Compare commits
2 Commits
nilmtools-
...
nilmtools-
Author | SHA1 | Date | |
---|---|---|---|
ce0691d6c4 | |||
4da658e960 |
@@ -98,12 +98,12 @@ def process(data, interval, args, insert_function, final):
|
||||
continue
|
||||
|
||||
#p.plot(arange(N), this)
|
||||
#p.plot(arange(N), A * cos(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||
#p.plot(arange(N), A * sin(f0/fs * 2 * pi * arange(N) + phi) + C, 'g')
|
||||
|
||||
# Period starts when the argument of cosine is 3*pi/2 degrees,
|
||||
# Period starts when the argument of sine is 0 degrees,
|
||||
# so we're looking for sample number:
|
||||
# n = (3 * pi / 2 - phi) / (f0/fs * 2 * pi)
|
||||
zc_n = (3 * pi / 2 - phi) / (f0 / fs * 2 * pi)
|
||||
# n = (0 - phi) / (f0/fs * 2 * pi)
|
||||
zc_n = (0 - phi) / (f0 / fs * 2 * pi)
|
||||
period_n = fs/f0
|
||||
|
||||
# Add periods to make N positive
|
||||
@@ -149,9 +149,9 @@ def sfit4(data, fs):
|
||||
|
||||
Output:
|
||||
Parameters [A, f0, phi, C] to fit the equation
|
||||
x[n] = A * cos(f0/fs * 2 * pi * n + phi) + C
|
||||
x[n] = A * sin(f0/fs * 2 * pi * n + phi) + C
|
||||
where n is sample number. Or, as a function of time:
|
||||
x(t) = A * cos(f0 * 2 * pi * t + phi) + C
|
||||
x(t) = A * sin(f0 * 2 * pi * t + phi) + C
|
||||
|
||||
by Jim Paris
|
||||
(Verified to match sfit4.m)
|
||||
@@ -188,12 +188,11 @@ def sfit4(data, fs):
|
||||
# if something fails with the least squares fit, etc.
|
||||
try:
|
||||
# first guess for A0, B0 using 3-parameter fit (step c)
|
||||
s = zeros(3)
|
||||
w = 2*pi*f0
|
||||
D = c_[cos(w*t), sin(w*t), ones(N)]
|
||||
s = linalg.lstsq(D, data)[0]
|
||||
|
||||
# Now iterate 6 times (step i)
|
||||
for idx in range(6):
|
||||
# Now iterate 7 times (step b, plus 6 iterations of step i)
|
||||
for idx in range(7):
|
||||
D = c_[cos(w*t), sin(w*t), ones(N),
|
||||
-s[0] * t * sin(w*t) + s[1] * t * cos(w*t) ] # eqn B.16
|
||||
s = linalg.lstsq(D, data)[0] # eqn B.18
|
||||
@@ -202,7 +201,7 @@ def sfit4(data, fs):
|
||||
## Extract results
|
||||
A = sqrt(s[0]*s[0] + s[1]*s[1]) # eqn B.21
|
||||
f0 = w / (2*pi)
|
||||
phi = -arctan2(s[1], s[0]) # eqn B.22
|
||||
phi = arctan2(s[0], s[1]) # eqn B.22 (flipped for sin instead of cos)
|
||||
C = s[2]
|
||||
return (A, f0, phi, C)
|
||||
except Exception as e:
|
||||
|
Reference in New Issue
Block a user