Compare commits
9 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
ce0691d6c4 | |||
4da658e960 | |||
8ab31eafc2 | |||
979ab13bff | |||
f4fda837ae | |||
5547d266d0 | |||
372e977e4a | |||
640a680704 | |||
2e74e6cd63 |
2
setup.py
2
setup.py
@@ -61,7 +61,7 @@ setup(name='nilmtools',
|
||||
long_description = "NILM Database Tools",
|
||||
license = "Proprietary",
|
||||
author_email = 'jim@jtan.com',
|
||||
install_requires = [ 'nilmdb >= 1.5.0',
|
||||
install_requires = [ 'nilmdb >= 1.6.0',
|
||||
'numpy',
|
||||
'scipy',
|
||||
'matplotlib',
|
||||
|
@@ -238,12 +238,15 @@ def main(argv = None):
|
||||
timestamp_to_seconds(total)))
|
||||
continue
|
||||
printf(" removing data before %s\n", timestamp_to_human(remove_before))
|
||||
if args.yes:
|
||||
client.stream_remove(path, None, remove_before)
|
||||
for ap in streams[path].also_clean_paths:
|
||||
printf(" also removing from %s\n", ap)
|
||||
# Clean in reverse order. Since we only use the primary stream and not
|
||||
# the decimated streams to figure out which data to remove, removing
|
||||
# the primary stream last means that we might recover more nicely if
|
||||
# we are interrupted and restarted.
|
||||
clean_paths = list(reversed(streams[path].also_clean_paths)) + [ path ]
|
||||
for p in clean_paths:
|
||||
printf(" removing from %s\n", p)
|
||||
if args.yes:
|
||||
client.stream_remove(ap, None, remove_before)
|
||||
client.stream_remove(p, None, remove_before)
|
||||
|
||||
# All done
|
||||
if not args.yes:
|
||||
|
@@ -67,7 +67,7 @@ def get_stream_info(client, path):
|
||||
|
||||
class Filter(object):
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, parser_description = None):
|
||||
self._parser = None
|
||||
self._client_src = None
|
||||
self._client_dest = None
|
||||
@@ -78,6 +78,9 @@ class Filter(object):
|
||||
self.end = None
|
||||
self.interhost = False
|
||||
self.force_metadata = False
|
||||
if parser_description is not None:
|
||||
self.setup_parser(parser_description)
|
||||
self.parse_args()
|
||||
|
||||
@property
|
||||
def client_src(self):
|
||||
@@ -275,6 +278,10 @@ class Filter(object):
|
||||
Return value of 'function' is the number of data rows processed.
|
||||
Unprocessed data will be provided again in a subsequent call
|
||||
(unless 'final' is True).
|
||||
|
||||
If unprocessed data remains after 'final' is True, the interval
|
||||
being inserted will be ended at the timestamp of the first
|
||||
unprocessed data point.
|
||||
"""
|
||||
if args is None:
|
||||
args = []
|
||||
@@ -319,7 +326,13 @@ class Filter(object):
|
||||
|
||||
# Last call for this contiguous interval
|
||||
if old_array.shape[0] != 0:
|
||||
function(old_array, interval, args, insert_function, True)
|
||||
processed = function(old_array, interval, args,
|
||||
insert_function, True)
|
||||
if processed != old_array.shape[0]:
|
||||
# Truncate the interval we're inserting at the first
|
||||
# unprocessed data point. This ensures that
|
||||
# we'll not miss any data when we run again later.
|
||||
insert_ctx.update_end(old_array[processed][0])
|
||||
|
||||
def main(argv = None):
|
||||
# This is just a dummy function; actual filters can use the other
|
||||
|
13
src/prep.py
13
src/prep.py
@@ -3,6 +3,8 @@
|
||||
# Spectral envelope preprocessor.
|
||||
# Requires two streams as input: the original raw data, and sinefit data.
|
||||
|
||||
from nilmdb.utils.printf import *
|
||||
from nilmdb.utils.time import timestamp_to_human
|
||||
import nilmtools.filter
|
||||
import nilmdb.client
|
||||
from numpy import *
|
||||
@@ -106,7 +108,6 @@ def process(data, interval, args, insert_function, final):
|
||||
# Pull out sinefit data for the entire time range of this block
|
||||
for sinefit_line in client.stream_extract(sinefit_path,
|
||||
data[0, 0], data[rows-1, 0]):
|
||||
|
||||
def prep_period(t_min, t_max, rot):
|
||||
"""
|
||||
Compute prep coefficients from time t_min to t_max, which
|
||||
@@ -163,7 +164,15 @@ def process(data, interval, args, insert_function, final):
|
||||
break
|
||||
processed = idx_max
|
||||
|
||||
print "Processed", processed, "of", rows, "rows"
|
||||
# If we processed no data but there's lots in here, pretend we
|
||||
# processed half of it.
|
||||
if processed == 0 and rows > 10000:
|
||||
processed = rows / 2
|
||||
printf("%s: warning: no periods found; skipping %d rows\n",
|
||||
timestamp_to_human(data[0][0]), processed)
|
||||
else:
|
||||
printf("%s: processed %d of %d rows\n",
|
||||
timestamp_to_human(data[0][0]), processed, rows)
|
||||
return processed
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@@ -25,7 +25,7 @@ def main(argv = None):
|
||||
help='Maximum valid frequency '
|
||||
'(default: approximate frequency * 2))')
|
||||
group.add_argument('-a', '--min-amp', action='store', type=float,
|
||||
default=10.0,
|
||||
default=20.0,
|
||||
help='Minimum signal amplitude (default: %(default)s)')
|
||||
|
||||
# Parse arguments
|
||||
@@ -98,12 +98,12 @@ def process(data, interval, args, insert_function, final):
|
||||
continue
|
||||
|
||||
#p.plot(arange(N), this)
|
||||
#p.plot(arange(N), A * cos(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||
#p.plot(arange(N), A * sin(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||
|
||||
# Period starts when the argument of cosine is 3*pi/2 degrees,
|
||||
# Period starts when the argument of sine is 0 degrees,
|
||||
# so we're looking for sample number:
|
||||
# n = (3 * pi / 2 - phi) / (f0/fs * 2 * pi)
|
||||
zc_n = (3 * pi / 2 - phi) / (f0 / fs * 2 * pi)
|
||||
# n = (0 - phi) / (f0/fs * 2 * pi)
|
||||
zc_n = (0 - phi) / (f0 / fs * 2 * pi)
|
||||
period_n = fs/f0
|
||||
|
||||
# Add periods to make N positive
|
||||
@@ -149,15 +149,15 @@ def sfit4(data, fs):
|
||||
|
||||
Output:
|
||||
Parameters [A, f0, phi, C] to fit the equation
|
||||
x[n] = A * cos(f0/fs * 2 * pi * n + phi) + C
|
||||
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
|
||||
where n is sample number. Or, as a function of time:
|
||||
x(t) = A * cos(f0 * 2 * pi * t + phi) + C
|
||||
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
|
||||
|
||||
by Jim Paris
|
||||
(Verified to match sfit4.m)
|
||||
"""
|
||||
N = len(data)
|
||||
t = linspace(0, (N-1) / fs, N)
|
||||
t = linspace(0, (N-1) / float(fs), N)
|
||||
|
||||
## Estimate frequency using FFT (step b)
|
||||
Fc = fft(data)
|
||||
@@ -182,18 +182,17 @@ def sfit4(data, fs):
|
||||
i = arccos((Z2*cos(ni2) - Z1*cos(ni1)) / (Z2-Z1)) / n
|
||||
|
||||
# Convert to Hz
|
||||
f0 = i * fs / N
|
||||
f0 = i * float(fs) / N
|
||||
|
||||
# Fit it. We'll catch exceptions here and just returns zeros
|
||||
# if something fails with the least squares fit, etc.
|
||||
try:
|
||||
# first guess for A0, B0 using 3-parameter fit (step c)
|
||||
s = zeros(3)
|
||||
w = 2*pi*f0
|
||||
D = c_[cos(w*t), sin(w*t), ones(N)]
|
||||
s = linalg.lstsq(D, data)[0]
|
||||
|
||||
# Now iterate 6 times (step i)
|
||||
for idx in range(6):
|
||||
# Now iterate 7 times (step b, plus 6 iterations of step i)
|
||||
for idx in range(7):
|
||||
D = c_[cos(w*t), sin(w*t), ones(N),
|
||||
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
||||
s = linalg.lstsq(D, data)[0] # eqn B.18
|
||||
@@ -202,7 +201,7 @@ def sfit4(data, fs):
|
||||
## Extract results
|
||||
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
||||
f0 = w / (2*pi)
|
||||
phi = -arctan2(s[1], s[0]) # eqn B.22
|
||||
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
|
||||
C = s[2]
|
||||
return (A, f0, phi, C)
|
||||
except Exception as e:
|
||||
|
Reference in New Issue
Block a user