5.0',
install_requires = [ 'nilmdb >= 1.6.0',
'numpy',
'scipy',
'matplotlib',

View File

@@ -238,12 +238,15 @@ def main(argv = None):
timestamp_to_seconds(total)))
continue
printf(" removing data before %s\n", timestamp_to_human(remove_before))
if args.yes:
client.stream_remove(path, None, remove_before)
for ap in streams[path].also_clean_paths:
printf(" also removing from %s\n", ap)
# Clean in reverse order. Since we only use the primary stream and not
# the decimated streams to figure out which data to remove, removing
# the primary stream last means that we might recover more nicely if
# we are interrupted and restarted.
clean_paths = list(reversed(streams[path].also_clean_paths)) + [ path ]
for p in clean_paths:
printf(" removing from %s\n", p)
if args.yes:
client.stream_remove(ap, None, remove_before)
client.stream_remove(p, None, remove_before)
# All done
if not args.yes:

View File

@@ -67,7 +67,7 @@ def get_stream_info(client, path):
class Filter(object):
def __init__(self):
def __init__(self, parser_description = None):
self._parser = None
self._client_src = None
self._client_dest = None
@@ -78,6 +78,9 @@ class Filter(object):
self.end = None
self.interhost = False
self.force_metadata = False
if parser_description is not None:
self.setup_parser(parser_description)
self.parse_args()
@property
def client_src(self):
@@ -233,8 +236,14 @@ class Filter(object):
metadata = self._client_dest.stream_get_metadata(self.dest.path)
if not self.force_metadata:
for key in data:
wanted = str(data[key])
wanted = data[key]
if not isinstance(wanted, basestring):
wanted = str(wanted)
val = metadata.get(key, wanted)
# Force UTF-8 encoding for comparison and display
wanted = wanted.encode('utf-8')
val = val.encode('utf-8')
key = key.encode('utf-8')
if val != wanted and self.dest.rows > 0:
m = "Metadata in destination stream:\n"
m += " %s = %s\n" % (key, val)
@@ -275,6 +284,10 @@ class Filter(object):
Return value of 'function' is the number of data rows processed.
Unprocessed data will be provided again in a subsequent call
(unless 'final' is True).
If unprocessed data remains after 'final' is True, the interval
being inserted will be ended at the timestamp of the first
unprocessed data point.
"""
if args is None:
args = []
@@ -319,7 +332,13 @@ class Filter(object):
# Last call for this contiguous interval
if old_array.shape[0] != 0:
function(old_array, interval, args, insert_function, True)
processed = function(old_array, interval, args,
insert_function, True)
if processed != old_array.shape[0]:
# Truncate the interval we're inserting at the first
# unprocessed data point. This ensures that
# we'll not miss any data when we run again later.
insert_ctx.update_end(old_array[processed][0])
def main(argv = None):
# This is just a dummy function; actual filters can use the other

View File

@@ -3,6 +3,8 @@
# Spectral envelope preprocessor.
# Requires two streams as input: the original raw data, and sinefit data.
from nilmdb.utils.printf import *
from nilmdb.utils.time import timestamp_to_human
import nilmtools.filter
import nilmdb.client
from numpy import *
@@ -78,7 +80,7 @@ def main(argv = None):
f.check_dest_metadata({ "prep_raw_source": f.src.path,
"prep_sinefit_source": sinefit.path,
"prep_column": args.column,
"prep_rotation": rotation })
"prep_rotation": repr(rotation) })
# Run the processing function on all data
f.process_numpy(process, args = (client_sinefit, sinefit.path, args.column,
@@ -106,7 +108,6 @@ def process(data, interval, args, insert_function, final):
# Pull out sinefit data for the entire time range of this block
for sinefit_line in client.stream_extract(sinefit_path,
data[0, 0], data[rows-1, 0]):
def prep_period(t_min, t_max, rot):
"""
Compute prep coefficients from time t_min to t_max, which
@@ -163,7 +164,15 @@ def process(data, interval, args, insert_function, final):
break
processed = idx_max
print "Processed", processed, "of", rows, "rows"
# If we processed no data but there's lots in here, pretend we
# processed half of it.
if processed == 0 and rows > 10000:
processed = rows / 2
printf("%s: warning: no periods found; skipping %d rows\n",
timestamp_to_human(data[0][0]), processed)
else:
printf("%s: processed %d of %d rows\n",
timestamp_to_human(data[0][0]), processed, rows)
return processed
if __name__ == "__main__":

View File

@@ -25,7 +25,7 @@ def main(argv = None):
help='Maximum valid frequency '
'(default: approximate frequency * 2))')
group.add_argument('-a', '--min-amp', action='store', type=float,
default=10.0,
default=20.0,
help='Minimum signal amplitude (default: %(default)s)')
# Parse arguments
@@ -98,12 +98,12 @@ def process(data, interval, args, insert_function, final):
continue
#p.plot(arange(N), this)
#p.plot(arange(N), A * cos(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
#p.plot(arange(N), A * sin(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
# Period starts when the argument of cosine is 3*pi/2 degrees,
# Period starts when the argument of sine is 0 degrees,
# so we're looking for sample number:
# n = (3 * pi / 2 - phi) / (f0/fs * 2 * pi)
zc_n = (3 * pi / 2 - phi) / (f0 / fs * 2 * pi)
# n = (0 - phi) / (f0/fs * 2 * pi)
zc_n = (0 - phi) / (f0 / fs * 2 * pi)
period_n = fs/f0
# Add periods to make N positive
@@ -149,15 +149,15 @@ def sfit4(data, fs):
Output:
Parameters [A, f0, phi, C] to fit the equation
x[n] = A * cos(f0/fs * 2 * pi * n + phi) + C
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
where n is sample number. Or, as a function of time:
x(t) = A * cos(f0 * 2 * pi * t + phi) + C
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
by Jim Paris
(Verified to match sfit4.m)
"""
N = len(data)
t = linspace(0, (N-1) / fs, N)
t = linspace(0, (N-1) / float(fs), N)
## Estimate frequency using FFT (step b)
Fc = fft(data)
@@ -182,18 +182,17 @@ def sfit4(data, fs):
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
# Convert to Hz
f0 = i * fs / N
f0 = i * float(fs) / N
# Fit it. We'll catch exceptions here and just returns zeros
# if something fails with the least squares fit, etc.
try:
# first guess for A0, B0 using 3-parameter fit (step c)
s = zeros(3)
w = 2*pi*f0
D = c_[cos(w*t), sin(w*t), ones(N)]
s = linalg.lstsq(D, data)[0]
# Now iterate 6 times (step i)
for idx in range(6):
# Now iterate 7 times (step b, plus 6 iterations of step i)
for idx in range(7):
D = c_[cos(w*t), sin(w*t), ones(N),
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
s = linalg.lstsq(D, data)[0] # eqn B.18
@@ -202,7 +201,7 @@ def sfit4(data, fs):
## Extract results
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
f0 = w / (2*pi)
phi = -arctan2(s[1], s[0]) # eqn B.22
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
C = s[2]
return (A, f0, phi, C)
except Exception as e: